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Abstract. This paper considers specification testing for regression models with errors-in-

variables and proposes a test statistic comparing the distance between the parametric and

nonparametric fits based on deconvolution techniques. In contrast to the methods proposed

by Hall and Ma (2007) and Song (2008), our test allows general nonlinear regression models

and possesses complementary local power properties. We establish the asymptotic properties

of our test statistic for the ordinary and supersmooth measurement error densities. Simulation

results endorse our theoretical findings: our test has advantages in detecting high-frequency

alternatives and dominates the existing tests under certain specifications.

1. Introduction

In this paper, we propose a specification, or goodness-of-fit test, for (possibly nonlinear) re-

gression models with errors-in-variables by comparing the distance between the parametric and

nonparametric fits based on deconvolution techniques. We establish asymptotic properties of

the test statistic and use the bootstrap procedure of Hall and Ma (2007) to obtain critical val-

ues. Compared to existing methods, our test allows nonlinear regression models and possesses

complementary local power properties.

In the enormous literature on specification testing, relatively little attention has been given

to the issue of measurement error despite its obvious need. Papers such as Zhu, Song and Cui

(2003), Zhu and Cui (2005), and Cheng and Kukush (2004) proposed χ2 statistics based on

moment conditions of observables implied from errors-in-variables regression models. However,

as is the case without measurement error, these tests are generally inconsistent for some fixed

alternatives. Song (2008) proposed a consistent specification test for linear errors-in-variables

regression models by comparing nonparametric and model-based estimators on the conditional

mean function of the dependent variable Y given the mismeasured observable covariatesW , that

is E[Y |W ]. As we clarify at the end of the next section, this approach may not have sensible

local power for the original hypothesis on E[Y |X], where X is a vector of error-free unobservable

covariates. Hall and Ma (2007) proposed a nonsmoothing specification test for polynomial re-

gression models with errors-in-variables, which is able to detect local alternatives at the
√
n-rate.
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We propose a smoothing specification test that complements Hall and Ma’s (2007) test (see fur-

ther discussion below). Other papers that study specification testing under measurement error

include Butucea (2007), Holzmann and Boysen (2006) and Holzmann, Bissantz and Munk (2007)

(for testing probability densities), Koul and Song (2009, 2010) (for Berkson measurement error

models), and Song (2009) and Xu and Zhu (2015) (for errors-in-variables models with validation

data).

Consistent specification tests can be broadly split into those that use a nonparametric estima-

tor (called smoothing tests) and those that do not (called nonsmoothing or integral-transform

tests). In contrast to Hall and Ma (2007) which adopted the nonsmoothing approach, we pro-

pose a kernel-based smoothing test for the goodness-of-fit of parametric regression models with

errors-in-variables. There are two important features of our test. First, our smoothing test is

not restricted to polynomial models and allows testing of general nonlinear regression models.

Second, analogous to the literature on conventional specification testing, our smoothing test

complements Hall and Ma’s (2007) test (if applied to polynomial models) due to its distinct

power properties. Rosenblatt (1975) explained that although local power properties of nons-

moothing tests suggest they are more powerful than smoothing tests, ‘there are other types of

local alternatives for which tests based on density estimates are more powerful’. Fan and Li

(2000) showed that in the non-measurement error case, smoothing tests are generally more pow-

erful for high-frequency alternatives and nonsmoothing tests are more powerful for low-frequency

alternatives. Thus, smoothing tests ‘should be viewed as complements to, rather than substi-

tutes for, [nonsmoothing tests].’ Our simulation results suggest that this phenomenon extends

to errors-in-variables models.

In contrast to the above papers and our own, Ma et al. (2011) moved away from Wald-type

tests where restricted and unrestricted estimates are compared. They proposed a local test

that is more analogous to the score test where only the model under the null hypothesis must be

estimated, they then extended this to an omnibus test using a system of different basis functions.

However, the test does not allow the number of basis functions to increase with the sample size

and so is not strictly a nonparametric test. They also discuss that as a result of the way the test

is constructed, it has low power against high-frequency alternatives - similar to the tests of Song

(2008) and Hall and Ma (2007).

The rest of this paper is organized as follows. Section 2 describes the setup in detail and

introduces the test statistic and its motivation. Section 3 outlines the main asymptotic properties

of the test statistic, outlines the bootstrap procedure used, and discusses how to implement the
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test, including in the case where the distribution of the measurement error is unknown but

repeated measurements are available. Finally, Section 4 analyses the small sample properties

of the test through a Monte Carlo simulation. All mathematical proofs are deferred to the

Appendix.

2. Setup and test statistic

Consider the nonparametric regression model

Y = m(X) + U with E[U |X] = 0,

where Y ∈ R is a response variable, X ∈ Rd is a vector of covariates, and U ∈ R is the

error term. In this paper, we focus on the situation where X is not directly observable due to

the measurement mechanism or nature of the environment. Instead a vector of variables W is

observed through

W = X + ε,

where ε ∈ Rd is a vector of measurement errors that has a known density fε and is independent

of (Y,X). The case of unknown density fε will be discussed in Section 3.2. We are interested in

specification, or goodness-of-fit, testing of a parametric functional form of the regression function

m. More precisely, for a parametric model mθ, we wish to test the hypothesis

H0 : there exists some θ ∈ Rk such that m(x) = mθ(x) for almost every x ∈ Rd,

H1 : H0 is false,

based on the random sample {Yi,Wi}ni=1 of observables (while Xi is unobservable).

To test the null H0, we adapt the approach of Härdle and Mammen (1993), which compares

nonparametric and parametric regression fits, to the errors-in-variables model. As a nonpara-

metric estimator of m, we use the deconvolution kernel estimator (see, e.g., Fan and Truong,

1993, and Meister, 2009, for a review)

m̂(x) =

∑n
i=1 YiKb(x−Wi)∑n
i=1Kb(x−Wi)

,

where

Kb(a) =
1

(2π)d

∫
e−it·aK

ft(tb)

f ft
ε (t)

dt,

is the so-called deconvolution kernel, i =
√
−1, b is a bandwidth, and K ft and f ft

ε are the Fourier

transforms of a kernel function K and the measurement error density fε, respectively.
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To simplify the exposition, we concentrate on the case where all elements of X are mismea-

sured. If X contains both correctly measured and mismeasured covariates (denoted by X1 and

X2, respectively), then the kernel estimator is modified as m̂(x) =
∑n
i=1 YiK1b(x1−X1i)Kb(x2−Wi)∑n
i=1K1b(x1−X1i)Kb(x2−Wi)

,

where K1b(a) = 1
bd1
K1

(
a
b

)
and K1 is a conventional kernel function for X1, and analogous results

can be established.

Throughout the paper we assume f ft
ε (t) 6= 0 for all t ∈ Rd and K ft has compact support so

that the above integral is well-defined.

For the parametric functional form, mθ, several methods are available to estimate θ under

certain regularity conditions. For example, based on Butucea and Taupin (2008), we can estimate

θ by the (weighted) least squares regression of Y on the implied conditional mean function

E[mθ(X)|W ]. In this paper, we do not specify the construction of the estimator θ̂ for θ except

for assuming consistency.

In order to construct a test statistic for H0, we compare the nonparametric and parametric

estimators of the regression function based on the L2-distance,

Dn = n

∫ ∣∣∣m̂(x)f̂(x)−mθ̂(x)f̂(x)
∣∣∣2 dx (1)

where | · | is the Euclidean norm, and f̂(x) = 1
n

∑n
i=1Kb(x −Wi) is the deconvolution kernel

density estimator for X.

We close this section with a remark on an alternative testing approach. To test the null

hypothesis H0, one may consider testing an alternative formulation of H0 based on the conditional

mean E[Y |W ] of observables, i.e., consider H ′0 : fW (w)E[Y
∣∣W = w] =

∫
mθ(w − u)fX(w −

u)fε(u)du for almost every w, and test H′0 by a conventional method, such as Härdle and Mammen

(1993). This approach was employed by Song (2008), and we argue that our testing approach

can be a useful complement to this method since it may have non-trivial local power against

local alternatives which may not be detected by Song’s (2008) approach.

To illustrate this point, consider the following local alternative hypothesis for the regression

function

mn(x) = mθ(x) + 2an cos(Anx)

(
sinx

x

)
,

where an → 0 and An → ∞ as n → ∞. In this case, mn converges to mθ at the rate of an

under the L2-norm, and the test based on Dn will have non-trivial power for a certain rate of

an. On the other hand, local power of the test based on the implied null H′0 is determined by

the L2-norm of the convolution {(mn−mθ)fX} ∗ fε. By Parseval’s identity and the Fourier shift
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formula, we have

‖{(mn −mθ)fX} ∗ fε‖2 = a2
n

∥∥∥{qft(· −An) + qft(·+An)}f ft
ε

∥∥∥2
,

where q(x) =
(

sinx
x

)
fX(x). For example, if fε is Laplace with f ft

ε (t) = 1/(1 + t2), then we

have that the L2-norm ‖{(mn −mθ)fX} ∗ fε‖ is of order an/A2
n. By letting An diverge at an

arbitrarily fast rate, the rate an/A2
n becomes arbitrarily fast so that any conventional test for H′0

fails to detect deviations from this null.

We emphasize that our test should be treated as a complement to the existing approach by

Song (2008). One may construct examples where Song’s (2008) approach yields better power

properties. This point is illustrated in our simulation study in Section 4.

3. Asymptotic properties

In this section, we present asymptotic properties of the test statistic Dn. We first derive

the limiting distribution under the null hypothesis H0. To this end, we impose the following

assumptions.

Assumption D.

(i): {Yi, Xi, εi}ni=1 are i.i.d. ε is independent of (Y,X) and has a known density fε. Ele-

ments of ε are mutually independent.

(ii): mθ is twice differentiable in a neighborhood of θ. Each of the following are in L1 and

L2: m2fX , m2fX ,
(
dmθ
dθ

)2
fX , and d2mθ

dθ2
fX , where m2(x) = E[Y 2|X = x].

(iii): K ft(t) is compactly supported on [−1, 1]d, is symmetric around zero (i.e., K ft(t) =

K ft(−t)), and is bounded.

(iv): As n→∞, it holds that b→ 0 and nbd →∞.

(v): θ̂ − θ = op(1) under H0.

Assumption D (i) is common in the literature of classical measurement error. Extensions to

the case of unknown fε are discussed in Section 3.2. Assumption D (ii) contains boundedness

conditions on fX , the regression functionsm andmθ, andm2. Assumption D (iii) and (iv) contain

standard conditions on the kernel functionK and bandwidth b, respectively. A popular choice for

the kernel function in the context of deconvolution methods is the sinc kernel K(x) = sinx
πx whose

Fourier transform is equal to K ft(t) = I{−1 ≤ t ≤ 1}. Assumption (v) stipulates that we only

require some consistent estimator of θ. When the regression model under the null hypothesis is

linear (i.e., mθ(x) = x′θ), we can employ the methods in, for example, Gleser (1981), Bickel and
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Ritov (1987), or van der Vaart (1988). For nonlinear regression, we may choose the estimators

by e.g., Taupin (2001) or Butucea and Taupin (2008) under certain regularity conditions. It is

interesting to note that in contrast to the no measurement error case as in Härdle and Mammen

(1993), the limiting distribution of the estimation error (θ̂− θ) does not influence the first-order

asymptotic properties of the test statistic Dn. This is due to the measurement error slowing

down the convergence rate of the dominant term of Dn.

For simplicity, we use product kernels in the following way. Following Masry (1993), let K̃(·) be

a univariate kernel and K̃ ft(·) denote its Fourier transform. Define the univariate deconvolution

kernel as

K̃b(xj) =
1

2πb

∫
e−ita K̃

ft(t)

f̃ ft
εj (t/b)

dt.

where f̃ ft
εj (·) is the Fourier transform of εj . Finally, set K(x) =

∏dim(x)
j=1 K̃(xj) and Kb(x) =∏dim(x)

j=1 K̃b(xj). Since we assume that ε is vector valued with independent elements, we can

write f ft
ε (t) =

∏dim(t)
j=1 f̃ ft

εj (tj). Combining these facts, we have K ft(x) =
∏dim(x)
j=1 K̃ ft(xj).

We impose additional assumptions based on the bounds of the rate of decay of the tail of

the characteristic function of the measurement error, f ft
ε . Let σ2(x) = E[U2|X = x] be the

conditional variance of the error term. The first case, known as ordinary smooth measurement

error, is characterised as follows.

Assumption O.

f ft
ε (t) 6= 0: for all t ∈ Rd and there exist positive constants c, C, and α such that

c|s|−α ≤ |f̃ ft
εj (s)| ≤ C|s|

−α,

for all 1 ≤ j ≤ d as |s| → ∞.

Assumption O requires that the Fourier transform f̃ ft
εj decays in some finite power. A popular

example of an ordinary smooth density is the Laplace density. Although it is beyond the scope of

this paper, isolated zeros in f ft
ε (t) may be allowed by introducing the spectral method (Carrasco

and Florens, 2011) or ridge approach (Hall and Meister, 2007).

For the second case, known as supersmooth measurement error, we impose the following

assumptions.

Assumption S. (i): f ft
ε (t) 6= 0 for all t ∈ Rd and there exist positive constants Cε, µ, γ0,

and γ > 1 such that

f̃ ft
εj (s) ∼ Cε|s|

γ0e−|s|
γ/µ,
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as |s| → ∞.

(ii): There exist constants A > 0 and β ≥ 0 such that

K̃ ft(1− s) = Asβ + o(sβ),

as s→ 0.

(iii): E[Y 4] <∞, E[W 4] <∞.

Assumption S (i) is adopted from Holzmann and Boysen (2006). This assumption requires

that the Fourier transform f̃ ft
ε decays at an exponential rate. An example of a supersmooth

density satisfying this assumption is the normal density, where Cε = 1, γ0 = 0, γ = 2, and

µ = 2. However, due to the requirement γ > 1, the Cauchy density is excluded. As is clarified

in the proof of Theorem 1 (iii), the condition γ > 1 is imposed to make a bias term negligible.

Assumption S (ii) contains an additional condition on the kernel function. The sinc kernel,

K(x) = sinx
πx , for example, satisfies this assumption with A = 1 and β = 0. Assumption S (iii)

requires bounded fourth moments for our observable random variables.

Under these assumptions, the null distribution of Dn is given as follows.

Theorem 1.

(i): Suppose that Assumptions D and O hold true. Then under H0,

C
−1/2
V,b Dn

d→ N

(
0,

2

(2π)2d

)
,

where CV,b = O(b−d(1+4α)) is defined in (2) in the Appendix.

(ii): Suppose that Assumptions D and S hold true and ε is multivariate normal. Then under

H0,

ϕ(b)Dn
d→
∞∑
k=1

λk(Z
2
k − 1),

where ϕ(b) = (2π)d

bd(1+4β)ed/b
2
A2dΓ(1+2dβ))

with the gamma function Γ, {Zk} is an independent

sequence of standard normal random variables and {λk} is defined in (6) in the Appendix.

(iii): Suppose that Assumptions D and S hold true. Then under H0,

φ(b)Dn
d→
∞∑
k=1

λk(Z
2
k − 1),

where φ(b) = (2π)dγ1+2dβC2d
ε

µ1+2dβbd(γ−1+2γβ+2γ0)e2d/(µb
γ )A2Γ(1+2dβ)

.
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Theorem 1 (i) says that for the ordinary smooth case, the test statistic Dn is asymptotically

normal. The normalizing term CV,b comes from the variance of the U-statistic of the leading term

in Dn. Note that the convergence rate C−1/2
V,b = O(bd( 1

2
+2α)) of the statistic Dn is slower than

the rate O(bd/2) of Härdle and Mammen’s (1993) statistic for the no measurement error case. As

the dimension d of X or the decay rate α of f ft
ε increases, the convergence rate of Dn becomes

slower. This theorem can also be used to show the ’rule-of-thumb’ rate for the bandwidth is of

the order b = n−( 1
4+d+2α).

Theorem 1 (ii) focuses on the case of normal measurement error and shows that the test

statistic converges to a weighted sum of chi-squared random variables. The normalizing term ϕ(b)

is characterized by the shape of the kernel function specified in Assumption S (i). For example, if

we employ the sinc kernel (i.e., A = 1 and β = 0), the normalization becomes ϕ(b) = (2π)d

bded/b
2
Γ(d)

.

In this supersmooth case, the non-normal limiting distribution emerges because the leading term

of the statistic Dn is characterized by a degenerate U-statistic with a fixed kernel (see, e.g.,

Serfling, 1980, Theorem 5.5.2). In contrast, for the ordinary smooth case in Part (i) of this

theorem, the leading term is characterized by a U-statistic with a varying kernel so that the

central limit theorem in Hall (1984) applies. An analogous result is obtained in Holzmann and

Boysen (2006) for the integrated squared error of the deconvolution density estimator.

Theorem 1 (iii) presents the limiting null distribution of the test statistic for the case of

general supersmooth measurement error. In this case, after normalization by ϕ(b), the test

statistic obeys the same limiting distribution as the normal case in Part (ii) of this theorem.

Thus, similar comments to Part (ii) apply. The normalization term ϕ(b) is characterized by the

shapes of the kernel function and Fourier transform f ft
ε (t) of the measurement error specified in

Assumption S (i).

In order to investigate the power properties of the test based on Tn, we consider a local

alternative hypothesis of the form

H1n : m(x) = mθ(x) + cn∆(x), for almost every x ∈ Rd

where cn → 0 and ∆(x) is a non-zero function satisfying ∆(·)2fX(·) ∈ L2 and such that the limit

limn→∞∆n defined in (7) in the Appendix exists. The local power properties are obtained as

follows.

Theorem 2.
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(i): Suppose that Assumptions D and O hold true. Then under H1n with cn = n−1/2b−d( 1
4

+α),

C
−1/2
V,b Dn

d→ N

(
lim
n→∞

∆n,
2

(2π)2d

)
.

(ii): Suppose that Assumptions D and S hold true and ε is multivariate normal. Then under

H1n with cn = n−1/2bd(1/2+2β)ed/(2b
2),

ϕ(b)Dn
d→ lim
n→∞

∆n +

∞∑
k=1

λk(Z
2
k − 1).

(iii): Suppose that Assumptions D and S hold true. Then under H1n with cn = bd((λ−1)/2+λβ+λ0)ed/(µb
λ),

ϕ(b)Dn
d→ lim
n→∞

∆n +
∞∑
k=1

λk(Z
2
k − 1),

Theorem 2 (i) says that in the ordinary smooth case, our test has non-trivial power against

local alternatives drifting with the rate of cn = n−1/2b−d( 1
4

+α). This is a nonparametric rate, with

the test becoming less powerful as the dimension d of X or the decay rate α of f ft
ε increases. For

the no measurement error case, Härdle and Mammen’s (1993) statistic has non-trivial power for

local alternatives with the rate n−1/2b−d/4. Therefore, as expected, the test becomes less powerful

in the presence of measurement error. Theorem 2 (ii) and (iii) present local power properties of

our test for the normal and general supersmooth measurement error cases, respectively. Except

for the normalizing constants, the test statistic has the same limiting distribution. Also, for

cn → 0, the bandwidth b should decay at a log rate. As an example, consider the case of

ε ∼ N(0, 1). In this case, if we choose b ∼
(

d
log(n)

)1/2
, then the rate for the local alternative will

be cn ∼
(

d
log(n)

)d(1/4+β)
. So the rate at which we can detect local alternatives is typically a log

rate in the supersmooth measurement error case.

3.1. Bootstrap and implementation. As is typically the case in testing problems which in-

volve nonparametric components, the asymptotic distribution is relatively complex and can be

difficult to estimate in practice. As such, we suggest a bootstrap procedure to calculate critical

values for this test. We follow the approach of Hall and Ma (2007) who propose a type of moment

matching bootstrap that is adapted to the setting of mismeasured regressors. Measurement er-

ror poses many problems for the implementation of bootstrap procedures, resulting in a relative

scarcity of bootstraps in the literature. We do not have access to the true regressors, so cannot

compute any residual based bootstrap, we also do not have access to the measurement errors

which provides further issues. Hall and Ma (2007) suggest the following approach in answer to
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these issues. Compute m̂, f̂ , mθ̂, and F̂X from the original data using standard deconvolution

techniques and a parametric estimator for θ̂. Estimate ω2 = E[U2] (Hall and Ma, 2007, provide a

method to do this in their polynomial setting, for more general models, one can use the approach

of Delaigle, Hall and Jamshidi, 2015) and choose a distribution, Gε(·|ω̂2), which has first and

second moments equal to 0 and ω̂2, respectively (in Section 4 we use Mammen’s 2-point distribu-

tion for Gε). Now, draw data {X∗i }ni=1 from F̂X , {ε∗i }ni=1 from Fε(·), and {U∗i }ni=1 from Gε(·|ω̂2).

Construct Y ∗i = mθ̂(X
∗
i ) +U∗i and W ∗i = X∗i + ε∗i . Using the pairs (Y ∗i ,W

∗
i ) compute D∗n in the

same manner as Dn. The distribution of D∗n can be approximated by repeatedly carrying out

this procedure.

In order to implement our test, we also need to choose a suitable bandwidth. Unfortunately,

to the best of our knowledge, there is currently no theory on the optimal choice of bandwidth

in a measurement error testing situation. It is beyond the scope of this paper to provide such a

choice, however, we recommend the estimated plug-in approach of Delaigle and Gijbels (2004)

as a good starting point; this is the approach we use in our Monte Carlo study. Although this

procedure is designed to select the optimal bandwidth in a regression context - rather than for a

testing problem - it provides good results in terms of power and size control (as shown in Section

4) and tends to produce greater power than other bandwidth choices around the selected value.

In summary, we suggest the following procedure for implementation of our specification test.

(1) Based on the deconvolution regression and density estimators m̂ and f̂ , and the param-

eter estimator θ̂, compute the test statistic Dn in (1). The bandwidths b in m̂ and f̂

are chosen as outlined in the ’two-stage selection plug-in’ method of Delaigle and Gij-

bels (2004). That is, start with a normal-reference assumption to calculate
∫
f

(4)
X (x)2dx

(where f (4)
X (x) denotes the 4th order derivative) which can be used to select an ’opti-

mal’ plug-in bandwidth for estimating
∫
f

(3)
X (x)2dx (required for the estimation of the

asymptotic mean integrated squared error (AMISE) for f (1)
X ), in turn this bandwidth can

be used to estimate
∫
f

(2)
X (x)2dx which is plugged into the AMISE for fX . The final

bandwidth is given as the minimiser of this estimated AMISE.

(2) Compute the cdf F̂X by integrating f̂ obtained in Step 1, and compute ω̂2 using the

method of Delaigle, Hall and Jamshidi (2015), that is, ω̂2 = max{µ̂2 − ξ̂2, 0}, where

µ̂2 = 1
n

∑n
i=1 Y

2
i and ξ̂2 =

∫
m̂(x)2f̂(x)dx.

(3) Draw {X∗i }ni=1 from F̂X , {ε∗i }ni=1 from Fε, and {U∗i }ni=1 from Gε(·|ω̂2) (some distribution

with variance ω̂2, such as Mammen’s 2 point distribution). Construct Y ∗i = mθ̂(X
∗
i )+U∗i
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and W ∗i = X∗i + ε∗i for i = 1, . . . , n. Using the pairs {Y ∗i ,W ∗i }ni=1 compute the bootstrap

counterpart D∗n in the same manner as Dn in (1).

(4) Repeat Step 3 many times and use the (1 − α)-th quantile of the distribution of D∗n as

the critical value.

3.2. Case of unknown fε . In practical applications, it is unrealistic to assume that the density

of the measurement error, fε, is known to the researcher. In the literature on nonparametric

deconvolution, several estimation methods for fε are available, these are typically based on

additional data (see, e.g., Section 2.6 of Meister (2009) for a review). Although the analysis

of the asymptotic properties is different, we can modify the test statistic Dn by inserting the

estimated Fourier transform of the measurement error density, f̂ ft
ε .

For example, suppose the researcher has access to repeated measurements on X in the form

of W = X + ε and W r = X + εr, where ε and εr are identically distributed and (X, ε, εr)

are mutually independent, see Delaigle, Hall and Meister (2008) for a list of examples of such

repeated measurements. If we further assume that the Fourier transform f ft
ε is real-valued (i.e.

fε is symmetric around zero), then we can employ the estimator proposed by Delaigle, Hall and

Meister (2008)

f̂ ft
ε (t) =

∣∣∣∣∣ 1n
n∑
i=1

cos{t(Wi −W r
i )}

∣∣∣∣∣
1/2

.

Delaigle, Hall and Meister (2008) studied the asymptotic properties of the deconvolution density

estimator and the regression estimator using f̂ ft
ε and found conditions to guarantee that the

differences between the estimators with known fε and those with unknown fε are asymptotically

negligible. Under similar conditions, we can expect that the asymptotic distributions of the test

statistic Dn obtained above remain unchanged when we replace f ft
ε with f̂ ft

ε . If the researcher

wishes to remove the assumption that f ft
ε is real-valued and ε and εr are identically distributed,

it may be possible to employ the estimator by Li and Vuong (1998) based on Kotlarski’s identity.

4. Simulation

We evaluate the small sample performance of our test through a Monte Carlo experiment. We

also compare our test to Hall and Ma (2007) and Song (2008). Recall that although Hall and Ma’s

(2007) test is confined to a polynomial regression model and Song’s (2008) test places restrictions

on the type of model that can be tested, our test allows any nonlinear model. We take the true

unobservable regressor {Xi}ni=1 to be distributed as U [−1, 1] and Yi = Xi + 0.5 sin(δXi) + Ui,

where Ui ∼ N(0, 1/4) and δ is a constant to be varied. The contaminated regressor is given by
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Wi = Xi + εi. We consider two distributions for εi to be drawn from. For the ordinary smooth

case, we use the Laplace distribution with variance of 1/12. For the supersmooth case, we use

N(0, 1/12). So the signal-to-noise ratio is σ2
X/σ

2
ε = 4 in both cases. We use the following kernel

for all of our simulations (Fan, 1992)

K(x) =
48 cos(x)

πx4

(
1− 15

x2

)
− 144 sin(x)

πx5

(
2− 5

x2

)
.

We report results for a small (250) and a medium (500) sample size. As discussed in Section 3.1,

we use the estimated plug-in approach of Delaigle and Gijbels (2004) to select our bandwidth.

For the moment matching bootstrap, we use Mammen’s 2-point distribution for G(·|ω2).

For the parametric estimator, we use the polynomial estimator of degree 1 proposed by Cheng

and Schneeweiss (1998) so as to remain consistent with the experiment conducted by Hall and

Ma (2007). For the test of Song (2008) we use the same kernel as for our test and also choose

bandwidths by cross-validation. All results are based on 1000 Monte Carlo replications.

Table 1 shows the results for the power and the size of three tests. The column labelled

Dn refers to the test proposed in this paper, the column labelled ’S’ corresponds to the test

put forward in Song (2008), and the column labelled ‘HM’ corresponds to the test proposed

by Hall and Ma (2007). When δ = 0 we have the null model. We also consider δ = {1, 2, 3}

corresponding to departures from the null of varying frequencies which we term low, medium,

and high frequency alternatives, respectively.

The results are encouraging and seem to be consistent with the theory. The first column

(δ = 0) indicates that all three tests track the nominal level closely. This indicates that the

bootstrap procedure discussed in Section 3.1 works well in practice.

As we expected, across all parameter settings, our test performs more poorly for supersmooth

measurement error in comparison to ordinary smooth error. This reflects the slower convergence

rates derived in Section 3. Somewhat surprisingly, the test of Hall and Ma (2007) lags behind

the other two tests in all cases, although it has the benefit of not requiring a tuning parameter.

As conjectured, in the low frequency setting (δ = 1) our test is generally less powerful than

the test of Song (2008). Although, in the ordinary smooth case for a sample size of 250, our test

displays higher power. This reflects that the test of Song (2008) is able to detect local alternatives

at the rate
√
nbd/2 for both ordinary and supersmooth measurement error distributions. However,

our test achieves a slightly slower polynomial rate in the ordinary smooth case and only a log(n)-

rate in the super smooth case. Thus it is not surprising to see our test underperform when faced

with Gaussian measurement error.
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On the other hand, as previously mentioned, we suspect that our test is better suited to

detecting high-frequency alternatives than Song (2008). This is confirmed in the final column of

Table 1 (δ = 3). We find that the test of Song (2008) and Hall and Ma (2007) have trivial power

in this setting for both sample sizes, while our test still enjoys reasonable power which increases

with the sample size.

The dominance over the test of Hall and Ma (2007) in this high-frequency setting is intuitive

and is explained in Fan and Li (2000). Nonsmoothing tests can be thought of as smoothing tests

but with a fixed bandwidth. Thus, it is the asymptotically vanishing nature of the bandwidth

in smoothing tests that allow for the superior detection of high-frequency alternatives over non-

smoothing tests. Furthermore, as discussed at the end of Section 2, the test of Song (2008) will

have poor power properties for some high-frequency alternatives due to testing the hypothesis

based on E[Y |W ] rather than E[Y |X].

Table 1: Y = X + 0.5 sin(δX) + U

Ordinary Smooth δ

n Level
0 1 2 3

Dn S HM Dn S HM Dn S HM Dn S HM

250
5% 5.5 4.4 4.9 72.2 44.3 16.1 92.8 83.6 31.4 16.2 4.9 4.1

10% 10.4 9.3 9.9 80.9 63.4 32.8 94.8 93.3 50.7 24.3 9.6 8.8

500
5% 5.1 4.2 4.7 92.1 86.1 37.1 97.9 99.8 64.6 37.4 4.1 4.0

10% 10.2 8.3 9.8 93.8 93.9 58.3 98.1 99.9 81.0 45.5 9.2 8.1

Supersmooth

250
5% 5.2 4.7 5.1 25.5 70.0 15.9 55.6 89.5 23.3 15.4 5.4 5.2

10% 10.9 9.5 9.8 33.6 82.3 30.3 62.5 95.1 41.2 27.8 11.0 10.6

500
5% 5.0 4.1 4.2 51.1 98.6 29.4 85.9 99.8 46.2 27.7 5.2 4.0

10% 11.7 8.9 8.8 59.9 99.4 49.1 90.0 100 65.5 41.6 10.2 10.2
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Appendix A. Mathematical Appendix

Hereafter, f(b) ∼ g(b) means f(b)/g(b)→ 1 as b→ 0.

A.1. Proof of Theorem 1.

A.1.1. Proof of (i). We start be decomposing Dn as

Dn =
1

n(2π)d

n∑
i=1

∫
|ζi(x)|2dx+

1

n(2π)d

∑
i 6=j

∫
ζi(x)ζj(x)dx ≡ Bn + Tn,

where ζi(x) =
∫ Kft(tb)

f ftε (t)
{Yi − mθ̂(x)}e−it·(x−Wi)dt and ζj(x) is the complex conjugate of ζj(x).

We will show that Bn is of smaller asymptotic order than Tn, as such, Tn will characterise the

asymptotic distribution of the test.

First, we define the normalization term CV,b and characterize its asymptotic order. Let

ξi(x) ≡
∫
K ft(tb)

f ft
ε (t)

{Yi −mθ(x)}e−it·(x−Wi)dt, Hi,j ≡
∫
ξi(x)ξj(x)dx.

Then CV,b is defined as

CV,b ≡ E[H2
1,2] =

∫ ∫
|E[ξ1(x)ξ1(z)]|2dxdz ≡ Q1 +Q2 − 2Q3, (2)

where

Q1 =

∫ ∫ ∣∣∣∣∫ ∫ E
[
Y 2
i e
−it·(x−Wi)e−is·(z−Wi)

] K ft(tb)

f ft
ε (t)

K ft(sb)

f ft
ε (s)

dtds

∣∣∣∣2 dxdz,
Q2 =

∫ ∫ ∣∣∣∣∫ ∫ E
[
e−it·(x−Wi)e−is·(z−Wi)

]
mθ(x)mθ(z)

K ft(tb)

f ft
ε (t)

K ft(sb)

f ft
ε (s)

dtds

∣∣∣∣2 dxdz,
Q3 =

∫ ∫ ∣∣∣∣∫ ∫ E
[
Yie
−it·(x−Wi)e−is·(z−Wi)

]
mθ(z)

K ft(tb)

f ft
ε (t)

K ft(sb)

f ft
ε (s)

dtds

∣∣∣∣2 dxdz.
For Q1, we have

Q1 =

∫ ∫ ∣∣∣∣∫ ∫ f ft
ε (t+ s)

∫
m2(v)fX(v)e−it·(x−v)e−is·(z−v)dv

K ft(tb)

f ft
ε (t)

K ft(sb)

f ft
ε (s)

dtds

∣∣∣∣2 dxdz
=

∫ ∫ ∣∣∣∣f ft
ε (t+ s)

∫
m2(v)fX(v)ei(t+s)·vdv

K ft(tb)

f ft
ε (t)

K ft(sb)

f ft
ε (s)

∣∣∣∣2 dtds
=

∫ ∫ ∣∣∣∣[m2fX ]ft(t+ s)f ft
ε (t+ s)

K ft(tb)

f ft
ε (t)

K ft(sb)

f ft
ε (s)

∣∣∣∣2 dtds
= b−d

∫ ∫ ∣∣∣∣[m2fX ]ft(a)f ft
ε (a)

K ft(ab− r)
f ft
ε (a− r/b)

K ft(r)

f ft
ε (r/b)

∣∣∣∣2 dadr
= O(b−d(1+4α)),
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where we have used Parseval’s identity in the second equality, the change of variables (t + s =

a, s = r/b) in the penultimate equality, and for the final equality we have used Assumption D (ii)

(fXm2 ∈ L2) which implies supa |[m2fX ]ft(a)|2 < ∞, Assumption D (iii) (compactness of K ft),

Assumption O (i) (rate of decay of f ft
ε ), and that a characteristic function is bounded by 1.

For Q2, we can use similar arguments as for Q1 to write

Q2 ≤
∫ ∫ ∫ ∣∣∣∣∫ ∫ f ft

ε (t+ s)e−it·(x−v)e−is·(z−v)fX(v)mθ(x)mθ(z)
K ft(tb)

f ft
ε (t)

K ft(sb)

f ft
ε (s)

dtds

∣∣∣∣2 dvdxdz
= b2d

∫ ∫ ∫ ∣∣∣∣∫ ∫ f ft
ε (t+ s)e−it·ube−is·rbfX(v)mθ(v + ub)mθ(v + rb)

K ft(tb)

f ft
ε (t)

K ft(sb)

f ft
ε (s)

dtds

∣∣∣∣2 dvdudr
= b−2d

∫ ∫ ∫ ∣∣∣∣∫ ∫ f ft
ε

(
t+ s

b

)
e−it·ue−is·rfX(v)mθ(v + ub)mθ(v + rb)

K ft(t)

f ft
ε (t/b)

K ft(s)

f ft
ε (s/b)

dtds

∣∣∣∣2 dvdudr
∼ b−2d

∫ ∫ ∫ ∣∣∣∣∫ ∫ f ft
ε

(
t+ s

b

)
e−it·ue−is·rfX(v)mθ(v)mθ(v)

K ft(t)

f ft
ε (t/b)

K ft(s)

f ft
ε (s/b)

dtds

∣∣∣∣2 dvdudr
= b−2d

∫
|fX(v)mθ(v)mθ(v)|2dv

∫ ∫ ∣∣∣∣f ft
ε

(
t+ s

b

)
K ft(t)

f ft
ε (t/b)

K ft(s)

f ft
ε (s/b)

∣∣∣∣2 dtds
= b−2d

∫
|[fXm2

θ]
ft(ζ)|2dζ

∫ ∫ ∣∣∣∣f ft
ε

(
t+ s

b

)
K ft(t)

f ft
ε (t/b)

K ft(s)

f ft
ε (s/b)

∣∣∣∣2 dtds
= O(b−d(1+4α)),

where we have used the change of variables (x = ub+v, z = rb+v) in the first equality, the wave

relation follows from two Taylor expansions in each mθ around v, Parseval’s theorem is used in

the third and fourth equalities, and the same arguments as used for bounding Q1 are used in the

final step.

We can similarly show Q3 = O(b−d(1+4α)) and conclude CV,b = O(b−d(1+4α)).

Second, we show that the estimation error of θ is negligible for the limiting distribution of Tn.

Decompose ζi(x) = ξi(x) + ρi(x), where

ρi(x) =

∫
K ft(tb)

f ft
ε (t)

{mθ(x)−mθ̂(x)}e−it·(x−Wi)dt.

Then Tn is written as

Tn =
1

n

∑
i 6=j

∫
ξi(x)ξj(x)dx+

1

n

∑
i 6=j

∫
ρi(x)ρj(x)dx

+
1

n

∑
i 6=j

∫
ρi(x)ξj(x)dx+

1

n

∑
i 6=j

∫
ξi(x)ρj(x)dx

≡ T̃n +R1n +R2n +R3n. (3)
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By an expansion around θ̂ = θ and Assumption O (iii) (θ̂ − θ = op(1)), the term R1n satisfies

R1n = op(1)

∣∣∣∣∣∣ 1n
∑
i 6=j

∫
ρ1i(x)ρ1j(x)dx

∣∣∣∣∣∣ ,
where ρ1i(x) =

∫ ∂mθ(x)
∂θ

Kft(tb)
f ftε (t)

e−it·(x−Wi)dt. Using similar arguments as those used to bound Q2,

together with Assumption D (ii) ( dmθ
dθ fX ∈ L2), we have

E

[∫
ρ1i(x)ρ1j(x)dx

]
≤

∫ ∫ ∣∣∣∣∫ dmθ(x)

dθ
fX(v)K ft(tb)e−it·(x−v)dt

∣∣∣∣2 dvdx
= b−d

∫ ∫ ∣∣∣∣∫ dmθ(v + ub)

dθ
fX(v)K ft(t)e−it·udt

∣∣∣∣2 dvdu
∼ b−d

∫ ∫ ∣∣∣∣∫ dmθ(v)

dθ
fX(v)K ft(t)e−it·udt

∣∣∣∣2 dvdu
= b−d

∫ ∣∣∣∣∣
[
dmθ

dθ
fX

]ft

(ζ)

∣∣∣∣∣
2

dζ

∫
|K ft(t)|2dt =

∫ ∣∣∣∣∣
[
dmθ

dθ
fX

]ft

(ζ)

∣∣∣∣∣
2

dζ

∫
|K ft(tb)|2dt

= O(1).

Also, by applying the same argument as used to derive the bound of CV,b, we have

E

[(∫
ρ1i(x)ρ1j(x)dx

)2
]

= O(b−d(1+4α)).

Combining these two results, along with θ̂ − θ = op(1) and CV,b = O(b−d(1+4α)), we obtain

C
−1/2
V,b R1n = op(1). In the same manner we can show C

−1/2
V,b R2n = op(1) and C−1/2

V,b R3n = op(1)

and thus C−1/2
V,b Tn = C

−1/2
V,b T̃n + op(1).

Thirdly, we derive the limiting distribution of C−1/2
V,b T̃n. Note that T̃n is written as T̃n =

2
n(2π)d

∑
i<j Hi,j and is a U-statistic with zero mean underH0. To prove the asymptotic normality

of T̃n, we apply the central limit theorem in Hall (1984, Theorem 1). To this end, it is enough

to show
E[H4

1,2]

n(E[H2
1,2])2

→ 0, and
E[G2

1,2]

(E[H2
1,2])2

→ 0, (4)

where Gi,j = E[H1,iH1,j |Y1,W1]. Recall that CV,b = E[H2
1,2] satisfies CV,b = O(b−d(1+4α)). By a

similar arguments used to bound E[H2
1,2], we can show

E[H4
1,2] = E

[∫
· · ·
∫ 4∏

k=1

ξ1(xk)ξ2(xk)dx1 · · · dx4

]
= O(b−3d(1+8α)).
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For E[G2
1,2], we can equivalently look at (see, p. 5 of Hall, 1984)

E[H1,3H1,4H2,3H2,4]

=

∫
· · ·
∫ 4∏

k=1

ξ1(x1)ξ3(x1)ξ1(x2)ξ4(x2)ξ2(x3)ξ3(x3)ξ2(x4)ξ4(x4)dx1 · · · dx4

= O(b−d(1+8α)).

These results combined with Assumption D (iv) guarantee the conditions in (4). Thus, Hall

(1984, Theorem 1) implies

C
−1/2
V,b Tn

d→ N

(
0,

4

(2π)2d

)
.

Finally, the Bn term is simply a sample mean of independent and identically distributed

random variables. The second moment can be calculated in the same manner as Tn to give

C
−1/2
V,b Bn = Op(n

−1) . Combining these results, the conclusion follows.

A.1.2. Proof of (ii). A similar argument to the proof of Part (i) guarantees ϕ(b)Tn = ϕ(b)T̃n +

op(1), where ϕ(b) = (2π)d

bd(2+4β)ed/b
2
A2dΓ(1+2dβ)

. Thus, we hereafter derive the limiting distribution

of T̃n. Decompose T̃n = T̄n + r1n − 2r2n, where

T̄n =
1

n

∑
i 6=j

∫ ∫ ∫
K ft(tb)

f ft
ε (t)

K ft(sb)

f ft
ε (s)

YiYje
−it·(x−Wi)e−is·(x−Wj)dtdsdx (5)

r1n =
1

n

∑
i 6=j

∫ ∫ ∫
K ft(tb)

f ft
ε (t)

K ft(sb)

f ft
ε (s)

mθ(x)2e−it·(x−Wi)e−is·(x−Wj)dtdsdx

r2n =
1

n

∑
i 6=j

∫ ∫ ∫
K ft(tb)

f ft
ε (t)

K ft(sb)

f ft
ε (s)

Yimθ(x)e−it·(x−Wi)e−is·(x−Wj)dtdsdx

First, we derive the limiting distribution of T̄n. Observe that

T̄n =
1

n

∑
i 6=j

∫ (∫
K ft(tb)

f ft
ε (t)

Yie
−it·Widt

)(∫
K ft(sb)

f ft
ε (s)

Yje
−is·Wjds

)

=
1

n

∑
i 6=j

1

(2π)2d

∫
|K ft(tb)|
fftε (t)

|K ft(sb)|
fftε (s)

YiYj{cos(tWi) cos(sWj) + sin(tWi) sin(sWj)}dtds

=
1

(2π)2d

∣∣∣∣∣
∫
K ft(tb)

fftε (t)
dt

∣∣∣∣∣
2

1

n

∑
i 6=j

YiYj

{
cos

(
Wi

b

)
cos

(
Wj

b

)
+ sin

(
Wi

b

)
sin

(
Wj

b

)}
+Op

(
bd(2+4β)ed/b

2
)

≡

 1

(2π)2d

∣∣∣∣∣
∫
K ft(tb)

fftε (t)
dt

∣∣∣∣∣
2
 Ṫn +Op

(
bd(2+4β)ed/b

2
)
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where the first equality follows from Plancheral’s theorem, the second equality follows from

f ft
ε (t) = e−dt

2/2 and eitWi = cos(tWi) + i sin(tWi), the fourth equality follows from the change of

variables (t = v/b, s = t+ r) and from a simple multivariate extension of Holzmann and Boysen

(2006, Theorem 1) based on Assumption S (ii). Note that

Ṫn =
1

n

∑
i 6=j

YiYj

 {
cos
(
Xi
b

)
cos
(
εi
b

)
− sin

(
Xi
b

)
sin
(
εi
b

)}{
cos
(
Xj
b

)
cos
( εj
b

)
− sin

(
Xj
b

)
sin
( εj
b

)}
+
{

sin
(
Xi
b

)
cos
(
εi
b

)
+ cos

(
Xi
b

)
sin
(
εi
b

)}{
sin
(
Xj
b

)
cos
( εj
b

)
+ cos

(
Xj
b

)
sin
( εj
b

)}
 .

From van Es and Uh (2005, proof of Lemma 6), it holds
(
Xi
b mod 2π

)
d→ V X

i ∼ U [0, 2π] and(
εi
b mod 2π

) d→ V ε
i ∼ U [0, 2π] as b→ 0 for each i, where V ε

i is independent from (Yi, V
X
i ). Thus

by applying Holzmann and Boysen (2006, Lemma 1), Ṫn has the same limiting distribution as

T̃ Vn = 1
n

∑
i 6=j h(Qi, Qj), where Qi = (Yi, V

X
i , V ε

i ) and

h(Qi, Qj) = YiYj

 {
cos(V X

i ) cos(V ε
i )− sin(V X

i ) sin(V ε
i )
}{

cos(V X
j ) cos(V ε

j )− sin(V X
j ) sin(V ε

j )
}

+
{

sin(V X
i ) cos(V ε

i ) + cos(V X
i ) sin(V ε

i )
}{

sin(V X
j ) cos(V ε

j ) + cos(V X
j ) sin(V ε

j )
}
 .

Observe that Cov (h(Q1, Q2), h(Q1, Q3)) = 0 because E[cos(V ε
i )] = E[sin(V ε

i )] = 0. Therefore,

by applying the limit theorem for degenerate U-statistics with a fixed kernel h (Serfling, 1980,

Theorem 5.5.2), we obtain

T̃ Vn
d→
∞∑
k=1

λk(Z
2
k − 1), (6)

where {Zk} is an independent sequence of standard normal random variables and {λk} are the

eigenvalues of the integral operator

(Λg)(Q1) = λg(Q1).

where (Λg)(Q1) = E[h(Q1, Q2)g(Q2)|Q1]. Also, we have∣∣∣∣∫ K ft(tb)

f ft
ε (t)

dt

∣∣∣∣2 ≤
∫ ∣∣∣∣K ft(tb)

f ft
ε (t)

∣∣∣∣2 dt =
1

bd

∫ ∣∣∣∣ K ft(t)

f ft
ε (t/b)

∣∣∣∣2 dt
=

1

bd

∫ ∣∣∣K ft(t)e(
t
2b)

2∣∣∣2 dt ∼ 1

ϕ(b)
,

where the inequality follows from Cauchy’s inequality, the second step follows from a simple

change of variables, the third step follows from the definition of the characteristic function of the

Gaussian distribution, and the final wave relation comes from van Es and Uh (2005, Lemma 5).

Combining these results gives

ϕ(b)T̄n
d→
∞∑
k=1

λk(Z
2
k − 1).

18



Next, we show that r1n is negligible. Notice that E[r2
1n] is equal to Q2 from the proof of

Theorem 1 (i), hence we can write

E[r2
1n] = b−2d

∫
|[fXm2

θ]
ft(ζ)|2dζ

∫ ∫ ∣∣∣∣f ft
ε

(
t+ s

b

)
K ft(t)

f ft
ε (t/b)

K ft(s)

f ft
ε (s/b)

∣∣∣∣2 dtds
= b−d

∫
|[fXm2

θ]
ft(ζ)|2dζ

∫ ∫ ∣∣∣∣f ft
ε (v)

K ft(vb− s)
f ft
ε (v − s/b)

K ft(s)

f ft
ε (s/b)

∣∣∣∣2 dvds
∼ b−d

∫
|[fXm2

θ]
ft(ζ)|2dζ

∫
|f ft
ε (v)|2dv

∫ ∣∣∣∣ K ft(s)

f ft
ε (s/b)

∣∣∣∣4 ds
= O(b−d)

∫ ∣∣∣∣ K ft(s)

f ft
ε (s/b)

∣∣∣∣4 ds ∼ 1

ϕ(2b)
,

where the second equality follows from a change of variables t = vb− s, the penultimate equality

uses Assumption D (ii), and the final relation uses van Es and Uh (2005, Lemma 5) again. The

first moment of r1n is bounded in a similar manner.

By the same argument used to show the asymptotic behaviour of Ṫn, it holds

1

n

∑
i 6=j

{
cos

(
Wi

b

)
cos

(
Wj

b

)
+ sin

(
Wi

b

)
sin

(
Wj

b

)}
= Op(1).

Combining these results, we have

ϕ(b)r1n = Op(b
d(1+2β)),

and thus r1n is negligible. Similar arguments imply that the terms r2n and r3n are also asymp-

totically negligible, and the conclusion follows.

A.1.3. Proof of (iii). The proof for the general supersmooth case follows the same steps as in the

proof of Part (ii) for the normal case. As the proof is similar, we omit the most part. Hereafter

we show why the condition γ > 1 is imposed in this case. The dominant term T̄n defined in (5)

satisfies

T̄n ∼ b2d(γ0−1)

(2π)dC2d
ε

∫
|K ft(t)||K ft(s)||t|−dγ0 |s|−dγ0e

d
µbγ

(|t|γ+|s|γ)

× 1

n

∑
i 6=j

YiYj

{
cos

(
tWi

b

)
cos

(
sWj

b

)
+ sin

(
tWi

b

)
sin

(
sWj

b

)}
dtds
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We now show that

Dcos ≡
b2d(γ0−1)

(2π)dC2d
ε

∫
|K ft(t)||K ft(s)||t|−dγ0 |s|−dγ0e

d
µbγ

(|t|γ+|s|γ)

× 1

n

∑
i 6=j

YiYj

{
cos

(
tWi

b

)
cos

(
sWj

b

)
− cos

(
Wi

b

)
cos

(
Wj

b

)}
dtds

is asymptotically negligible, as well as the correspondingly defined Dsin. We have seen in the

proof of part (ii) that each term is zero mean. Following the proof of Holzmann and Boysen

(2006, Theorem 1), we obtain∣∣∣∣cos

(
tWi

b

)
cos

(
sWj

b

)
− cos

(
Wi

b

)
cos

(
Wj

b

)∣∣∣∣ ≤ (1− t)|Wi|
b

+
(1− s)|Wk|

b
.

Similar arguments to van Es and Uh (2005, Lemmas 1 and 5) and Assumption S (ii), imply

Var(Dcos) = O(n−2b4dγ0−6d)
∑
i 6=j

E

[
|Yi||Yj |

∫
|K ft(t)||K ft(s)||t|−dγ0 |s|−dγ0e

d
µbγ

(|t|γ+|s|γ)

×{(1− t)|Wi|+ (1− s)|Wk|} dtds
]2

= O(b4dγ0−6d)

[∫
(1− t)|K ft(t)||K ft(s)||t|−dγ0 |s|−dγ0e

d
µbγ

(|t|γ+|s|γ)
dtds

]2

= O(b4d(γ0−1))

[∫
(1− t)|K ft(t)||K ft(t+ vb)||t|−dγ0 |t+ vb|−dγ0e

d
µbγ

(|t|γ+|t+vb|γ)
dtdv

]2

∼ O(b4d(γ0−1))

[∫
(1− t)|K ft(t)|2|t|−2dγ0e

2d|t|γ
µbγ dt

]2

= O(b4d(γ0−1))

(
b2γ
∫
v|K ft(1− bγv)|2|1− bγv|−2γ0e

2|1−bγv|γ
µbγ dv

)2

= O

(
b4d(γ0−1)

(
bγ(2+2β)e

2
µbγ

)2
)
,

where the first two steps follow from standard arguments, the third step follows from the change

of variable s = vb + t, the fourth step results from the definition of the wave relation, the

fifth step uses the change of variable t = 1 − bγv, and the final step uses van Es and Uh

(2005, Lemma 5). Using similar arguments as in the proof of Theorem 1 (ii), we obtain Dcos =
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Op

(
b2(γ−1)+2γβ+2γ0e

2
µbγ

)
. The same argument applies to Dsin. Note that

T̄n =
b2d(γ0−1)

(2π)dC2d
ε

∫
|K ft(t)||K ft(s)||t|−dγ0 |s|−dγ0e

d
µbγ

(|t|γ+|s|γ)

× 1

n

∑
i 6=j

YiYj

{
cos

(
Wi

b

)
cos

(
Wj

b

)
+ sin

(
Wi

b

)
sin

(
Wj

b

)}
dtds

+O
(
bd{2(γ−1)+2γβ+2γ0}e

2d
µbγ

)
=

A2dµ1+2dβbd(γ−1+2γβ+2γ0)e
2d
µbγ Γ(1 + 2dβ)

λ1+2dβ(2π)dC2d
ε

T̃n +O
(
bd{2(γ−1)+2γβ+2γ0}e

2d
µbγ

)
≡ T̃n

ϕ(b)
+O

(
bd{2(γ−1)+2γβ+2γ0}e

2d
µbγ

)
,

where the second equality follows from the definition of T̃n in (3) and a modification of van Es

and Uh (2005, Lemma 5). Therefore, we obtain

ϕ(b)Tn = T̃n +O(bd(γ−1)).

The limiting distribution of T̃n - and hence Dn - is obtained in the proof of Theorem 1 (ii). The

remainder term becomes negligible if we impose γ > 1.
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A.2. Proof of Theorem 2.

A.2.1. Proof of (i). By a similar argument to the proof of Theorem 1 (i), the estimation error

θ̂ − θ is negligible for the asymptotic properties of Tn and thus it is written as

Tn =
1

n

∑
i 6=j

1

(2π)d

∫
ξi(x)ξj(x)dx+

1

n

∑
i 6=j

1

(2π)d

∫
ηi(x)ηj(x)dx

+
1

n

∑
i 6=j

1

(2π)d

∫
ξi(x)ηj(x)dx+

1

n

∑
i 6=j

1

(2π)d

∫
ηi(x)ξj(x)dx+ op(C

1/2
V,b )

≡ T̃n +R∗1n +R∗2n +R∗3n + op(C
1/2
V,b ),

where

ηi(x) =

∫
K ft(tb)

f ft
ε (t)

{m(x)−mθ(x)}e−it·(x−Wi)dt

= cn

∫
K ft(tb)

f ft
ε (t)

∆(x)e−it·(x−Wi)dt,

under H1n. By Theorem 1 (i), we’ve seen C
−1/2
V,b T̃n

d→ N
(

0, 2
(2π)2d

)
. For R∗1n, observe that

ηi(x) takes the same form as ρ1i(x) in the proof of 1 (i), but with ∂mθ(x)
∂θ replaced by ∆(x) and

multiplied by cn. As such, we can reuse the same arguments as used in that proof. First,

E[C
−1/2
V,b R∗1n] = E

 c2
n

(2π)dC
1/2
V,b

1

n

∑
i 6=j

∫ ∫
K ft(tb)

f ft
ε (t)

∆(x)e−it·(x−Wi)dt

∫
K ft(sb)

f ft
ε (s)

∆(x)e−is·(x−Wj)dsdx


= E

∫ c2
n

(2π)dC
1/2
V,b

1

n

∑
i 6=j

∫
K ft(tb)

f ft
ε (t)

e−it·Widt

∫
K ft(sb)

f ft
ε (s)

∆(x)e−is·Wjds


=

∫
∆2(x)dx

(n− 1)c2
n

(2π)dC
1/2
V,b

∣∣∣∣∫ K ft(tb)fftX (t)dt

∣∣∣∣2 ≡ ∆n. (7)

By the definition of cn, the fact that CV,b = O(b−d(1+4α)), and Assumption D (ii), it holds that

E[C
−1/2
V,b R∗1n] = O(1) and the limit of ∆n exists. Again, using a similar argument used to bound

the variance of CV,b, we obtain

E[R∗21n] = O(b−d(1+4α))c4
n = O(n−2b−2d(1+4α))

Therefore, Var(C
−1/2
V,b R∗1n) → 0 and we obtain C−1/2

V,b R∗1n
p→ limn→∞∆n. Finally, using similar

arguments, combined with E[ξi(t)] = 0, we can show that C−1/2
V,b R∗2n

p→ 0 and C−1/2
V,b R∗3n

p→ 0.

Taken together, the conclusion follows.
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A.2.2. Proof of (ii). Similar to the proof of Theorem 2 part (i), we can decompose

Tn = T̃n +R∗1n +R∗2n +R∗3n + op(ϕ(b)−1).

Theorem 1 (ii) gives the limiting distribution of ϕ(b)T̃n. For R∗1n, we have the same result as

for 2 part (i) and the limit of ∆n exists from the definition of cn and the bound of CV,b in the

supersmooth case. The conclusion follows.

A.2.3. Proof of (iii). The proof is identical to that of Part (ii) after setting cn = bd{(λ−1)/2+λβ+λ0}e
d

µbλ .

Each of the objects in the asymptotic distribution are defined analogously to 2 part (ii).
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