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Abstract
Extending a result of Rado to hypergraphs, we prove that for all s, k, t ∈ N with
k ≥ t ≥ 2, the vertices of every r = s(k − t + 1)-edge-coloured countably infinite
complete k-graph can be partitioned into the cores of at most s monochromatic t-tight
Berge-paths of different colours. We further describe a construction showing that this
result is best possible.

Keywords Graph partitioning · Monochromatic cycle partitioning · Infinite graphs ·
Berge-paths

1 Introduction

Lehel’s conjecture (first seen in [2]) states that the vertices of every 2-edge-coloured
complete graph can be partitioned into two monochromatic cycles, one of each colour.
Here, single vertices and edges are considered to be cycles and this convention is used
throughout this paper. The conjecture was proved for very large graphs by Łuczak et
al. [14] in 1998, for large graphs by Allen [1] in 2008, and for all graphs by Bessy and
Thomassé [3] in 2010.

Erdős et al. [6] conjectured in 1991 that this can be extended to r colours (allowing r
monochromatic cycles). This was however disproved by Pokrovskiy [17], who showed
that for every r ≥ 3, there are infinitely many r -edge-coloured complete graphs
whose vertices cannot be covered by r monochromatic vertex-disjoint cycles. Finding
the minimum number of monochromatic vertex-disjoint cycles needed to cover the
vertices of any r -edge-coloured complete graph remains a big open problem. We note

B Nóra Frankl
n.frankl@lse.ac.uk

Jan Corsten
j.corsten@lse.ac.uk

1 Universidad de Chile, Santiago, Chile

2 Department of Mathematics, London School of Economics, Houghton St, London WC2A 2AE, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00373-019-02113-3&domain=pdf


Graphs and Combinatorics

that a priori it is not obvious that this minimum is independent of the size of the
complete graph we wish to cover. The fact that this is the case was proved by Erdős
et al. [6], who also presented a simple construction in which r cycles are needed. The
currently best-known upper bound is 100r log r , due to Gyárfás et al. [9].

An infinite analogue of the conjecture of Erdős et al. is true as proved by Rado [18]
already in 1978.

Theorem 1.1 ([18]) The vertices of every countably infinite r-edge-coloured complete
graph can be partitioned into r monochromatic paths (infinite or finite), one of each
colour.

Rado’s theorem is best possible, as the construction for finite graphs in [6] can be
extended to infinite graphs.

In this note we consider extensions of this result to hypergraphs. A k-uniform
hypergraph (or shortly, a k-graph) is a tupleH = (V , E) where V and E are sets with
E ⊆ (V

k

)
. The complete k-graph with vertex-set V , denoted by K(k)

V , is the k-graph

with edge-set E = (V
k

)
.

There are different notions of paths in hypergraphs, loose paths, tight paths and
Berge-paths; all of these coincide with the notion of paths when k = 2. In this note,
we will mainly consider Berge-paths. Given integers 2 ≤ t ≤ k and � ≥ 1, a finite
(k-uniform) t-tight Berge-path of length � is a pair (X , F) defined as follows. X =
{v1, . . . , v�+t−1} ⊆ V is a set of �+t−1distinct vertices, F = {e1, . . . , e�} ⊆ E is a set
of � distinct edges and vi , vi+1, . . . , vi+t−1 ∈ ei for all i ∈ [�]. For technical reasons
we define a t-tight Berge-path of length 0 as a pair ({v},∅). A (one-way) infinite t-tight
Berge-path is a pair (X , F) where X = {vi : i ∈ N} ⊆ V , F = {ei : i ∈ N} ⊆ E ,
and vi , vi+1, . . . vi+t−1 ∈ ei for all i ∈ N. For a t-tight Berge-path P = (X , F), X is
called the core of P . A family P1 = (X1, F1), . . . , Pr = (Xr , Fr ) of t-tight Berge-
paths core-partitions V if X1 ∪ · · · ∪ Xr is a partition of V . Given an edge-colouring
ϕ of a k-graphH, a t-tight Berge-path P = (X , F) inH is said to be monochromatic
in colour c if ϕ( f ) = c for all f ∈ F .

A 2-tight Berge-path is simply called a Berge-path and a k-tight Berge-path
is called a tight path. The k-uniform loose path of length � consists of n =
k(� − 1) + 1 vertices {v1, . . . , vn} and the � edges {vi(k−1)+1, . . . , vi(k−1)+k} for
i = 0, . . . , � − 1. The infinite loose path consists of the vertices {v1, v2, . . .} and
edges {vi(k−1)+1, . . . , vi(k−1)+k} for all i = 0, 1, . . .

Many extensions of path partition problems to hypergraphs have been studied, con-
sidering loose paths [10,11,20], tight paths [4,5] and Berge-paths [10]. Most relevant
for the topic of this note are the following two extensions of Theorem 1.1.

Theorem 1.2 (Gyárfás–Sárközy [10]) The vertices of every countably infinite r-edge-
coloured complete k-graph can be partitioned into r monochromatic loose paths
(infinite or finite), one of each colour.

Theorem 1.3 (Elekes–Soukup–Soukup–Szentmiklóssy [5]) The vertices of every
countably infinite r-edge-coloured complete k-graph can be partitioned into r
monochromatic tight paths (infinite or finite), one of each colour.

123



Graphs and Combinatorics

The latter result answers a question of Gyárfás and Sárközy from [10]. Note that
both Theorems 1.2 and 1.3 reduce to Theorem 1.1 when k = 2. Our main result
extends Theorem 1.1 in a similar way to Berge-paths. It turns out that �r/(k − 1)	
paths suffice.

Theorem 1.4 For all s, k ∈ N with k ≥ 2 and every r = s(k − 1)-edge-colouring
of K(k)

N
, the vertices can be core-partitioned into s monochromatic Berge-paths of

different colours.

Note that Theorem 1.4 reduces to Theorem 1.1 when k = 2 as well. We shall
actually prove the following more general result about t-tight Berge-paths.

Theorem 1.5 For all s, k, t ∈ N with k ≥ t ≥ 2 and every r = s(k − t + 1)-edge-
colouring of K(k)

N
, the vertices can be core-partitioned into s monochromatic t-tight

Berge-paths of different colours.

Note that the case k = 2 reduces to Theorem 1.4, and the case k = t reduces to
Theorem 1.3. The following theorem shows that Theorem 1.5 is best possible.

Theorem 1.6 For all s, k, t ∈ N with k ≥ t ≥ 2, there is an edge-colouring of K(k)
N

with r = s(k− t +1)+1 colours in which the vertices cannot be covered by the cores
of s monochromatic t-tight Berge-paths.

We will prove Theorem 1.6 in Sect. 2 and Theorem 1.5 in Sect. 3.

2 Proof of Theorem 1.6

The construction described in the proof generalises the construction from [6].

Proof of Theorem 1.6 We denote the lexicographical ordering of
([r ]
s

)
by ≺. First, we

partition N into sets
{
BI : I ∈ ([r ]

s

)}
so that all BI ’s but B{r−s+1,...,r} are finite and

|BI | ≥ st · ∑
J≺I (|BJ | + 1) for every I ∈ ([r ]

s

)
.1 For x ∈ N, let I (x) be the s-subset

of [r ] for which x ∈ BI (x). We define an r -edge-colouring ϕ of K(k)
N

as follows.

For every e ∈ E(K(k)
N

) we consider an order x1e , . . . , x
k
e of e satisfying I (xie) �

I (x j
e ) for all 1 ≤ i < j ≤ k, and define ϕ(e) as an arbitrary member of

[r ]\⋃
i≤k−t+1 I (x

i
e).

Assume for contradiction that there are monochromatic t-tight Berge-paths
P1, . . . , Ps with cores X1, . . . , Xs so that

⋃
i Xi = N and let C ⊆ [r ] be a set of

size s which contains all colours used by these t-tight Berge-paths.
Observe that for every edge e with e ∩ BC 
= ∅ and ϕ(e) ∈ C we have

∣
∣∣e ∩

⋃

J≺C
BJ

∣
∣∣ ≥ k − t + 1. (2.1)

Indeed, if
∣∣e ∩ ⋃

J≺C BJ
∣∣ < k − t + 1, then C � I (xk−t+1

e ) and thus ϕ(e) /∈ C .

1 This growth rate of the B|I | can be improved by a more careful analysis.
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For i ∈ C , let Fi be the set of all f ∈ (Xi
t

)
which consist of t consecutive vertices

of Xi with at least one element in BC . Let f ∈ Fi and let e ∈ E(Pi ) be some edge
with f ⊆ e. By (2.1), we have

∣∣e\ ⋃
J≺C BJ

∣∣ ≤ t − 1 and therefore some vertex in
f must be in

⋃
J≺C BJ . Since every v ∈ N is contained in at most t sets f ∈ Fi , it

follows that

|Fi | ≤ t
∣∣∣
⋃

J≺C
BJ

∣∣∣ . (2.2)

Observe now that for all but at most t − 1 vertices v ∈ Xi ∩ BC , there is a unique
f ∈ Fi starting at v and thus

|Xi ∩ BC | ≤ |Fi | + t − 1. (2.3)

Combining (2.2) and (2.3), we get

|Xi ∩ BC | ≤ t ·
∑

J≺C
|BJ | + t − 1 < |BC |/r

for every i ∈ [r ] and hence |BC | = ∣∣BC ∩ (⋃
i Xi

)∣∣ < |BC |, a contradiction. ��

3 Proof of Theorem 1.5

Our proof is based on ideas from [5]. First, we need to introduce some notation. An r -
multi-colouring of a k-graphG is a function χ : E(G) → 2[r ]. Given a set F ⊆ E(G),
we denote by χ(F) = ⋂

e∈F χ(e) the set of colours they have in common and say that

F is (χ -)monochromatic ifχ(F) is non-empty. For a given r -colouring ϕ ofK := K(k)
N

and i, j ∈ N with j < k, we define an r -multi-colouring ϕi, j : (
N\{i}

j

) → 2[r ] by

ϕi, j ( f ) = {ϕ(e) : e ∈ E(K) and {i} ∪ f ⊆ e}.

Furthermore, we call {Ki : i ∈ N} a j-clique-chain w.r.t. an r -colouring ϕ of
K if K1 is a ϕ1, j -monochromatic copy of K( j)

N
with V (K1) ⊆ N and Ki is a ϕi, j -

monochromatic copy of K( j)
N

with V (Ki ) ⊆ V (Ki−1) for every i ∈ N.
Observe that, by Ramsey’s theorem [19] for infinite hypergraphs, there exists a

j-clique-chain for every r -colouring of K and every j ∈ [k − 1].
For a j-clique-chain {Ki : i ∈ N} we define a vertex-multi-colouring χ : N → 2[r ]

by χ(i) = ⋂
e∈E(Ki )

ϕi, j (e) for every i ∈ N. We call χ the clique-colouring induced
by {Ki : i ∈ N}.
Lemma 3.1 For all s, k, t ∈ N with k ≥ t ≥ 2 and every r = s(k − t + 1)-colouring
of K(k)

N
, there is a (t − 1)-clique-chain that induces a clique-colouring using at most

s colours.

Proof Let ϕ be the given r -colouring of K := K(k)
N

. Furthermore, let C1 ∪ · · · ∪ Cr

be a partition of the set of r = s(k − t + 1) colours into r blocks of size s. We will
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show that there is a (t − 1)-clique-chain and some i ∈ [r ] such that for the induced
clique-colouring we have χ(v) ∩ Ci 
= ∅ for all v ∈ N.

We call an infinite (t − 1)-uniform clique K′ maximally-monochromatic w.r.t. a
multi-colouring ψ of K′ and a set C ⊆ [r ] if there is no infinite clique K′′ ⊆ K′
with | {i : ψ(K′′) ∩ Ci 
= ∅} ∩ C | > | {i : ψ(K′) ∩ Ci 
= ∅} ∩ C |. Note that a
maximally-monochromatic clique is not necessarily monochromatic (since all its infi-
nite monochromatic subcliques might have colours not in C). Further note that every
infinite clique contains a maximally-monochromatic infinite clique (since r is finite).

We build a (t − 1)-clique-chain as follows. Let K1 be any ϕ1,t−1-monochromatic,
maximally-monochromatic (t − 1)-uniform clique w.r.t. ϕ1,t−1 and D = [r ], and
let D1 := {

i : ϕ1,t−1(K1) ∩ Ci 
= ∅}
. Now, for every j ∈ N, let K j+1 be a

ϕ j+1,t−1-monochromatic, maximally-monochromatic clique w.r.t. ϕ j+1,t−1 and Di

with V (K j+1) ⊆ V (K j ) and let Di+1 = {
i : ϕ j+1,t−1(K j+1) ∩ Ci 
= ∅}

. If there is
some i ∈ [r ] such that Ci ∩ Dj 
= ∅ for all j ∈ N, then {K1,K2, . . .} is a (t − 1)-
clique-chain with the desired property. Hence we may assume that there is no such
i .

Thus, there exist j1, . . . , jr , such that Ci ∩ Dji = ∅ but Ci ∩ Di j−1 
= ∅ for every
i ∈ [r ].Without loss of generalitywemay assume that j1 ≤ · · · ≤ jr . Let X = V (K jr )

and note that V (K ji ) ⊇ X for every i ∈ [r ]. Define � : ( X
t−1

) → 2[r ] by

�( f ) = {ϕ(e) : e ∈ E(K) and { j1, . . . , jr } ∪ f ⊆ e}.

Note that every f ∈ ( X
t−1

)
receives at least one colour, and that �( f ) ⊆ ϕ ji ,t−1( f )

for every f ∈ ( X
t−1

)
and every i ∈ [r ]. By Ramsey’s theorem for hypergraphs there is

a �-monochromatic infinite cliqueK′ in X . Therefore, there is some � ∈ [r ] such that
�(K′) ∩ C� 
= ∅ and consequently K j� is not maximally monochromatic. ��

We proceed now with the proof of Theorem 1.5.

Proof of Theorem 1.5 Let ϕ be the given r -colouring of K = K(k)
N

. By Lemma 3.1,
there is a (t − 1)-clique-chain {Ki : i ∈ N} that induces a clique-colouring χ using at
most s colours (without loss of generality these colours are 1, . . . , s). For i ∈ [s], let
Ai ⊆ N be the set of vertices of colour i according to χ .

By repeating the following process we will simultaneously build t-tight monochro-
matic Berge-paths P1, . . . , Pr with core-vertex sequences {bi,1, bi,2, . . .} for every
i ∈ [s]. Let bi,1 := min Ai for every i ∈ [s]. In every step, we will add to each path t
or t − 1 vertices making sure that for every i ∈ [s], the last new vertex, say bi,ni , is in
Ai , and that the other new vertices are in V (Kbi,ni

). Right after choosing the vertex bi, j ,
we will choose a unique edge ei, j ∈ E(K) of colour i which contains the t consecutive
vertices bi, j−t+1, . . . , bi, j for every j ≥ t and i ∈ [s]. Let X = {b1,1, . . . , bs,1} and
let Y = ∅. We will use X to keep track of already used vertices and Y to keep track of
already used edges.

For each i ∈ [s] do the following.2 Suppose the current path Pi ends in bi,n ∈ Ai

for some n ∈ N. We will now extend Pi by t or t − 1 vertices as follows. Let a be the

2 To avoid unnecessary subscripts for ‘local variables’, we treat i as being fixed in the following.
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smallest vertex in Ai\X (if Ai\X is empty, the path Pi is complete and we move to
the next step). Add a to X and do the following for every j = 1, . . . , t − 2. Choose
a vertex bi,n+ j ∈ V (Ka)\(⋃ Y ) and add it to X (note that this is always possible
since V (Ka) is infinite and Y is finite). Let fi,n+ j = {bi,n+ j−t+1, . . . , bi,n+ j } be the
set of the t consecutive vertices in the core of the Berge-path Pi ending at bi,n+ j .
Note that fi,n+ j\{bi,n} ∈ E(Kbi,n ) and thus i ∈ ϕbi,n ,t−1( fi,n+ j\{bi,n}). Hence,
by the definition of ϕbi,n ,t−1, there exist ei,n+ j ∈ E(K) with fi,n+ j ⊆ ei,n+ j and
ϕ(ei,n+ j ) = i . Add ei,n+ j to Y . Since bi,n+ j /∈ ⋃

Y , we have ei,n+ j /∈ Y and we can
therefore use ei,n+ j as the edge for fi,n+ j in our Berge-path.

Choosing the next vertex will be slightly more complicated (since a might be in
some edge in Y ). Let b ∈ V (Ka)\⋃

Y and let f ′
1 = {bi,n, . . . , bi,n+t−2, b} and f ′

2 =
{bi,n+1, . . . , bi,n+t−2, b, a}, and note that f ′

1\{bi,n} ∈ E(Kbi,n ) and f ′
2\{a} ∈ E(Ka).

As before, i ∈ ϕbi,n ,t−1( f ′
1\{bi,n})∩ϕa,t−1( f ′

2\{a}) and thus there exist e′
1, e

′
2 ∈ E(K)

with f ′
s ⊆ e′

s and ϕ(e′
s) = i for both s = 1, 2. If e′

1 
= e′
2, let bi,n+t−1 := b

and bi,n+t = a and let ei,n+t−1 := e′
1 and ei,n+t = e′

2. Add bi,n+t−1 to X and
ei,n+t−1, ei,n+t to Y . Note that ei,n+t−1 and ei,n+t can be chosen as the edges for the
t consecutive vertices of Pi ending in bi,n+t−1 and bi,n+t . If e′

1 = e′
2, let bi,n+t−1 = a

and ei,n+t−1 = e′
1 = e′

2, and add ei,n+t−1 to Y . Note that the t consecutive vertices
of Pi ending in bi,n+t−1 are contained in ei,n+t−1 and ei,n+t−1 /∈ Y . Hence, ei,n+t−1
can be chosen as the edge for the t consecutive vertices of Pi ending in bi,n+t−1.

By construction, P1, . . . , Ps are monochromatic t-tight Berge-paths whose cores
are disjoint. Furthermore, since at the beginning of every step the smallest uncovered
vertex a of Ai is chosen, we have

⋃
i V (Pi ) = N. ��

4 Further Remarks and Open Problems

Theorems 1.1–1.4 remain true when we consider cycles instead of paths, where an
infinite cycle is a two-way infinite path. It is not clear to us however if one can replace
paths by cycles in Theorem 1.5 when 2 < t < k. Difficulties only arise when trying to
close finite paths to cycles, hence we can replace paths by cycles if we allow finitely
many vertices to be uncovered.

A natural question to ask is if similar results hold in the finite setting.Gyárfás, Lehel,
Sárközy and Schelp [8] conjectured that every finite (k − 1)-edge-coloured complete
k-graph contains a monochromatic Hamiltonian Berge-cycle. Note that, in the infinite
setting, this is a special case of Theorem 1.4. After partial results in [8,12,13,15],
Omidi [16] announced a proof of this conjecture.

We believe that a generalisation of this to more colours, similar as in Theorem 1.4,
is true as well.

Conjecture 4.1 For all s, k ∈ N with k ≥ 2, there is some c = c(s, k) ∈ N such that
the following is true for all n ∈ N. In every r = s(k − 1)-edge-colouring of K(k)

n ,
there is a collection of at most s monochromatic t-tight Berge-cycles whose cores are
disjoint and cover all but c vertices.

For k = 2, this reduces to a conjecture of Pokrovskiy [17]. We further believe that
this can be extended to t-tight Berge-cycles similarly to Theorem 1.5.
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Conjecture 4.2 For all s, k, t ∈ N with k ≥ t ≥ 2, there is some c = c(s, k, t) ∈ N

such that the following is true for all n ∈ N. In every r = s(k− t +1)-edge-colouring
of K(k)

n , there is a collection of at most s monochromatic t-tight Berge-cycles whose
cores are disjoint and cover all but c vertices.

A simple modification of the construction in Sect. 2 shows that these conjectures
are best possible (if true) apart from the finite leftover.

Recently we learned that Gerbner et al. [7, unpublished] made some progress
towards these conjectures.
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