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Abstract. Hahn and Ridder (2013) formulated influence functions of semiparametric three

step estimators where generated regressors are computed in the first step. This class of esti-

mators covers several important examples for empirical analysis, such as production function

estimators by Olley and Pakes (1996) and propensity score matching estimators for treatment

effects by Heckman, Ichimura and Todd (1998). The present paper studies a nonparametric

likelihood-based inference method for the parameters in such three step estimation problems.

In particular, we apply the general empirical likelihood theory of Bravo, Escanciano and van

Keilegom (2018) to modify semiparametric moment functions to account for influences from

plug-in estimates into the above important setup, and show that the resulting likelihood ratio

statistic becomes asymptotically pivotal without undersmoothing in the first and second step

nonparametric estimates.

1. Introduction

There is a class of econometric problems, where the parameter of interest is estimated by

three (or more) certain steps. In the first step, generated regressors (say, V̂i) are computed

by some parametric or nonparametric estimation. In the second step, a certain nonparametric

regression (say, from Yi on (Xi, V̂i)) is implemented to obtain an estimator γ̂(Xi, V̂i). In the

third step, the parameter of interest β is estimated by the sample average or more generally by

the method of moments, n−1
∑n

i=1 g(γ̂(Xi, V̂i), β̂) = 0, where g is a vector of moment functions

having the same dimension as β. Indeed several important econometric estimators are formulated

in this three step manner or interpreted as a special case. Examples include production function

estimators by Olley and Pakes (1996), propensity score matching estimators for treatment effects

by Heckman, Ichimura and Todd (1998), and various semiparametric estimators that involve

generated regressors or control variables.

This three step approach provides an intuitive way to construct a point estimator for the

main parameter β. On the other hand, the three step formulation complicates inference methods
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on β that properly take into account the sampling variations contained in β̂. In particular,

it is known that for regression models, the estimation errors in generated regressors should be

incorporated to compute the standard errors (Pagan, 1984), and it is not trivial to characterize

how the estimation errors of the generated regressors V̂i contribute to the standard error of β̂. By

applying Newey’s (1994) path derivative method, Hahn and Ridder (2013) settled this problem

and derived the influence function of β̂.1 As shown in Hahn and Ridder (2013), the influence

function consists of three components: the main term due to the third step, adjustment for the

second step estimation of γ̂, and adjustment due to the first step estimation of V̂i. The third

component is the most challenging one and is further decomposed into two terms associated

with the two roles of V̂i’s played in the second step nonparametric regression as a conditioning

variable and argument.

In this paper, we consider nonparametric likelihood inference for the parameter β defined

in the three step estimation problem by using the method of generalized empirical likelihood

(GEL) (Smith, 1997, and Newey and Smith, 2004). Indeed Bravo, Escanciano and van Keile-

gom (2018, hereafter BEV) developed general empirical likelihood theory for a semiparametric

moment function m(Z, β, ĥ) which involves plug-in nonparametric estimates ĥ. BEV proposed a

general approach to modify the moment functions to account for influences from estimation errors

in ĥ so that the resulting empirical likelihood statistic is asymptotically pivotal and implemen-

tation of ĥ does not require undersmoothing. The three step estimation problems above may be

accommodated into BEV’s general setup by setting ĥ(·) = γ̂(·, ϕ̂(·)), where ϕ̂ is a nonparametric

estimator for the generated regressors. The contribution of this paper is to apply BEV’s general

empirical likelihood theory to the three step estimation problem. In particular, we show that

the resulting GEL statistic becomes asymptotically pivotal and chi-squared distributed. Also,

in contrast to inference based on the t-ratio, another desirable feature of our GEL inference is

that it does not require undersmoothing for the bandwidths in the first and second step estima-

tion. We emphasize that BEV established their general theory under high-level assumptions and

did not consider the three step estimation problem in their examples. Due to the complicated

structure of ĥ(·) = γ̂(·, ϕ̂(·)) (especially ϕ̂ appearing in the argument of γ̂) as clarified by Hahn

1Mammen, Rothe and Schienle (2016) investigated general theory for semiparametric M-estimators containing
generated variables. They provided conditions to guarantee

√
n-consistency and asymptotic normality of the

semiparametric estimators and established validity of the bootstrap.
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and Ridder (2013), it is not trivial to establish the above results from primitive conditions in the

present setup.

For detailed theoretical developments based on primitive conditions, we concentrate on the

case where the second step nonparametric estimate γ̂(·) is given by the local linear fitting, the

nonparametric function ϕ(·) for the generated regressors takes the form of conditional mean, and

ϕ̂(·) is given by the kernel regression fitting. Although the detailed analysis is case-by-case, we

expect that similar results hold for other nonparametric estimators.

This paper is organized as follows. In Section 2, we present the basic setup and main results.

Sections 2.1 and 2.2 consider the cases of parametric and nonparametric first step, respectively.

In Section 3, we provide some extensions of our approach to inference on subvectors or functions

of β (Section 3.1), the cases of additional variables (Section 3.2), partial means (Section 3.3), and

multidimensional γ̂ (Section 3.4), and other nonparametric likelihood functions (Section 3.5). In

Section 4, our method is illustrated using two examples; a simplified version of Olley and Pakes’

(1996) estimator (Section 4.1) and propensity score matching estimators (Section 4.2). Section

5 presents some simulation results.

2. Main results

Our notation follows closely that of Hahn and Ridder (2013). Suppose we observe a random

sample {Yi, Xi, Zi}ni=1 of (Y,X,Z) ∈ R × Rdx × Rdz . We wish to conduct inference on the

k-dimensional vector of parameters β satisfying the moment condition

E[g(µ(X,V ), β)] = 0, (2.1)

where g is a k-dimensional vector of known functions up to µ(·, ·) and β, µ(X,V ) = E[Y |X,V ]

is the conditional mean, and V is a scalar unobservable regressor expressed as V = ϕ(X,Z)

by some unknown function ϕ. When ϕ is known up to finite dα-dimensional parameters α, we

denote it by V = ϕ(X,Z, α). We can estimate β in three-steps. First, evaluate the unobservable

regressor Vi by its sample counterpart V̂i = ϕ(Xi, Zi, α̂) based on some parameter estimator α̂ of

α (called a parametric first step) or V̂i = ϕ̂(Xi, Zi) based on a nonparametric estimator (called

a nonparametric first step). The sample counterpart V̂i is often called the generated regressor.

Second, estimate the conditional mean function µ(Xi, Vi) by nonparametric regression of Yi on
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(Xi, V̂i). We denote the estimated function (evaluated at (Xi, V̂i)) by γ̂(Xi, V̂i).2 Third, compute

the estimator β̂ for the parameter of interest β by solving n−1
∑n

i=1 g(γ̂(Xi, V̂i), β̂) = 0.

Several estimators in econometrics and statistics are formulated in this three-step manner.

Examples include semiparametric estimators with generated regressors, and some average treat-

ment effect estimators. See Section 4 below for some specific examples. Hahn and Ridder (2013)

derived the influence function for β̂ by analyzing carefully the effect of the first step estimation.

This paper focuses on (nonparametric) likelihood-based inference on β without undersmoothing

the bandwidth to compute γ̂(·, ·) in the second step (and V̂i in the nonparametric first step).

2.1. Case of parametric first step. We first consider the case where the unobservable regressor

V = ϕ(X,Z, α) is generated from a parametric model indexed by α. Let α̂ be an estimator of

α, which satisfies Assumption P (v) below. In this case, we evaluate the unobservable regressor

Vi by the generated regressor V̂i = ϕ(Xi, Zi, α̂).

To proceed, we fix the nonparametric estimators for the conditional mean function µ(x, v) =

E[Y |X = x, V = v] and its partial derivative µv(x, v) = ∂µ(x, v)/∂v with respect to the second

argument. To be specific, we hereafter consider the local linear regression from Yi on (X ′i, V̂i):

min
γ,γx,γv

n∑
i=1

K

(
(Xi − x)′

h
,
V̂i − v
h

)
{Yi − γ − (Xi − x)′γx − (V̂i − v)γv}2. (2.2)

We employ the intercept and slope coefficient of V̂i as estimators for µ(x, v) and µv(x, v), respec-

tively. Denote these estimators by γ̂(x, v) and γ̂v(x, v), respectively.3

Let g1(µ, β) and g2(µ, β) be the first and second derivatives of g(·, ·) with respect to its first

argument evaluated at (µ, β) (i.e., both g1 and g2 are k-dimensional), and ϕα(x, z, α) be the

partial derivative of ϕ(·, ·, ·) with respect to its third argument evaluated at (x, z, α) (i.e., ϕα is dα-

dimensional). Let ψ be the influence function of α̂ (i.e.,
√
n(α̂−α) = 1√

n

∑n
i=1 ψ(Xi, Zi, α)+op(1)

as in Assumption P (v) below). Based on the above notation, we propose the following GEL

statistic

`(β) = 2 sup
λ∈Λn(β)

n∑
i=1

ρ(λ′g̃i(β))− 2nρ(0), (2.3)

2Here we follow the notation of Hahn and Ridder (2013). They reserve the notation µ̂(Xi, Vi) for (infeasible)
nonparametric regression of Yi on (Xi, Vi).
3Here the local linear regression is employed because of its mathematical simplicity and convenience (both γ̂ and
γ̂v are obtained by single least square fitting). Similar results can be derived for other estimators, such as the
kernel and local polynomial regression estimators.
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where ρ(·) is a concave function on its domain V, an open interval containing zero, and

g̃i(β) = g(γ̂(Xi, V̂i), β) + ∆̂ψ(Xi, Zi, α̂) + g1(γ̂(Xi, V̂i), β){Yi − γ̂(Xi, V̂i)}, (2.4)

∆̂ =
1

n

n∑
i=1

{Yi − γ̂(Xi, V̂i)}g2(γ̂(Xi, V̂i), β)γ̂v(Xi, V̂i)ϕα(Xi, Zi, α̂)′,

Λn(β) = {λ : λ′g̃i(β) ∈ V, i = 1, . . . , n}.

Note that our moment function g̃i(β) is composed of three terms. The first term in (2.4) is a

plug-in version of the original moment function in (2.1), and the others are correction terms to

achieve asymptotic pivotalness. The second term is an adjustment due to the first step estimation

of V̂i, and the third term is another adjustment due to the second step estimation of γ̂(·, ·). These

correction terms are considered as sample counterparts of the influence functions for the first and

second stage estimation derived in Hahn and Ridder (2013) and Newey (1994), respectively.

For the criterion function ρ(·) to define the GEL statistic, popular choices are empirical like-

lihood (ρ(v) = log(1 − v) and V = (−∞, 1)), exponential tilting (ρ(v) = −ev), and continuous

updating GMM (a quadratic ρ(·)). See Section 3.5 for a further general class of statistics.

As shown in Newey and Smith (2004), the GEL statistic in (2.3) has the following dual

representation

`(β) = 2 sup
{pi}ni=1

{
n∑
i=1

h(npi) :
n∑
i=1

pi = 1,
n∑
i=1

pig̃i(β) = 0

}
, (2.5)

where h(·) is a convex function to measure the discrepancy between the multinomial weights

{pi} under the constraint
∑n

i=1 pig̃i(β) = 0 and the unconstrained weights n−1. For example, if

ρ(v) = log(1−v) (empirical likelihood), the dual form is given by h(npi) = − log(npi). Thus, the

GEL statistic `(β) can be interpreted as a conventional likelihood ratio statistic using multinomial

weights. For implementation, we employ the form in (2.3) since it involves optimization only for

the k-dimensional vector λ.

In the setup of this subsection, we impose the following assumptions.

Assumption P.

(i): {Yi, X ′i, Z ′i}ni=1 is an iid sample from (Y,X ′, Z ′) ∈ R×X×Z. X, Z, and V are compact.

The joint density f(x, v) of (X,V ) is continuously differentiable to order s ≥ 2 and

bounded away from zero on X × V. µ(x, v) is continuously differentiable to order s ≥ 2

on X × V. For some p ≥ 4, E|Y |p < ∞ and E[|Y |p|X = x, V∗ = v]f(x, v) is bounded
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over X×V. g(·, β) is twice continuously differentiable with respect to the first argument.

For some neighborhood N of α, ϕαα(x, z, α) is continuous over X× Z×N .

(ii): ρ is concave and twice continuously differentiable in a neighborhood of zero, and the

first and second derivatives (denoted by ρ1 and ρ2, respectively) satisfy ρ1(0) = −1 and

ρ2(0) = −1, respectively.

(iii): K(·) integrates to one, is compactly supported and twice differentiable with bounded

derivatives, and satisfies
∫
K(u)uj11 · · ·u

jdx+1

dx+1 du = 0 for all vectors of non-negative inte-

gers (j1, . . . , jdx+1) such that j1 + · · ·+ jdx+1 < s.

(iv): As n→∞, it holds n1/2hdx+1/ log n→∞ and nh4s → 0.

(v): α̂ satisfies
√
n(α̂− α) =

1√
n

n∑
i=1

ψ(Xi, Zi, α) + op(1), (2.6)

with E|ψ(X,Z, α)|2 <∞ and n−1
∑n

i=1 ψ(Xi, Zi, α̂) = op(n
−1/2).

(vi): ∆̂
p→ ∆ = E[g2(µ(X,V ), β)µv(X,V ){µ(X,Z)− µ(X,V )}ϕα(X,Z, α)′].

Assumption P (i) collects conditions on the distributions of the observables (Y,X,Z) and

unobservable regressor V , and smoothness of the functions g and ϕ. The compact support

assumptions on X, Z, and V may be relaxed by introducing trimming terms to deal with

denominator problems for kernel-based estimators. This assumption also requires that the sample

is iid (see Remark 7 below for an extension to weakly dependent data). Assumption P (ii) is

on the GEL criterion function ρ in (2.3). This assumption is mild enough to cover popular

criterions, such as empirical likelihood, exponential tilting, and Cressie-Read’s power divergence

family. Assumption P (iii) is on the kernel function K in (2.2) to estimate µ and µv. This

requires that K is an s-th order kernel function. Assumption P (iv) is on the bandwidth h in

(2.2). We emphasize that this assumption does not require undersmoothing, i.e., we only require

nh4s → 0 instead of nh2s → 0. Thus, for example, the MSE optimal bandwidth is allowed.

See Remark 5 below for further discussion. Assumption P (v) is on the first-stage estimator α̂.

These requirements are typically satisfied for popular estimators, such as the maximum likelihood

and generalized method of moments (GMM) estimators, under mild regularity conditions.4 The

function ψ is called the influence function for α̂. Assumption P (vi) is a high level assumption

4As an example, consider the GMM estimator α̂ solving {
∑n
i=1 ∂mi(α̂)/∂α′}′W{

∑n
i=1mi(α̂)} = 0, where W

is a positive definite weight matrix and mi(α) = m(Xi, Zi, α). Mild regularity conditions guarantee (2.6) with
ψ(Xi, Zi, α) = (M ′WM)−1M ′Wmi(α), whereM = E[∂mi(α)/∂α′]. Also, the requirement 1

n

∑n
i=1 ψ(Xi, Zi, α̂) =

op(n
−1/2) can be verified by ensuring 1

n

∑n
i=1

∂mi(α̂)
∂α′

p→M and 1√
n

∑n
i=1mi(α̂) = Op(1).
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on ∆̂ that appears in the correction term of g̃i(β). This assumption can be verified by applying

the law of large numbers for U-statistics.5

The main result of this paper, the asymptotic distribution of the GEL statistic, is presented

as follows. The proof is given in Appendix A.

Theorem 1. Consider the setup of this subsection. Under Assumption P, it holds

`(β)
d→ χ2(k).

Remark 1. This theorem says that the GEL statistic `(β) is asymptotically pivotal and con-

verges to the χ2(k) distribution. Based on this theorem, the 100(1−α)% asymptotic confidence

set is constructed as CSGELα = {b : `(b) ≤ χ2
1−α(k)}, where χ2

1−α(k) is the (1 − α)-th quantile

of the χ2(k) distribution. A drawback of CSGELα (compared to the conventional one based on

the t-ratio) is that it requires a numerical search. If the parameter of interest β is scalar, a grid

search can be applied to compute CIGELα . For multidimensional β, we can apply the subvector

inference as in Section 3.1 below to obtain the confidence set for each element of β.

Remark 2. The correction terms of g̃i(β) in (2.4) are considered as sample counterparts of the

influence functions for the first and second stage estimation derived in Hahn and Ridder (2013)

and Newey (1994), respectively. Indeed, our correction terms may be used for the t or Wald

test as well. To simplify, suppose g(µ(X,V ), β) = h(µ(X,V )) − β for some known function h.

Then by Lemma A.6, the asymptotic variance of the estimator β̂ = n−1
∑n

i=1 h(γ̂(Xi, V̂i)) can

be consistently estimated by n−1
∑n

i=1 g̃i(β)g̃i(β)′.

Remark 3. We can also show that the GEL statistic `(β) is consistent and converges to the

non-central χ2(k) distribution with non-centrality c′G′Ω−1Gc with G = E
[
∂g(µ(X,V ),β)

∂β′

]
under

the local alternative hypothesis H1n : βn = β + c/
√
n for some c 6= 0 (by modifying Lemma A.4

to show 1√
n

∑n
i=1 g̃i(βn)

d→ N(Gc,Ω)).

Remark 4. Theorem 1 is considered as a specialization of the empirical likelihood theory of

BEV to the three step estimation problem. As in BEV, it is crucial to incorporate the last two

terms in (2.4) to achieve the asymptotic pivotalness. Without these terms, the corresponding

5Typically, under smoothness assumptions on g, ϕ, and γ̂, we can expand ∆̂ around α̂ = α (or V̂i = Vi), γ̂ = µ, and
γ̂v = µv. Then by the law of large numbers, the main term converges to ∆ under finite moment assumptions for
Y , µ(X,V ), g2(µ(X,V ), β), µv(X,V ), and ϕα(X,Z, α). Also the remainder terms are shown to be asymptotically
negligible by applying the consistency of α̂ and γ̂ and the law of large numbers for U-statistics to guarantee
(stochastic) boundedness of the linear expansion coefficients.
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statistic `unadjusted(β) = 2 supλ∈Λn(β)

∑n
i=1 ρ(λ′g(γ̂(Xi, V̂i), β)) − 2nρ(0) converges to the χ2(k)

distribution multiplied by a constant that depends on some nuisance parameters, and is not

asymptotically pivotal.6 It should be noted that this specialization to the three step estimation

problem is not trivial due to the influence of the first step estimation for generated regressors as

shown by Hahn and Ridder (2013).

Remark 5. We note that the condition on the bandwidth h to compute γ̂(·, ·) (Assumption

P (iv)) does not require undersmoothing, i.e., we only require nh4s → 0 instead of nh2s → 0.

This property is known in the empirical likelihood literature for several setups (e.g., BEV, Zhu

and Xue (2006), Zhu, et al. (2010), and Xue and Xue (2011)). See also Newey (1994) and

Newey, Hsieh and Robins (2004) for analogous discussions in the context of semiparametric M-

estimators. Theorem 1 shows that a similar result holds for the three step estimation problem.

Intuitively, the first and third terms in g̃i(β) share the same form as the smoothing bias and

these bias terms are automatically cancelled out. We emphasize that in contrast to the GEL

confidence set CSGELα , the Wald-type confidence set using the asymptotic variance estimator

based on Hahn and Ridder’s (2013) formula requires undersmoothing for the bandwidth.

Remark 6. If the parameter of interest is explicitly defined as β = h(µ(X,V )) for some known

function h, then we can apply Theorem 1 by setting g(µ(X,V ), β) = h(µ(X,V )) − β. If g is

linear in µ, then the second term in (2.4) vanishes (by g2(·) = 0), and the moment function

simplifies to

g̃i(β) = g(γ̂(Xi, V̂i), β) + g1(γ̂(Xi, V̂i), β){Yi − γ̂(Xi, V̂i)}.

Furthermore, based on the argument in Newey (1994, pp. 1357-8), the third term in (2.4)

vanishes when n−1
∑n

i=1 g(γ̂(Xi, V̂i), β̂) = 0 is the first-order condition for β̂ to maximize an

objective function (say, n−1
∑n

i=1 q(γ̂(Xi, V̂i), β)) and the limit of γ̂ indeed maximizes its pop-

ulation counterpart E[q(γ(X,V ), β)] with respect to γ (i.e., γ is concentrated out). See Newey

(1994) for some examples.

Remark 7. It is interesting to see whether the iid assumption in Assumption P (i) can be relaxed

to allow, for example, weakly dependent data. For the conventional moment condition models

6Although `unadjusted(β) is not asymptotically pivotal, its adjusted version, obtained by multiplying an adjustment
term, has the same local power property as `(β). However, our simulation results in Section 5 suggest that such
an adjusted statistic underperforms in finite samples. Existing papers on semiparametric two step inference (e.g.,
BEV and Xue and Xue, 2011) also report underperformance of the multiplicative adjustments.
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without generated variables, the GEL statistic using block average or smoothed moment functions

converges to the chi-squared distribution (Kitamura, 1997, and Smith, 1997). A natural question

is whether an analogous result can be established for the present setup. A recent paper by Bravo,

Chu and Jacho-Chávez (2017), who studied asymptotic properties of the (smoothed) GMM,

GEL, and related estimators for semiparametric moment condition models, allows generated

variables under weakly dependent data (without the second step nonparametric estimate γ̂(·)).

Interestingly, they showed that in general, the smoothed GEL estimator becomes asymptotically

less efficient than the smoothed GMM estimator in the presence of generated variables. Since

our setup is even more complicated, we leave such an generalization for future research.

2.2. Case of nonparametric first step. We next consider the case where V = ϕ(X,Z) is

written as an unknown function ϕ and needs to be estimated by some nonparametric method.

In particular, we focus on the situation where V is written as the conditional mean (i.e., V =

ϕ(X,Z) = E[U |X,Z] for some observable U) and ϕ(X,Z) is estimated by the nonparametric

kernel estimator

ϕ̂(x, z) =

∑n
j=1 K̃

(
Xj−x
b ,

Zj−z
b

)
Uj∑n

j=1 K̃
(
Xj−x
b ,

Zj−z
b

) , (2.7)

where K̃ is a kernel function and b is the bandwidth.7 Let us redefine the generated regressor as

V̂i = ϕ̂(Xi, Zi).

In this case, we modify the GEL statistic in (2.3) by replacing g̃i(β) with

g̃i(β) = g(γ̂(Xi, V̂i), β) + ∆̂1i(Ui − V̂i) + g1(γ̂(Xi, V̂i), β){Yi − γ̂(Xi, V̂i)}, (2.8)

where ∆̂1i is the nonparametric regression fitted value of δ1i = {Yi−γ̂(Xi, V̂i)}g2(γ̂(Xi, V̂i), β)γ̂v(Xi, V̂i)

on (Xi, Zi) satisfying Assumption NP (iii) below.8

We impose the following assumptions for the case of nonparametric first step estimators.

Assumption NP. In addition to Assumption P (i)-(iv), suppose

(i): The joint density f(x, z) of (X,Z) is continuously differentiable to order s ≥ 2 and

bounded away from zero on X × Z. The function ϕ(x, z) = E[U |X = x, Z = z] is

7We choose the kernel estimator ϕ̂(X,Z) due to its simplicity of our theoretical developments. Although the
proofs become more tedious, we expect that analogous results can be derived for other estimators such as local
linear or polynomial estimators.
8For example, ∆̂1i can be obtained as in (2.7) by setting Uj = δ1j and (x, z) = (Xi, Zi).
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continuously differentiable to order s ≥ 2 on X × Z. For some p ≥ 4, E|U |p < ∞ and

E[|U |p|X = x, Z = z]f(x, z) is bounded on X× Z.

(ii): K̃(·) satisfies similar conditions as Assumption P (iii). As n→∞, it holds n1/2bdx+dz/ log n→

∞ and nb4s → 0.

(iii): max1≤i≤n |∆̂1i−∆i|
p→ 0, where ∆i = E[{Yi−µ(Xi, Vi)}g2(µ(Xi, Vi), β)µv(Xi, Vi)|Xi, Zi].

These assumptions play analogous roles as Assumption P (v)-(vi). Assumption NP (i) col-

lects additional conditions on the distribution of the observables and smoothness of the function

ϕ(x, z). Assumption NP (ii) is on the kernel function K̃ and bandwidth b to estimate the non-

parametric first stage estimator ϕ̂(x, z) in (2.7). Note that similar to the second stage estimation

for µ and µv (Assumption P (iv)), the first stage estimation for ϕ also does not require under-

smoothing; see further discussion below. Assumption NP (iii) is a high level assumption on ∆̂i

that appears in the correction term of g̃i(β). This assumption can be verified by applying certain

uniform laws of large numbers.9

Similar to the case of a parametric first step, the GEL statistic converges to the χ2(k) distri-

bution without undersmoothing.

Theorem 2. Consider the setup of this subsection. Under Assumption NP, it holds

`(β)
d→ χ2(k).

The proof is presented in Appendix B. Similar comments to Theorem 1 apply here. The last

two terms of g̃i(β) in (2.8) recover internal studentization and asymptotic pivotalness. Similar

to the bandwidth h for the second step estimator γ̂(·, ·), Assumption NP (ii) on the bandwidth

b for the first step estimator ϕ̂(·, ·) does not require undersmoothing, i.e., nb4s → 0 instead of

nb2s → 0. This is due to the second term ∆̂1i(Ui − V̂i) in (2.8). Without this correction term,

there will be a smoothing bias term of order O(
√
nhs) from the term 1√

n

∑n
i=1 ∆i(V̂i−Vi) (see the

term M1 in the proof of Lemma B.4). However, this bias term is cancelled out by the correction

9For example, suppose ∆̂1i is given by the kernel regression

∆̂1i =

∑n
j=1 K̃

(
Xj−Xi

b
,
Zj−Zi

b

)
{Yi − γ̂(Xi, V̂i)}g2(γ̂(Xi, V̂i), β)γ̂v(Xi, V̂i)∑n

j=1 K̃
(
Xj−Xi

b
,
Zj−Zi

b

) .

In this case, we expand this around V̂i = Vi, γ̂ = µ, and γ̂v = µv. Then the uniform convergence of the kernel
estimator (e.g., Hansen, 2008) can be applied to show that the main term converges to ∆i uniformly over i. The
remainder terms are shown to be asymptotically negligible by the consistency of ϕ̂, γ̂, and γ̂v combined with the
uniform law of large numbers to bound the linear expansion coefficients.

10



term 1√
n

∑n
i=1 ∆̂1i(Ui − V̂i) (as in the proof of Lemma B.4), and thus the bandwidth b for the

first step estimator ϕ̂(·, ·) does not require undersmoothing.

Although our assumptions on the bandwidths h and b are relatively mild, their optimal selec-

tion rules are substantial open problems. In the existing literature on two-step semiparametric

inference, most papers employ the MSE optimal or cross validation bandwidths for the first stage

nonparametric estimation; see, e.g., BEV, Zhu and Xue (2006), Zhu, et al. (2010), and Xue and

Xue (2011). In our simulation study below, we also choose the bandwidths h and b based on the

MSE optimal rate for estimation of µ and ϕ, respectively, multiplied by several constants to check

their robustness. However, it is not obvious whether the optimal bandwidths for nonparametric

first stage estimation have desirable properties for inference on the parametric component β of

interest. Indeed such literature on bandwidth selection for semiparametric inference is very thin.

One promising way is to establish a higher order approximation for the coverage error (or size

distortion) by our GEL statistic `(β), and to choose the bandwidths to minimize the coverage

error (see, Nishiyama and Robinson, 2000, and Linton, 2002). Such higher order analysis is

complicated even for the two-step inference, and we leave it for future research.10

3. Extensions

3.1. Inference on subvector or function of β. The results in the previous section focus on

inference for the whole vector of parameters β. In this subsection, we extend our nonparametric

likelihood approach to inference on subvectors or functions of parameters θ = τ(β), where τ :

Rk → Rk1 for k1 ≤ k. To this end, we employ the profile GEL statistic

`p(θ) = min
b∈B:θ=τ(b)

`(b),

where B is the parameter space of β. The results in the previous section are extended as follows.

Theorem 3. Consider the setup of Section 2.1. Suppose (a) Assumption P (ii)–(v) hold true, (b)

B is compact, (c) Assumption P (i) holds true for all β ∈ B, and ∂g(µ,β)
∂β′ , ∂g1(µ,β)

∂β′ , and ∂g2(µ,β)
∂β′

are continuous at all µ and β ∈ B, (d) Assumption P (vi) holds true uniformly over β ∈ B, and

10Although formal analysis is beyond the scope of the paper, we conjecture that analogous results can be derived
for series estimators (on both µ and ϕ) by extending our theoretical argument combined with the one in Newey
(1994). In particular, the resulting likelihood ratio statistic is expected to be asymptotically pivotal without
undersmoothing because of orthogonality of least square projection errors as in Newey (1994, p. 1372). How-
ever, our modified moment functions as in (2.4) or (2.8) using series estimators should be employed to obtain
asymptotically pivotal likelihood ratio statistics.
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(e) τ is continuously differentiable and ∂τ/∂β′ has rank k1. Then the GEL statistic `p(θ) using

g̃i(β) in (2.4) satisfies

`p(θ)
d→ χ2(k1).

Theorem 4. Consider the setup of Section 2.2. Suppose (a) Assumption P (ii)–(iv) and NP

(i)-(ii) hold true, (b) B is compact, (c) Assumption P (i) holds true for all β ∈ B, and ∂g(µ,β)
∂β′ ,

∂g1(µ,β)
∂β′ , and ∂g2(µ,β)

∂β′ are continuous at all µ and β ∈ B, (d) Assumption NP (iii) holds true

uniformly over β ∈ B, and (e) τ is continuously differentiable and ∂τ/∂β′ has rank k1. Then

the GEL statistic `p(θ) using g̃i(β) in (2.8) satisfies

`p(θ)
d→ χ2(k1).

These results can be used to construct confidence sets for each element of β. Relevant examples

include partially linear models with generated regressors discussed in Section 4.1 and estimating

equations with missing data and generated covariates (cf. Section 4.2 of BEV). We also note that

similar to the results in the previous section, the above theorems do not require undersmoothing

for both the first and second stage nonparametric estimation. Finally we expect that analogous

arguments can be applied for over-identified moment conditions, where the dimension of g exceeds

that of β. In this case, the likelihood ratio statistic minb∈B:θ=τ(b) `(b)−minb∈B `(b) will converge

to the χ2(k1) distribution.11

3.2. Additional variables in third step. We now consider an extension to the moment con-

dition

E[g(W,µ(X,V ), β)] = 0,

where W ∈ Rdw is a vector of additional variables. The vector W may contain X and Z as

subvectors. This extension is useful to accommodate, for example, partially linear models with

generated regressors (see, Section 4.1 below).

Our nonparametric likelihood approach can be modified to accommodate additional variables

W as follows. Let g1(w, µ, β) be the partial derivative of g(·, ·, ·) with respect to its (dw + 1)-th

argument evaluated at (w, µ, β). In the case of a parametric first step (i.e., V = ϕ(X,Z, α)), the

11It is interesting to extend our inference method to the case where the object of interest depends not only on β
but also on the first and second stage parameters. For example, in the partially linear model discussed in Section
4.1, one may be interested in the average marginal effect of X, that is β + E

[
∂m(ϕ(X,Z))

∂V
∂ϕ(X,Z)
∂X

]
. The analysis

for such general cases is more complicated and beyond the scope of this paper.
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GEL statistic in (2.3) is modified by replacing g̃i(β) with

g̃i(β) = g(Wi, γ̂(Xi, V̂i), β) + ∆̂1ψ(Xi, Zi, α̂) + ∆̂2i{Yi − γ̂(Xi, V̂i)},

∆̂1 =
1

n

n∑
i=1

{(g1(Wi, γ̂(Xi, V̂i), β)− κ̂(Xi, V̂i))γ̂v(Xi, V̂i)ϕα(Xi, Zi, α̂)′

+(Yi − γ̂(Xi, V̂i))κ̂v(Xi, V̂i)ϕα(Xi, Zi, α̂)′},

κ̂(Xi, V̂i) and κ̂v(Xi, V̂i) are the intercept and slope coefficient of V̂i in a local polynomial regres-

sion of g1(Wi, γ̂(Xi, V̂i), β) on (Xi, V̂i), respectively, and ∆̂2i = κ̂(Xi, V̂i).

In the case of a nonparametric first step (i.e., V∗ = ϕ(X,Z) = E[U |X,Z] for some observable

U), the statistic in (2.3) is modified by replacing g̃i(β) with

g̃i(β) = g(Wi, γ̂(Xi, V̂i), β) + ∆̂1i(Ui − V̂i) + ∆̂2i{Yi − γ̂(Xi, V̂i)},

∆̄1i = {g1(Wi, γ̂(Xi, V̂i), β)− κ̂(Xi, V̂i)}γ̂v(Xi, V̂i) + {Yi − γ̂(Xi, V̂i)}κ̂v(Xi, V̂i),

and ∆̂1i is the nonparametric regression fit of ∆̄1i on (Xi, Zi).

For both cases, it can be shown that the GEL statistic `(β) converges to the χ2(k) distribution

(without undersmoothing).

3.3. Partial mean case. In this subsection, we consider an extension to

E[g(W,µ1(X,V ), . . . , µL(X,V ), β)] = 0,

where µl(X,V ) = E[Y |X,V,D = d(l)] for l = 1, . . . , L is a vector of conditional means associated

with the discrete variable D supported on the values d(1), . . . , d(L). This extension is useful to

accommodate matching estimators of treatment effects, for example.

Let g1l(w, µ1, . . . , µL, β) be the partial derivative of g(·, . . . , ·) with respect to its (dw+l)-th ar-

gument evaluated at (w, µ1, . . . , µL, β), κl(Xi, Vi) = E[g1l(Wi, µ1(Xi, Vi), . . . , µL(Xi, Vi), β)|Xi, Vi],

and πl(Xi, Vi) = Pr{Di = d(l)|Xi, Vi}. In the case of a parametric first step, the GEL statistic

in (2.3) is modified by replacing g̃i(β) with

g̃i(β) = g(Wi, γ̂1(Xi, V̂i), . . . , γ̂L(Xi, V̂i), β) + ∆̂1ψ(Xi, Zi, α)

+

L∑
l=1

I{Di = d(l)}{Yi − γ̂l(Xi, V̂i)}
κ̂l(Xi, V̂i)

π̂l(Xi, V̂i)
,
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where I{·} is the indicator function, γ̂l(Xi, V̂i), γ̂l,v(Xi, V̂i), π̂l(Xi, V̂i), π̂l,v(Xi, V̂i), κ̂l(Xi, V̂i),

and κ̂l,v(Xi, V̂i) are the local polynomial estimators of µl(Xi, Vi), ∂µl(Xi, Vi)/∂Vi, πl(Xi, Vi),

∂πl(Xi, Vi)/∂Vi, κl(Xi, Vi), and ∂κl(Xi, Vi)/∂Vi, respectively, and

∆̂1 =
1

n

n∑
i=1

 L∑
l=1

 g1l(Wi, γ̂1(Xi, V̂i), . . . , γ̂L(Xi, V̂i), β)

− I{Di=d(l)}
π̂l(Xi,V̂i)

κ̂l(Xi, V̂i)

 γ̂l,v(Xi, V̂i)

ϕα(Xi, Zi, α̂)′

+
1

n

n∑
i=1

(
L∑
l=1

I{Di = d(l)}
π̂l(Xi, V̂i)

{Yi − γ̂l(Xi, V̂i)}κ̂′l(Xi, V̂i)

)
ϕα(Xi, Zi, α̂)′

+
1

n

n∑
i=1

(
L∑
l=1

I{Di = d(l)}
π̂l(Xi, V̂i)2

{Yi − γ̂l(Xi, V̂i)}κ̂l(Xi, V̂i)π̂l,v(Xi, V̂i)

)
ϕα(Xi, Zi, α̂)′.

In the case of a nonparametric first step, the statistic in (2.3) is modified by replacing g̃i(β)

with

g̃i(β) = g(Wi, γ̂1(Xi, V̂i), . . . , γ̂L(Xi, V̂i), β) + ∆̂1i(Ui − V̂i)

+
L∑
l=1

I{Di = d(l)}{Yi − γ̂l(Xi, V̂i)}
κ̂l(Xi, V̂i)

π̂l(Xi, V̂i)
,

where ∆̂1i is a nonparametric estimator of

∆1i = E

[
L∑
l=1

(
g1l(Wi, µ1(Xi, Vi), . . . , µL(Xi, Vi), β)−

I{Di = d(l)}
πl(Xi, Vi)

κl(Xi, Vi)

)
∂µl(Xi, Vi)

∂Vi

∣∣∣∣∣Xi, Zi

]

+E

[
L∑
l=1

I{Di = d(l)}
πl(Xi, Vi)

{Yi − µl(Xi, Vi)}
∂κl(Xi, Vi)

∂Vi

∣∣∣∣∣Xi, Zi

]

+E

[
L∑
l=1

I{Di = d(l)}
πl(Xi, Vi)2

{Yi − µl(Xi, Vi)}κl(Xi, Vi)
∂πl(Xi, Vi)

∂Vi

∣∣∣∣∣Xi, Zi

]
.

For both cases, it can be shown that the GEL statistic `(β) converges to the χ2(k) distribution

(without undersmoothing).

3.4. Case of multidimensional µ. Theorem 1 can be generalized to the case of multidi-

mensional µ, where µ(Xi, Vi) = (µ1(Xi, Vi), . . . , µL(Xi, Vi))
′ and µl(Xi, Vi) = E[Yl,i|Xi, Vi] for
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l = 1, . . . , L. In this case, the GEL statistic in (2.3) is modified by replacing g̃i(β) with

g̃i(β) = g(γ̂(Xi, V̂i), β) + ∆̂ψ(Xi, Zi, α̂) +

L∑
l=1

g1l(γ̂(Xi, V̂i), β){Yl,i − γ̂l(Xi, V̂i)},

∆̂ =

L∑
l=1

[
1

n

n∑
i=1

{Yl,i − γ̂l(Xi, V̂i)}g2l(γ̂(Xi, V̂i), β)γ̂l,v(Xi, V̂i)ϕα(Xi, Zi, α̂)′

]
,

where g1l(µ, β) and g2l(µ, β) are the first and second derivatives of g(·, ·) with respect to its l-th

argument evaluated at (µ, β), respectively, and γ̂l,v(Xi, V̂i) is the slope coefficient of V̂i in a local

polynomial regression of Yl,i on (Xi, V̂i).

Similarly we can extend Theorem 2 for the nonparametric first step to the case of multidi-

mensional µ. The GEL statistic is modified by replacing g̃i(β) with

g̃i(β) = g(γ̂(Xi, V̂i), β) +
L∑
l=1

∆̂1l,i(Ui − V̂i) +
L∑
l=1

g1l(γ̂(Xi, V̂i), β){Yl,i − γ̂l(Xi, V̂i)},

where ∆̂1l,i is the nonparametric regression fitted value of δ1l,i = {Yl,i−γ̂l(Xi, V̂i)}g2l(γ̂(Xi, V̂i), β)γ̂l,v(Xi, V̂i)

on (Xi, Zi).

3.5. Other nonparametric likelihood functions. The GEL statistic in (2.3) can be further

generalized to allow different criterion functions for the construction of the objective function

and implied weights, such as the exponentially tilted empirical likelihood in Schennach (2007)

and the generalized power divergence family in Camponovo and Otsu (2014). By using the dual

form in (2.5), the general family of statistics can be defined as

¯̀(β) = 2

n∑
i=1

ρ(λ̄′g̃i(β))− 2nρ(0),

where λ̄ = arg maxλ∈Λn(β)

∑n
i=1 ρ̄(λ′g̃i(β)) for possibly another criterion ρ̄. The GEL statistic

in (2.3) corresponds to the case of ρ = ρ̄, and the exponentially tilted empirical likelihood

corresponds to the case of ρ(v) = log(1− v) and ρ̄(v) = −ev.

By adding analogous assumptions on ρ̄ (as in Assumption P (ii)), a similar argument as in

the proof of Theorem 1 yields that ¯̀(β)
d→ χ2(k).

4. Examples

4.1. Partially linear model with generated regressor. In this subsection, we illustrate our

nonparametric likelihood method using a partially linear model with a generated regressor. This
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model may be considered as a simplified version of the production function model studied in

Olley and Pakes (1996). In particular, we consider inference on the slope parameters β in the

partially linear model with an unobservable regressor V :

Y = X ′β +m(V ) + ε,

where m is an unknown function and E[ε|X,V ] = 0. The unobservable regressor V is generated

by V = ϕ(X,Z, α) (parametric first step) based on observables (X,Z) and ϕ known up to α, or

V = ϕ(X,Z) (nonparametric first step) based on an unknown function ϕ, which is consistently

estimable.12

Estimation of β may be interpreted in a three step way. First, we compute the generated

regressor V̂ as a proxy for V . Second, the functions µ1(v) = E[X|V = v] and µ2(v) = E[Y |V = v]

are estimated by γ̂1(V̂i) and γ̂2(V̂i), that is, a nonparametric regression of X on V̂ and Y on V̂ ,

respectively. Third, the estimator β̂ can be obtained by solving n−1
∑n

i=1(Xi − γ̂1(V̂i)){(Yi −

γ̂2(V̂i))− (Xi − γ̂1(V̂i))
′β̂} = 0. Based on this condition for β̂, we consider the moment function

g(X,µ(V ), β) = (X−µ1(V )){(Yi−µ2(V ))−(X−µ1(V ))′β} to apply our nonparametric likelihood

method.

In the case of a parametric first step, using the fact that m(V ) = E[Y −X ′β|V ] = µ2(V ) −

µ1(V )′β and a multidimensional version of Hahn and Ridder (2013, Theorem 4), the influence

function of β̂ is obtained as

{Xi − µ1(Vi)}{Yi −X ′iβ −m(Vi)}

−
[
E[(Yi −X ′iβ −m(Vi))

∂µ1(v)

∂v
ϕα(X,Z, α)′] + E[(X − µ1(V ))

∂m(V )

∂V
ϕα(X,Z, α)′]

]√
n(α̂− α),

The t-ratio is given by estimating the asymptotic variance of this function. We note that by

Newey (1994, Proposition 2), there is no contribution from γ̂1 and γ̂2 in this example.

12For example, in Olley and Pakes (1996), V = ϕ(X,Z) corresponds to conditional means E[yt−1|it−1, kt−1, at−1]
and E[lt−1|it−1, kt−1, at−1] where (yt−1, lt−1, it−1, kt−1) are logs of the output, labor inputs, investment, capital
inputs at a previous period, respectively, and at−1 is the firm’s age. X corresponds to (kt−1, at−1), and Z
corresponds to it−1. If we parametrize these conditional means and estimate by e.g. least squares, then it will
be the case of parametric first step. If we nonparametrically estimate these conditional means by the kernel
estimator, it will be the case of nonparametric first step.
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By applying the result in Section 3.2, the GEL statistic is defined by (2.3) with

g̃i(β) = {Xi − γ̂1(V̂i)}{Yi −X ′iβ − m̂(V̂i)}

− 1

n

n∑
i=1

 {Yi −X ′iβ − m̂(V̂i)}γ̂1,v(V̂i)ϕα(Xi, Zi, α̂)′

+{Xi − γ̂1(V̂i)}m̂v(V̂i)ϕα(Xi, Zi, α̂)′

ψ(Xi, Zi, α̂),

where γ̂1(v), γ̂1,v(v), m̂(v), and m̂v(v) are the nonparametric estimators of µ1(v), µ1,v(v) =

∂µ1(v)
∂v , {µ2(v)− µ1(v)′β}, and {µ2,v(v)− µ1,v(v)′β}, respectively.13

In the case of a nonparametric first step, the GEL statistic can be defined by (2.3) with

g̃i(β) = {Xi − γ̂1(V̂i)}{Yi −X ′iβ − m̂(V̂i)}+ ∆̂1i(Ui − V̂i),

where ∆̂1i is the nonparametric regression fit of [−{Yi−X ′iβ−m̂(V̂i)}γ̂1,v(V̂i)−{Xi−γ̂1(V̂i)}m̂v(V̂i)]

on (Xi, Zi).

For this example, our main theorems in Section 2 can be applied as follows. We adapt As-

sumptions P (i) and NP (i) to this example.

Assumption P1. In addition to Assumption P (ii)-(v), suppose

(i): {Yi, X ′i, Z ′i}ni=1 is an iid sample from (Y,X ′, Z ′) ∈ R×X×Z. X, Z, and V are compact.

The density f(v) of V is continuously differentiable to order s ≥ 2 and bounded away

from zero on V. µ1(v) and µ2(v) are continuously differentiable to order s ≥ 2 on V. For

some p ≥ 4, E|X|p <∞, E|Y |p <∞, and E[|X|p|V = v]f(v) and E[|Y |p|V = v]f(v) are

bounded over X× V.

(ii): For some neighborhood N of α, ϕαα(x, z, α) is continuous over X× Z×N .

Assumption NP1. In addition to Assumptions P (ii)-(iv) and P1 (i), suppose

(i): As n→∞, it holds n1/2bdx+dz/ log n→∞ and nb4s → 0.

(ii): The joint density f(x, z) of (X,Z) is continuously differentiable to order s ≥ 2 and

bounded away from zero on X × Z. The functions ϕ(x, z) = E[U |X = x, Z = z] and

δ(x, z) = E[η|X = x, Z = z], where η = εµ1,v(V ) + {X − µ1(V )}{µ2,v(V )− µ1,v(V )′β},

are continuously differentiable to order s ≥ 2 on X × Z. For some p ≥ 4, E|U |p < ∞,

13For example, based on β̂ obtained above, m̂(v) and m̂v(v) can be constructed by the local linear regression
from the residual (Yi −Xiβ̂) on the regressor (V̂i − v), where the intercept and slope estimates correspond to the
ones for m̂(v) and m̂v(v), respectively.
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E|η|p < ∞, and E[|U |p|X = x, Z = z]f(x, z) and E[|η|p|X = x, Z = z]f(x, z) are

bounded on X× Z.

Then analogous arguments yield the limiting distribution of the GEL statistic.

Proposition. Consider the setup of this subsection. Suppose either Assumption P1 (for the

parametric first step V = ϕ(X,Z, α)) or Assumption NP1 (for the nonparametric first step

V = ϕ(X,Z)) holds true. Then `(β)
d→ χ2(k).

4.2. Average treatment effect and counterpart on treated population. In this subsec-

tion, we consider the propensity score matching estimators for the average treatment effect and

the one for the treated population. Let Yi(1) and Yi(0) denote potential outcomes of unit i with

and without exposure to a treatment, respectively. Let Di ∈ {0, 1} be an indicator variable for

the treatment such that Di = 1 if unit i is exposed to the treatment and Di = 0 otherwise. We

observe Zi = (Yi, X
′
i, Di)

′, where Yi = DiYi(1) + (1 − Di)Yi(0) is the observable outcome, and

Xi is a vector of covariates.

First, we consider inference on the average treatment effect β = E[Yi(1) − Yi(0)]. Let

ϕ(x) = Pr{D = 1|X = x} be the propensity score and ϕ̂(x) be its nonparametric estima-

tor (i.e., a nonparametric regression of D on X). Also let γ̂1(·) and γ̂0(·) be the nonpara-

metric regression fits from Y on ϕ̂(X) for the treated and untreated samples, respectively.

Then the propensity score matching estimator by Heckman, Ichimura and Todd (1998) is de-

fined as β̂ = 1
n

∑n
i=1{γ̂1(ϕ̂(Xi)) − γ̂0(ϕ̂(Xi))}. This can be interpreted as the method of

moments estimator using the moment function g(X,µ(V ), β) = µ1(V ) − µ0(V ) − β, where

µ1(v) = E[Y |V = v,D = 1], µ0(v) = E[Y |V = v,D = 0], and V = ϕ(X).

From Hahn and Ridder (2013, Section 4), the influence function of the propensity score match-

ing estimator β̂ is given by

(µ1(Vi)− µ0(Vi)− β)−
(
m1(Xi)− µ1(Vi)

ϕ(Xi)
+
m0(Xi)− µ0(Vi)

1− ϕ(Xi)

)
(Di − ϕ(Xi))

+

(
Di

ϕ(Xi)
(Yi − µ1(Vi))−

1−Di

1− ϕ(Xi)
(Yi − µ0(Vi))

)
= (m1(Xi)−m0(Xi)− β) +

Di

ϕ(Xi)
(Yi −m1(Xi))−

1−Di

1− ϕ(Xi)
(Yi −m0(Xi)), (4.1)
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where m1(x) = E[Y |X = x,D = 1] and m0(x) = E[Y |X = x,D = 0]. By applying the result in

Section 3.3, the GEL statistic is defined by (2.3) with

g̃i(β) = (m̂1(Xi)− m̂0(Xi)− β) +
Di

ϕ̂(Xi)
(Yi − m̂1(Xi))−

1−Di

1− ϕ̂(Xi)
(Yi − m̂0(Xi)). (4.2)

We note that the influence function in (4.1) is identical for other asymptotically efficient

estimators, such as the inverse probability weighted estimator (Hirano, Imbens and Ridder, 2003).

Indeed, BEV modified the moment function for the inverse probability weighted estimator and

obtained the same function in (4.2).14 Also it is interesting to note that the correction terms

(i.e., the second and third terms in (4.2)) are analogous to additional terms in semiparametric

doubly robust estimators (see, Cattaneo, 2010, and Rothe and Firpo, 2016). Rothe and Firpo

(2016) showed that in this setup, the semiparametric doubly robust estimator has smaller first

order bias and second order variance compared to other estimators. Indeed both this paper and

Rothe and Firpo (2016) utilize the same bias cancellation property in g̃i(β) (see, Remark 5) for

valid inference without undersmoothing and point estimation with smaller bias, respectively.

Next, we consider the average treatment effect on the treated population β = E[Yi(1) −

Yi(0)|Di = 1]. To simplify the presentation, we assume p = Pr{Di = 1} is known as in Hahn

and Ridder (2013). In this case, from Hahn and Ridder (2013, Section 4), the influence function

of the propensity score matching estimator β̂ = 1
n

∑n
i=1

Di
p {γ̂1(ϕ̂(Xi))− γ̂0(ϕ̂(Xi))} is given by

Di

p
(µ1(Vi)− µ0(Vi)− β)− m0(Xi)− µ0(Vi)

p(1− ϕ(Xi))
(Di − ϕ(Xi))

+

(
Di

p
(Yi − µ1(Vi))−

(1−Di)ϕ(Xi)

p(1− ϕ(Xi))
(Yi − µ0(Vi))

)
=

Di

p
(m1(Xi)−m0(Xi)− β) +

Di

p
(Yi −m1(Xi))−

(1−Di)ϕ(Xi)

p(1− ϕ(Xi))
(Yi −m0(Xi)).

By applying the result in Section 3.3, the GEL statistic is defined by (2.3) with

g̃i(β) =
Di

p
(m̂1(Xi)− m̂0(Xi)− β) +

Di

p
(Yi − m̂1(Xi))−

(1−Di)ϕ̂(Xi)

p(1− ϕ̂(Xi))
(Yi − m̂0(Xi)),

where m̂1(Xi) and m̂0(Xi) are nonparametric estimators of m1(Xi) and m0(Xi), respectively.

14Primitive conditions for `(β)
d→ χ2(1) are provided in Section 4.2 of BEV.
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5. Simulation

This section conducts simulation studies to evaluate the finite sample properties of our semi-

parametric GEL inference method. We consider inference on (i) the average treatment effect,

and (ii) a sample selection model whose implied structure is essentially the same as the partial

linear model with a generated regressor discussed in Section 4.1.

5.1. Average treatment effect. We adopt the simulation design in Ichimura and Linton (2005)

and consider inference on the average treatment effect β = E[Y (1)]−E[Y (0)]. The data gener-

ating process is

X ∼ U [−0.5, 0.5], T = I{Xα+ ε > 0},

Y (0) = 2X + η, Y (1) = Y (0) + β,

where I{·} is the indicator function, α = 1, β = 0, and (η, ε) are mutually independent standard

normal random variables. We consider the models where the propensity score Pr{T = 1|X} is

nonparametric (Model NP), and parametric Pr{T = 1|X} = Φ(Xα) with the standard normal

distribution function Φ(·) (Model P). For the parametric case, α is estimated by the maximum

likelihood. The sample size is n = 100, and the results are based on 1, 000 Monte Carlo replica-

tions.

We compare the confidence sets for β constructed by (i) Wald-type method (Wald) based on

the propensity score matching estimator by Heckman, Ichimura and Todd (1998), (ii) adjusted

empirical likelihood (AEL), (iii) semiparametric empirical likelihood (SPEL), (iv) semiparametric

exponential tilting (SPET), and (v) semiparametric continuous updating GMM (SPCU). All

methods are implemented by the Gaussian kernel. Wald is the conventional approach, SPEL,

SPET, and SPCU are our proposals, and AEL is based on the unadjusted moment function (i.e.,

the first term of g̃i(β) in (2.4) or (2.8)) followed by a multiplicative correction. More precisely,

the confidence set by AEL is

{β : ρ̂ · `unadjusted(β) ≤ χ2
1−α(1)},
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where `unadjusted(β) is the empirical likelihood ratio 2 supλ
∑n

i=1 log(1 + λgi(β)) with gi(β) =

γ̂1(ϕ̂(Xi)) − γ̂0(ϕ̂(Xi)) and ρ̂ =
∑n
i=1 gi(β̂)2∑n
i=1 g̃i(β̂)2

is the adjustment term to recover the asymptotic

pivotalness.15

Table 1 presents empirical coverages of these confidence sets with 0.95 nominal coverage. We

consider five different fixed bandwidths: h1 = cSxn
−1/5 for the first step in Model NP, and

h = cSvn
−1/5 for the second step in both Models NP and P with c ∈ {0.5, 1.0, 1.5, 2.0, 2.5},

where Sx and Sv are the sample standard deviations of X and V̂ , respectively. We observe

that Wald and AEL tend to under-cover for large bandwidths, while the proposed GEL methods

(SPEL, SPET, and SPCU) are typically less sensitive to the bandwidths for both Models NP

and P.

We also investigate the power properties of the tests for H0 : β = 0 under the alternative

hypotheses H1 : β = ∆ for ∆ = −0.4,−0.2, 0.2, 0.4. Table 2 reports the calibrated powers of all

the tests across 1,000 replications (i.e., the rejection frequencies of the tests where the critical

values are given by the Monte Carlo 95th percentiles of these test statistics under H0) with c = 1

for the bandwidths. We find that the proposed GEL methods outperform the conventional Wald

and AEL methods.

c Wald AEL SPEL SPET SPCU Wald AEL SPEL SPET SPCU
Model NP Model P

0.5 0.933 0.931 0.942 0.940 0.941 0.928 0.931 0.932 0.930 0.933
1.0 0.941 0.880 0.945 0.944 0.945 0.940 0.897 0.941 0.942 0.944
1.5 0.943 0.801 0.946 0.946 0.948 0.936 0.852 0.944 0.943 0.945
2.0 0.916 0.761 0.946 0.945 0.947 0.933 0.823 0.945 0.944 0.945
2.5 0.875 0.740 0.946 0.942 0.944 0.930 0.775 0.944 0.945 0.944

Table 1. Empirical coverages of nominal 95% confidence intervals (n = 100)

∆ Wald AEL SPEL SPET SPCU Wald AEL SPEL SPET SPCU
Model NP Model P

-0.4 0.717 0.342 0.754 0.761 0.759 0.771 0.551 0.784 0.786 0.786
-0.2 0.247 0.179 0.253 0.252 0.254 0.306 0.204 0.315 0.313 0.311
0.2 0.206 0.141 0.302 0.299 0.298 0.242 0.167 0.248 0.246 0.245
0.4 0.662 0.409 0.782 0.784 0.789 0.779 0.596 0.789 0.789 0.788

Table 2. Calibrated powers of tests under H1 : β = ∆ (5% size, n = 100)

15In Model P, g̃i(β) = gi(β) + ∆̂ψ(Xi, α̂), where

∆̂ = − 1

n

n∑
i=1

(
m̂1(Xi)− γ̂1(ϕ(Xi, α̂))

ϕ(Xi, α̂)
+
m̂0(Xi)− γ̂0(ϕ(Xi, α̂))

1− ϕ(Xi, α̂)

)
∂ϕ(Xi, α̂)

∂α
.
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5.2. Sample selection model. We consider the following sample selection model:

Yi = β0 +X1iβ1 +X2iβ2 + εi, where Yi is only observed if Di = 1,

Di = I{α0 +Wiα1 +X1iα2 +X2iα3 + ηi > 0},

for i = 1, . . . , n, where (β0, β1, β2, α0, α1, α2, α3) = (−1, 1, 1,−0.1, 0.1,−0.1, 0.1), Wi ∼ U [0, 10],

Xji = 0.2Wi+
√

1− 0.22X∗ji,X
∗
ji ∼ U [0, 10] for j = 1, 2, and (εi, ηi) ∼ N


 0

0

 ,

 1 0.2

0.2 1


.16

The sample size is n = 200, and the results are based on 1, 000 Monte Carlo replications.

First, we consider the model where both the joint distribution of the error terms and the

functional form of the selection equation are of unknown forms (Model NP). An implication of

this model is that (see, e.g., Ahn and Powell, 1993)

E[Y |W,X1, X2, D = 1] = X1β1 +X2β2 +m(V ), where V = E[D|W,X1, X2].

Second, we consider the model where an additional single-index restriction f(W,X1, X2) =

α0 +Wα1 +X1α2 +X2α3 is imposed (Model P). This model implies (see, e.g., Powell, 2001, and

Newey, 2009)

E[Y |W,X1, X2, D = 1] = X1β1 +X2β2 +m(V ), where V = Wα1 +X1α2 +X2α3.

We employ Ichimura’s (1993) estimator to estimate α = (α1, α2, α3) in the first step.17

We compare four methods (Wald, SPEL, SPET, and SPCU) to construct confidence sets for

β2. All methods are implemented by the Gaussian kernel. Table 3 presents empirical coverages

of these confidence sets with 95% nominal coverage. We consider five different bandwidths:

hw = cSwn
−1/7 and hxj = cSxjn

−1/7 (j = 1, 2) for the first step in Model NP, and h = cSvn
−1/5

for the second step in both Models NP and P, and c ∈ {0.5, 0.7, 1.0, 1.3, 1.5}, where Sw, Sx1 ,

Sx2 and Sv are the sample standard deviations of W , X1, X2 and V̂ , respectively. For Model

NP, Wald tends to over-cover for large bandwidths, while the proposed GEL methods are less

sensitive to the bandwidths. For Model P, all the methods exhibit similar coverage properties.18

16In a preliminary simulation study, we also consider heteroskedastic error terms with ε∗i = (1 + 0.02x2i )εi and
η∗i = (1 + 0.02x2i )ηi. Since the results are similar, we only present the results for the homoskedastic case.
17The bandwidth is chosen as h = 1.06Svn

−1/5, where Sv is the sample standard deviation ofWα̂1+X1α̂2+X2α̂3.
18Both Wald and AEL methods do not require undersmoothing and allow the MSE optimal bandwidth for the
second step in this model because the moment condition for the parametric component of the partially linear
model has the double robustness property (see, Rothe and Firpo, 2016).
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We also investigate the power properties of the tests for H0 : β2 = 1 under the alternative

hypotheses H1 : β2 = 1+∆ for ∆ = −0.2,−0.1, 0.1, 0.2. Table 4 reports the calibrated powers of

all the tests across 1,000 replications with c = 1 for the bandwidth. The proposed GEL methods

have slightly better power for Model NP, while all the methods exhibit similar power for Model

P.

c Wald SPEL SPET SPCU Wald SPEL SPET SPCU
Model NP Model P

0.5 0.954 0.964 0.964 0.966 0.958 0.948 0.950 0.955
0.7 0.967 0.955 0.953 0.955 0.958 0.955 0.955 0.963
1.0 0.976 0.949 0.951 0.956 0.966 0.965 0.963 0.966
1.3 0.975 0.966 0.965 0.970 0.972 0.970 0.969 0.975
1.5 0.971 0.952 0.950 0.953 0.980 0.980 0.979 0.981

Table 3. Empirical coverages of nominal 95% confidence intervals (n = 200)

∆ Wald SPEL SPET SPCU Wald SPEL SPET SPCU
Model NP Model P

-0.2 0.992 0.996 0.997 0.997 0.844 0.844 0.845 0.847
-0.1 0.771 0.790 0.793 0.794 0.492 0.498 0.494 0.488
0.1 0.630 0.642 0.650 0.630 0.506 0.513 0.511 0.516
0.2 0.990 0.990 0.991 0.991 0.858 0.858 0.855 0.860

Table 4. Calibrated powers of tests under H1 : β = 1 + ∆ (5% size, c = 1, n = 200)

6. Conclusion

In this paper we propose a nonparametric likelihood inference method for parameters defined

in three step estimation problems considered in Hahn and Ridder (2013). In particular, we show

that the generalized empirical likelihood statistic based on moment functions modified to account

for influences from three step estimation is asymptotically pivotal without undersmoothing in

the first and second step nonparametric estimates. Our method is illustrated by a partially

linear model with a generated regressor and propensity score matching estimators. Finally, as

mentioned in the remarks and footnotes, there are several directions of future research, such

as an extension of the proposed method to weakly dependent data, formal analysis for plug-in

estimators using series estimation methods, higher-order analysis to develop an optimal band-

width selection method, and inference on more general objects which may depend on the first

and second stage parameters.
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Appendix A. Appendix for Theorem 1

Hereafter, we use the following notation. By suppressing dependence on (Xj − x)/h, define

ξj(v) = [1, (Xj − x)/h, (Vj − v)/h]′, ξ̂j(v) = [1, (Xj − x)/h, (V̂j − v)/h]′,

Φ(Vj , v) = e′1

 1

nhdx+1

n∑
j=1

ξj(v)ξj(v)′K

(
Xj − x
h

,
Vj − v
h

)−1

ξj(v)K

(
Xj − x
h

,
Vj − v
h

)
,

Φ(V̂j , v) = e′1

 1

nhdx+1

n∑
j=1

ξ̂j(v)ξ̂j(v)′K

(
Xj − x
h

,
V̂j − v
h

)−1

ξ̂j(v)K

(
Xj − x
h

,
V̂j − v
h

)
.

where e1 = (1, 0, . . . , 0)′. Then we denote

µ̂(Xi, Vi) =
1

nhdx+1

n∑
j=1

Φ(Vj , Vi)Yj ,

γ̂(Xi, Vi) =
1

nhdx+1

n∑
j=1

Φ(V̂j , Vi)Yj ,

γ̂(Xi, V̂i) =
1

nhdx+1

n∑
j=1

Φ(V̂j , V̂i)Yj .

Recall that µ̂(Xi, Vi) is (infeasible) nonparametric regression of Yi on (Xi, Vi) as in Hahn and

Ridder (2013). Also, let Φv(·, ·) be the derivative with respect to its second argument, ϕα,i =

ϕα(Xi, Zi, α), and Ω = E[ξξ′], where

ξ = g(µ(X,V ), β) + ∆ψ(X,Z, α) + g1(µ(X,V ), β){Y − µ(X,V )}.

A.1. Lemmas.

Lemma A.1. Under Assumption P,

max
1≤i≤n

|µ̂(Xi, Vi)− µ(Xi, Vi)| = op(n
−1/4),

max
1≤i≤n

|γ̂(Xi, Vi)− µ(Xi, Vi)| = op(n
−1/4),

max
1≤i≤n

|γ̂(Xi, V̂i)− µ(Xi, Vi)| = op(n
−1/4).

Proof. By Assumption P (i), bothXi and V∗i are compactly supported, and their joint density

is bounded away from zero. Thus, an application of Hansen (2008, Theorem 10) yields the first

statement. The second and third statements follow by expansions around α̂ = α combined with
√
n(α̂− α) = Op(1) (by Assumption P (v)) and the first statement.
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Lemma A.2. Under Assumption P,

1√
n

n∑
i=1

{g(γ̂(Xi, V̂i), β)− g(γ̂(Xi, Vi), β)}

= E[g1(µ(Xi, Vi), β)µv(Xi, Vi)ϕ
′
α,i]
√
n(α̂− α) + op(1).

Proof. Observe that

1√
n

n∑
i=1

{g(γ̂(Xi, V̂i), β)− g(γ̂(Xi, Vi), β)}

=
1√
n

n∑
i=1

g1(µ(Xi, Vi), β)
1

nhdx+1

n∑
j=1

{Φ(V̂j , V̂i)− Φ(V̂j , Vi)}Yj + op(1)

=
1

n

n∑
i=1

g1(µ(Xi, Vi), β)

 1

nhdx+1

n∑
j=1

Φv(Vj , Vi)Yj

ϕ′α,i
√
n(α̂− α) + op(1)

=
1

n

n∑
i=1

g1(µ(Xi, Vi), β)µv(Xi, Vi)ϕ
′
α,i

√
n(α̂− α) + op(1)

= E[g1(µ(Xi, Vi), β)µv(Xi, Vi)ϕ
′
α,i]
√
n(α̂− α) + op(1),

where the first equality follows from expansions around γ̂(Xi, V̂i) = γ̂(Xi, Vi) and γ̂(Xi, Vi) =

µ(Xi, Vi), Lemma A.1, and boundedness of h2 (by Assumption P (i)), the second equality follows

from an expansion around α̂ = α and
√
n(α̂ − α) = Op(1) (by Assumption P (v)) combined

with boundedness of g1(µ(x, v), β) over X × V and ϕα(x, z, α) and ϕαα(x, z, α) over X × Z×N

(Assumption P (i)), the third equality follows from the uniform convergence of the derivative of

the local linear estimator, and the last equality follows from the law of large numbers.

Lemma A.3. Under Assumption P,

1√
n

n∑
i=1

{g(γ̂(Xi, Vi), β)− g(µ̂(Xi, Vi), β)}

= −E[g1(µ(Xi, Vi), β)µv(Xi, Vi)ϕ
′
α,i]
√
n(α̂− α) + ∆

√
n(α̂− α) + op(1).

Proof. Let µxv,i =
(
µ(Xi, Vi),

∂µ(Xi,Vi)
∂x h, ∂µ(Xi,Vi)

∂v h
)′
. Decompose

Yj = µ′xv,iξ̂j(Vi)−{µ′xv,iξ̂j(Vi)−µ′xv,iξj(Vi)}+{µ(Xj , Vj)−µ′xv,iξj(Vi)}+{µ(Xj , Zj)−µ(Xj , Vj)}+εj ,
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where the error term εj = Yj − µ(Xj , Zj) satisfies E[εj |Xj , Zj ] = 0. By this expression, we can

write as

γ̂(Xi, Vi)− µ̂(Xi, Vi) = mA
i +mB

i +mC
i +mD

i +mE
i ,

where

mA
i =

1

nhdx+1

n∑
j=1

Φ(V̂j , Vi)µ
′
xv,iξ̂j(Vi)−

1

nhdx+1

n∑
j=1

Φ(Vj , Vi)µ
′
xv,iξj(Vi),

mB
i = − 1

nhdx+1

n∑
j=1

Φ(V̂j , Vi){µ′xv,iξ̂j(Vi)− µ′xv,iξj(Vi)},

mC
i =

1

nhdx+1

n∑
j=1

{Φ(V̂j , Vi)− Φ(Vj , Vi)}{µ(Xj , Vj)− µ′xv,iξj(Vi)},

mD
i =

1

nhdx+1

n∑
j=1

{Φ(V̂j , Vi)− Φ(Vj , Vi)}{µ(Xj , Zj)− µ(Xj , Vj)},

mE
i =

1

nhdx+1

n∑
j=1

{Φ(V̂j , Vi)− Φ(Vj , Vi)}εj .

Note that mA
i = 0 by construction. Thus, an expansion of g(γ̂(Xi, Vi), β) around γ̂(Xi, Vi) =

µ̂(Xi, Vi) and Lemma A.1 yield

1√
n

n∑
i=1

{g(γ̂(Xi, Vi), β)− g(µ̂(Xi, Vi), β)}

=
1√
n

n∑
i=1

g1(µ̂(Xi, Vi), β){γ̂(Xi, Vi)− µ̂(Xi, Vi)}+ op(1)

=
1√
n

n∑
i=1

g1(µ̂(Xi, Vi), β){mB
i +mC

i +mD
i +mE

i }+ op(1)

≡ MB +MC +MD +ME + op(1).
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For MB, we have

MB = − 1√
n

n∑
i=1

g1(µ̂(Xi, Vi), β)
1

nhdx+1

n∑
j=1

Φ(V̂j , Vi)(µ
′
xv,iξ̂j(Vi)− µ′xv,iξj(Vi))

= − 1√
n

n∑
i=1

g1(µ̂(Xi, Vi), β)
1

nhdx+1

n∑
j=1

Φ(V̂j , Vi)µv(Xi, Vi)(V̂j − Vj)

= − 1

n

n∑
i=1

g1(µ(Xi, Vi), β)
1

nhdx+1

n∑
j=1

Φ(Vj , Vi)µv(Xi, Vi)ϕ
′
α,j

√
n(α̂− α) + op(1)

= − 1

n

n∑
j=1

{
1

nhdx+1

n∑
i=1

Φ(Vi, Vj)g1(µ(Xi, Vi), β∗)µv(Xi, Vi)

}
ϕ′α,j
√
n(α̂− α) + op(1)

= − 1

n

n∑
j=1

g1(µ(Xj , Vj), β)µv(Xj , Vj)ϕ
′
α,j

√
n(α̂− α) + op(1)

= −E[g1(µ(Xi, Vi), β∗)µv(Xi, Vi)ϕ
′
α,i]
√
n(α̂− α) + op(1),

where the first equality is the definition of MB, the second equality follows from the definitions

of ξ̂j(Vi) and ξj(Vi), the third equality follows from expansions around µ̂(Xi, Vi) = µ(Xi, Vi)

and α̂ = α combined with Lemma A.1,
√
n(α̂ − α) = Op(1), and Assumption P (i), the fourth

equality follows by exchanging the order of summations and the fact that
∑n

i=1 Φ(Vj , Vi)ai =∑n
i=1 Φ(Vi, Vj)ai for any ai (because it is the intercept of the weighted OLS), the fifth equality

follows from the uniform convergence of the local linear estimator, and the last equality follows

from the law of large numbers.

For MC , we have

MC =
1√
n

n∑
i=1

g1(µ̂(Xi, Vi), β)
1

nhdx+1

n∑
j=1

{Φ(Vi, V̂j)− Φ(Vi, Vj)}{µ(Xj , Vj)− µ′xv,iξj(Vi)}

=
1

n

n∑
i=1

g1(µ(Xi, Vi), β)
1

nhdx+1

n∑
j=1

Φv(Vi, Vj){µ(Xj , Vj)− µ′xv,iξj(Vi)}ϕ′α,j
√
n(α̂− α) + op(1)

= op(1),

where the first equality is the definition ofMC and the fact that
∑n

i=1 Φ(Vj , Vi)ai =
∑n

i=1 Φ(Vi, Vj)ai

for any ai, the second equality follows from expansions around µ̂(Xi, Vi) = µ(Xi, Vi) and α̂ = α

combined with Lemma A.1,
√
n(α̂ − α) = Op(1), and Assumption P (i), and the third equality

follows by exchanging the order of summations and the uniform convergence of the derivative of

the local linear estimator.
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For MD, we have

MD =
1√
n

n∑
i=1

g1(µ̂(Xi, Vi), β)
1

nhdx+1

n∑
j=1

{Φ(Vi, V̂j)− Φ(Vi, Vj)}{µ(Xj , Zj)− µ(Xj , Vj)}

=
1

n

n∑
i=1

g1(µ(Xi, Vi), β)
1

nhdx+1

n∑
j=1

Φv(Vi, Vj){µ(Xj , Zj)− µ(Xj , Vj)}ϕ′α,j
√
n(α̂− α) + op(1)

=
1

n

n∑
j=1

g2(µ(Xj , Vj), β)µv(Xj , Vj){µ(Xj , Zj)− µ(Xj , Vj)}ϕ′α,j
√
n(α̂− α) + op(1)

= ∆′
√
n(α̂− α) + op(1),

where the first equality is the definition ofMD and the fact that
∑n

i=1 Φ(Vj , Vi)ai =
∑n

i=1 Φ(Vi, Vj)ai

for any ai, the second equality follows from expansions around µ̂(Xi, Vi) = µ(Xi, Vi) and α̂ = α

combined with Lemma A.1,
√
n(α̂−α) = Op(1), and Assumption P (i), the third equality follows

by exchanging the order of summations and the uniform convergence of the derivative of the local

linear estimator, and the last equality follows from the law of large numbers.

For ME , a similar argument to MC using E[ε|X,Z] = 0 yields ME = op(1). Therefore,

combining the results for all terms, the conclusion follows.

Lemma A.4. Under Assumption P, 1√
n

∑n
i=1 g̃i(β)

d→ N(0,Ω).

Proof. By Lemmas A.2 and A.3,

1√
n

n∑
i=1

{g(γ̂(Xi, V̂i), β)− g(µ̂(Xi, Vi), β)} = ∆
√
n(α̂− α) + op(1).

By this and an expansion of g(µ̂(Xi, Vi), β) around µ̂(Xi, Vi) = µ(Xi, Vi), we can decompose

1√
n

n∑
i=1

g̃i(β) =
1√
n

n∑
i=1

g(µ(Xi, Vi), β) +M1 +M2 + op(1),

where

M1 = ∆
√
n(α̂− α) + ∆̂

1√
n

n∑
i=1

ψ(Xi, Zi, α̂),

M2 =
1√
n

n∑
i=1

[
g1(µ(Xi, Vi), β){µ̂(Xi, Vi)− µ(Xi, Vi)}+ g1(γ̂(Xi, V̂i), β){Yi − γ̂(Xi, V̂i)}

]
.
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Thus, suppose we have

M1 = ∆
1√
n

n∑
i=1

ψ(Xi, Zi, α) + op(1), (A.1)

M2 =
1√
n

n∑
i=1

g1(µ(Xi, Vi), β){Yi − µ(Xi, Vi)}+ op(1), (A.2)

Then the central limit theorem implies the conclusion.

Since the relation (A.1) follows from Assumption P (v)-(vi), it remains to show (A.2). De-

compose

M2 =
1√
n

n∑
i=1

g1(µ(Xi, Vi), β){Yi − µ(Xi, Vi)}+M21 +M22 +M23,

where

M21 =
1√
n

n∑
i=1

g1(µ(Xi, Vi), β){µ̂(Xi, Vi)− µ(Xi, Vi)},

M22 =
1√
n

n∑
i=1

{g1(γ̂(Xi, V̂i), β)− g1(µ(Xi, Vi), β)}{Yi − µ(Xi, Vi)},

M23 = − 1√
n

n∑
i=1

g1(γ̂(Xi, V̂i), β){γ̂(Xi, V̂i)− µ(Xi, Vi)}.

For M22, the same argument to the proof of Lemma A.2 and Lemma A.3 implies

M22 =
1

n

∑
i=1

∆{Yi − µ(Xi, Vi)}
√
n(α̂− α) + op(1) = op(1).

For M23, we further decompose

M23 = − 1√
n

n∑
i=1

g1(µ(Xi, Vi), β){γ̂(Xi, V̂i)− µ(Xi, Vi)}

− 1√
n

n∑
i=1

{g1(γ̂(Xi, V̂i), β)− g1(µ(Xi, Vi), β)}{γ̂(Xi, V̂i)− µ(Xi, Vi)}

= M231 +M232.

From the same argument to the proof of Lemma A.2 and Lemma A.3 (by setting g(·) as the

identity map), we have

M231 = − 1√
n

n∑
i=1

g1(µ(Xi, Vi), β)
[
{γ̂(Xi, V̂i)− µ̂(Xi, Vi)}+ {µ̂(Xi, Vi)− µ(Xi, Vi)}

]

= − 1√
n

n∑
i=1

g1(µ(Xi, Vi), β){µ̂(Xi, Vi)− µ(Xi, Vi)}+ op(1).
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For M232, we have

M232 = − 1√
n

n∑
i=1

[
{g1(γ̂(Xi, V̂i), β)− g1(γ̂(Xi, Vi), β)}+ {g1(γ̂(Xi, Vi, β))− g1(µ̂(Xi, Vi), β)}

+{g1(µ̂(Xi, Vi), β)− g1(µ(Xi, Vi), β)}]

×
[
{γ̂(Xi, V̂i)− γ̂(Xi, Vi)}+ {γ̂(Xi, Vi)− µ̂(Xi, Vi)}+ {µ̂(Xi, Vi)− µ(Xi, Vi)}

]
= op(1).

The last equality follows the same argument as above combined with the standard argument for

degenerated U-statistics.

Finally, note thatM21 and the main term ofM231 are cancelled out. Therefore, the conclusion

follows.

Lemma A.5. Under Assumption P, max1≤i≤n |g̃i(β)| = op(n
1/p).

Proof. The proof is similar to that of Newey and Smith (2004, Lemma A1).

Lemma A.6. Under Assumption P, n−1
∑n

i=1 g̃i(β)g̃i(β)′
p→ Ω.

Proof. The proof follows by a similar argument to the proof of Lemma A.4.

A.2. Proof of Theorem 1. First, by Lemmas A.4, A.5 and A.6, the same arguments as in the

proof of Newey and Smith (2004, Lemma A2) imply that λ̂ = Op(n
−1/2).

Next, we obtain an asymptotic approximation for λ̂. The first-order condition for λ̂ satisfies

0 =
1

n

n∑
i=1

ρ1(λ̂′g̃i(β))g̃i(β) = − 1

n

n∑
i=1

g̃i(β) +
1

n

n∑
i=1

ρ2(λ̄′g̃i(β))g̃i(β)g̃i(β)′λ̂,

where the second equality follows from an expansion around λ̂ = 0, and λ̄ is a point on the

line joining λ̂ and 0. By applying Lemmas A.4, A.5 and A.6, and λ̂ = Op(n
−1/2), we have

max1≤i≤n |λ̄′g̃i(β)| = op(1) and

λ̂ =

(
1

n

n∑
i=1

g̃i(β)g̃i(β)′

)−1
1

n

n∑
i=1

g̃i(β) + op(n
−1/2). (A.3)
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Finally, a Taylor expansion yields

2

n∑
i=1

ρ(λ̂′g̃i(β))− 2nρ(0)

= 2
n∑
i=1

[
λ̂′g̃i(β)− 1

2
ρ1(λ̃′g̃i(β))λ̂′g̃i(β)g̃i(β)′λ̂

]
+ op(1)

=

(
1√
n

n∑
i=1

g̃i(β)

)′ [
1

n

n∑
i=1

g̃i(β)g̃i(β)′

]−1(
1√
n

n∑
i=1

g̃i(β)

)
+ op(1), (A.4)

where λ̃ is a point on the line joining λ̂ and 0, and the second equality follows from (A.3) and

max1≤i≤n |λ̃′g̃i(β)| = op(1). The conclusion follows by Lemmas A.4 and A.6.

Appendix B. Appendix for Theorem 2

B.1. Lemmas.

Lemma B.1. Under Assumption NP,

max
1≤i≤n

|V̂i − Vi| = op(n
−1/4),

max
1≤i≤n

|µ̂(Xi, Vi)− µ(Xi, Vi)| = op(n
−1/4),

max
1≤i≤n

|γ̂(Xi, Vi)− µ(Xi, Vi)| = op(n
−1/4),

max
1≤i≤n

|γ̂(Xi, V̂i)− µ(Xi, Vi)| = op(n
−1/4).

Proof. The first statement follows from Assumption NP (i)-(ii) and the same argument as

in Lemma A.1. The second statement is the same as in Lemma A.1. The third and fourth

statements follow by expansions around V̂i = V∗i combined with the first and second statements.

Lemma B.2. Under Assumption NP,

1√
n

n∑
i=1

{g(γ̂(Xi, V̂i), β)− g(γ̂(Xi, Vi), β)}

=
1√
n

n∑
i=1

g1(µ(Xi, Vi), β)µv(Xi, Vi)(V̂i − Vi) + op(1).

Proof. This follows from Lemma B.1 and the same argument as in Lemma A.2.
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Lemma B.3. Under Assumption NP,

1√
n

n∑
i=1

{g(γ̂(Xi, Vi), β)− g(µ̂(Xi, Vi), β)}

= − 1√
n

n∑
i=1

g1(µ(Xi, Vi), β)µv(Xi, Vi)(V̂i − Vi) +
1√
n

n∑
i=1

∆i(V̂i − Vi) + op(1).

Proof. By the same argument as in Lemma A.3, we have

1√
n

n∑
i=1

{g(γ̂(Xi, Vi), β)− g(µ̂(Xi, Vi), β)}

= − 1√
n

n∑
i=1

g1(µ(Xi, Vi), β)µv(Xi, Vi)(V̂i − Vi)

+
1√
n

n∑
i=1

g2(µ(Xj , Vj), β)µv(Xj , Vj){µ(Xj , Zj)− µ(Xj , Vj)}(V̂i − Vi) + op(1).

Applying the standard argument using degenerated U-statistics to the last term yields the con-

clusion.

Lemma B.4. Under Assumption NP, 1√
n

∑n
i=1 g̃i(β)

d→ N(0, E[ζiζ
′
i]), where

ζi = g(µ(Xi, Vi), β) + ∆i(Ui − Vi) + g1(µ(Xi, Vi), β){Yi − µ(Xi, Vi)}.

Proof. By Lemmas B.2 and B.3,

1√
n

n∑
i=1

{h(γ̂(Xi, V̂i))− h(µ̂(Xi, Vi))} =
1√
n

n∑
i=1

∆i(V̂i − Vi) + op(1).

By this and an expansion of h(µ̂(Xi, Vi)) around µ̂(Xi, Vi) = µ(Xi, Vi), we can decompose

1√
n

n∑
i=1

g̃(β) =
1√
n

n∑
i=1

g(µ(Xi, Vi), β) +M1 +M2 + op(1),

where

M1 =
1√
n

n∑
i=1

∆i(V̂i − Vi) +
1√
n

n∑
i=1

∆̂1i(Ui − V̂i),

M2 =
1√
n

n∑
i=1

{
g1(µ(Xi, Vi), β)(γ̂(Xi, Vi)− µ(Xi, Vi)) + g1(γ̂(Xi, V̂i), β){Yi − γ̂(Xi, V̂i)}

}
.
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Suppose we have

M1 =
1√
n

n∑
i=1

∆i(Ui − Vi) + op(1), (B.1)

M2 =
1√
n

n∑
i=1

g1(µ(Xi, Vi), β){Yi − µ(Xi, Vi)}+ op(1), (B.2)

Then the central limit theorem implies the conclusion. For (B.1), by using the relation that

V̂i − Vi = (Ui − Vi)− (Ui − V̂i), we have

M1 =
1√
n

n∑
i=1

∆i(Ui − Vi) +
1√
n

n∑
i=1

(∆̂1i −∆i)(Ui − V̂i)

=
1√
n

n∑
i=1

∆i(Ui − Vi) +
1√
n

n∑
i=1

(∆̂1i −∆i)(Ui − Vi)−
1√
n

n∑
i=1

(∆̂1i −∆i)(V̂i − Vi)

=
1√
n

n∑
i=1

∆i(Ui − Vi) + op(1).

The last equality follows from the standard argument using degenerated U-statistics. Finally,

(B.2) follows from the same argument as in Lemma A.4.

B.2. Proof of Theorem 2. We can show Theorem 2 by arguments that are similar to those

which were used in the proof of Theorem 1, using Lemmas B.2-B.4. Therefore, we omit the

details.

Appendix C. Proofs of Theorems 3 and 4

Since the proofs are similar, we only present the proof of Theorem 3.

Let β̃ = arg minb:θ=τ(b) `(b). By proceeding as in Newey and Smith (2004, Theorems 3.1 and

3.2) and Qin and Lawless (1995, eq. (3.6)), it can be shown that (under θ = τ(β)) β̃ p→ β and

√
n(β̃ − β) = −PG′Ω−1 1√

n

n∑
i=1

g̃i(β) + op(1), (C.1)

where P = V − V H ′(HVH ′)−1HV , V = (G′Ω−1G)−1, H = dτ(β)
dβ′ , and G = E

[
∂g(µ(X,V ),β)

∂β′

]
.

By applying a similar argument to establish (A.4), we obtain

`p(θ) =

(
1√
n

n∑
i=1

g̃i(β̃)

)′ [
1

n

n∑
i=1

g̃i(β̃)g̃i(β̃)′

]−1(
1√
n

n∑
i=1

g̃i(β̃)

)
+ op(1).
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By Lemma A.6 combined with consistency of β̃, we have 1
n

∑n
i=1 g̃i(β̃)g̃i(β̃)′

p→ Ω. Also an

expansion around β̃ = β and (C.1) imply

1√
n

n∑
i=1

g̃i(β̃) = (I −GPG′Ω−1)
1√
n

n∑
i=1

g̃i(β) + op(1).

Combining these results,

`p(θ) =

(
Ω−1/2 1√

n

n∑
i=1

g̃i(β)

)′
A(A′A)−1A′

(
Ω−1/2 1√

n

n∑
i=1

g̃i(β)

)
+ op(1),

where A = Ω1/2(G′)−1H ′. Since Ω−1/2 1√
n

∑n
i=1 g̃i(β)

d→ N(0, I) by Lemma A.4 and A(A′A)−1A′

is an idempotent matrix with rank k1, the conclusion follows.

Appendix D. Proof of Proposition

Proof for the case of parametric first step V = ϕ(X,Z, α). It is enough to verify ∆̂
p→ ∆,

where

∆̂ =
1

n

n∑
i=1

[
{Yi −X ′iβ − m̂(V̂i)}γ̂1,v(V̂i)ϕα(Xi, Zi, α̂)′ + {Xi − γ̂1(V̂i)}m̂v(V̂i)ϕα(Xi, Zi, α̂)′

]
,

∆ = E
[
{Y −X ′β −m(V ))}µ1,v(V )ϕα(X,Z, α)′ + {X − µ1(V )}mv(V )ϕα(X,Z, α)′

]
.

with µ1,v(V ) = ∂µ1(V )
∂v and mv(V ) = ∂m(V )

∂v . This follows from the similar argument as in Lemma

A.1 (e.g., max1≤i≤n |m̂(V̂i)−m(Vi)| = op(1)).

Proof for the case of nonparametric first step V = ϕ(X,Z). It is enough to verify

max1≤i≤n |∆̂1i −∆i|
p→ 0. Indeed we have

max
1≤i≤n

∣∣∣[{Yi −X ′iβ − m̂(V̂i)}γ̂1,v(V̂i) + {Xi − γ̂1(V̂i)}m̂v(V̂i)
]
− [εiµ1,v(Vi) + {Xi − µ1(Vi)}mv(Vi)]

∣∣∣ = op(1),

from the similar argument as in Lemma B.1 (e.g., max1≤i≤n |m̂(V̂i)−m(Vi)| = op(1)). Then the

conclusion follows from the fact that

max
1≤i≤n

∣∣∣∣∣∣∣
nonparametric regression fit of εiµ1,v(Vi) + {Xi − µ1(Vi)}mv(Vi) on (Xi, Zi)

−E[εiµ1,v(Vi) + {Xi − µ1(Vi)}mv(Vi)|Xi, Zi]

∣∣∣∣∣∣∣ = op(1).
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