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Abstract Achieving the United Nation’s Sustainable Development Goals (SDG) in the context 

of a rapidly changing climate and demographics is one of the major challenges for South Asia. 

Interventions aimed at achieving the SDGs will be varied and are likely to contain basin-wide 

trade-offs that need to be understood. In this paper, we synthesize recent global hydrology-crop 

model developments, with a specific focus on human impact parameterisations like the 

management of human built storage capacity, irrigation withdrawal and supply, and irrigation 

efficiency. We show that they can help improve our understanding of the composition and flows 

of water, and the linkages between water scarcity and food production. To fully exploit the 

potential of improved models for policy support and the design of pathways towards SDG 

achievement, we envisage scope to include more local data, use the models to derive financial 

feasibility and improve the interaction with policy-makers and regional stakeholders through 

the development of better communication and visualisation tools.  

 

Highlights  

• Increase in spatial resolution has facilitated regional applications of global hydrology-

crop models (GHMs). 

• Human impact parameterisations, especially on storage, irrigation withdrawals in a 

double cropping system, and supply by canal systems and from groundwater, are 

important for simulating water-resources in South Asia. 

• Further model development is required to explore spatially explicit combinations of 

measures aimed at SDG achievement. 

• To facilitate co-creation and research uptake of model results, better visualisation tools 

are required. 
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1. Understanding drivers of water- resources availability and crop- 

production in South Asia 

South Asia is one of several major global climate change hotspots [1]. Sustainable development 

in this region must overcome both the negative impacts of climate change and persistent social 

and economic inequality, which traps a large proportion of the South Asian population in 

poverty. Even if the world manages to meet the ambitious Paris Agreement targets, and global 

warming is limited to 1.5oC, South Asia, and especially its mountainous regions, is expected to 

warm more, with temperatures exceeding safe thresholds for crops, livestock and humans[2]. 

Moreover, shifts in water availability are anticipated  due to changing monsoon patterns [3,4] 

and melting glaciers [5]. 

South Asia’s glaciers and snow packs are referred to as the ‘water towers’ or the ‘third pole’, 

upon which hundreds of millions of people in Asia rely [6,7]. This reliance varies with location, 

depending upon the fraction of meltwater to total runoff, and the ways through which meltwater 

can be transported to the agricultural fields downstream [8], as well as the timing of demand 

[9]. Meltwater is an important buffer in warm- and dry periods, when rainfall is scarce [10]. 

Recent studies suggest that glaciers will have lost at least one-third of their volume by the end 

of the 21st Century [11]. A diminishing buffering capacity of glaciers, coinciding with rapidly 

falling groundwater levels due to over withdrawal, raises concerns over water-, energy- and 

food security [12] and population growth adds increasing pressure on resources [13]. Achieving 

the development agenda articulated in the UN’s Sustainable Development Goals in the context 

of these pressures and changes will therefore be a major challenge.  

Regional application of global hydrology-crop models can help to elucidate the effects of 

climate- and socio-economic change on water availability, the links between water-source and 

water-user, and the downstream impacts of upstream interventions. Understanding hydrology 

in this region poses specific difficulties. First, at high altitudes, precipitation is often 

underestimated, because gauges are not corrected for snowfall under-catch and orographic 

effects. Precipitation datasets that are corrected through the use of glacier mass balance or use 

of high-altitude precipitation gauges, seem the best choice to force hydrological models in this 

region [14]. Next, due to the difficulties that many global- and regional climate models have in 

simulating the typical intra-annual variability in precipitation caused by the summer monsoon 

[18], models and scenarios for future impact assessment should be carefully selected based on 

their capability in simulating monsoon precipitation [19]. However, precipitation is not the only 



 

 

important climate parameter. Downstream water-demand for rice is changing due to changes in 

humidity, increased cloudiness, wind-speed and temperatures [20]. Alongside the climate 

forcing, good representations of glacier- and snow mass and melt processes are crucial to 

understand current- and future timing and composition of river flows [15,16], especially in 

basins, such as the Indus Basin, where a large part of the river flow originates from these sources 

[16,17]. 

While our understanding of atmospheric-, cryospheric- and hydrological processes has 

advanced in recent years, the conceptualisation and parameterisation of how people impact and 

interact with the hydrological system remains a challenge. South Asian river basins are 

characterised by vast intensive agriculture, and intersected by the largest connected irrigation 

canal systems in the world, where water is transported away from the main stem for hundreds 

of kilometres, where some over-irrigate, while many others have too little water, and where 

more than 20 million groundwater pumps make water flow up, rather than down [21]. It is also 

a region full of man-made reservoirs and with many more planned [22]. A better understanding 

of human impacts on the hydrological cycle is therefore needed to support a robust evaluation 

of sustainable solutions and pathways. 

In this paper, we discuss the challenges of applying global hydrology and crop-models (GHMs) 

in South Asian basins. We pay particular attention to recent developments in the human impact 

parameterisations (HIP). We focus on developments in GHMs, because they are increasingly 

used for regional application (for in-depth reviews of bespoke catchment model applications, 

see R Johnston and V Smakhtin [23], and A Momblanch, et al. [24]). Subsequently, we reflect 

on how these state-of-the-art models can support an evaluation of potential interventions, 

needed to achieve the UN’s Sustainable Development Goals. Finally, we provide a future 

outlook on what more could be done to better use models as planning tools for policy support 

and in co-creating processes with stakeholders.  

 

2. Advances in simulating human-impact parameterisations  

In recognition of the fact that almost all global rivers are by now to some extent modified by 

humans [25], parameterising human – resource impacts in GHMs is receiving increased 

attention [26-28]. In parallel, improvements in remote-sensing, community-based observations 

and datamining, and increased computational power and parallel computing, have increased the 



 

 

spatial resolution of GHMs to a level that they now compete with bespoke regional models 

[29,30]. Increasingly, they are used regionally and context-specific for impact assessment or 

the evaluation of measures. This leads to higher demands on the parameterisation and process 

description of these human-water resource impacts, especially in complex basins, such as the 

Indus- and Ganges Basins, with high degrees of management (Figure 1). Recent relevant HIP 

developments in GHMs can be clustered around four components that will be discussed in the 

remainder of this section: 

• Water storage: parameterisation of reservoirs, and their operation; 

• Irrigation demand: improved timing of irrigation demand  

• Irrigation supply: parameterisation of lateral conveyance and groundwater withdrawal 

and depletion; 

• Application: crop- and source specific water-use efficiency estimates; 

Table 1 provides an overview of general features of a selection of GHMs, and their 

parameterisation of the human impacts discussed in this paper. 

 

Figure 1. South Asia’s major river basins downstream of the Hindu Kush Himalayas (from left to right: Indus, 

Ganges and Brahmaputra). The Indus River is largely dependent on snow and glacier melt (coloured lines; source: 



 

 

H Biemans, et al [8]). The rivers are characterised by human interactions in the hydrological cycle: human build 

storage capacity (black dots represent large reservoirs) and large scale irrigation (green shades). The dotted 

polygons represent the command areas of the large-scale irrigation canal systems, through which water from the 

main river is diverted and distributed.  

  



 

 

Table 1. Overview of Global Hydrology-crop models 

Model  South Asia 
application 

Spatial 
resolution 

(in South 

Asia) 

double 
cropping 

irrigation 

demand 

Endogenous 
crop growth 

model 

Reservoir 
storage 

and 

operation 

Local 
ponds for 

rainwater 

harvesting 

Groundwater 
withdrawal 

Groundwater 
depletion 

VIC[31] n 0.5° n n y n n n 

WATERGAP[32] n 0.5° n n y n y y 

PCR-GLOBWB[33] n 5 min y n y n y y 

LPJmL[34] y[8] 5 min y y y y y y 

H08[35] y[36] 10 km y y y n y y 

 

Water Storage 

Ever since the first algorithm to simulate reservoir operations in global scale models was 

published [37], the importance of reservoirs for water availability has been widely 

acknowledged. General, strongly simplified reservoir operation rules are implemented, based 

upon the purpose of the dam (irrigation, hydropower or flood control), and the storage capacity 

of the reservoir determines to what extent the flow is modified [38] (see Table 1 on reservoir 

features in selected GHMs). The increased resolution of models now allows for more spatially 

explicit schematisation of reservoirs but also requires new approaches to deal with reservoirs 

covering multiple grid cells [39]. To better represent the release decisions of dam operators the 

use of fuzzy rules and artificial neural networks, based on historical inflows, storage levels and 

releases, is suggested [40]. Especially in regions of strong water-stress or strong environmental 

flow-alteration by dams, like in South Asia, a regionalisation of the parameterisation of 

operating rules could improve model simulations and the relevance of their output. With the 

region rapidly losing its natural ‘reservoirs’ – glaciers, snow cover and, in places, access to 

groundwater – a good understanding of the impact of man-made reservoirs, and the extent to 

which these can offset this loss or can buffer strong seasonal shifts in runoff, becomes ever 

more important. 

Irrigation demand in multi-crop systems 

With the largest irrigation systems in the world, simulating irrigation water-demand, 

withdrawal and supply is an essential process to include when trying to understand water-

resources and link sources to supply in this region. Irrigated agriculture in South Asia is very 

intensive with multiple crops being harvested sequentially from the same field. Irrigation 

demand has been incorporated into global hydrological- and crop-models for years, but with 



 

 

demand generally represented by a single crop, per year, per location [41-44]. Incorporating the 

temporal water-demand pattern that results from the sequential cropping in two or more 

growing seasons is important to understand water-stress resulting from mismatches between 

supply and demand. This is increasingly recognised and implemented in global models [45,46], 

as well as regional applications for South Asia [9].  

 

Irrigation supply from multiple sources 

Applying GHMs at higher spatial and temporal resolution means human-resource interactions 

that were hidden within grid parameterisation and process description now need a more explicit 

representation. Addressing the potential mismatch in supply and demand between locations 

becomes more important. Explicit simulation of lateral water transfers has not been a standard 

feature of GHMs [28] as this was not necessary at lower resolution, and not facilitated by the 

standardised datasets with global coverage (e.g. the Hydrosheds river routing database), which 

do not include river diversions such as irrigation canals. While bespoke basin models can be 

attuned to the local situation, part of the strength of GHMs is their reliance on these published, 

uniform datasets, which add consistency and ease comparison. However, a certain degree of 

regionalisation might be necessary. In a recent regionalisation of a GHM for the Indus, Ganges 

and Brahmaputra basin, at five minute resolution [8], the implicit nearest neighbour cell 

irrigation link was replaced by the explicit delineation of irrigation command areas linked to 

defined inlets along the river sections. A regional policy of SDG-size importance, that could be 

evaluated better with such an explicit delineation, is the massive the Indian River Linkages 

Scheme, which is currently being revived [47], and plans to redirect flows from one tributary 

to the next thereby strongly affecting the region’s hydrology. 

Next to the supply from irrigation canals, groundwater is an important source of water supply 

in regions in which water-demand is high and surface water is scarce or highly variable, such 

as in South Asia. Most large scale hydrological models include some representation of 

groundwater withdrawals, but with different levels of complexity. It is often either 

parameterised as an unlimited supply to complement when surface water is not available, or as 

a simple linear reservoir model that releases water to base flow that can be used to withdraw 

from, but without lateral interaction. The most advanced method to simulate groundwater 

availability and depletion rates is by full coupling to a groundwater flow model [e.g. 48], which 

also allows for a quantification of limits to extraction. A good review is given by MF Bierkens 



 

 

and Y Wada [49]. As South Asia is one of the regions with high levels of groundwater depletion 

[50], including a good representation of groundwater withdrawals is critical to estimating 

regional water scarcity. These estimates have global relevance, as their contribution to total 

unstainable use embedded in the global food trade show [51]. 

Efficiency of irrigation 

The way in which water is diverted to and applied on the field determines the efficiency of its 

use. Deterministic models have several inherent difficulties in simulating the field- and canal 

scale inefficiency in water-use that characterises many of South Asia’s irrigation systems. Most 

models simulate optimal irrigation timing, with water-demand based on soil moisture deficit 

thresholds, and fixed application volumes and/or ponding depths. Sources are surface water and 

groundwater, the latter assumed unlimited (in most model applications). Field-scale efficiency 

is then calculated as beneficial consumption (transpiration) over water applied, which is 

determined as crop demand divided by a predefined application factor per country, crop [e.g. 

52], irrigation method [52,53] and/or source [53], with losses a resultant of simulated soil 

moisture flows. An additional canal (in)efficiency is often imposed as a pre-determined share, 

comprised of fixed conveyance losses, part of which returns to the river system, while the other 

part is assumed lost through evaporation [as in 52]. In reality, farmers face further constraints 

as most cannot track soil moisture effectively, those in canal supply systems are subject to 

irrigation scheduling, much of it supply- rather than demand driven, and some might (or might 

not) anticipate rainfall using local knowledge or official weather forecasts to delay or bring 

forward irrigation moments. Avoidance of risk and other factors apart from water-stress, such 

as pests and weed control, further affect farmers’ irrigation preferences. These decision 

processes are obviously hard to capture within a single model, but incorporating (some) specific 

behaviour that links to the strengths of hydrology–crop models, like adjusting water supply or 

seasonal land-use decisions to meteorological forecasts, could be considered.  

Another way of looking at efficiency of (irrigation) water use is crop water productivity, i.e. 

the amount of crop produced per unit of water used [54]. This is an indicator in which both the 

use of water and the crop yields are reflected, but can only be assessed properly with GHMs 

that include an endogenous crop model [as in 52].  

Biophysical conditions are just one determinant of (in)efficiency. A vast body of literature 

describes the inequality in water allocations, with location along the canal network [55,56], 

socio-economic status or distortive policies and incentives [57-60] influencing who has access 



 

 

to how much water, and when. This highlights the importance of understanding the political 

ecology of water-use. What could prove a way forward is an irrigation system-specific 

parameterisation of efficiency, based upon more than just soil types, source or application 

method, and also including management factors and other socio-political indicators using, for 

example, insights from concepts like hydro social territories [61]. With the increasing resolution 

in models and observations, further developments in remote sensing and, in the near future, 

app-supported place-based observations, distinguishing and simulating such characteristics of 

tail and head end users in canal systems becomes feasible.  

3. Modelling interventions to support the SDGs 

The ability to evaluate the impact of (sets of) measures or interventions is an important 

precondition for using models for more than the standard impact assessment, e.g. as tools for 

policy support and the evaluation of policy strategies with concrete and measurable objectives 

such as the UN’s SDG’s. For interventions to have strong regional impacts, they need to be 

scaled out over larger geographical domains. However, these impacts are not always the 

positive ones intended. Here we show how two of the most discussed interventions (increasing 

storage and increasing efficiency) can be parameterised in GHMs. 

3.1 Moving beyond large reservoirs  

Apart from large dams, which are now implemented in most GHMs, farm ponds, tanks and 

village reservoirs form important tools to temporarily store water to overcome dry periods, 

along with sub-surface storage through managed aquifer recharge [62,63]. Filling with rain 

during the monsoon and used in the same cropping season or the season after, these distributed 

reservoirs blur the line between purely rainfed- and irrigated agriculture. While a small 

contribution on the overall water balance, it might relieve the pressure on groundwater 

resources [64,65], while at the same time increase crop yields substantially [66]. Policy interest 

in these measures is reflected in an increase in watershed development programmes, in which 

rainwater harvesting and recharge is an important structural component [65]. Quantitative 

evidence for the performance of enhanced groundwater recharge is, however, still scarce [64], 

with many past modelling studies either having limited focus or being based on insufficient 

data [65]. Downstream impacts are often ignored, though some studies show that local retention 

in small scale reservoirs can have negative effects on downstream water availability [67], 

evaporation amounts and overall hydrology of catchments [68]. An assessment of local benefits 

(e.g. by field pilots) versus basin scale impacts of increased storage by using models therefore 



 

 

clearly has added value.  Due to their small size and ubiquitous presence small ponds and 

reservoirs are difficult to model explicitly in GHMs; including them as an additional storage 

reservoir implicitly covering a certain percentage of cell or hydrological response unit area, fed 

by local rainfall, seems a first step forward. C Siderius, et al. [69] showed, in post-processing 

of GHM output that the inter-annual variability of production in the Ganges basin was better 

simulated including these as ‘virtual reservoirs’ limited by a certain size and depth and fed by 

local runoff. J Jägermeyr, et al. [70] introduced a somewhat similar approach in the LPJmL 

model, through water-harvesting parameters, effective on a predefined fraction of land. We are 

not aware of any other GHMs that parameterise this small-scale and spatially distributed 

reservoir component (table 1). 

3.2 Improving irrigation efficiency? 

A recent discussion on the paradox of irrigation efficiency [59,71] highlights that there is still 

much confusion and need for proper quantification of the effect of efficiency measures at field-

, canal- and basin scales. GHMs are well-suited for such a task, as they can trace the various 

flow components, and changes therein, through the soil and river system. Sprinkler and drip 

irrigation are  measures typically parameterised, through a reduction in evaporation and return 

flows, both at field scale and canal level [52]. More refinements are possible. Recently, in the 

LPJmL model, the most basic parameterisation of a single canal conveyance loss parameter was 

made dependent on soil characteristics [70]. Parameterising canal lining separately – a major 

activity of departments dealing with irrigation system maintenance and rehabilitation - and 

assessing its basin scale impact, seems a simple subsequent step.  

One aspect that is largely ignored still though, is the way in which water quality concerns affect 

return flows. Especially in irrigated areas in arid- and semi-arid areas, e.g. in the downstream 

Indus basin, management of salinity levels plays a large role in water management decisions 

with water in drainage canals often considered to be too saline to return into the river system 

[55]. Models might be too positive when it comes to reuse of return flows in such systems (and, 

thus, too negative about the effect of efficiency improvements at field scale). We are not aware 

of GHM applications in which any form of water quality constraint on return flows, be it 

endogenously- or exogenously parameterised, is currently implemented.  

Efficiency improvements extend beyond agriculture, and are relevant for domestic- and 

industry applications. Currently around 5% of the overall water balance in most basins, these 



 

 

water-uses are expected to rise strongly in South Asia the coming decades [13], which means 

the efficiency with which they are used is becoming relevant for the overall water-balance.  

Small-scale measures distinct from irrigation application techniques, like mulching, 

intercropping or land-levelling, might seem irrelevant in isolation, but have a high potential 

when applied at scale. They enhance infiltration and/or reduce evaporation, making a larger 

proportion of rainfall or applied irrigation water available for crop growth, and improving the 

overall efficiency of the system. A discussion on the scope to reduce water-use by several of 

these measures and a description of their parameterisation in LPJmL can be found in J 

Jägermeyr, et al. [70].  

4. The way forward: simulating pathways towards SDG achievements  

The capacity to simulate measures is one of the prerequisites for policy support, but more is 

needed on the design of pathways to realise the SDGs.  

Firstly, further integration of socio-economic and biophysical drivers in one framework is 

required to fully understand the future dynamics between water-resources and crop production 

in the major river basins of South Asia. Melting glaciers are only one of the symptoms, and 

drivers, of change [72]. Whereas regional climate models provide scenarios for the biophysical 

drivers, regional socio-economic scenarios are mostly still simply cut out from global scenarios, 

such as the shared socio-economic pathways (SSPs) [73]. Deriving consistent, comparable 

regional socio-economic scenarios is still a challenge. Merging these scenarios with 

conceptualisations of human behaviour at shorter timescales, by incorporating not only how 

humans impact water resources, but also feedbacks, e.g. how they respond to fluctuations in its 

availability [69,74-76], can help assess the feasibility of interventions in these strongly modified 

river basins. In this light, HIP would stand for Human-resource ‘Interactions’ or ‘Interface’ 

Parameterisations rather than ‘Impacts’ [28], embedding it into the socio-hydrology paradigm 

[28,77].  

Secondly, the few model applications in which water-management measures are explicitly 

evaluated, mainly show the aggregated, generic impacts and upstream-downstream linkages at 

basin- and global scales [e.g., 70]. However, most actual innovation is local. Its success is often 

determined by site-specific factors that are not always captured in the global datasets used as 

input. Integrating data and knowledge from the local- and regional scales with insight from 

models will improve the evaluation of the upscaling potential of promising measures [78]. 



 

 

Although acquiring the hydrological data to validate the regionalised GHM is often an issue, 

particularly in South Asia, the local data monitored at test fields and pilot sites is often available 

from regional water-resources and agricultural research institutes. Similarly, upscaling of 

measures is often strongly influenced by socio-economic considerations that are not included 

in GHMs. Combining knowledge of the most important regional development programmes 

with extrapolation analysis could identify both suitable and feasible areas to implement the 

tested methodology and evaluate its impact when applied at scale [79-81]. 

Thirdly, limitations to the feasibility of measures are not just biophysical, but also financial. 

There have been few studies that have combined GHM output at aggregated, national level with 

price and cost data to derive estimates for the (shadow) value of water and the costs and 

feasibility of measures [82,83], but as far as we are aware, none are making full use of the 

increasing spatial detail of GHMs. To inform decision-making and for the design of realistic 

pathways, a spatially explicit representation of the benefits of using water-resources and the 

costs of measures could be helpful.  

Finally, for model results to be used for decision support in consultation with stakeholders, we 

believe it is essential to create credibility and relevance, to not only simulate impacts and 

individual measures, but also explore different spatially explicit pathways that lead to SDG 

achievement. Disclosing model results in a visually attractive way to stakeholders can help 

tailor it to their needs. Vice versa, models should be able to reflect the plans and ideas co-

designed with stakeholders. The development of communication and visualisation tools to 

facilitate dialogue between scientists and stakeholders is an important step still required, with 

climate and climate adaptation applications providing good examples [84-86]. 

Improved modelling of hydrology, crop production and HIP in South Asia has relevance beyond 

the regional scale. Performance here – in this complex system – means a model has potential to 

perform anywhere. But the opposite is also true; South Asia is often one of the main hotspots 

regions in global assessments. For the outcomes of any global assessment to have merit, the 

human – resource interactions that define this region cannot be ignored.  
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Papers of particular interest: 

Wijngaard et al, 2018. HESS. This paper uses an integrated model for the Indus, Ganges and 

Brahmaputra river basins in which the combined effects of expected climate change and socio-economic 

changes are assessed. 

Veldkamp et al, 2018. ERL. This paper shows how the inclusion of human impact parameterizations in 

global models increases their performance in simulating intra-annual discharge patterns. 

De Graaff et al, 2017. Advances in Water Resources. This paper describes the development of a globally 

applicable groundwater model. This model, coupled to a surface hydrology model, can be used to 

estimate groundwater levels and therefore the limitation to groundwater extraction.  

Dalin et al., 2017. Nature. This paper provides a good example of how the source of water (here non-

renewable groundwater) and use of water (here for  food production and subsequently food trade) can 

be linked to provide insight in the actual causes of water scarcity. These kind of insights are needed to 

inform policy makers. 

Conway et al, 2019. Nature Climate Change. This paper shows how the typical biophysically oriented top-

down assessments of climate change impact could be combined with more socio-economical bottom-up 

assessments to find the best adaptation strategies. 

Edreira et al, 2018. Environmental Research Letters. This paper shows how field research can be 

combined with GIS analysis to find the most appropriate locations for the implementation of agricultural 

innovations. 



 

 

 


