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Abstract. It has often been stated that, within the class of continuous stochastic volatility models cal-
ibrated to vanillas, the price of a VIX future is maximized by the Dupire local volatility model. In this
article we prove that this statement is incorrect: we build a continuous stochastic volatility model in which
a VIX future is strictly more expensive than in its associated local volatility model. More generally, in this
model, strictly convex payoffs on a squared VIX are strictly cheaper than in the associated local volatility
model. This corresponds to an inversion of convex ordering between local and stochastic variances, when
moving from instantaneous variances to squared VIX, as convex payoffs on instantaneous variances are al-
ways cheaper in the local volatility model. We thus prove that this inversion of convex ordering, which is
observed in the SPX market for short VIX maturities, can be produced by a continuous stochastic volatility
model. We also prove that the model can be extended so that, as suggested by market data, the convex
ordering is preserved for long maturities.

1. Introduction

For simplicity, let us assume zero interest rates, repos, and dividends. Let Ft denote the market information
available up to time t. We consider continuous stochastic volatility models on the SPX index of the form

dSt
St

= σt dWt, S0 = s0,(1.1)

where W = (Wt)t≥0 denotes a standard one-dimensional (Ft)-Brownian motion, σ = (σt)t≥0 is an (Ft)-
adapted process such that

∫ t
0
σ2
s ds <∞ a.s. for all t ≥ 0, and s0 > 0 is the initial SPX price. By continuous

model we mean that the SPX has no jump, while the volatility process σ may be discontinuous. The local
volatility function associated to Model (1.1) is the function σloc defined by

σ2
loc(t, x) := E[σ2

t |St = x].(1.2)

The associated local volatility model is defined by:
dSloc

t

Sloc
t

= σloc(t, Sloc
t ) dWt, Sloc

0 = s0.

From [11], the marginal distributions of the processes (St)t≥0 and (Sloc
t )t≥0 agree:

∀t ≥ 0, Sloc
t

(d)
= St.(1.3)

Let T ≥ 0. By definition, the (idealized) VIX at time T is the implied volatility of a 30 day log-contract
on the SPX index starting at T . For continuous models (1.1), this translates into

VIX2
T = E

[
1

τ

∫ T+τ

T

σ2
t dt

∣∣∣∣∣FT
]

=
1

τ

∫ T+τ

T

E
[
σ2
t

∣∣FT ] dt,(1.4)

where τ = 30
365 (30 days). In the associated local volatility model, since by the Markov property of (Sloc

t )t≥0,
E[σ2

loc(t, Sloc
t )|FT ] = E[σ2

loc(t, Sloc
t )|Sloc

T ], the VIX, denoted by VIXloc,T , satisfies

VIX2
loc,T =

1

τ

∫ T+τ

T

E[σ2
loc(t, Sloc

t )|Sloc
T ] dt = E

[
1

τ

∫ T+τ

T

σ2
loc(t, Sloc

t ) dt

∣∣∣∣∣Sloc
T

]
.(1.5)
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Note that VIX2
T and VIX2

loc,T have the same mean:

E
[
VIX2

T

]
= E

[
VIX2

loc,T

]
= E

[
1

τ

∫ T+τ

T

σ2
t dt

]
.(1.6)

It has often been stated that, within the class of continuous stochastic volatility models calibrated to
vanillas, the price of a VIX future is maximized by Dupire’s local volatility model. For example, in a general
discussion in the introduction of [4] about the difficulty of jointly calibrating a stochastic volatility model
to both SPX and VIX smiles, De Marco and Henry-Labordère approximate the VIX by the instantaneous
volatility, i.e., VIXT ≈ σT and VIXloc,T ≈ σloc(T, Sloc

T ), and, using Jensen’s inequality and (1.3), they
conclude that “within [the] class of continuous stochastic volatility models calibrated to vanillas, the VIX
future is bounded from above by the Dupire local volatility model”:

E[VIXT ] ≈ E[σT ] = E
[√

σ2
T

]
= E

[
E
[√

σ2
T

∣∣∣∣ST]]
≤ E

[√
E [σ2

T |ST ]

]
= E [σloc(T, ST )] = E

[
σloc(T, Sloc

T )
]
≈ E [VIXloc,T ] .

Similarly, one would conclude that within the class of continuous stochastic volatility models calibrated to
vanillas, the price of convex options on the squared VIX is minimized by the local volatility model: for any
convex function f , such as the call or put payoff function,

(1.7) E
[
f
(
VIX2

T

)]
≈ E

[
f
(
σ2
T

)]
= E

[
E
[
f
(
σ2
T

)∣∣ST ]]
≥ E

[
f
(
E
[
σ2
T

∣∣ST ])] = E
[
f
(
σ2

loc(T, ST )
)]

= E
[
f
(
σ2

loc(T, Sloc
T )
)]
≈ E

[
f
(
VIX2

loc,T

)]
.

(The (correct) fact that E
[
f
(
σ2
T

)]
≥ E

[
f
(
σ2

loc(T, Sloc
T )
)]

had already been noticed by Dupire in [6].)
In this article, we prove that these statements are in fact incorrect. Even if 30 days is a relatively short

horizon, it cannot be harmlessly ignored. VIX are implied volatilities (of SPX options maturing 30 days later),
not instantaneous volatilities. We can actually build continuous stochastic volatility models, i.e., processes
(σt), such that

E[VIXT ] > E [VIXloc,T ](1.8)

and, more generally, such that for any strictly convex function f ,

E
[
f
(
VIX2

T

)]
< E

[
f
(
VIX2

loc,T

)]
.(1.9)

(Our counterexample actually works for any τ > 0.) Not only do we find one convex function f such that
(1.9) holds, we actually build a model in which (1.9) holds for any strictly convex function f . Actually, we
prove an inversion of convex ordering : Despite the fact that σ2

loc(t, Sloc
t ) is smaller than σ2

t in convex order
for all t ∈ [T, T + τ ] (see (1.7)), VIX2

loc,T is strictly larger than VIX2
T in convex order. Interestingly, Guyon

[8, 10] has reported that for short maturities T , the market exhibits this inversion of convex ordering: the
distribution of VIX2

loc,T (computed with the market-implied Dupire local volatility) is strictly larger than
the distribution of VIX2

T (implied from the market prices of VIX options) in convex order.1

Guyon [9, 10] has shown that when the (typically negative) spot-vol correlation is large enough in absolute
value, (a) traditional stochastic volatility models with large mean reversion, and (b) rough volatility models
with small Hurst exponent, do exhibit this inversion of convex ordering. The fast mean reversion or small
Hurst exponent ensures that FT contains little information on σt, t > T , so VIX2

T is almost constant, while
the large spot-vol correlation yields a non-flat local volatility, and as a result it can be numerically checked
that VIX2

T is strictly smaller than VIX2
loc,T in convex order for short maturities. However, it is very difficult to

mathematically prove the inversion of convex ordering in these models.2 In order to reproduce this inversion,
our idea is to choose a more extreme model in which the volatility process σ is such that (σt)t∈[T,T+τ ] is
independent of FT , so that FT , instead of revealing little information on (σt)t∈[T,T+τ ], contains no information
at all on it. This is easily achieved by choosing σt deterministic (e.g., constant) on [0, T ]. In this extreme
case, since VIX2

T and VIX2
loc,T have the same mean (recall (1.6)), to prove that VIX2

T is strictly smaller than

1To be precise, this convex ordering holds for reasonable, consistent extrapolations of the SPX and VIX market smiles (see
[10]). For a definition and characterization of strict convex ordering, see [10, Appendix C].

2Strictly speaking, those models may not satisfy the inversion of convex ordering at very low strikes, see [10, Remark 6].
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VIX2
loc,T in convex order, it is enough that VIX2

loc,T be not a.s. constant. Then (1.9) holds for any strictly
convex function f , and in particular applying (1.9) with f(y) = −√y yields (1.8).

Clearly, in order for VIX2
loc,T to be non-constant, the local volatility cannot be constant as a function of

S, dt-a.e. in [T, T + τ ]. There are many ways to achieve this, e.g., through volatility of volatility, and it is
easy to numerically verify that VIX2

loc,T (estimated from (1.5), e.g., using kernel regressions) is non-constant.
However, the main mathematical difficulty here is to prove this result. To this end, we will consider models
where the non-constant local volatility can be derived in closed form. The simplest such model is the one
where, after some given time t0 ∈ (T, T + τ), the volatility can take only two values depending on a coin toss
independent of FT (see Section 2). This counterexample, which is inspired by [2] where Beiglböck, Friz, and
Sturm use a similar model to prove that local volatility does not minimize the price of options on realized
variance, will be generalized in Section 3. Even though the resulting models may not be realistic, the proofs
emphasize the fact that, like in the realistic models described above, the inversion of convex ordering in the
VIX market most likely results from the loss of information that comes with projecting the future realized
variance 1

τ

∫ T+τ

T
σ2
t dt onto FT , rather than from averaging the instantaneous variance over 30 days (see [10]

for detailed numerical experiments).
Interestingly enough, the realistic models (a) and (b) mentioned above reproduce another characteristic

of the SPX/VIX markets: that for longer maturities (typically, 3-6 months) the distributions of VIX2
loc,T

and VIX2
T become non-rankable in convex order, and for even longer maturities the latter becomes strictly

larger than the former in convex order, i.e., the inversion of convex ordering vanishes as T increases. As
explained in [10, Remark 4], in those models this results from the fact that, like the market local volatility,
the associated local volatility flattens over time as a function of S. Once again, it is not clear how this could
be mathematically proved. We are therefore reproducing this behavior with a simplistic, extreme stochastic
local volatility model in which, by construction, beyond some fixed maturity, the associated local volatility
is constant, i.e., perfectly flat.

The remainder of the article is structured as follows. In Section 2 we derive the simple counterexample
described above, about inversion of convex ordering for short maturities. This counterexample is then gen-
eralized in Section 3. Eventually in Section 4 we explain how the model can be extended so that the convex
ordering is preserved for long maturities.

2. A simple counterexample

Inspired by [2], we fix T > 0 and consider the following volatility process:

σt =


σ0 if t < T + τ

2

σ if t ≥ T + τ
2 and U = 1 ,

σ if t ≥ T + τ
2 and U = −1

(2.1)

where σ < σ0 < σ are three positive constants and U denotes the result of a fair coin toss, independent of
FT (e.g., known only at a time t ∈ (T, T + τ

2 ]).

Proposition 1. The stochastic volatility model in (1.1), with volatility process described in (2.1), satisfies
(1.9). In particular, VIX futures are strictly more expensive than in their associated local volatility model.

Proof. Let us denote

σ+(t) =

{
σ0 if t < T + τ

2

σ if t ≥ T + τ
2

, σ−(t) =

{
σ0 if t < T + τ

2

σ if t ≥ T + τ
2

,

so that σt is given by σ+(t) or σ−(t) depending on the coin toss U . As (σt)t∈[T,T+τ ] is independent of FT ,
VIX2

T is a.s. constant:

VIX2
T = E

[
1

τ

∫ T+τ

T

σ2
t dt

]
=

1

2

(
σ2

0 +
σ2 + σ2

2

)
.

Since this is also the mean of VIX2
loc,T , in order to prove (1.9), it is enough to prove that VIX2

loc,T is not a.s.
constant.
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Figure 2.1. Graph of (t, x) 7→ σ2
loc(t, x) for T = 0.05, σ0 = 0.2, σ = 0.25, σ = 0.02, s0 = 1

Due to the very simple form of Model (2.1), we know the local volatility in closed form:

σ2
loc(t, x) =

p+(t, x)σ2
+(t) + p−(t, x)σ2

−(t)

p+(t, x) + p−(t, x)
,(2.2)

where p±(t, ·) is the density of the process (S±t )t≥0 with dynamics dS±t
S±t

= σ±(t) dWt, S0 = s0, i.e.,

p±(t, x) =
1

x
√

2πΣ±(t)
exp

−1

2

(
ln x

s0√
Σ±(t)

+
1

2

√
Σ±(t)

)2
 , Σ±(t) =

∫ t

0

σ2
±(s) ds.

Figure 2.1 shows the shape of σ2
loc. Note in particular that σloc takes values in (σ, σ) and that

∀t ∈
(
T +

τ

2
, T
]
, lim

x→+∞
σloc(t, x) = σ.(2.3)

Let us define

ψ(x) := E

[
1

τ

∫ T+τ

T

σ2
loc(t, Sloc

t ) dt

∣∣∣∣∣Sloc
T = x

]
(2.4)

so that VIX2
loc,T = ψ

(
Sloc
T

)
. Note that

∀x > 0, ψ(x) < ` :=
1

2

(
σ2

0 + σ2
)
.

Since Sloc
T has support R+, in order to prove that VIX2

loc,T is not a.s. constant, it is enough to prove that ψ
tends to ` when x tends to +∞. This follows from the next lemma. �

Lemma 2. In Model (2.1), the function ψ defined by (2.4) satisfies

lim
x→+∞

ψ(x) = `.

Proof. Note that ψ(x) = 1
2

(
σ2

0 + ϕ(x)
)
, where

ϕ(x) := E

[
2

τ

∫ T+τ

T+ τ
2

σ2
loc(t, Sloc

t ) dt

∣∣∣∣∣Sloc
T = x

]
,
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so it is enough to prove that ϕ(x) tends to σ2 when x tends to +∞. Let ε > 0 and ε′ :=
(
1 + 2

(
σ2 − σ2

))−1
ε.

Let us denote Lt := ln(Sloc
t ), whose dynamics is given by

dLt = −1

2
σ2

loc
(
t, eLt

)
dt+ σloc

(
t, eLt

)
dWt, L0 = ln s0.

Since σloc is bounded, it is easily checked that c := supt∈[T,T+τ ],x∈R E[(Lt − LT )2|LT = x] < +∞. Let
∆ :=

√
c
ε′ . Then

∀t ∈ [T, T + τ ], ∀x ∈ R, P(|Lt − LT | ≥ ∆|LT = x) ≤ E[(Lt − LT )2|LT = x]

∆2
≤ c

∆2
= ε′.(2.5)

We have

σ2 − ϕ(ex) =
2

τ

∫ T+τ

T+ τ
2

E
[(
σ2 − σ2

loc(t, eLt)
)∣∣LT = x

]
dt = I1(x) + I2(x) + I3(x),

where

I1(x) :=
2

τ

∫ T+τ

T+ τ
2

E
[(
σ2 − σ2

loc(t, eLt)1Lt≤LT−∆

)∣∣LT = x
]
dt,

I2(x) :=
2

τ

∫ T+ τ
2 (1+ε′)

T+ τ
2

E
[(
σ2 − σ2

loc(t, eLt)1Lt>LT−∆

)∣∣LT = x
]
dt,

I3(x) :=
2

τ

∫ T+τ

T+ τ
2 (1+ε′)

E
[(
σ2 − σ2

loc(t, eLt)1Lt>LT−∆

)∣∣LT = x
]
dt.

Recall that σloc takes values in (σ, σ). From (2.5), 0 ≤ I1(x) ≤
(
σ2 − σ2

)
ε′ for all x ∈ R. Obviously,

0 ≤ I2(x) ≤
(
σ2 − σ2

)
ε′ for all x ∈ R. Moreover, it is easy to check that the convergence (2.3) is uniform

w.r.t. t ∈ [T + τ
2 (1 + ε′), T + τ ]: there exists x∗ such that

∀t ∈
[
T +

τ

2
(1 + ε′), T + τ

]
, ∀x ≥ x∗, 0 ≤ σ2 − σ2

loc(t, ex) ≤ ε′.

As a consequence, for all x ≥ x∗ + ∆, 0 ≤ I3(x) ≤ ε′. Finally,

∀x ≥ x∗ + ∆, 0 ≤ σ2 − ϕ(ex) ≤
(
1 + 2

(
σ2 − σ2

))
ε′ = ε.

We have thus proved that ϕ(ex), hence ϕ(x), tends to σ2 when x tends to +∞. �

Remark 3. Note that, if we fix t1 ∈ (0, τ) and define

σt =


σ0 if t < t1

σ if t ≥ t1 and U = 1 ,

σ if t ≥ t1 and U = −1

with U only known at time t1, then we have built a model where the inversion of convex ordering holds for
every short maturity T ∈ (0, t1).

3. Generalization

In this section, we generalize the example presented in Section 2, to show that the desired inversion of
convex ordering can be obtained with a more interesting structure for the volatility. We fix 0 < t1 < τ <
t2 = t1 + τ , and define a càdlàg process σ on [0, t2), which is independent of FW , the filtration generated by
W . We start by setting σt constant equal to σ0 > 0 for t ∈ [0, t1). This ensures that FT = FS,WT = FWT , and
as a consequence (σt)t∈[T,T+τ ] is independent of FT for all 0 < T < t1, thus VIX2

T is constant:

VIX2
T = E

[
1

τ

∫ T+τ

T

σ2
t dt

]
.

We shall now define σ in [t1, t2), with the aim of having VIX2
loc,T not constant. Let 0 < v ≤ σ0 ≤ v, and

(σt)t∈[t1,t2) take values in [v, v]. We denote by Λ the law of (σt)t∈[0,t2) on D = D[0, t2), the space of càdlàg
functions on [0, t2), and we assume it is not degenerate, that is, there is no g ∈ D such that Λ = δg, where
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δg denotes the Dirac mass at g. Note that, for Λ = 1
2 (δσ+ + δσ−), and T = t1 − τ/2, we recover the example

of Section 2.
For every path g ∈ D, we denote by Sg the evolution of the stock price for this realization of σ, that is

dSgt
Sgt

= g(t) dWt, 0 ≤ t < t2, Sg0 = s0,

and by pg(t, .) the density of the process Sgt , that is

pg(t, x) =
1

x
√

2πΣg(t)
exp

−1

2

(
ln x

s0√
Σg(t)

+
1

2

√
Σg(t)

)2
 , Σg(t) =

∫ t

0

g(s)2 ds.

The local volatility then takes the form

(3.1) σ2
loc(t, x) =

∫
D
g(t)2qg(t, x) dΛ(g), t ∈ [0, t2),

where

qg(t, x) =
pg(t, x)∫

D ph(t, x) dΛ(h)
.

Lemma 4. The following limit holds for the local volatility:

(3.2) lim
x→∞

σ2
loc(t, x) =

1

Λ(A[t])

∫
A[t]

g(t)2 dΛ(g) =: σ(t)2,

where
A[t] := {g ∈ D : Σg(t) = Λ- ess suph∈D Σh(t)}.

Proof. To study the limit of σ2
loc(t, x) for x→∞, thanks to (3.1) and dominated convergence, we are reduced

to consider the limit of qg(t, x). Note that

(3.3) qg(t, x)−1 =

∫
D
F (g, h, t, x) dΛ(h),

where

F (g, h, t, x) :=
√

Σg(t)
Σh(t) exp

{
− 1

2

[(
ln x

s0

)2 (
1

Σh(t) −
1

Σg(t)

)
+ 1

4 (Σh(t)− Σg(t))

]}
.

By Fatou’s lemma, limx→∞
∫
D F (g, h, t, x) dΛ(h) = +∞ as soon as Λ(Dg,t) > 0, where

Dg,t := {h ∈ D : Σh(t) > Σg(t)},

which in turn implies limx→∞ qg(t, x) = 0. On the other hand, if Λ(Dg,t) = 0, then by dominated convergence
limx→∞

∫
D F (g, h, t, x) dΛ(h) =

∫
D limx→∞ F (g, h, t, x) dΛ(h), being σ bounded and bounded away from zero.

Now limx→∞ F (g, h, t, x) equals zero when Σh(t) < Σg(t), and one when Σh(t) = Σg(t). This concludes the
proof, noticing that

A[t] = {g ∈ D : Λ(Dg,t) = 0}.
�

Proposition 5. Consider the stochastic volatility model (1.1). Let σ be constant equal to σ0 > 0 in [0, t1),
non-degenerate and independent of FW in [t1, t2), admitting only finitely many paths, so that

(3.4) Λ =
N∑
n=1

unδgn , with N ∈ N, gn ∈ D, un ≥ 0,
∑N
n=1 un = 1.

Then, for all maturities T < t1, VIX futures are strictly more expensive than in their associated local volatility
model.

With an abuse of notation, below we will write qn,Σn, F (n,m, t, x) instead of qgn ,Σgn , F (gn, gm, t, x), to
ease readability.
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Proof. As in the example of Section 2, we consider the function

ψ(x) := E

[
1

τ

∫ T+τ

T

σ2
loc(t, Sloc

t ) dt

∣∣∣∣∣Sloc
T = x

]
and note that

∀x > 0, ψ(x) <
1

τ

∫ T+τ

T

σ(t)2 dt =: `,

being Λ non-degenerate. To prove the inversion of convex ordering for all maturities T < t1, we will show
that limx→∞ ψ(x) = `, that is,

(3.5)
∫ T+τ

t1

E[σ2
loc(t, Sloc

t )|Sloc
T = x] dt −−−−→

x→∞

∫ T+τ

t1

σ(t)2 dt.

Since Λ is discrete, and the functions t 7→ Σn(t) are continuous and bounded in [t1, t2), this interval divides
in countably many intervals Ik = [ak, bk), k ∈ N, such that, in each open interval (ak, bk), the function σ
defined in (3.2) coincides with one or more paths of σ. To be more precise, for every k ∈ N, the sets A[t]

coincide for every t ∈ (ak, bk), say to a set Ak, and

(3.6) σ(t) = gn(t) for t ∈ (ak, bk), for all gn ∈ Ak.

To show the convergence in (3.5), we split the interval [t1, T+τ ] into subintervals Ĩk := [t1, T+τ ]∩Ik, k ∈ N,
thus reducing ourselves to prove

(3.7) lim
x→∞

∑
k∈N

∫
Ĩk

E[σ(t)2 − σ2
loc(t, Sloc

t )|Sloc
T = x] dt =

∑
k∈N

lim
x→∞

∫
Ĩk

E[σ(t)2 − σ2
loc(t, Sloc

t )|Sloc
T = x] dt = 0,

by dominated convergence.
Fix k ∈ N and εk > 0, and set ε′k := min{εk(bk − ak + 3(v̄2 − v2))−1, (bk − ak)/3}. We split the interval

Ik into three subintervals

(3.8) J ′k := [ak, ak + ε′k], Jk := (ak + ε′k, bk − ε′k), J ′′k := [bk − ε′k, bk),

and we are going to show that σ2
loc(t, x) converges uniformly to σ(t)2 w.r.t. t ∈ Jk, for x→∞.

Let Nk := {n ∈ {1, ..., N} : gn ∈ Ak} and note that the function F (n,m, t, x) depends on the paths gn
and gm only through Σn(t) and Σm(t), respectively. Therefore, from (3.3), we have

(3.9)
1

qn(t, x)
=

N∑
m=1

F (n,m, t, x)um = F (n,mk, t, x)Λ(Ak) +
∑
m6∈Nk

F (n,m, t, x)um, t ∈ Jk,

for any mk ∈ Nk, which reduces to Λ(Ak) +
∑
m6∈Nk F (mk,m, t, x)um for n ∈ Nk. Now, it is easy to verify

that F (n,m, t, x) converges to zero uniformly w.r.t. t ∈ Jk whenever n ∈ Nk and m 6∈ Nk. In particular,
there is xk such that, for all x ≥ xk, t ∈ Jk and n ∈ Nk,

∑
m6∈Nk F (n,m, t, x)um ≤ ε′kΛ(Ak)2v̄−2, thus

(3.10)
∣∣∣∣qn(t, x)− 1

Λ(Ak)

∣∣∣∣ =

∑
m6∈Nk F (n,m, t, x)um

Λ(Ak)(Λ(Ak) +
∑
m6∈Nk F (n,m, t, x)um)

≤ ε′kv̄−2.

Similarly, it is easily checked that F (n,m, t, x) converges to +∞ uniformly w.r.t. t ∈ Jk whenever n 6∈ Nk

and m ∈ Nk. This gives the existence of yk such that, for all x ≥ yk, t ∈ Jk and n 6∈ Nk,m ∈ Nk,

F (n,m, t, x) ≥ v̄2(ε′kΛ(Ak))−1,

which by (3.9) implies

(3.11) qn(t, x) ≤ ε′kv̄−2.

Note that in the present setting we have

σ2
loc(t, x) =

N∑
n=1

ungn(t)2qn(t, x) and σ(t)2 =
1

Λ(Ak)

∑
n∈Nk

ungn(t)2,

from (3.6). Now (3.10) and (3.11) imply

(3.12) |σ2
loc(t, x)− σ(t)2| ≤ ε′k, for all x ≥ zk := max{xk, yk} and t ∈ Jk,
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which shows the claimed uniform convergence.
As in the proof of Lemma 2, we consider the log-price process Lt = ln(Sloc

t ), and we have ck :=

supt∈Ik,x∈R E[(Lt − LT )2|LT = x] < +∞, k ∈ N, since σ is bounded. Setting ∆k :=
√
ck/ε′k, we again

obtain

(3.13) P(|Lt − LT | ≥ ∆k|LT = x) ≤ ε′k, for all t ∈ Ik and x ∈ R.

We are going to show that∫
Ĩk

(
σ(t)2 − E[σ2

loc(t, Sloc
t )|Sloc

T = ex]
)
dt =

∫
Ĩk

E[σ(t)2 − σ2
loc(t, eLt)|LT = x] dt

converges to zero for x→∞, by proving that for x big enough this is smaller than the arbitrarily chosen εk.
This in turn implies (3.7), being k ∈ N arbitrary, and concludes the proof of (3.5). In order to do that, we
divide Ĩk in three subintervals :

J̃k := [t1, T + τ ] ∩ Jk, J̃ ′k := [t1, T + τ ] ∩ J ′k, J̃ ′′k := [t1, T + τ ] ∩ J ′′k , k ∈ N,

where we used the notation introduced in (3.8). Note that, since σ takes values in [v, v],∫
J̃′k

E[σ(t)2 − σ2
loc(t, eLt)|LT = x] dt ≤ (v2 − v2)ε′k,

and the same bound holds when taking the integral over J̃ ′′k . On the other hand, (3.13) implies∫
J̃k

E[(σ(t)2 − σ2
loc(t, eLt))1Lt≤LT−∆k

|LT = x] dt ≤ (v2 − v2)ε′k,

and (3.12) implies ∫
J̃k

E[(σ(t)2 − σ2
loc(t, eLt))1Lt>LT−∆k

|LT = x] dt ≤ ε′k|J̃k|,

for all x ≥ ln(zk) + ∆k. Altogether, for x ≥ ln(zk) + ∆k we have∫
Ĩk

E[σ(t)2 − σ2
loc(t, eLt)|LT = x] dt ≤ (bk − ak + 3(v2 − v2))ε′k ≤ εk.

This concludes the proof. �

4. Term-structure of convex ordering

In this section, we extend the model built in Section 3 in order to have the convex ordering preserved for
long maturities, as market data suggests. To this end, we set

dSt
St

= σ0
Y√

E[Y 2|St]
dWt, t ≥ t2,(4.1)

where σ0 ∈ R+, and Y is a Bernoulli random variable known in t2, and independent of anything else. Say
Y takes the value y− with probability q− and y+ with probability q+ = 1 − q−, for some 0 < y− < y+

and 0 < q− < 1. By Jourdain and Zhou [12], the stochastic differential equation (SDE) (4.1) admits a weak
solution (Ω, (Ft),P,W, (St), Y ), which may not be unique. In the following we use the subscript or superscript
P to emphasize that a priori the corresponding quantities depend on the weak solution of (4.1).

Note that (4.1) implies that, whatever the weak solution, σ2
loc,P(t, St) = σ2

0 for t ≥ t2. Therefore VIX2
loc,T

does not depend on the weak solution and is constant equal to σ2
0 for all maturities T ≥ t2. We now want

to show that, on the other hand, for any weak solution of (4.1), this is not true for VIX2
P,T . This will imply

that VIX2
loc,T is strictly smaller than VIX2

P,T in convex order for T ≥ t2, thus there is no inversion of convex
ordering for long maturities.

For any weak solution of (4.1), we set

FP(s, t, x) := EP[Y 2|St2 = s, St = x].
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Since Y is independent of W , the conditional law of (St)t≥t2 given Y = y± and St2 = s under P agrees with
the (unique) law of a weak solution to the SDE

dSs,P,±t

Ss,P,±t

= σ0
y±√

FP

(
s, t, Ss,P,±t

) dW̃t, t ≥ t2, Ss,P,±t2 = s,

living possibly on a different probability space (the weak uniqueness of the solution follows from [14, Theo-
rem 3], given that [3, Proposition 5.1] ensures the existence of a measurable version of FP). Being FP bounded
and bounded away from zero, we deduce that, for t > t2, the conditional law of St given Y = y± and St2 = s
under P admits a density pP±(s, t, x), and that pP±(s, t, x) > 0 for all x ∈ R+, which in turn implies that

FP(s, t, x) =
q−y

2
−p

P
−(s, t, x) + q+y

2
+p

P
+(s, t, x)

q−pP−(s, t, x) + q+pP+(s, t, x)
∈ (y2

−, y
2
+), t > t2.(4.2)

Then, for T ≥ t2, we have

VIX2
P,T = σ2

0Y
2 1

τ

∫ T+τ

T

EP
[

1

FP(St2 , t, St)

∣∣∣∣FT] dt =: σ2
0Y

2ΨP.

Now, having VIX2
P,T constant (thus necessarily equal to σ2

0) corresponds to having Y 2ΨP ≡ 1, which is not

possible given that ΨP takes values in
(

1
y2+
, 1
y2−

)
, by (4.2). This shows that VIX2

P,T cannot be constant for
any T ≥ t2.

Remark 6. To the best of our knowledge, uniqueness of a weak solution of (4.1) is still an open question.
More generally, partial results on the existence of a weak solution of a calibrated stochastic local volatility
(SLV) model of the form

dSt
St

= σDup(t, St)
f(Yt)√

E[f(Yt)2|St]
dWt(4.3)

have been obtained in [1, 12], but uniqueness has not been addressed. Note that Lacker et al. [13] have
recently proved the weak existence and uniqueness of a stationary solution of a similar nonlinear SDE with
drift, under some conditions. However, their result does not apply to the calibration of SLV models. Indeed,
market-implied risk neutral distributions (L(St))t≥0 are strictly increasing in convex order and therefore no
stationary solution (St, Yt)t≥0 can be a calibrated SLV model.

The possible absence of uniqueness of a weak solution of (4.1) or (4.3) is problematic, not only theoretically
but also practically. It means that the price of a derivative in the calibrated SLV model may not be well
defined. For example, in our case, the VIX may depend on P. More generally, existence and uniqueness of
(4.3) for general processes (Yt)t≥0 such as Itô processes remain a very challenging, open problem, despite the
fact that these models are widely used in the financial industry, in particular thanks to the particle method
of Guyon and Henry-Labordère [7].

Acknowledgements. We would like to thank Bruno Dupire, Vlad Bally, and the two anonymous referees
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