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Abstract. In decision problems under incomplete information, actions (identified to payoff vectors indexed by states of3
nature) and beliefs are naturally paired by bilinear duality. We exploit this duality to analyze the value of information, using4
concepts and tools from convex analysis. We define the value function as the support function of the set of available actions:5
the subdifferential at a belief is the set of optimal actions at this belief; the set of beliefs at which an action is optimal is the6
normal cone of the set of available actions at this point. Our main results are 1) a necessary and sufficient condition for positive7
value of information 2) global estimates of the value of information of any information structure from local properties of the8
value function and of the set of optimal actions taken at the prior belief only. We apply our results to the marginal value of9
information at the null, that is, when the agent is close to receiving no information at all, and we provide conditions under10
which the marginal value of information is infinite, null, or positive and finite.11
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1. Introduction. The value of a piece of information to an economic agent depends on the information14

at hand, on the agent’s prior on the state of nature, and on the decision problem faced. These elements are15

intrinsically tied, and separating the influence of one of them from that of the others is not straightforward.16

Most information rankings are either uniform among agents or restricted to certain classes of agents.17

Blackwell’s comparison of experiments [8], for instance, is uniform; it states that an information structure is18

more informative than another if all agents, no matter their available choices and preferences, weakly prefer19

the former to the latter. Papers [26, 31, 12] are examples that build information rankings based on restricted20

sets of decision problems. The flip side of this approach is that information rankings are silent as to the21

dependency of the value of a fixed piece information on the agent’s preferences and available choices. They22

do not tell us what makes information more or less valuable to an arbitrary agent, and neither can they23

identify the agents who value a given piece of information more than others. If we want to answer this type24

of questions, we need to examine carefully how information, priors, decisions and preferences come into play.25

The effect of priors and evidence on beliefs is well understood. Given a prior belief, and after receiving26

some information, an agent forms a posterior belief. Posterior beliefs average out to the prior belief, and27

information acquisition can usefully be represented by the distribution of these posterior beliefs (see, e.g. [9,28

3]).29

In any decision problem, to each decision and state of nature corresponds a payoff. The decision problem30

can thus be represented as a set of available vector payoffs, where each payoff is indexed by a state of nature31

[7]. Given a posterior belief, the agent makes a decision that maximizes her expected utility so that, to32

each (posterior) belief of the agent corresponds an expected utility at this belief. The corresponding map33

from beliefs to expected payoffs is called the value function. The value of a piece of information, defined as34

the difference in expected utilities from having or not having the information at hand, is thus the difference35

between the expectation of the value function at the posterior and at the prior, and is nonnegative. Thus,36

the value function fully captures the agent’s preferences for information.37

In this paper, we make use of convex analysis [33] to exploit a bilinear duality structure between payoffs38

and beliefs, that gives expected payoff [17]. Primal variables are payoffs vectors, dual variables are beliefs39

(or, more generally, signed measures) and the value function appears as the (restriction to beliefs of the)40

support function of the set of available vector payoffs. This provides a correspondence between convex41

analysis concepts and tools, on the one hand, and economic objects, on the other hand. The set of beliefs42

compatible with an optimal action is related to the normal cone of the set of available vector payoffs at43

this optimal action. The subdifferential of the value function at any belief can be represented as the set of44

optimal choice of vector payoffs at this belief.45

We express the value of information according to the influence it has on decisions. We provide three46

upper and lower bounds on the value of information.47

In the first upper and lower bounds, we characterize information with a positive value. We show that48

information has a positive value if and only if at least one of the optimal actions at the prior becomes49
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suboptimal for some of the posteriors. We thus define the confidence set at a prior belief p̄ as the set of50

posterior beliefs for which all optimal actions at p̄ remain optimal. Our result says that information has51

positive value if and only if posterior beliefs fall outside of the confidence set with positive probability.52

This result generalizes insights from [23] and [30], who had already noticed that information can only be53

useful insofar as it influences choices. We provide corresponding lower and upper bounds to the value of54

information.55

In the second bounds, we express the fact that the value of information is maximal when it influences56

actions the most, which happens when information breaks indifferences between several choices. We show57

that, when this is the case, the value of information can be suitably measured by an expected distance58

between the prior and the posterior. There are several optimal actions at the prior, and information that59

allows to break indifferences has highest value.60

Finally, our third bounds apply to cases in which the agent’s optimal choice is a smooth function of her61

belief around the prior. We show that, in this situation, the value function is also smooth around the prior,62

and the value of information is essentially a quadratic function of the expected distance between the prior63

and the posterior. In this intermediate case, information impacts actions in a continuous way. The optimal64

actions at the prior belief and at a posterior close to it are themselves close; so choosing one instead of the65

other has a mild, albeit positive, impact on the expected payoff.66

In a finite decision problem — such as shopping behavior [28] or residential location [29] — at any given67

prior the agent either has an optimal action that is locally constant, or is indifferent between several optimal68

choices. The first and second upper and lower bounds are particularly useful in finite choice problems. The69

third bounds are most useful in decision problems with a continuum of choices, such as scoring rules [11] or70

investment decisions [1].71

The paper is organized as follows. Sect. 2 presents the model and introduces the duality between72

actions/payoffs and beliefs. The main results are presented in Sect. 3. Sect. 4 is devoted to an illustration73

of our results in an insurance example and Sect. 5 to applications to the question of marginal value of74

information. Sect. 6 concludes by discussing related literature. The Appendix contains background on75

convex analysis and the proofs.76

2. Model, payoffs-beliefs duality and information. We consider the classical question of an agent77

who faces a decision problem under imperfect information on a state of nature. The set of states of nature78

is a finite set K. We identify the set Σ of signed measures on K with R
K . The agent holds a prior belief p̄79

with full support in the set ∆ = ∆(K) ⊂ Σ = R
K of probability distributions over K. We identify ∆ with80

the simplex of RK .81

A decision problem is given by an arbitrary compact choice set D and by a continuous payoff func-82

tion g : D × K → R. Consistent with the framework of [8], we define the set of actions as the compact83

convex subspace of RK given by the closed convex hull :84

(2.1) A = co{
(

g(d, k)
)

k∈K
, d ∈ D} ⊂ R

K .85

The convexity of A is justified by allowing the agent to randomize over actions.86

Duality between actions/payoffs and beliefs. The scalar product between a vector v ∈ R
K and a87

signed measure s ∈ R
K is 〈s , v〉 = ∑

k∈K skvk. This scalar product induces a duality between payoffs/actions88

and beliefs. Such a duality is at the core of a series of works in nonexpected utility theory, such as [21, 27, 14].89

Under belief p ∈ ∆, the decision maker chooses a decision d ∈ D that maximizes
∑

k pkg(d, k), or,90

equivalently, an action a ∈ A that maximizes 〈p , a〉, and the corresponding expected payoff is maxa∈A 〈p , a〉 ∈91

R. We define the value function vA : ∆ → R by:92

(2.2) vA(p) = max
a∈A

〈p , a〉 , ∀p ∈ ∆ .93

The value function vA : ∆ → R is convex — as the supremum of the family of affine functions 〈· , a〉 for a ∈ A94

— and continuous — as its effective domain is the whole convex set ∆ [22, p. 175].95

Given a belief p ∈ ∆, we let A⋆(p) ⊂ A be the set of optimal actions at belief p, given by96

(2.3) A⋆(p) = argmax
a′∈A

〈p , a′〉 = {a ∈ A | ∀a′ ∈ A , 〈p , a′〉 ≤ 〈p , a〉} .97
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Geometrically, the set A⋆(p) is the (exposed) face of A in the direction p ∈ ∆ (see (A.3) in Appendix for a98

proper definition). The set A⋆(p) is nonempty, closed and convex (as A is convex and compact).99

Conversely, an outside observer can make inferences on the agent’s beliefs from observed actions. For an100

action a ∈ A, the set ∆⋆
A(a) of beliefs revealed by action a is the set of all beliefs for which a is an optimal101

action, given by:102

(2.4) ∆⋆
A(a) = {p ∈ ∆ | ∀a′ ∈ A , 〈p , a′〉 ≤ 〈p , a〉} .103

Geometrically, the set ∆⋆
A(a) is the intersection with ∆ of the normal cone NA(a) (see (A.6) for a proper104

definition).105

Obviously, given a ∈ A and p ∈ ∆, a ∈ A⋆(p) iff p ∈ ∆⋆
A(a), as both express that action a is optimal106

under belief p.107

Information structure. We follow [9, 8], and we describe information through a distribution of pos-108

terior beliefs that average to the prior belief. Hence, given the prior belief p̄, we define an information109

structure as a random variable q, defined over a probability space (Ω,F ,P) and with values in ∆, describing110

the agent’s posterior beliefs, and such that (where E denotes the expectation operator with respect to P)111

(2.5) q : (Ω,F ,P) → ∆ , E
[

q
]

= p̄ .112

Given the action set A in (2.1) and the information structure q in (2.5), the value of information VoIA(q)113

is the difference between the expected payoff for an agent who receives information according to q and one114

whose prior belief is p̄. It is given by:115

(2.6) VoIA(q) = E
[

vA(q)
]

− vA(p̄) .116

The following example illustrates relations between the set A of actions and the value function vA.117

Example 1. Consider two states of nature, K = {1, 2}, decisions D = {d1, d2, d3, d4}, and payoffs given118

by Table 1. In this case, A is the convex hull of the four points (3, 0), (2, 2), (0, 5/2) and (0, 0). The value

k = 1 k = 2
d1 3 0
d2 2 2
d3 0 5/2
d4 0 0

Table 1

Table of payoffs

119
function vA, expressed as a function of the probability p of state 2, is the maximum of the following three120

affine functions: 3(1−p), 2, and 5p/2. Action (3, 0) is optimal for p ≤ 1/3, (2, 2) is optimal for p ∈ [1/3, 4/5],121

and (0, 5/2) is optimal for p ≥ 4/5. Both the set A and the function vA are represented in Figure 1.122

At p = 4/5, the optimal actions are (2, 2), (0, 5/2), and their convex combinations. At this point, the123

mapping vA is not differentiable. However, its subdifferential — which can be visualized as the set of straight124

lines that are below vA and tangent to it at p = 4/5 — is still well defined and corresponds precisely to the125

optimal actions A⋆(4/5), i.e. the convex hull of {(2, 2), (0, 5/2)}.126

The set ∆⋆
A(3, 0) of beliefs revealed by action (3, 0) consists of the range p ∈ [0, 1/3], and it can be seen127

on the right side of Figure 1 that, for this range of probabilities, the action (3, 0) is optimal and that vA is128

linear and equal to 3(1− p).129

3. On the value of information. In this section, we relate the geometry of the set A of actions130

in (2.1) with the behavior of the agent around the prior belief p̄, with differentiability properties of the value131

function vA in (2.2) at the prior belief p̄, and with the value of information VoIA in (2.6). This approach132

allows us to derive bounds on the value of information that depend on how information influences actions.133

First, in Subsect. 3.1, we consider information that does not allow us to eliminate optimal actions. We134

introduce the confidence set as the set of posterior beliefs at which all optimal actions at the prior remain135
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Fig. 1. The set A of actions on the left, and the value function vA on the right. Each of the four arrows on the left
represents an action a such that p = 4/5 belongs to the set ∆⋆

A
(a) of beliefs revealed by action a. On the right side, these four

actions (each attached to an arrow) can be seen as four elements of the subdifferential of the value function vA at p = 4/5.
The set ∆⋆

A
(3, 0) = [0, 1/3] can be visualized both as the normal cone at (3, 0) on the left side, and as the range of values of

probabilities p for which (3, 0) is optimal on the right.

optimal. We show that information is valuable if and only if, with positive probability, it can lead to a136

posterior outside this set. Therefore, information is valuable whenever it allows to eliminate some actions137

from the set of optimal ones.138

Second, in Subsect. 3.2, we consider the somewhat opposite case of tie-breaking information. This139

corresponds to situations in which the agent is indifferent between several actions, and the information140

allows her to select among them. We show that the value of information can be related to an expected141

distance between the prior and the posterior, provided that posterior beliefs move in these tie-breaking142

directions.143

These two first approaches are suitable in finite decision problems where the value function is piecewise144

linear. In the third approach, in Subsect. 3.3, we look at situations in which the optimal action is locally145

unique around the prior and depends on information in a continuous and smooth way. There, we show that146

the value of information can essentially be measured as an expected square distance from the prior to the147

posterior. This approach is particularly adapted to cases in which the space of actions is sufficiently rich,148

and where small changes of beliefs lead to corresponding small changes of actions.149

3.1. Valuable information. Our first task is to formalize the idea that useful information is informa-150

tion that affects optimal choices (quoting [23], “Information is of value only if it can affect action”). Since151

there are potentially several optimal actions at a prior belief p̄ and at a posterior p, there are in principle152

many ways to formalize this idea.153

We say that a belief p is in the confidence set ∆c

A(p̄) of prior belief p̄ iff all optimal actions at p̄ (those154

in A⋆(p̄)) are also optimal at p. In other words, we define the confidence set of prior belief p̄ by:155

(3.1) ∆c

A(p̄) =
⋂

a∈A⋆(p̄)

∆⋆
A(a) .156

Another way to look at this notion is to consider an observer who sees choices by the decision maker:157

4

This manuscript is for review purposes only.



p ∈ ∆c

A(p̄) when none of the actions chosen by the agent at prior belief p̄ would lead the observer to refute158

the possibility that the agent has belief p.159

The notion of a confidence set allows for the characterization of valuable information as follows.160

Proposition 3.1 (Valuable information). For every information structure q as in (2.5), we have:161

VoIA(q) = 0 ⇐⇒ ∃a⋆ ∈ A⋆(p̄) , a⋆ ∈ A⋆(q) , P− a.s.(3.2a)162

⇐⇒ q ∈ ∆c

A(p̄) , P− a.s.(3.2b)163164

165

In Example 1, the confidence set at p̄ = 1/2 is the closed interval [1/3, 4/5] (the flat portion of the166

function to the right of Figure 1). Information is valuable whenever, with some positive probability, the167

posterior does not belong to this set. When the posterior falls in this set with probability one, the value168

function averaged at the prior precisely equals the value at prior belief p̄, hence information has no value.169

It is relatively straightforward to see that if all posteriors remain in the confidence set, information is170

valueless. In fact, when this is the case, the same action is optimal for all of the posteriors, which means171

that the agent can play this action, while ignoring the new information, and obtain the same value. The172

proposition shows that the converse result also holds: the value of information is positive whenever posteriors173

fall outside of the confidence set with some positive probability.174

More can be said about estimates on the value of information. To do so, we introduce an ε-neighborhood175

of the confidence set ∆c

A(p̄). For ε > 0, let176

(3.3) ∆c

A,ε(p̄) = {q ∈ ∆ | d
(

q,∆c

A(p̄)
)

< ε} where d
(

q,∆c

A(p̄)
)

= inf
p∈∆c

A(p̄)
‖p− q‖.177

This leads us to a first estimate of the value of information.178

Theorem 3.2 (Bound on the value of information based on confidence sets). For every ε > 0, there179

exist positive constants CA and cp̄,A,ε such that, for every information structure q as in (2.5):180

(3.4) CAE
[

d
(

q,∆c

A(p̄)
)]

≥ VoIA(q) ≥ cp̄,A,εP{q 6∈ ∆c

A,ε(p̄)} .181

182

The upper bound tells us that the value of information is bounded by (a constant times) the expected183

distance from the posterior to the confidence set at the prior. In particular, it is bounded by the expected184

distance from the posterior to the prior itself. The lower bound is a converse result, but in which we need185

to replace the confidence set by some ε-neighborhood. It shows us that the value of information is bounded186

below by (a constant times) the probability that the posterior is at least distance ε from the confidence set,187

and, therefore, it is also larger than the expected distance from the posterior to this ε-neighborhood of the188

confidence set. Both the lower and upper bounds depend on the confidence set ∆c

A(p̄) in (3.1), which can be189

computed locally at prior belief p̄. On the other hand, they apply to all information structures. The caveat190

is that the multiplicative constants CA and cp̄,A,ε in (3.4) depend on global, and not just local, properties of191

the action set A.192

3.2. Undecided. We now consider situations in which information influences actions the most. Those193

are situations of indifference in which, at the prior belief p̄, the agent is undecided between several optimal194

actions. A small piece of information can then be enough to break this indifference. As shown by the195

following proposition (whose proof we do not give, as it is well-known in convex analysis [22, p. 251]), the196

value function then exhibits a kink at prior belief p̄.197

Proposition 3.3. The two following conditions are equivalent:198

• the set A⋆(p̄) of optimal actions at the prior belief p̄ in (2.3) contains more than one element;199

• the value function vA in (2.2) is nondifferentiable (in the standard sense) at the prior belief p̄.200

Cases of indifference are typical of situations with a finite number of action choices. Coming back to201

Example 1, the agent is undecided for p̄ = 1/2 and p̄ = 3/4: at these priors, the agent has several optimal202

choices, and the value function is nondifferentiable. At all other priors, the optimal choice is unique, and203

the value function is differentiable.204
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At prior beliefs p̄ satisfying the conditions of Proposition 3.3, the convexity gap of the value function vA205

is maximal in the directions in which it is nondifferentiable. This allows us to derive a second bound on the206

value of information. For this purpose, we call indifference kernel Σi

A(p̄) at prior belief p̄ the vector space of207

signed measures that are orthogonal to all differences of optimal actions A⋆(p̄) at p̄, that is,208

(3.5) Σi

A(p̄) = [A⋆(p̄)−A⋆(p̄)]
⊥

.209

Beliefs in the indifference kernel Σi

A(p̄) do not break any of the ties in A⋆(p̄), since p ∈ Σi

A(p̄) ⇐⇒ 〈p , a〉 =210

〈p , a′〉 , ∀(a, a′) ∈ A⋆(p̄)2. We note the inclusion ∆c

A(p̄) ⊂ Σi

A(p̄) ∩ ∆ as every element in the confidence211

set is necessarily in the indifference kernel and in the simplex of probability measures.212

Recall that a seminorm on the signed measures Σ on K, identified with R
K , is a mapping ‖·‖ : RK → R+213

which satisfies the requirements of a norm, except that the vector subspace {s ∈ R
K | ‖s‖ = 0} — called the214

kernel of the seminorm ‖ · ‖ — is not necessarily reduced to the null vector.215

Theorem 3.4 (Bounds on the value of information for the undecided agent). There exists a positive216

constant CA and a seminorm ‖ · ‖Σi

A
(p̄) with kernel Σi

A(p̄), the indifference kernel in (3.5), such that, for217

every information structure q as in (2.5):218

(3.6) CAE ‖q− p̄‖ ≥ VoIA(q) ≥ VoIA⋆(p̄)(q) ≥ E ‖q− p̄‖Σi

A
(p̄) .219

220

For p̄ = 1/2 or p̄ = 3/4 in Example 1, Theorem 3.4 shows that the value of information for these priors221

is bounded above and below by a constant times the norm-1 between the prior and the posterior. Since any222

small amount of information allows to break the indifference between the optimal actions at these priors,223

information is very valuable.224

The lower bound in Theorem 3.4 shows that a lower bound of the value of information is the expectation225

of a seminorm of the distance between the prior belief and the posterior belief. To understand the role226

of the kernel Σi

A(p̄) of this seminorm, let us first consider the set of beliefs in this set. A posterior q is227

in Σi

A(p̄) = [A⋆(p̄) − A⋆(p̄)]⊥ if and only if, for any two optimal actions a, a′ ∈ A⋆(p̄), 〈q , a〉 = 〈q , a′〉. In228

words, posteriors that do not break any of the ties in A⋆(p̄) might not be valuable to the agent. On the other229

hand, Theorem 3.4 tells us that all other directions — i.e., those that allow at least one of the ties in A⋆(p̄)230

to be broken — are valuable to the agent, and furthermore, in these directions, the value of information231

behaves like an expected distance from the prior to the posterior.232

The upper bound says that the value of information is bounded by an expected distance from the prior233

to the posterior, and the inner inequality states that the value of information with decision set A is at least234

as large as with action set A⋆(p̄).235

Note that the bounds on Theorem 3.4 rely on the indifference kernel Σi

A(p̄) in (3.5), which can be236

computed directly from the set A⋆(p̄) by (3.5). The multiplicative constant CA in (3.6), however, depends237

on more global properties of the action set A.238

3.3. Flexible. Finally, we consider the case in which there is a unique optimal action for each belief239

in the range considered, and this action depends smoothly on the belief. More precisely, we assume that,240

around the prior, optimal actions smoothly depend in a 1-1 way on the belief. This assumption is met when,241

for instance, the decision problem faced by the agent is a scoring rule [11], or an investment problem [1, 12].242

Our first step is to characterize a class of situations of interest, in which the agent’s optimal action243

depends smoothly on her belief. The following proposition offers three alternative characterizations of these244

situations, based 1) on the local behavior of the agent’s optimal optimal choices, 2) on local properties of245

the geometry of the boundary of the set of actions, and 3) on local second differentiability properties of the246

value function. For background on geometric convex analysis, the reader can consult §A.2 in the Appendix.247

Proposition 3.5. Suppose that the action set A in (2.1) has boundary ∂A which is a C2 submanifold248

of RK of dimension |K| − 1. The three following conditions are equivalent:249

1. The set-valued mapping of optimal actions at the prior belief p̄ in (2.3)250

(3.7) A⋆ : ∆ ⇒ ∂A , p 7→ A⋆(p)251

6
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is a local diffeomorphism1 at the prior belief p̄;252

2. The set A⋆(p̄) of optimal actions at the prior belief p̄ in (2.3) is reduced to a singleton at which the253

curvature of the action set A is positive;254

3. The value function vA in (2.2) is twice differentiable at the prior belief p̄, with positive definite255

Hessian at p̄.256

In this case, we say that the agent is flexible at p̄.257

Theorem 3.6 (Bounds on the VoI for the flexible agent). If the agent is flexible at prior belief p̄, then258

there exist positive constants Cp̄,A and cp̄,A such that, for every information structure q as in (2.5):259

(3.8) Cp̄,AE ||q− p̄||2 ≥ VoIA(q) ≥ cp̄,AE ||q− p̄||2 .260

261

Theorem 3.6 shows that, in the case of a flexible agent, the value of information is essentially given by the262

expected square distance between the prior and the posterior, up to some multiplicative constant. One of the263

strengths of the theorem is that its assumption that the agent is flexible is a local one, whereas its conclusion264

is global, as it applies to all information structures. On the other hand, the multiplicative constants Cp̄,A and265

cp̄,A in (3.8) themselves depend on the global behavior of the value function, and hence cannot be inferred266

from local properties only.267

4. An insurance example. In this example, we study an insurance problem and illustrate how the268

results of Sect. 3 apply. The insuree chooses whether to insure, or not, and at which indemnity level to269

insure if she does. The uncertainty is about the level of risk she incurs, and she may receive some partial270

information about it.271

Example 2. The model is drawn from the classical insurance framework (see [6, 18]).272

An insuree faces the decision of partially or fully insuring a good of value ̟ against the possibility of its273

total loss. Pricing is assumed to be linear, so that, for an indemnity I, the insurance company charges274

(4.1) P (I) = αI + f where α ∈]0, 1[ , f > 0 .275

In exchange for the premium P (I), the insuree gets compensation of an amount I from the insurance company276

in case of a loss. For the range of wealth w considered, the insuree’s utility function u is considered to have277

constant absolute risk aversion R, that is,278

(4.2) u(w) = 1− e−Rw .279

By (2.1), the set of actions is the closed convex hull280

(4.3) A = co
{(

u(̟), u(0)
)

,
(

u
(

− P (I) +̟
)

, u
(

− P (I) + I
)

)}

281

where, by convention, the first coordinate corresponds to no loss and the second corresponds to the loss.282

The insuree’s subjective perception that a loss may arise is p ∈]0, 1[, probability of loss. The insuree283

chooses either not to insure, and obtains expected utility284

(4.4a) U0(p) = (1− p)u(̟) + pu(0) = (1− p)
(

1− e−R̟
)

,285

or to insure for an indemnity I > 0 that maximizes the expected utility286

(4.4b) U(p, I) = (1− p)u
(

− P (I) +̟
)

+ pu
(

− P (I) + I
)

= 1− pe−R

(

−P (I)+I

)

− (1− p)e−R

(

−P (I)+̟

)

.287

288

The question now becomes whether no insurance or a positive level of indemnity is chosen.289

1In particular, the set A⋆(p) is a singleton for all p ∈ ∆, in which case we identify a singleton set with its single element.
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Proposition 4.1. There exists a threshold belief p∗ ∈]0, 1[ and a smooth function Î : [p∗, 1] →]0,+∞[290

such that291

1. for p < p∗, it is optimal not to insure,292

2. for p = p∗, the insuree is indifferent between no insurance and insurance at the positive indemnity293

level Î(p∗),294

3. for p > p∗, it is optimal to insure at the positive indemnity level Î(p).295

Proof. It is easy to see that the function I ∈ R 7→ U(p, I) in (4.4b) is strictly concave with a unique296

maximum, characterized by ∂U/∂I = 0, and achieved at297

(4.5) Î(p) = ̟ − 1

R
ln(

1− p

p

α

1− α
) , ∀p ∈]0, 1[ .298

We denote by p̂ the unique p ∈]0, 1[ such that Î(p) > 0 ⇐⇒ p > p̂. To determine whether no insurance or299

a nonnegative level of indemnity is chosen, we introduce the difference of expected utilities300

(4.6) δ(p) = max
I≥0

U(p, I)− U0(p) =

{

U(p, 0)− U0(p) if p ≤ p̂ ,

U
(

p, Î(p)
)

− U0(p) if p ≥ p̂ .
301

We study the behavior of the function δ when p is small and when p is close to one. After computa-302

tion, we find that, for all p ∈ [0, 1] , U(p, 0) − U0(p) = −
(

eRf − 1
)(

p + (1 − p)e−R̟
)

< 0. Therefore,303

δ(p) < 0 for all p ≤ p̂. On the other hand, when p goes to 1, δ(p) goes to 1 because U0(p) → 0 and304

U
(

p, Î(p)
)

= (1− p)
(

1− e−R

(

−P (Î(p))+̟

)

)

+ p
(

1− e−R

(

−P (Î(p))+Î(p)
)

)

= 1− (1− p)
(

1−p
p

α
1−α

)α
eR(1−α)̟ −305

p
(

1−p
p

α
1−α

)1−α
e−R(1−α)̟ → 1 (as α ∈]0, 1[). As a consequence, we can define p∗ = inf {p ∈ [0, 1] | δ(p) > 0},306

which belongs to [p̂, 1[. Indeed, since δ(p) < 0 for p ≤ p̂, we deduce that p∗ ≥ p̂; and p∗ < 1 because δ(p) → 1307

when p → 1. We now check that p∗ and Î in (4.5) satisfy the three assertions of the Proposition.308

By definition of p∗ and of the function δ, for p < p∗, it is optimal not to insure.309

As the function δ is continuous, we have δ(p∗) = 0 and the insuree is indifferent between no insurance310

and insurance at the positive indemnity level Î(p∗).311

To finish, we will now show that δ(p) > 0 when p > p∗, leading to the conclusion that it is optimal to312

insure at the positive indemnity level Î(p). Indeed, for p > p∗, we have313

δ(p) = δ(p)− δ(p∗) as δ(p∗) = 0314

= U
(

p, Î(p)
)

− U
(

p, Î(p∗)
)

+ U
(

p, Î(p∗)
)

− U0(p)−
[

U
(

p∗, Î(p∗)
)

− U0(p
∗)
]

by (4.6)315

> U
(

p, Î(p∗)
)

− U0(p)− U
(

p∗, Î(p∗)
)

+ U0(p
∗) as U

(

p, Î(p)
)

− U
(

p, Î(p∗)
)

> 0316

by definition of the maximizer Î(p) and since Î(p) > Î(p∗) ≥ 0 as p > p∗ ≥ p̂317

= (1− p)
[

u
(

− P (Î(p∗)) +̟
)

− u(̟)
]

+ p
[

u
(

− P (Î(p∗)) + Î(p∗)
)

− u(0)
]

318

− (1 − p∗)
[

u
(

− P (Î(p∗)) +̟
)

− u(̟)
]

− p∗
[

u
(

− P (Î(p∗)) + Î(p∗)
)

− u(0)
]

by (4.4)319

= (p− p∗)
[

[

u
(

− P (Î(p∗)) + Î(p∗)
)

− u(0)
]

+
[

u(̟)− u
(

− P (Î(p∗)) +̟
)]

]

≥ 0320
321

since both terms between inner brackets are increments of the increasing function u, where −P (Î(p∗)) +322

Î(p∗) ≥ 0 (to be seen below) and P (Î(p∗)) ≥ 0 (because Î(p∗) ≥ 0). If we had −P (Î(p∗)) + Î(p∗) < 0, we323

would arrive at the contradiction that 0 = δ(p∗) = (1−p∗)
[

u
(

−P (Î(p∗))+̟
)

−u(̟)
]

+p∗
[

u
(

−P (Î(p∗))+324

Î(p∗)
)

−u(0)
]

< 0 since both terms between brackets are (negative) increments of the increasing function u.325

Now, we assume that the insuree has access to a small piece of information concerning her probability326

of loss. Once informed, she discovers that the probability q of a loss is either p − ε or p + ε, where both327

possibilities are equally likely and ε > 0 is a small positive number. Let v(q) be the utility of the insuree328

with beliefs q, once the optimal policy is chosen:329

(4.7) v(q) = max

{

U0(q),max
I≥0

U(q, I)

}

.330
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As v is the value function in (2.2), the value of information in the decision problem is defined as the expected331

utility with the information minus the expected utility absent the information, as in (2.6):332

(4.8) VoI(ε) =
1

2
v(p+ ε) +

1

2
v(p− ε)− v(p) .333

Note that VoI(ε) measures the value of information in terms of utility; the equivalent measure in monetary334

terms would be − 1
R
ln(1 −VoI(ε)). The following proposition characterizes the value of a small amount of335

information, in terms of the agent’s optimal insurance behavior.336

Proposition 4.2. Depending on the probability of loss p, the value of information for small ε behaves337

as follows:338

1. In the confident case, for p < p∗, VoI(ε) = 0 for small ε,339

2. In the undecided case, for p = p∗, VoI(ε) ∼ C∗ε for a constant C∗ > 0,340

3. In the flexible case, for p > p∗, VoI(ε) ∼ C(p)ε2 for a constant C(p) > 0.341

Proof. The confident and undecided cases are immediate consequences of Theorems 3.2 and 3.4, together342

with Proposition 4.1. In the flexible case, the optimal indemnity level is given by Î(p) > 0, and the function343

Î :]p∗, 1] →]0,+∞[ in (4.5) is differentiable with dÎ(p)
dp

6= 0. The set of optimal actions A⋆(p) in (2.3) is reduced344

to the single point A⋆(p) =
(

1−e−R

(

−P

(

Î(p)
)

+̟)
)

, 1−e−R

(

−P

(

Î(p)
)

+Î(p)
)

)

. As the curve p ∈]p∗, 1] 7→ A⋆(p)345

has a derivative that never vanishes, we deduce that it is a local diffeomorphism (onto its image in ∂A) at p,346

and Theorem 3.6 applies.347

The results of Proposition 4.1 are intuitive. First, a small piece of information is valueless if the agent348

is not buying insurance. For such agents, a small bit of information does not affect behavior, as even bad349

news is not enough to trigger insurance purchase. For an undecided agent who is indifferent between no350

insurance and insurance at a positive indemnity level I(p∗), a small piece of information is enough to break351

the indifference and significantly influences her behavior; this is the situation in which information is the352

most valuable. Finally, for an agent who takes a positive level of indemnity, information may affect the353

level of indemnity chosen. But, because the change of indemnity level is itself of order ε, and the indemnity354

level I(p∗) is ε-optimal at the posterior, the value of information is a second order in ε.355

Figure 2 represents the set A of actions (4.3) to the left, and the corresponding value function v = vA356

in (4.7) to the right. In the representation of A, the horizontal axis corresponds to the payoff without loss,357

and the vertical axis to the payoff in case of a loss. The circled dot to the right corresponds to the choice of358

no insurance; it maximizes payoff in case of no loss. The thick curve represents the set of payoffs that are359

achieved by different coverage levels. Finally, A is the convex hull of this set of points; it appears under the360

dashed contour. As seen on the value function graph, for low values of the probability p of loss, the value361

function is linear as the insuree chooses not to purchase insurance. At p∗ (which is approximately 0.334), the362

value function exhibits a kink, and the agent is indifferent between no insurance and a positive indemnity363

level. Finally, for larger values of p, the value function v is twice continuously differentiable with a positive364

second derivative, and the optimal insurance level is a smooth and positive function of the insuree’s belief.365

5. The marginal value of information. The question of the marginal value of information is studied366

in [32]. They provide joint conditions on a parameterized family of information structures together with367

a decision problem such that, when the agent is close to receiving no information at all, the marginal368

value of information is null. Their result was subsequently generalized in [15] and [16], where are provided369

joint conditions on parameterized information and a decision problem leading to zero marginal value of370

information.371

In this Section, we show how our bounds on the value of information, obtained in Sect. 3, apply to372

the marginal value of information. In Subsect. 5.1, we provide separate conditions on the decision problem373

and on the family of parameterized information structures that result in a null value of information. We374

then examine, in Subsect. 5.2, several parameterized families of information structures and rely on our main375

results to study how the marginal value of information varies depending on the decision problem faced.376
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Fig. 2. The action set A on the left and the corresponding value function v = vA in (4.7) for the insurance example on
the right. Parameter values are α = 0.08, f = 10, ̟ = 1000, R = 10.

5.1. Model and first result. Let (qθ)θ>0 be a family of information structures as in (2.5). As in [32],377

we are interested in the so-called marginal value of information:378

(5.1) V + = lim sup
θ→0

1

θ
VoIA(q

θ) .379

The following proposition is a straightforward consequence of Theorems 3.2 and 3.6.380

Proposition 5.1. Assume that381

• either E
[

d
(

qθ,∆c

A(p̄)
)]

= o(θ),382

• or the decision maker is flexible at prior belief p̄ and E ‖qθ − p̄‖2 = o(θ).383

Then the marginal value of information V + = 0.384

The first condition is met automatically if E ‖qθ − p̄‖ = o(θ). It is also met if, for instance, ∆c

A(p̄) has a385

nonempty interior, and posteriors converge to the prior almost surely.386

We now discuss how our approach in Proposition 5.1 compares with the literature. In [32], one finds joint387

conditions on the parameterized information structure (qθ)θ>0 and the decision problem at hand, leading to388

V + = 0. The second case in Proposition 5.1, when the decision maker is flexible, compares with the original389

Radner-Stiglitz assumptions for the smoothness part, but not for the uniqueness of optimal actions. Indeed,390

Assumption (A0) in [32] does not require that A⋆(qθ) be a singleton, for all θ.391

The authors of [15] make a step towards disentangling conditions on the parameterized information392

structure (qθ)θ>0 from conditions on the decision problem that lead to a null marginal value of information.393

However, like [32], they make an assumption on how the optimal action varies with information, which makes394

the comparison with Proposition 5.1 delicate. In addition, [15] provide sufficient conditions for V + = 0 that395

bear on the conditional distribution of the signal knowing the state of nature. Our approach focuses on the396

posterior conditional distribution of the state of nature knowing the signal.397

The authors of [16] provide separate conditions on the parameterized information structure (qθ)θ>0 and398

the decision problem (represented by the action set A) that lead to V + = 0. Their condition “IIDV=0”399

is that lim supθ→0
1
θ
E ‖qθ − p̄‖ = 0, or, equivalently, E ‖qθ − p̄‖ = o(θ), which implies the first item of400

Proposition 5.1. Thus, this latter proposition implies the main result of [16].401

5.2. Examples. Here, we study the marginal value of information for several typical parameterized402

information structures. In the first example, information consists on the observation of a Brownian motion403

with known variance and a drift that depends on the state of nature. In the second example, information404

consists of the observation of a Poisson process whose probability of success depends on the state of nature.405

In these two well studied families in the learning literature, the natural parameterization of information is406

the length of the interval of time during which observation takes place. In the third example, the agent407
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observes a binary signal and the marginal value of information depends on the asymptotic informativeness408

of these signals close to the situation without information.409

In all three following examples we assume binary states of nature, K = {0, 1}, and (by a slight abuse410

of notation) the prior belief on the state being 1 is denoted p̄ ∈]0, 1[. We follow the conditions in Sect. 3411

under which we established bounds on the value of information, and label as: “confident” the case in which p̄412

lies in the interior of the confidence set ∆c
A(p̄) (in this case, ∆c

A(p̄) is a closed nonempty interval
[

pl, ph
]

by413

Proposition A.3, and the value function is linear on this range); “undecided” the case in which the decision414

problem faced by the decision maker is such that there is indifference between two actions at prior belief p̄;415

“flexible” the case in which the optimal action is a smooth function of the belief in a neighborhood of prior416

belief p̄.417

Our aim is to develop estimates of the marginal value of information V + in (5.1). There are three418

possibilities: it can be infinite, null, or positive and finite. We denote these three cases by V + = ∞, V + = 0419

and V + ≃ 1 respectively.420

Example 3 (Brownian motion). Frameworks in which agents observe a Brownian motion with known421

volatility and unknown drift include [5, 24, 10], as well as reputation models like [19].422

Assume the agent observes the realization of a Brownian motion with variance 1 and drift k ∈ {0, 1},423

namely dZt = kdt+ dBt, for a small interval of time θ > 0. If we let qt be the posterior belief at time t, it424

is well-known2 that qt follows a diffusion process of the form dqt = qt(1 − qt)dwt, where w is a standard425

Browian process. Thus, for small values of θ, we have the estimates426

E ‖qθ − p‖ ∼
√
θ , E ‖qθ − p‖2 ∼ θ .427

It follows from Theorems 3.2-3.6 that the marginal value of information is characterized, depending on the428

decision problem, as:429

1. In the confident case, V + = 0,430

2. In the undecided case, V + = ∞,431

3. In the flexible case, V + ≃ 1.432

Example 4 (Poisson learning). An important class of models of strategic experimentation (see [25])433

are those in which the agent’s observations are driven by a Poisson process of unknown intensity. Assume434

the agent observes, during a small interval of time θ > 0, a Poisson process with intensity ρk, k ∈ {0, 1},435

where ρ1 > ρ0 > 0. The probability of two successes is negligible compared to the probability of one success436

(of order θ2 compared to θ). A success leads to a posterior that converges from below, as θ → 0, to437

q+ =
p̄ρ1

p̄ρ1 + (1− p̄)ρ0
> p̄ ,438

and happens with probability of order ∼ θ. In the absence of success, the posterior belief converges to the439

prior belief p̄ as θ → 0. As we have seen that the confidence set ∆c
A(p̄) is a closed interval

[

pl, ph
]

, we note440

that E
[

d
(

qθ,∆c
A(p̄)

)]

∼ θ if q+ > ph, and E
[

d
(

qθ,∆c
A(p̄)

)]

= o(θ) otherwise. This implies:441

1. In the confident case,442

(a) V + ≃ 1 if q+ > ph,443

(b) V + ≃ 0 if q+ ≤ ph.444

We also have the estimates445

E ‖qθ − p‖ ∼ θ , E ‖qθ − p‖2 ∼ θ ,446

which imply the following estimates on the marginal value of information:447

2. In the undecided case, V + ≃ 1,448

3. In the flexible case, V + ≃ 1.449

Example 5 (Equally likely signals). Here, we consider binary and equally likely signals, which lead to450

a “split” of beliefs around the prior belief p̄. Depending on the precision of these signals as a function of θ,451

2See for instance Lemma 1 in [10] or Lemma 2 in [19].
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the posterior beliefs are p± θα for a certain parameter α > 0 (lower values of α correspond to more spread452

out beliefs around the prior, hence to more accurate information). In this case we easily compute453

E ‖qθ − p‖ = θα , E ‖qθ − p‖2 = θ2α ,454

and we observe that E
[

d(qθ,∆c
A(p̄)

]

= 0 for θ small enough. Here again, the marginal value of information455

is deduced from Theorems 3.2–3.6:456

1. In the confident case, V + = 0,457

2. In the undecided case,458

(a) V + = ∞ if α < 1,459

(b) V + ≃ 1 if α = 1,460

(c) V + = 0 if α > 1,461

3. In the flexible case,462

(a) V + = ∞ if α < 1/2,463

(b) V + ≃ 1 if α = 1/2,464

(c) V + = 0 if α > 1/2.465

Table 2 summarizes the marginal value of information in all of our examples.466

Marginal value of information V + confident undecided flexible

Brownian 0 ∞ 1
Poisson learning 0 or 1 1 1
Equally likely signals, α < 1/2 0 ∞ ∞
Equally likely signals, α = 1/2 0 ∞ 1
Equally likely signals, 1/2 < α < 1 0 ∞ 0
Equally likely signals, α = 1 0 1 0
Equally likely signals, α > 1 0 0 0

Table 2

Marginal value of information in the different examples. The value 1 represents a positive and finite marginal value of
information.

In all cases except one, the marginal value of information is completely determined by the local behavior467

of the value function around the prior. For the Poisson case, the marginal value of information is 0 or468

positive, depending on whether the observation of a success is sufficient to lead to a decision reversal.469

The marginal value of information is always weakly lower in the flexible case than in the undecided case,470

and weakly higher in the undecided case than in other cases. In the confident case, the marginal value of471

information is null, except in the Poisson case with q+ > ph. This is driven by the fact that, in all other472

cases, posteriors are, with high probability, too close to the prior to lead to a decision reversal. In the473

undecided situation, the marginal value of information is always positive or infinite, except for sufficiently474

uninformative binary signals (α > 1). Finally, in the flexible case — the most representative of decision475

problems with a continuum of actions — the value of information is positive or infinite, except with quite476

uninformative binary signals (α > 1/2).477

6. Related literature. The value of information in decision problems is a well-studied question in478

economics and in statistics. The central work in this area is [8], which defines a source of information α479

as more informative than another, β, whenever all agents, independently of their preferences and decision480

problems faced, weakly prefer α to β. Blackwell [8] characterizes precisely this relationship in the following481

terms: α is more informative than β if and only if information from β can be obtained as a garbling of the482

information from α.483

The requirement that all agents agree on their preferences between two statistical experiments is a strong484

one. It implies that this ranking is incomplete, as many such pairs of experiments cannot be ranked according485

to this ordering. Some authors have considered subclasses of decision problems in order to obtain rankings486

that are more complete than Blackwell’s. For instance, [26], [31] and [2] restrict attention to families of487

decision problems that generate monotone decision rules. Focusing on investment decision problems, [12]488
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obtains and characterizes a complete ranking of information sources based on a uniform criterion; [13] uses489

a duality approach to characterize the value of an information purchase that consists of an information490

structure with a price attached to it.491

The present work departs from this literature in the sense that we focus on the value of information for492

a given agent, instead of trying to measure the value of information independently of the agent. Papers [20]493

and [4] characterize the possible preferences for information that any agent can have, letting the decision494

problem vary and the agent’s preferences vary.495

The question of marginal value of information is studied in [32, 15, 16]. They consider parameterized496

information structures, and derive general conditions on the couple consisting of the information structures497

and the decision problem under which the marginal value of information close to no information is zero. Our498

work contributes to this question by allowing us to derive estimates on the value of information based on499

separate conditions on the decision problem and on the information structure. This is the approach we have500

taken in Sect. 5. Our contribution considerably opens the spectrum of possibilities for the marginal value of501

information, by giving conditions under which it can be infinite, null, or positive and finite.502
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Appendix A. Appendix.567

A.1. Revisiting the model of Sect. 2. We revisit the model in Sect. 2 with convex analysis tools to568

prepare the proofs in Sect. A.3. We recall that A ⊂ R
K in (2.1) is a nonempty, convex and compact subset569

of RK , called the action set, and that we identify the set Σ of signed measures on K with R
K .570

Support function. The support function σA of the action set A is defined by571

(A.1) σA(s) = sup
a∈A

〈s , a〉 , ∀s ∈ Σ .572

The value function vA : ∆ → R in (2.2) is the restriction of σA to probability distributions ∆ = ∆(K) ⊂ Σ:573

(A.2) vA(p) = σA(p) , ∀p ∈ ∆ .574

It is well-known that σA is convex (as the supremum of the family of linear maps 〈· , a〉 for a ∈ A). As the575

action set A is compact, σA(s) takes finite values, hence its effective domain is Σ, hence σA is continuous.576

(Exposed) face. For any signed measure s ∈ Σ, we let577

(A.3) FA(s) = argmax
a′∈A

〈s , a′〉 = {a ∈ A | ∀a′ ∈ A , 〈s , a′〉 ≤ 〈s , a〉} ⊂ A578

be the set of maximizers of a 7→ 〈s , a〉 over A. We call FA(s) the (exposed) face of A in the direction s ∈ Σ.579

As the action set A is convex and compact, the face FA(s) of A in the direction s is nonempty, for any s ∈ Σ,580

and the face is a subset of the boundary ∂A of A: FA(s) ⊂ ∂A , ∀s ∈ Σ. We will use the following property:581

for any nonempty convex set C ⊂ R
K and y ∈ R

K such that FC(y) 6= ∅, we have582

(A.4) σC(y
′)− σC(y) ≥ σFC(y)(y

′ − y) ≥ 〈y′ − y , x′〉 , ∀y′ ∈ R
K , ∀x′ ∈ C .583

The set A⋆(p) of optimal actions under belief p in (2.3) coincides with the (exposed) face FA(p) of A in the584

direction p in (A.3):585

(A.5) A⋆(p) = FA(p) , ∀p ∈ ∆ .586

Normal cone. For any payoff vector a in A, we define587

(A.6) NA(a) = {s ∈ Σ | ∀a′ ∈ A , 〈s , a′〉 ≤ 〈s , a〉} ⊂ Σ .588

We call NA(a) the normal cone to the closed convex set A at a ∈ A. Notice that NA(a) is made of signed589

measures in Σ, that are not necessarily beliefs. The set ∆⋆
A(a) of beliefs compatible with optimal action a590

in (2.4) is related to the normal cone NA(a) at a in (A.6) by:591

(A.7) ∆⋆
A(a) = NA(a) ∩∆ , ∀a ∈ A .592
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Conjugate subsets of actions and beliefs. Exposed face FA and normal cone NA are conjugate as follows:593

(A.8) s ∈ Σ and a ∈ FA(s) ⇐⇒ a ∈ A and s ∈ NA(a) .594

A.2. Background on geometric convex analysis. A nonempty, convex and compact set A ⊂ R
K595

is called a convex body of RK [34, p. 8].596

Regular points and smooth bodies. We say that a point a ∈ A is smooth or regular [34, p. 83] if the597

normal cone NA(a) in (A.3) is reduced to a half-line. The set of regular points is denoted by reg(A):598

(A.9) a ∈ reg(A) ⇐⇒ ∃s ∈ Σ , s 6= 0 , NA(a) = R+s .599

Notice that a regular point a necessarily belongs to the boundary ∂A of A: reg(A) ⊂ ∂A. The body A is600

said to be smooth if all boundary points of A are regular (reg(A) = ∂A); in that case, it can be shown that601

its boundary ∂A is a C1 submanifold of RK [34, Theorem 2.2.4, p. 83].602

Spherical image map of A. We denote by S|K|−1 = {s ∈ Σ , ‖s‖ = 1} the unit sphere of the signed603

measures Σ on K (identified with R
K with its canonical scalar product). By (A.9), we have that a ∈604

reg(A) ⇐⇒ ∃!s ∈ S|K|−1 , NA(a) = R+s. If a point a ∈ A is regular, the unique outer normal unitary605

vector to A at a is denoted by nA(a), so that NA(a) = R+nA(a). The mapping606

(A.10) nA : reg(A) → S|K|−1 , where reg(A) ⊂ ∂A ,607

is called the spherical image map of A, or the Gauss map, and is continuous [34, p. 88]. We have608

(A.11) a ∈ reg(A) ⇒ NA(a) = R+nA(a) where nA(a) ∈ S|K|−1 .609

Reverse spherical image map of A. We say that a unit signed measure s ∈ S|K|−1 is regular [34, p. 87]610

if the (exposed) face FA(s) of A in the direction s, as defined in (A.3), is reduced to a singleton. The set of611

regular unit signed measures is denoted by regn(A):612

(A.12) s ∈ regn(A) ⇐⇒ s ∈ S|K|−1 and ∃!a ∈ A , FA(s) = {a} .613

For a regular unit signed measure s ∈ S|K|−1, we denote by fA(s) the unique element of FA(s), so that614

FA(s) = {fA(s)}. The mapping615

(A.13) fA : regn(A) → ∂A , where regn(A) ⊂ S|K|−1 ,616

is called the reverse spherical image map of A, and is continuous [34, p. 88]. We have617

(A.14) s ∈ regn(A) ⇒ FA(s) = {fA(s)} .618

Bodies with C2 surface.619

Proposition A.1 (Schneider 2014, p. 113). If the body A has boundary ∂A which is a C2 submanifold620

of R
K , then i) all points a ∈ ∂A are regular (reg(A) = ∂A), ii) the spherical image map nA in (A.10) is621

defined over the whole boundary ∂A and is of class C1, iii) the spherical image map nA has the reverse622

spherical image map fA in (A.10) as right inverse, that is, nA ◦ fA = Idregn(A).623

Proof. The first two items can be found in [34, p. 113]. Now, we prove that nA ◦ fA = Idregn(A). As624

fA : regn(A) → ∂A by (A.13), and as nA : ∂A → S|K|−1 by (A.10) since reg(A) = ∂A, the mapping625

nA ◦ fA : regn(A) → S|K|−1 is well defined. Let s ∈ regn(A). By (A.14), we have that FA(s) = {fA(s)} and626

by (A.11), we have that NA

(

fA(s)
)

= R+nA

(

fA(s)
)

. From (A.8) — stating that exposed face and normal627

cone are conjugate — we deduce that s ∈ R+nA(fA(s)). As s ∈ S|K|−1, we conclude that s = nA

(

fA(s)
)

628

by (A.10).629

Weingarten map. Let a ∈ reg(A) be a regular point, as in (A.9), such that the spherical image map nA630

in (A.10) is differentiable at a, with differential denoted by TanA. The Weingarten map [34, p. 113] TanA :631

Ta∂A → TnA(a)S
|K|−1 linearly maps the tangent space Ta∂A of the boundary ∂A at point a into the tangent632

space TnA(a)S
|K|−1 of the sphere S|K|−1 at nA(a). The eigenvalues of the Weingarten map at a are called633

the principal curvatures of A at a [34, p. 114]; they are nonnegative [34, p. 115]. By definition, the body A634

has positive curvature at a if all principal curvatures at a are positive or, equivalently, if the Weingarten635

map is of maximal rank at a [34, p. 115].636
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Reverse Weingarten map. Let s ∈ regn(A) be a regular unit signed measure such that the reverse637

spherical image map fA in (A.13) is differentiable at s, with differential denoted by TsfA. The reverse638

Weingarten map639

(A.15) TsfA : TsS
|K|−1 → TfA(s)∂A640

maps the tangent space TsS
|K|−1 of the sphere S|K|−1 at s into the tangent space TfA(s)∂A of the bound-641

ary ∂A at point fA(s). The eigenvalues of the reverse Weingarten map at s are called the principal radii of642

curvature of A at s.643

A.3. Proofs of the results in Sect. 3. Using the relations (A.5) and (A.7), we express the proofs of644

the results in Sect. 3 in terms of the sets FA(p) in (2.1) and NA(a) in (A.6) (in the set Σ of signed measures),645

instead of A⋆(p) in (2.3) and ∆⋆
A(a) in (2.4) (in the set ∆ of probability measures).646

Value of information. We have seen in (A.2) that the value function vA : ∆ → R in (2.2) is the restriction647

of the support function σA to beliefs in ∆. By definition (2.6) of the value of information, we deduce that,648

for any information structure q as in (2.5), we have:649

(A.16) VoIA(q) = E [σA(q) − σA(p̄)] .650

Lemma A.2. Let us introduce, for all q ∈ ∆,651

ϕ+
A(q) = σA(q)− σA(p̄) + σ−A⋆(p̄)(q − p̄) ,(A.17a)652

ϕ−
A(q) = σA(q)− σA(p̄)− σA⋆(p̄)(q − p̄) .(A.17b)653654

Then, for any information structure q and for any a ∈ A, we have that655

E

[

ϕ+
A(q)

]

= E

[

σA(q)− σA(p̄) + σ−A⋆(p̄)(q− p̄)
]

(A.18a)656

≥ VoIA(q) = E [σA(q) − σA(p̄)− 〈q− p̄ , a〉](A.18b)657

≥ E

[

σA(q)− σA(p̄)− σA⋆(p̄)(q− p̄)
]

= E

[

ϕ−
A(q)

]

.(A.18c)658
659

660

Proof. By (A.17), we have, for all q ∈ ∆,661

ϕ+
A(q) = σA(q)− σA(p̄) + σ−A⋆(p̄)(q − p̄)(A.19a)662

= sup
a∈A⋆(p̄)

(

σA(q)− σA(p̄)− 〈q − p̄ , a〉
)

(A.19b)663

≥ σA(q)− σA(p̄)− 〈q − p̄ , a〉 , ∀a ∈ A⋆(p̄)(A.19c)664

≥ inf
a∈A⋆(p̄)

(

σA(q)− σA(p̄)− 〈q − p̄ , a〉
)

(A.19d)665

= σA(q)− σA(p̄)− σA⋆(p̄)(q − p̄) = ϕ−
A(q) .(A.19e)666667

By taking the expectation, we obtain (A.18), using (A.16) and the property that E [q− p̄] = 0 in (2.5).668

Confidence set and indifference kernel. We start by providing characterizations of the confidence set669

∆c

A(p̄) in (3.1) and of the indifference kernel Σi

A(p̄) in (3.5), in terms of FA(p) in (A.3) and NA(a) in (A.6).670

Proposition A.3.671

1. The confidence set ∆c

A(p̄) of (3.1) is the nonempty closed and convex set672

(A.20) ∆c

A(p̄) =
⋂

a∈A⋆(p̄)

∆⋆
A(a) =

⋂

a∈FA(p̄)

NA(a) ∩∆ .673

2. Let p ∈ ∆. We have that674

p ∈ ∆c

A(p̄) ⇐⇒ FA(p̄) ⊂ FA(p)(A.21a)675
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⇐⇒ σA(p)− σA(p̄)− 〈p− p̄ , a〉 = 0 , ∀a ∈ FA(p̄)(A.21b)676

⇐⇒ σA(p)− σA(p̄) + σ−A⋆(p)(p− p̄) = 0 .(A.21c)677678

679

3. The indifference kernel Σi

A(p̄) of (3.5) is the vector subspace680

Σi

A(p̄) = [FA(p̄)− FA(p̄)]
⊥
= [A⋆(p̄)−A⋆(p̄)]

⊥
=

⋂

a∈FA(p̄)

NFA(p̄)(a) .681

Proof.682

1. Express (3.1) using (A.7).683

2. We prove the three equivalences in (A.21).684

(a) Let p ∈ ∆. Using the property (A.8) that exposed face FA and normal cone NA are conjugate,685

we obtain: p ∈ ∆c

A(p̄) ⇐⇒ p ∈
⋂

a∈FA(p)

NA(a) by (A.20)686

⇐⇒ a ∈ FA(p) , ∀a ∈ FA(p̄) by (A.8) ⇐⇒ FA(p̄) ⊂ FA(p) .687688

(b) Let p ∈ ∆. We have that689

σA(p)− σA(p̄)− 〈p− p̄ , a〉 = 0 , ∀a ∈ FA(p̄)690

⇐⇒ σA(p) = 〈p , a〉 , ∀a ∈ FA(p̄)691692

because σA(p̄) = 〈p̄ , a〉 for any a ∈ FA(p̄), since FA(p̄) is the set A⋆(p) of optimal actions under
prior belief p̄ by (2.3) and (A.3)693

⇐⇒ p ∈
⋂

a∈FA(p̄)

NA(a)(by definition (A.6) of NA(a))694

⇐⇒ p ∈
⋂

a∈FA(p̄)

NA(a) ∩∆ = ∆c

A(p̄) by (A.20).695

696

(c) For any a ∈ A, we define the function697

(A.22) ϕa(q) = σA(q)− σA(p̄)− 〈q − p̄ , a〉 , ∀q ∈ ∆ .698

By (A.4) and (A.21b), we have that699

∀a ∈ FA(p̄) , ∀q ∈ ∆ , ϕa(q) ≥ 0 ,(A.23a)700

∀a ∈ FA(p̄) , ∀q ∈ ∆c

A(p̄) , ϕa(q) = 0 .(A.23b)701702

Let p ∈ ∆. Using (A.23a), we deduce from (A.21b) and from the compacity of FA(p̄) that703

p ∈ ∆c

A(p̄) ⇐⇒ infa∈FA(p̄)

(

σA(p) − σA(p̄) − 〈p− p̄ , a〉
)

= 0. We conclude with (A.19d)–704

(A.19e).705

3. Express (3.5) using (A.5). Then, use the definition of NFA(p̄)(a) in (A.6).706

This ends the proof.707

A.3.1. Valuable information.708

Proof of Proposition 3.1. Let a ∈ FA(p̄) and q be an information structure as in (2.5). We have that709

VoIA(q) = 0 ⇐⇒ E [σA(q)− σA(p̄)] = 0 by (A.16)710

⇐⇒ E [σA(q)− σA(p̄)− 〈q− p̄ , a〉] = 0 , as E [q− p̄] = 0711

⇐⇒ σA(q)− σA(p̄)− 〈q− p̄ , a〉 = 0 , P− a.s.
(because σA(q)− σA(p̄)− 〈q− p̄ , a〉 ≥ 0 by (A.4) since a ∈ FA(p̄))

712
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⇐⇒ σA(q) = 〈q , a〉 , P− a.s.(because σA(p̄) = 〈p̄ , a〉 since a ∈ FA(p̄))713

⇐⇒ P {a ∈ FA(q)} = 1714

⇐⇒ P {〈q , a′ − a〉 ≤ 0 , ∀a′ ∈ A} = 1 .715716

Let F ⊂ FA(p̄) be a dense subset of the compact FA(p̄) of R
K . We immediately get from the last717

equality that VoIA(q) = 0 ⇒ P {〈q , a′ − a〉 ≤ 0 , ∀a′ ∈ A , ∀a ∈ F} = 1. As the set {a ∈ FA(p̄) |718

〈q , a′ − a〉 ≤ 0 , ∀a′ ∈ A} is closed (for any outcome in the underlying sample space Ω), we get that719

{〈q , a′ − a〉 ≤ 0 , ∀a′ ∈ A , ∀a ∈ F} ⊂
{

〈q , a′ − a〉 ≤ 0 , ∀a′ ∈ A , ∀a ∈ F
}

. We deduce from the last720

equality that VoIA(q) = 0 ⇒ P {〈q , a′ − a〉 ≤ 0 , ∀a′ ∈ A , ∀a ∈ F
}

= 1. Now, since F = FA(p̄), we721

finally get that VoIA(q) = 0 ⇒ P {〈q , a′ − a〉 ≤ 0 , ∀a′ ∈ A , ∀a ∈ FA(p̄)} = 1. In other words, we have722

obtained that, by definition (A.6) of the normal cone NA(a): VoIA(q) = 0 ⇒ q ∈ ⋂

a∈FA(p̄) NA(a) , P−a.s..723

Since q ∈ ∆, we conclude by (A.20) that724

VoIA(q) = 0 ⇒ q ∈
⋂

a∈FA(p)

NA(a) ∩∆ =
⋂

a∈A⋆(p)

∆⋆
A(a) = ∆c

A(p) .725

Revisiting the proof backward, or using (A.21b), we easily see that q ∈ ∆c

A(p) , P − a.s. ⇒ VoIA(q) = 0.726

This ends the proof.727

Proof of Theorem 3.2. Let q be an information structure as in (2.5).728

First, we show the upper estimate CAE d
(

q,∆c

A(p̄)
)

≥ VoIA(q) in (3.4). For this purpose, we consider729

a ∈ A and we show that the function ϕa in (A.22) is such that730

(A.26) ϕa(q) ≤ sup
a′∈A

‖a− a′‖ inf
p∈∆c

A
(p̄)

‖p− q‖ .731

Indeed, we have that, for any p ∈ ∆c

A(p̄),732

ϕa(q) = ϕa(q)− ϕa(p) by (A.23b) since p ∈ ∆c

A(p̄)733

= σA(q)− σA(p)− 〈q − p , a〉 by (A.22)734

= σA−a(q)− σA−a(p) by (A.1)735

≤ sup
a′∈A−a

‖a′‖ × ‖p− q‖ by (A.1) = sup
a′∈A

‖a− a′‖ × ‖p− q‖ .736
737

By taking the infimum with respect to all p ∈ ∆c

A(p̄), we obtain (A.26). Then, we deduce that738

VoIA(q) = E [ϕa(q)] , ∀a ∈ A by (A.18b)739

= inf
a∈A

E [ϕa(q)] ≤ inf
a∈A

sup
a′∈A

‖a− a′‖ × E

[

inf
p∈∆c

A(p̄)
‖p− q‖

]

by (A.26).740
741

With CA = infa∈A supa′∈A ‖a − a′‖ and (3.3), this gives the upper estimate CAE d
(

q,∆c

A(p̄)
)

≥ VoIA(q)742

in (3.4).743

Second, we show the lower estimate VoIA(q) ≥ cp̄,A,εP{q 6∈ ∆c

A,ε(p̄)} in (3.4). We consider an open744

subset Q of ∆ that contains the confidence set ∆c

A(p), that is, ∆c

A(p̄) ⊂ Q. By Lemma A.4 right below,745

there exists an a ∈ FA(p̄) such that the continuous function ϕa in (A.22) is strictly positive on ∆c

A(p̄)
c. As746

Qc ⊂ ∆c

A(p̄)
c and Qc is a closed subset of the compact ∆, we can define cp̄,A = infp6∈Q ϕa(p) > 0. We deduce747

that748

VoIA(q) = E [ϕa(q)] by (A.18b)749

= E

[

1q∈∆c

A
(p̄)ϕa(q) + 1q 6∈∆c

A
(p̄)ϕa(q)

]

750

= E

[

1q 6∈∆c

A(p̄)ϕa(q)
]

by (A.23b)751

≥ E [1q 6∈Qϕa(q)] ≥ E [1q 6∈Qcp̄,A] = cp̄,AP{q 6∈ Q} .752753

With Q = ∆c

A,ε(p̄), we put cp̄,A,ε = infp6∈∆c

A,ε(p̄)
ϕa(p) > 0.754

This ends the proof.755
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Lemma A.4. There exists at least one a ∈ FA(p̄) such that the function ϕa in (A.22) is strictly positive756

on the complementary set ∆c

A(p̄)
c.757

Proof. We consider two cases, depending whether FA(p̄) is a singleton or not.758

Suppose that FA(p̄) is a singleton {a}. By (A.21b), we have that q 6∈ ∆c

A(p̄) ⇐⇒ ϕa(q) > 0.759

Suppose that FA(p̄) is a not singleton. Recall that the affine hull aff(S) of a subset S of R
K is the760

intersection of all affine manifolds containing S, and that the relative interior ri(C) of a nonempty convex761

set C ⊂ R
K is the nonempty interior of C for the topology relative to the affine hull aff(C) [22, p. 103].762

We prove that any a ∈ ri
(

FA(q)
)

answers the question. Let a ∈ ri
(

FA(q)
)

be fixed. For any q 6∈ ∆c

A(p̄),763

by (A.21a) we have that FA(p̄) 6⊂ FA(q). Therefore, there exists ā ∈ FA(p̄) such that ā 6∈ FA(q), that is, such764

that σA(q) > 〈q , ā〉. As a ∈ ri
(

FA(q)
)

, there exists a′ ∈ ri
(

FA(q)
)

such that a = λa′ +(1−λ)ā for a certain765

λ ∈]0, 1[. Since σA(q) ≥ 〈q , a′〉 (by definition (A.1) of σA) and σA(q) > 〈q , ā〉 (as ā 6∈ FA(q)), we deduce766

that σA(q) = λσA(q) + (1 − λ)σA(q) > λ 〈q , a′〉 + (1 − λ) 〈q , ā〉 = 〈q , a〉, where we used the property that767

λ ∈]0, 1[. Using the definition (A.22) of the function ϕa, we have obtained that q 6∈ ∆c

A(p̄) ⇒ ϕa(q) > 0.768

This ends the proof.769

A.3.2. Undecided.770

Proof of Theorem 3.4. We prove the three inequalities in (3.6).771

I). We prove the upper inequality CAE ‖q− p̄‖ ≥ VoIA(q) in (3.6).772

By definition (A.1) of a support function, we have that σA(·) ≤ ‖A‖× ‖ · ‖, where ‖A‖ = sup{‖a‖ , a ∈773

A} < +∞. Thus CA = ‖A‖ in the left hand side inequality in (3.6).774

II). We prove the middle inequality VoIA(q) ≥ VoIA⋆(p̄)(q) in (3.6).775

For all s ∈ Σ, we have that776

σA(s)− σA(p̄) ≥σFA(p̄)(s− p̄) by (A.4) since FA(p̄) 6= ∅(A.30a)777

= 〈s− p̄ , a〉 , ∀a ∈ FA(p̄) by definition of σFA(p̄)(A.30b)778

=σFA(p̄)(s)− σFA(p̄)(p̄) by definition of σFA(p̄).(A.30c)779780

By taking the expectation E , we obtain that781

VoIA(q) =E [σA(q) − σA(p̄)] by (2.6) and (A.2)(A.31a)782

≥E
[

σFA(p̄)(q− p̄)
]

by (A.30a)(A.31b)783

=E
[

σFA(p̄)(q) − σFA(p̄)(p̄)
]

by (A.30c)(A.31c)784

=VoIFA(p̄)(q) by (2.6) and (A.2).785786

This ends the proof of the middle inequality.787

III). We prove the right hand side inequality VoIA⋆(p̄)(q) ≥ E ‖q− p̄‖Σi

A(p̄) in (3.6).788

Let n be the dimension of the affine hull aff
(

FA(p̄)
)

of FA(p̄), and let a1, . . . , an be n actions in FA(p̄)789

that generate aff
(

FA(p̄)
)

. We put790

(A.32) T = {a1, . . . , an} ⊂ FA(p̄) so that aff
(

FA(p̄)
)

= aff{a1, . . . , an} = aff(T ) .791

We will now show that ‖ · ‖Σi

A
(p̄) =

1
n
σT−T (·) is a seminorm with kernel (FA(p̄)− FA(p̄))

⊥ that satisfies the792

right hand side inequality in (3.6).793

First, the support function σT−T is a seminorm with kernel (T − T )⊥, as easily seen. Now, we also794

easily see that, for any subset S ⊂ R
K , one has (S − S)⊥ =

(

aff(S − S)
)⊥

=
(

aff(S) − aff(S)
)⊥

. Using795

these equalities with S = T and S = FA(p̄), we deduce that (T − T )⊥ = (FA(p̄) − FA(p̄))
⊥, since aff(T ) =796

aff
(

FA(p̄)
)

by (A.32). Second, we show that the right hand side inequality in (3.6) is satisfied. We have797

VoIA(q) ≥ E
[

σFA(p̄)(q− p̄)
]

by (A.31b)798

≥ E [σT (q− p̄)]
(because T ⊂ FA(p̄) and support functions (A.1) are monotone with respect to set inclusion)

799
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= E [σT (q− p̄)− 〈q− p̄ , a〉] , ∀a ∈ A because E [〈q− p̄ , a〉] = 0.800

= E [σT−a(q− p̄)] , ∀a ∈ A because σT−a = σT+{−a} = σT + σ{−a}.801802

Indeed, support functions transform a Minkowski sum of sets into a sum of support functions [22, p. 226].803

Using again this property, we obtain that VoIA(q) ≥ 1
n

∑n
i=1 E [σT−ai

(q− p̄)] = 1
n
E
[

σ∑
n
i=1

(T−ai)(q− p̄)
]

.804

Now, as T = {a1, . . . , an}, it is easy to see that the sum
∑n

i=1(T − ai) contains any element of the form805

ak−al = (a1−a1)+ · · ·+(al−1−al−1)+(ak−al)+(al+1−al+1)+ · · ·+(an−an) ∈
∑n

i=1(T −ai). As support806

functions are monotone with respect to set inclusion, we deduce that σ∑
n
i=1

(T−ai) ≥ σ{ak−al,k,l=1,...,n} =807

σT−T and that VoIA(q) ≥ 1
n
E
[

σ{ak−al,k,l=1,...,n}(q− p̄)
]

= 1
n
E [σT−T (q− p̄)] = E ‖q− p̄‖Σi

A
(p̄).808

This ends the proof.809

A.3.3. Flexible.810

Proof of Proposition 3.5. All the reminders on geometric convex analysis in Sect. A.2 were done with811

outer normal vectors belonging to the unit sphere of signed measures. Now, as we work with beliefs —812

positive measures of mass 1 — we are going to adapt these concepts. We consider the diffeomorphism813

(A.34) ν : S|K|−1 ∩ R
K
+ → ∆ , s 7→ s

〈s , 1〉 ,814

that maps unit positive measures into probability measures, with inverse ν−1 : ∆ → S|K|−1∩R
K
+ , p 7→ p

‖p‖ .815

Since, by assumption, the action set A has boundary ∂A which is a C2 submanifold of RK , we know by816

Proposition A.1 that the spherical image map nA : ∂A → S|K|−1 in (A.10) is well defined, is of class C1, and817

has for right inverse the reverse spherical image map fA : regn(A) → ∂A in (A.13), that is, nA◦fA = Idregn(A).818

The set of relevant regular points is the subset of the set reg(A) of regular points defined by819

(A.35) a ∈ reg+(A) ⇐⇒ ∃p ∈ ∆ , NA(a) = R+p .820

For a regular action a ∈ reg+(A), there is only one probability p ∈ ∆ such that NA(a) = R+p, and it is821

p = ν
(

nA(a)
)

. We have a ∈ reg+(A) ⇒ NA(a) = R+ν
(

nA(a)
)

where ν
(

nA(a)
)

∈ ∆. The set of regular822

probabilities is regn+(A) =
(

R
∗
+regn(A)

)

∩ ∆. For a regular probability p ∈ regn+(A), there is only one823

action a ∈ ∂A such that FA(p) = {a}, and it is a = fA
(

ν−1(p)
)

. Indeed, by definition (A.3) of the (exposed)824

face, we have that FA(λs) = FA(s) , ∀λ ∈ R
∗
+ , ∀s ∈ Σ , s 6= 0. Therefore, we have that825

(A.36) p ∈ regn+(A) ⇒ FA(p) = {fA
(

ν−1(p)
)

} .826

The following mappings are well defined: ν ◦nA : reg+(A) → ∆ and fA ◦ ν−1 : regn+(A) → ∂A, and we have827

that (ν ◦ nA) ◦ (fA ◦ ν−1) = Idregn+(A).828

• Item 2 ⇒ Item 1.829

Suppose that the face FA(p̄) is a singleton {a♯} and the curvature of the boundary ∂A of payoffs830

at a♯ is positive. Since, by assumption, the action set A has boundary ∂A which is a C2 submanifold831

of RK , we know that the spherical image map nA in (A.10) is defined over the whole boundary ∂A832

and is of class C1, and its differential is the Weingarten map. As the curvature of the boundary ∂A of833

payoffs at a♯ is positive, the Weingarten map Ta♯nA is of maximal rank at a♯ [34, p. 115]. Therefore,834

by the inverse function theorem, there exists an open neighborhood A of a♯ in A such that nA(A)835

is an open neighborhood of nA

(

a♯
)

in S|K|−1, and such that the restriction nA : A → nA(A) of the836

spherical image map in (A.10) is a diffeomorphism. By item iii) in Proposition A.1, we have that837

nA

(

a♯
)

= p̄
‖p̄‖ and the local inverse coincides with the restriction fA : nA(A) → A of the reverse838

spherical image map in (A.13). As nA(A) is an open neighborhood of p̄
‖p̄‖ in S|K|−1, and as the839

prior belief p̄ has full support, we deduce that ν
(

nA(A)
)

is an open neighborhood of p̄ in ∆, where840

the diffeomorphism ν is defined in (A.34). We easily deduce that fA ◦ ν−1 : ν
(

nA(A)
)

→ A is a841

diffeomorphism. By (A.36), we conclude that fA ◦ ν−1 is the restriction of the set-valued mapping842

FA : ∆ ⇒ A, p 7→ FA(p) in (3.7).843
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• Item 1 ⇒ Item 3.844

Suppose that the set-valued mapping FA : ∆ ⇒ A, p 7→ FA(p) in (3.7) is a local diffeomorphism at p̄.845

By definition (A.12) of the set of regular unit signed measures, there exists an open neighborhood ∐846

of p̄ in ∆ such that ∐ ⊂ regn+(A), where the set of relevant regular points is defined in (A.35). In847

addition, the mapping fA ◦ ν−1 : ∐ → fA
(

ν−1(∐)
)

is a diffeomorphism.848

As FA(p) = {fA
(

ν−1(p)
)

}, for all beliefs p ∈ ∐, we know that the support function σA is differentiable849

and that its gradient is ∇pσA = fA
(

ν−1(p)
)

[22, p. 251]. As fA ◦ ν−1 is a local diffeomorphism at p̄,850

and as the mapping ν in (A.34) is a diffeomorphism, we deduce that the support function σA is851

twice differentiable with Hessian having full rank. As the value function vA is the restriction of σA852

to ∆, we conclude that vA is twice differentiable at p̄ and the Hessian is positive definite.853

• Item 3 ⇒ Item 2.854

Suppose that the value function vA is twice differentiable at p̄ and the Hessian is positive definite.855

On the one hand, as the prior p̄ has full support, there exists an open neighborhood ∐ of p̄ in ∆856

such that vA is differentiable on ∐. On the other hand, as the support function σA is positively857

homogeneous, and by (A.2), we have that858

(A.37) σA(s) = 〈s , 1〉 ×
(

vA ◦ ν
)

(s) , ∀s ∈ S|K|−1 ∩ R
K
+ .859

Therefore, as the mapping ν in (A.34) is a diffeomorphism, the support function σA is differentiable860

on the open neighborhood ν−1(∐) of ν−1(p̄) = p̄
‖p̄‖ in S|K|−1 ∩ R

K
+ .861

Since, on the one hand, a convex function with effective domain R
K is differentiable at s if and only862

if the subdifferential at s is a singleton [22, p. 251], and, on the other hand, the face FA(s) is the863

subdifferential at s of the support function σA [22, p. 258], we conclude that the face FA(s) of A in864

the direction s ∈ ν−1(∐) is a singleton.865

Therefore, by definition (A.12) of the set of regular unit signed measures, we have that ν−1(∐) ⊂866

regn(A). In addition, the restriction fA : ν−1(∐) → fA
(

ν−1(∐)
)

of the reverse spherical image map867

in (A.13) is well defined, and we have that ∇sσA = fA(s) , ∀s ∈ ν−1(∐). Therefore, the mapping868

fA : ν−1(∐) → fA
(

ν−1(∐)
)

is differentiable at ν−1(p̄) = p̄
‖p̄‖ , and has full rank. Indeed, σA is twice869

differentiable at ν−1(p̄) = p̄
‖p̄‖ , and the Hessian is positive definite. This comes from (A.37), where870

the mapping ν in (A.34) is a C∞ diffeomorphism and the value function vA is twice differentiable871

at p̄ with positive definite Hessian.872

As fA is is differentiable at p̄
‖p̄‖ and has full rank, the reverse Weingarten map TsfA in (A.15) is873

well defined and has full rank. Therefore, the principal radii of curvature of A at p̄
‖p̄‖ are positive.874

Letting a♯ = fA
(

p̄
‖p̄‖

)

, we conclude that FA(p̄) = {a♯} and that the curvature of the boundary ∂A875

of payoffs at a♯ is positive.876

This ends the proof.877

Proof of Theorem 3.6. We suppose that the value function vA in (2.2) is twice differentiable at p̄, with878

positive definite Hessian. We denote FA(p̄) = {a♯}.879

First, we show that the function g(p) =
vA(p)−vA(p̄)−〈p−p̄ ,a♯〉

‖p−p̄‖2 is continuous and positive on ∆. Indeed,880

g is continuous on ∆\{p̄}, and also at p̄ since the value function vA is twice differentiable at p̄. In addition,881

g(p̄) > 0 since the Hessian of vA at p̄ is positive definite. We have g ≥ 0 on ∆\{p̄}, because FA(p̄) = {a♯} is882

the subdifferential at p̄ of the support function σA, and by (A.2). We now prove by contradiction that g > 0.883

If there existed a belief p 6= p̄ such that g(p) = 0, we would have vA(p)−vA(p̄)−
〈

p− p̄ , a♯
〉

= 0; this equality884

would then hold true over the whole segment [p, p̄], and we would conclude that the second derivative of vA885

at p̄ along the (nonzero) direction p− p̄ would be zero; this would contradict the assumption that the Hessian886

of vA at p̄ is positive definite. Therefore, we conclude that g > 0. Second, letting Cp̄,A > 0 and cp̄,A > 0887

be the maximum and the minimum of the function g > 0 on the compact set ∆, we easily deduce (3.8)888

from (2.6).889

This ends the proof.890
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