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Abstract. We study the solutions of the inverse problem

g(z) =

∫
f(y)PT (z, dy)

for a given g, where (Pt(·, ·))t≥0 is the transition function of a given symmetric
Markov process, X, and T is a fixed deterministic time, which is linked to the
solutions of the ill-posed Cauchy problem

ut +Au = 0, u(0, ·) = g,

where A is the generator of X. A necessary and sufficient condition ensuring square
integrable solutions is given. Moreover, a family of regularisations for above prob-
lems is suggested. We show in particular that these inverse problems have a solution
when X is replaced by ξX + (1− ξ)J , where ξ is a Bernoulli random variable and
J is a suitably constructed jump process. The probability of success for ξ can be
chosen arbitrarily close to 1 and thereby leading to a jump component whose jumps
are rarely visible in the practical implementations of the regularisation.

1. Introduction

Suppose that X is a Markov process taking values in some topological space, E,
and let (Pt)t≥0 be a strongly continuous semigroup describing the movement of X in
its state space through time. Let us consider the following integral equation

g(z) =

∫
f(y)PT (z, dy) (1.1)

for a given g and a fixed deterministic T ≥ 0. Put differently, the above can be
viewed as recovering an input signal, f , from a blurred output, g, which is corrupted
by some noise described by the kernel PT . This is an inverse problem which is present
in many fields of science and technology. In image processing solving this inverse
problem corresponds to the reconstruction of an image from the available data as in,
e.g., tomography (see [3]). In statistics one is often interested in estimating the density
function, f , of a certain random variable using the observations of a related one with
density g, which is linked by some kernel K to the original density via the equation
g = Kf . Vardi and Lee [24] show that such inverse problems can be interpreted as a
statistical estimation problem from an incomplete data if it admits a positive solution.
Under the assumption of the existence of a positive solution to g = Kf they develop
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a maximum likelihood (ML) algorithm to solve the estimation issue and apply their
methodology to problems arising from optimal investment, emission tomography, and
image reconstruction due to motion blurring. More recent works on the interplay
between ML estimators and inverse problems with positivity constraints include [23],
[12], and [19], and [6] is an excellent introduction to inverse problems in statistics and a
survey of available methods. Note that the inverse problem given by g = Kf , where K
is a non-negative bounded linear operator on a Hilbert space, can be recast in the form
of (1.1). Indeed, supposing without loss of generality that the norm of K is less than
1, if we define the operator A := − logK (consult the beginning of the next section
or Chapter 1 of [17] for the construction of this operator), then A will correspond
to the infinitesimal generator of a Markov process whose transition function at time
1 coincides with K, i.e g = Kf becomes g(z) =

∫
f(y)P1(z, dy), where (Pt)t≥0 is

the semigroup of the Markov process with generator − logK. Thus, the method
that we shall describe below will contain as special cases many inverse problems in
the literature and, in particular, the above density estimation problem of statistics.
Moreover, the existing literature typically assumes that K is a compact operator to
arrive at a simple singular value decomposition. We will not need this assumption
in what follows and thereby considerably extend the scope of the methodology for
solving such inverse problems.

The inverse problem in (1.1) has an alternative partial differential equation (PDE)
interpretation. Suppose that for a given g and fixed T > 0 one can find a solution, f ,
to (1.1). Then, one can easily show that u(t, ·) := PT−tf is a solution to the following:

ut + Au = 0, u(0, ·) = g, (1.2)

where A is the generator of X. If A is a differential operator, the above is a backward
PDE with an initial condition1. Such equations are known to be ill-posed in the sense
of Hadamard that either there exists no solution or the solution is non-unique, or
the unique solution does not have a continuous dependence on the initial data, g. In
Remark 3 we suggest a measure of ill-posedness for the inverse problems considered in
this paper and show in particular that the degree of ill-posedness grows exponentially
with T .

One motivation for the study of this particular problem is the Kyle model of financial
economics (see [20] for the original formulation, [2] for the rigorous formulation in
continuous time, and [10] for its various generalisations in the context of diffusion
processes). The Kyle model is the canonical model of the market microstructure
theory to study market equilibrium among heterogeneously informed agents. When
the market makers in this model are risk-averse and the informed trader has a time-
static signal, Çetin and Danilova [9] have established the existence of equilibrium in

1We use the term backward to describe this PDE despite the fact that it is stated with an initial
condition. Note that the equation ut + Au = 0 is well-posed if it is given with a terminal condition
of the form u(T, ·) = f , in which case the terminology backward PDE becomes natural. Thus, our
choice is motivated by the emphasis on the ill-posed nature of such equations when they are stated
with an initial condition.
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this model by showing the existence of a solution for the following forward-backward
system:

Ht +
1

2
Hyy = 0,

dYt = dBt −
1

2
γYtHy(t, Yt) dt, (1.3)

H(1, Y1)
d
= f(η),

where B is a Brownian motion, η is a standard normal representing the static infor-

mation of the informed trader, f is a strictly increasing continuous function and
d
=

stands for equality in distribution.
However, to better approach reality one must assume that the informed trader has

a time-dynamic signal that converges to a standard normal random variable (after
some normalisation) at t = 1 as in [5]. Assuming her signal is a mean-zero Gaussian
martingale Zt with E[Z2

t ] = V (t) > t for t ∈ (0, 1) (see [5] for the necessity and
interpretation of this condition), the equilibrium considerations as in [5] or [10] show
that (1.3) is not sufficient to establish an equilibrium and one also needs to solve for
every t < 1 and y ∈ R the following integral equation:

g(z) := p(t, y; 1, H−1(1, f(z)))
d

dz
H−1(1, f(z)) =

∫ ∞
−∞

q(1− V (t), z − x)f(x) dx,

where q(·, ·) is the transition density of the standard Brownian motion and p is the
transition density of the process Y in (1.3). Using the symmetry of q the above
integral equation is easily seen to be an example of (1.1) when (Pt) is the Brownian
semigroup.

Inverse problems arising from (1.2) also become relevant when one is interested in
the asymptotics of forward performance processes in Mathematical Finance Theory.
Shkolnikov et al.[22] have recently studied this problem in incomplete markets and
established its connection to a family of ill-posed Hamilton-Jacobi-Bellman equations.

In what follows we aim to find necessary and sufficient conditions for (1.1) to
admit a suitably integrable solution. There do not seem to be many attempts in the
literature to characterise the solutions of such an inversion. The only attempt when
(Pt)t≥0 is the transition function of a linear Brownian motion is by Widder. In [25]
and some subsequent works Widder provides some necessary and sufficient conditions
for the existence of a solution to this inverse problem, which he calls Weierstrass
transform.

We show in Theorem 2.2 that (1.1) has a square integrable solution if and only if∫ ∞
0

I0(2
√

2Tt)

∫ ∞
0

J0(2
√
ts)e−αs(Psg, g)dsdt <∞,

where J0 (resp. I0) is the (resp. modified) Bessel function of the first kind of order
0. Additionally, the same theorem gives a formula for the inversion. Section 2 also
contains a number of alternative criteria for the characterisation of the domain of
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P−1t . In particular it is observed that the finiteness of the double integral above can
be recast in terms of the last passage times in the case of one-dimensional regular
diffusions. Moreover, Corollary 2.4 gives us a numerical recipe by means of a Picard
iteration to deduce the convergence of this integral.

As we mentioned earlier there is no solution to (1.1) in general for an arbitrary tran-
sition function. Theorem 3.1 introduces a family of regularisations of (1.1), which are
essentially small perturbations of the original problem aimed at obtaining a solution
for any given g. Moreover, the solution of the regularised problem is characterised in
terms of the minimiser of an associated optimisation problem.

Corollary 3.1 gives a remarkable special class of regularisations suggested by Theo-
rem 3.1. It shows that if we construct a new Markov process that amounts to choosing
randomly between the original process, X, and a suitable pure jump process, then
the inverse problem will have a solution for every g as soon as PT is replaced by the
corresponding transition function of the new Markov process. For example, when X
is a Brownian motion, the inverse problem can be turned into a well-posed one by
replacing the Brownian motion with a mixture of a Brownian motion and a compound
Poisson process whose jumps are normally distributed. Such mixtures of the original
Markov process and a jump process are easy to construct and one can choose the
probability of choosing the jump process arbitrarily small so that the jump compo-
nent is virtually absent in implementations. This mixture also regularises the ill-posed
backward PDE (1.2) by transforming it to a partial integro-differential equation using
an arbitrarily small perturbation.

Although we are able to give a necessary and sufficient condition for the existence
of a solution to (1.1), what is particularly missing in this paper is a comparison result.
Namely, if we know that P−1T h exists for some h, what kind of relationship between
g and h would entail that g is also in the domain of P−1T ? A comparison theorem in
the spirit of the ones that can be found in the literature on the Skorokhod embedding
problem could be very useful. Falkner [16] has shown (under a duality assumption
and another mild condition) for a general transient Markov process, X, with potential
operator U that if Uµ ≤ Uν for measures µ and ν, then one can find a stopping time
τ such that Xτ has the law µ if ν is the distribution of X0. Note that in order for g
to be in the domain of P−1T it is necessary that Ug ≤ Uh for some h in the domain of
P−1T . However, the following counterexample2 shows that this necessary condition is
not sufficient: let g be the distribution of Xτ , where τ = inf{t ≥ T : |Xt| > a} and X
is a standard Brownian motion with X0 = 0 and killed as soon as it exits (−2a, 2a).
Clearly, Ug ≤ Uµ, where µ is the distribution of XT . However, g cannot be in the
domain of P−1T since it has a point mass.

The outline of the paper is as follows. Section 2 presents the setup and introduces
the inverse problem. It contains Theorem 2.2 that gives the necessary and sufficient
condition for the inversion along with the inversion formula. Section 3 is devoted
to the regularisation of the inverse problem and includes in particular Corollary 3.1,

2This example is due to David Hobson.
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which states that the inverse problem has a solution when X is replaced by a mixture
of X and a jump process.

2. An inverse problem for a symmetric Markov process

Let us fix a Borel right Markov process X = (Ω,F ,Ft, Xt, θt, P
x) with lifetime ζ,

state space (E,E ), sub-Markovian semigroup (Pt), and resolvent (Uα). Suppose that
E is a locally compact separable metric space and (Pt) is m-symmetric with respect to
a σ-finite measure m on the Borel σ-algebra E with supp[m] = E. More precisely, we
assume that (Pt) can be extended to a strongly continuous sub-Markovian semigroup
on L2(E,m) such that

(Ptf, g) = (f, Ptg), ∀f, g ∈ L2(m),

where (·, ·) denotes the inner product with respect to m, i.e. (f, g) =
∫
E
fgdm for

f, g ∈ L2(E,m). We also assume that (E,E ,m) is a separable measure space, which
in turn implies that L2(E,m) is a separable Hilbert space. In the sequel we shall
simply write L2(m) instead of L2(E,m).

The generator A of (Pt) is defined as usual via

Af = lim
t→0

Ptf − f
t

(2.4)

D(A) := {f ∈ L2(m) : The limit (2.4) exists in L2(m)}.

Consequently −A is a non-negative definite symmetric operator on L2(m). Thus,
there exists a spectral family3 {Eλ : 0 ≤ λ < ∞} of projection operators such that
−A =

∫∞
0
λdEλ. This further entails

D(A) =

{
f ∈ L2(m) :

∫ ∞
0

λ2d(Eλf, f) <∞
}
.

Moreover, if φ : R+ → R is a continuous function, φ(−A) is another symmetric
operator on L2(m) with the spectral representation

∫∞
0
φ(λ)dEλ and domain

D(φ(−A)) =

{
f ∈ L2(m) :

∫ ∞
0

φ(λ)2d(Eλf, f) <∞
}
.

In particular, for each t > 0 and α > 0, Pt =
∫∞
0
e−λtdEλ and Uα =

∫∞
0

1
λ+α

dEλ, and

obviously, have the whole L2(m) as their domain. When X is transient, the potential
operator is also given by U =

∫∞
0

1
λ
dEλ. We refer the reader to Appendix A.4 of [7]

for a brief account of the spectral theory associated with the generators of strongly
continuous symmetric semigroups and the corresponding spectral calculus.

3That is, 1) EλEµ = Eλ, λ ≤ µ; 2) λ 7→ Eλf is right continuous for any f ∈ L2(m); and 3)
limλ→∞Eλf = f for all f ∈ L2(m). In particular (Eλf, g) is of bounded variation in λ for any
f, g ∈ L2(m).
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Example 2.1. Let E = (l, r) with −∞ ≤ l < r ≤ ∞ and consider a one-dimensional
regular diffusion on natural scale defined by the generator

Af =
1
2
d df
dx
− udk
dm

,

where the killing measure k and the speed measure m are Radon measures on (E,E ).
In the absolutely continuous case the generator becomes a differential operator:

Af =
σ2

2
f ′′ − cf,

where σ : E→ R++ and c : E :→ R+ are measurable functions.
McKean [21] has shown that the transition function, (Pt) possesses a symmetric

density, p, with respect to m such that

p(t, x, y) =

∫ ∞
0

e−λte(x, y, dλ),

where e(x, y, ·) is a measure on [0,∞) with e(x, y·) = e(y, x, ·). We refer the reader
to [21] or [18] for more details on the general theory of one-dimensional diffusions
and the eigendifferential expansions of their transition densities. Observe that the
spectrum of the generator in general has a continuous part.

When the diffusion has no natural boundaries Elliott [14] has shown earlier that the
spectrum of the generator is discrete, which in turn implies that the transition density
with respect to m is given by

p(t, x, y) =
∞∑
n=0

e−λntφn(x)φn(y),

where (λn) is an unbounded sequence of eigenvalues corresponding to the equation
Aφn = −λnφn for appropriate boundary conditions given by the behaviour of the
diffusion near l and r, where φn is the corresponding eigenfunction.

Example 2.2. Suppose that q(x, y) = q(y, x) and qdm defines a transition function
on (E,E ). In particular, ∫

E

q(x, y)m(dy) ≤ 1.

Then, it can be directly verified that A defined by

Af(x) =

∫
E

f(y)q(x, y)m(dy)− f(x)

is a bounded symmetric operator corresponding to a Markov jump process (see, e.g.,
Section 4.2 in [15]) that remains constant between jumps of a Poisson process with
unit intensity and moves between the states of E according to the kernel q, or is being
sent to the cemetery state with probability 1−

∫
E
q(x, y)m(dy).
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In the particular case of E = R, q(x, y) = q(y − x) for some symmetric function,
q, A is the generator of a compound Poisson process whose jumps have a symmetric
distribution around 0 with m-density q, provided∫ ∞

−∞
q(x, y)m(dy) = 1, ∀x ∈ R.

Next consider the inverse operator, P−1t , for t > 0. That is, g ∈ D(P−1t ) if g ∈
L2(m) and there exists f ∈ L2(m) such that Ptf = g. In this case we shall define
P−1t g to be f . Note that this operation is well-defined. Indeed, if f1, f2 ∈ L2(m) are
such that g = Ptf1 = Ptf2, then Pt(f1 − f2) = 0. However, in view of the spectral
representation of Pt, this yields (Eλ(f1 − f2), f1 − f2) = 0 for all λ ≥ 0, which in
turn implies f1 = f2, m-a.e. due to the fact that limλ→∞(Eλf, f) = (f, f) for any
f ∈ L2(m).

Observe that, since PT is a bounded self-adjoint operator, P−1T is also a symmet-
ric operator on L2(m). The following, which should formally follow from spectral
calculus, characterises P−1T in terms of the spectral family (Eλ).

Theorem 2.1. Let P−1T be the inverse of PT for T > 0. Then the following hold.

D(P−1T ) =

{
g ∈ L2(m) :

∫ ∞
0

e2λTd(Eλg, g) <∞
}

P−1T g =

∫ ∞
0

eλTdEλg. (2.5)

Proof. This is a direct consequence of the definition of P−1T and spectral calculus (see
Appendix A.4 in [7]). �

Remark 1. Note that the condition for g to be in the domain of P−1T has strong
consequence on the smoothness of g. For instance, if X is a Brownina motion, g has
to be analytic to be in the domain of P−1T for any T > 0.

The above result illustrates the first difficulty with inverting PT . When A is an
unbounded operator, which is usually the case, so is P−1T . In this case P−1T will have
a dense domain, the characterisation of which is one of the main goals of this paper.

On the other hand, if A is bounded, Eλ becomes the identity operator for all λ ≥M
for some M < ∞. In view of the above representation for P−1t and its domain, this
boundedness property will be inherited by P−1t .

Corollary 2.1. Suppose that the generator, A, of (Pt) is bounded. Then D(P−1T ) =
L2(m) for each T > 0. In particular (2.5) holds for all g ∈ L2(m).

Remark 2. It is tempting to conclude that P−1T g is nonnegative when g ≥ 0 and
belongs to D(P−1T ). This would be especially handy when one needs to estimate the
true density f by observing an auxiliary density g using the relationship g = PTf .
However, the positivity of f does not in general hold although one can find instances
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in the literature (see, e.g., the beginning of Section 3.3 in [19]) where this issue is
overlooked.

To see this in a concrete example suppose that X is an Ornstein-Uhlenbeck process,
i.e

Xt = X0 +Bt − r
∫ t

0

Xsds, r > 0.

Then, conditional on X0 = x, Xt is normally distributed with mean xert and variance
1−e−2rt

2r
. The speed measure for this diffusion is given by

m(dx) = e−rx
2

dx,

thus its generator, A, is symmetric with respect to m. Then, if one takes g = x2, it
follows from a simple computation that g = P1f , where

f(x) = e2rx2 − e2r − 1

2r
.

Note that both f and g belong to L2(m). However, f is not always nonnegative on R.

Remark 3. The inverse problem considered in this paper is typically severely ill-posed.
To get an understanding of the degree of ill-posedness suppose that A is unbounded
and consider the sequence of operators (Bn)n≥1 defined by

Bn :=

∫ n

0

eλTdEλ.

Note that each Bn is a bounded operator and Bng converges to P−1T g if g ∈ D(P−1T ).
On the other hand,

sup
g∈D(P−1

T )

‖Bng − P−1T g‖2

‖g‖2
= sup

g∈D(P−1
T )

∫∞
n+
e2λTd(Eλg, g)

‖g‖2
≥ e2nT

since if g ∈ D(P−1T ), so is gn, where

gn :=

∫ ∞
n+

dEλg.

The above implies in a sense that the ill-posedness grows exponentially with T .

As mentioned in the Introduction the inverse problem (1.1) is intimately linked
to the solution of a Cauchy problem, which becomes a backward partial differential
equation when A is a differential operator.

Corollary 2.2. The following hold for any fixed T > 0.

(1) Suppose that g ∈ D(P−1T ). Then there exist (u(t, ·))t∈[0,T ] such that u(t, ·) ∈
L2(m) for all t ∈ [0, T ], and

ut + Au = 0, t > 0, and u(0, ·) = g, (2.6)

where ut(t, ·) := limh→0
u(t+h,·)−u(t,·)

h
and the limit is in L2(m).
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(2) Conversely, if there exists a family (u(t, ·))t∈[0,T ] ⊂ L2(m) solving (2.6) for a
given g ∈ L2(m), then g ∈ D(P−1T ).

Consequently, there exists a unique solution of (2.6) in L2(m) if and only if g ∈
D(P−1T ). Moreover, P−1T g = u(T, ·).

Proof. Let f = P−1T g and define u(t, ·) = PT−tf . First observe that since f ∈ L2(m),
Ptf ∈ D(A) for all t > 0. Indeed,∫ ∞

0

λ2d(EλPtf, Ptf) =

∫ ∞
0

λ2e−2λtd(Eλf, f) ≤ 1

t2e2

∫ ∞
0

d(Eλf, f) <∞.

Thus,

APT−tf = −
∫ ∞
0

λe−(T−t)λdEλf.

Moreover,
d

dt
PT−tf =

d

dt

∫ ∞
0

e−(T−t)λdEλf =

∫ ∞
0

λe−(T−t)λdEλf

by virtue of the dominated convergence theorem since (Eλf, f) is of bounded variation
in λ and x2e−2x is bounded on [0,∞). Therefore, u solves (2.6) since u(0, ·) = PTf =
g.

Conversely, suppose u is a solution of (2.6) in L2(m). In particular, u(t, ·) ∈ D(A)
for t ∈ (0, T ]. Thus for any t ∈ (0, T ], we have

u(t, ·) = g +

∫ t

0

ut(s, ·)ds = g −
∫ s

0

dsAu(s, ·), (2.7)

where the integrals are to be understood as Bochner integrals in L2(m).
Next observe that for any λ ≥ 0 and f ∈ L2(m),

Eλf =

∫ λ

0

dEµf ∈ D(A),

and

AEλf = −
∫ λ

0

µdEµf.

Applying Eλ to both sides of (2.7) and exploiting the commutativity of Eλ and A we
obtain

Eλu(t, ·) = Eλg +

∫ t

0

ds

∫ λ

0

µdEµu(s, ·).

However, the unique solution of the above equation is given by

Eλu(t, ·) =

∫ λ

0

eµtdEµg,

which readily yields dEλu(t, ·) = eλtdEλg. Therefore,

PTu(T, ·) =

∫ ∞
0

e−λTdEλu(T, ·) = g.
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Since u(T, ·) ∈ L2(m), we deduce that g ∈ D(P−1T ).
Thus, we have shown that there is a one-to-one correspondence between D(P−1T )

and the L2-solutions of (2.6). Moreover, since P−1T g is uniquely determined, any
solution of (2.6) satisfies u(T, ·) = P−1T g.

Finally, by virtue of dEλu(t, ·) = eλtdEλg we readily establish the uniqueness of
L2-solutions of (2.6) under the assumption that g ∈ D(P−1T ). �

Theorem 2.1 characterises the domain of P−1T completely. However, it requires the
knowledge of the spectral resolution. Theorem 2.2, on the other hand, determines
the domain of P−1T in terms of the transition function. Before its statement let us
introduce a new operator on L2(m):

J α
t g :=

∫ ∞
0

J0(2
√
ts)e−αsPsgds, (2.8)

where α > 0, J0 is the Bessel function of the first kind of order 0, and the integral is
to be understood as a Bochner integral. Since J0 is bounded and Uα is a bounded
operator, it follows that J α

t is also a bounded operator and, thus, has L2(m) as its
domain.

Proposition 2.1. Let (J α
t ) be the family of operators defined by (2.8). For each

t > 0 and α > 0 J α is a non-negative self-adjoint operator on L2(m) with the
following spectral resolution:

J α
t =

∫ ∞
0

1

λ+ α
e−

t
λ+αdEλ. (2.9)

Moreover, for any g ∈ L2(m), the mapping t 7→ (J α
t g, g) is convex in t and decreases

to 0 as t→∞.

Proof. Let us first show that (2.9) holds. Indeed, using Fubini and the spectral

representation of Pt along with the fact that
∫∞
0
e−αsJ0(2

√
ts)ds = e−

t
α/α (see Table

29.2 in [1]), we obtain

(J α
t h, g) =

∫ ∞
0

(∫ ∞
0

J0(2
√
ts)e−(α+λ)sds

)
d(Eλh, g) =

∫ ∞
0

1

λ+ α
e−

t
λ+αd(Eλh, g),

which yields (2.9). Thus,

(J α
t g, g) =

∫ ∞
0

1

λ+ α
e−

t
λ+αd(Eλg, g) ≥ 0

since Eλ is a non-negative operator. It can be checked directly that J α
t is symmetric,

and therefore self-adjoint due to its boundedness.
The spectral representation also yields the monotonicity and the convexity of the

map t 7→ (J α
t g, g). The fact that limt→∞(J α

t g, g) = 0 is a consequence of the mono-
tone convergence theorem and the assumption that g ∈ L2(m). �
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Theorem 2.2. g ∈ D(P−1T ) if and only if∫ ∞
0

I0(2
√

2Ts)(J α
s g, g)ds <∞,

where I0 is the modified Bessel function of the first kind of order 0. Moreover, if
g ∈ D(P−1t ), then P−1t g equals a Bochner integral as follows:

P−1T g = e−αT
∫ ∞
0

I0(2
√
Ts)J α

s gds. (2.10)

Proof. It follows from (2.9) that∫ ∞
0

I0(2
√

2Ts)(J α
s g, g)ds =

∫ ∞
0

dsI0(2
√

2Ts)

∫ ∞
0

1

λ+ α
e−

s
λ+αd(Eλg, g)

=

∫ ∞
0

(∫ ∞
0

e−
s

λ+α I0(2
√

2Ts)ds

)
1

λ+ α
d(Eλg, g)

=

∫ ∞
0

e2T (λ+α)d(Eλg, g),

which is finite if and only if g ∈ D(P−1T ). The last line in the above follows from the
Laplace transform of the modified Bessel function (see Table 29.3 in [1]).

Next observe that for g ∈ L2(m),

‖J α
s g‖2 =

∫ ∞
0

1

(λ+ α)2
e−

2s
λ+αd(Eλg, g) ≤ 1

e2s2

∫ ∞
0

d(Eλg, g) =
‖g‖2

e2s2
.

Thus, using Fubini’s theorem and (2.9) we deduce∫ ∞
0

I0(2
√
Ts)J α

s gds = eαt
∫ ∞
0

eTλdEλg,

which implies (2.10). �

J αg can be explicitly computed if one knows the transition function of X. If one
instead has the knowledge of the family (Uα), J αg is determined as the solution of a
Cauchy problem.

Theorem 2.3. Given a g ∈ L2(m) there exists a unique solution to the following
Cauchy problem:

d

dt
j(t, ·) = −Uαj(t, ·) (2.11)

j(0, ·) = Uαg.

Moreover, its solution is given by j(t, ·) = J α
t g.

Proof. Let j(t, ·) = J α
t g and observe using (2.9) that

j(t, ·) =

∫ ∞
0

1

λ+ α
e−

t
λ+αdEλg.
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Thus,

Uαj(t, ·) =

∫ ∞
0

1

(λ+ α)2
e−

t
λ+αdEλg.

In view of the Fubini’s theorem∫ t

0

Uαj(s, ·)ds =

∫ ∞
0

1

λ+ α

(
1− e−

t
λ+α

)
dEλg = Uαg − j(t, ·),

which verifies that J α
t f solves (2.11) since

J α
0 g =

∫ ∞
0

1

λ+ α
dEλg = Uαg.

To show the uniqueness let us suppose j1 and j2 are two solutions of (2.11) and set
j = j1 − j2. Note that

UαEλj(t, ·) =

∫ λ

0

1

µ+ α
dEµj(t, ·).

Since j solves (2.11) with the initial condition 0, applying Eλ to both sides of the
equality we obtain

Eλj(t, ·) = −
∫ t

0

ds

∫ λ

0

1

µ+ α
dEµj(s, ·),

which yields Eλj(t, ·) = 0 for all λ ≥ 0. This completes the proof. �

Since −Uα is a non-positive bounded operator, it generates a uniformly continuous
semi-group, Tt := e−tU

α
. Thus, we have the following immediate corollary.

Corollary 2.3. Let (Tt) be the semigroup on L2(m) generated by Uα. Then,

J α
t g = TtU

αg.

The fact that J α
t g is a solution of a Cauchy problem with a bounded generator

also implies that one can compute it using a Picard iteration.

Corollary 2.4. Suppose g ∈ L2(m) and set

j0(t, ·) = Uαg,

jn+1(t, ·) = Uαg −
∫ t

0

Uαjn(s, ·)ds.

Then, (jn(·, ·))n≥0 converges uniformly in L2(m) to (J α
s g)s∈[0,t] for any t > 0, i.e.

lim
n→∞

sup
0≤s≤t

‖jn(s, ·)− J α
s g‖ = 0, ∀t > 0.

Proof. Let j(s, ·) = J α
s g and observe from (2.11) that

j(s, ·) = Uαg −
∫ s

0

Uαj(r, ·)dr.
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Moreover,

‖j0(s, ·)− j(s, ·)‖ ≤
∫ s

0

‖Uαj(r, ·)‖dr =

∫ s

0

√∫ ∞
0

1

(λ+ α)2
e−

2r
λ+αd(Eλg, g)dr

≤
∫ s

0

e−
r
α

α
‖g‖dr ≤ ‖g‖. (2.12)

Thus,

‖jn+1(s, ·)− j(s, ·)‖ ≤
∫ s

0

‖Uαjn(r, ·)− Uαj(r, ·)‖dr ≤ 1

α

∫ s

0

‖jn(r, ·)− j(r, ·)‖dr.

Hence,

sup
0≤s≤t

‖jn+1(s, ·)− j(s, ·)‖ ≤
1

α

∫ t

0

‖jn(r, ·)− j(r, ·)‖dr

and we deduce by induction that

sup
0≤s≤t

‖jn(s, ·)− j(s, ·)‖ ≤ tn

αnn!
sup
0≤s≤t

‖j0(s, ·)− j(s, ·)‖.

In conjunction with (2.12) this leads to the estimate

sup
0≤s≤t

‖jn(s, ·)− j(s, ·)‖ ≤ tn

αnn!
‖g‖,

which yields the claim. �

Although it is difficult to predict the tail behaviour of (J α
t f, f) as t→∞ due to the

oscillatory nature of the Bessel functions of the first kind, the Laplace transform of
(J α

t g, g) is a familiar object. Thus the tail behaviour can be determined by inverting
this Laplace transform as well.

Proposition 2.2. Suppose g ∈ L2(m). Then for all s ≥ 0∫ ∞
0

e−st(J α
t g, g)dt =

1

s
Uα+ 1

s (g, g).

Proof. Using the spectral representation of J α∫ ∞
0

e−st(J α
t g, g)dt =

∫ ∞
0

e−st
∫ ∞
0

1

λ+ α
e−

t
λ+αd(Eλg, g)

=

∫ ∞
0

1

λ+ α

1

s+ 1
λ+α

d(Eλg, g)

=
1

s

∫ ∞
0

1

λ+ α + 1
s

d(Eλg, g) =
1

s
Uα+ 1

s (g, g).

Also observe that the above identity is valid for s = 0 since αUαg → g as α → ∞
and ∫ ∞

0

(J α
t g, g)dt = (g, g).
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�

When X is a one-dimensional transient diffusion we have yet another way of char-
acterising J α.

Proposition 2.3. Suppose that X is as in Example 2.1 and is transient. Let Gx :=
sup{t ≥ 0 : Xt = x} be the last hitting time of x. Then

J α
t g(x) = u(x, x)Eµ

(
J0(2

√
tGx)e

−αGx1[Gx>0]

)
,

where µ is a measure on (E,E ) given by µ(dy) = g(y)m(dy), and u is the potential
kernel for X, i.e.

u(x, y) =

∫ ∞
0

p(t, x, y)dt.

Proof. It is well-known that (see, e.g., p.27 of [4])

P y(0 < Gy ≤ t) =

∫ t

0

p(s, x, y)

u(y, y)
ds.

In view of the symmetry of p(t, x, y) the above implies for all bounded and continuous
h that

Eµh(Gx)1[Gx>0] =

∫ ∞
0

h(s)
Psg(x)

u(x, x)
ds,

which yields the claim. �

Recall (see Chapter 9 of [1]) that J0 satisfies the following ODE:

x2J ′′0 + xJ ′0 + x2J0 = 0. (2.13)

The above equation and its connection with 2-dimensional Bessel process leads to
the following remarkable observation that J α

t can be considered as the solution of a
backward partial differential equation with an initial condition.

Proposition 2.4. Fix a g ∈ L2(m), T > 0 and consider the following function

h(t, x) =

∫ ∞
0

J0(2
√
xs)e−2(T−t)s(Psg, g)ds, x ≥ 0, t ∈ [0, T ). (2.14)

Then

ht + 2xhxx + 2hx = 0; (2.15)

h(0, ·) = (J T
x g, g).

Moreover, (h(t,Xt))t∈[0,S] is a bounded martingale for any S < T when X is a 2-
dimensional squared Bessel process, i.e. X is the unique weak solution

dXt = 2
√
XtdWt + 2dt,

where W is a standard Brownian motion.
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Proof. First note that |J0| < 1 and
J ′0(x)

x
is bounded on [0,∞). The latter implies that

d
dx
J0(2
√
xs) is bounded whenever s belongs to a bounded interval. In view of (2.13)

these observations further yield that d2

dx2
J0(2
√
xs) is bounded when (x, s) belong to

compact squares. Thus, we can differentiate under the integral sign in (2.14) to get

ht + 2xhxx + 2hx

=

∫ ∞
0

{
2x

d2

dx2
J0(2
√
xs) + 2

d

dx
J0(2
√
xs) + 2sJ0(2

√
xs)

}
e−2(T−t)s(Psg, g)ds.

However, (2.13) implies that the term within the curly brackets vanishes. Moreover,
h(0, ·) = (J T

x g, g) by the definition of h. This completes the proof that h solves the
PDE in (2.15).

To finish the proof note that (h(t,Xt))t∈[0,S] is a local martingale by an application
of Ito’s formula. Moreover, for any t ≤ S

0 ≤ h(t,Xt) ≤
∫ ∞
0

e−2(T−S)s(Psg, g)ds = (U2(T−S)g, g) <∞,

which in turn yields that (h(t,Xt))t∈[0,S] is a bounded martingale. �

3. Regularisation of the inverse problem

Regularisation of inverse problems are in principle perturbations of the forward
operator so that its inverse becomes a bounded operator on the underlying Hilbert
space. As a bounded operator the perturbed inverse operator can then be applied
to any member of the Hilbert space. If the perturbation is small, one expects not
to deviate too much from the solution of the original inverse problem, if it exists.
We refer the reader to [13] for an exhaustive treatment of regularisation methods for
inverse problems.

The most common method for regularising ill-posed inverse problems is the Tikhonov
regularisation. In our set up this will correspond to the solution of an auxiliary prob-
lem

PTf + γf = g, γ > 0, g ∈ L2(m).

Using spectral calculus it can be formally showed that the inverse of PT + γI is given
by ∫ ∞

0

1

γ + e−λT
dEλ.

Since γ+e−λT is bounded away from 0, this inverse operator is bounded and, therefore,
has all of L2(m) as its domain.

In view of the above heuristic discussion we shall next describe a family of perturba-
tions of the original problem that results in a regularisation. The resulting problems
can be viewed as a mixture of the original inverse problem with a suitable regularising
noise.
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Theorem 3.1. Suppose that φ : R+ → R+ is a continuous function with lim infx→∞ φ(x) >
0 such that for some given T > 0 and supx≥0 e

−Txφ(x) <∞. Then, for any g ∈ L2(m)
there exists a unique solution f ∈ L2(m) to the following:

(1− γ)PTf + γφ(−A)f = g, γ ∈ (0, 1). (3.16)

Moreover, the solution is given by

f =

∫ ∞
0

1

γφ(λ) + (1− γ)e−λT
dEλg, (3.17)

and has the property that

(1− γ)f = arg min
h∈L2(m)

‖PTh− g‖2 +
γ

1− γ
(PTφ(−A)h, h). (3.18)

Note that the choice of φ ≡ 1 leads to the aforementioned Tikhonov regularisation.
Proof of Theorem 3.1 will follow from the following general result.

Lemma 3.1. Suppose that B and L are non-negative symmetric operators on a real
Hilbert space H with the inner product (·, ·) such that B is bounded, the range of B
is included in D(L), and BL = LB. Then the following are equivalent for f, g ∈ H.

i) f ∈ D(L) and Bf + Lf = g.
ii) f = arg minh∈H ‖Bh− g‖+ (BLh, h).

Proof. For h ∈ H set
J(h) := ‖Bh− g‖2 + (BLh, h)

and observe that BLh is well-defined since BL = LB and the range of B is included
in D(L).

i) =⇒ ii) If i) holds, then B2f +BLf = Bg. Thus,

0 = (B2f −Bg, f − h) + (BLf, f − h)

= (Bf − g,Bf −Bh) + (BLf, f)− (BLf, h)

= (Bf − g,Bf − g)− (Bf − g,Bh− g) + (BLf, f)− (BLf, h)

= J(f)− (Bf − g,Bh− g)− (BLf, h)

= J(f)− J(h) + (Bh−Bf,Bh− g) + (BL(h− f), h).

To arrive at ii) it remains to show (Bh − Bf,Bh − g) + (BL(h − f), h) ≥ 0
for any h ∈ D(L). Indeed, utilising g = Bf + Lf , we obtain

(Bh−Bf,Bh− g) + (BL(h− f), h) = ‖Bh−Bf‖2 + (BLh, h)− 2(BLf, h) + (BLf, f)

= ‖Bh−Bf‖2 + (BL(f − h), f − h),

which is nonnegative since BL is a nonnegative operator.
ii) =⇒ i) Since f is the minimiser, f ∈ D(L) by hypothesis. Moreover, for any h ∈ H,

d

dt
J(f + th)

∣∣∣∣
t=0

= 0.
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However, straightforward differentiation of J(f + th) yields

(B2f +BLf −Bg, h) = 0, h ∈ H,

which implies

B2f +BLf −Bg = 0.

On the other hand, B2f+BLf−Bg is clearly in the domain of B−1. Therefore,
applying B−1 to both sides of the above equation establishes i).

�

Proof of Theorem 3.1. Observe that f given by (3.17) is well-defined and belongs to
L2(m) since g ∈ L2(m) and lim infx→∞ φ(x) > 0. Moreover, it belongs to the domain
of φ(−A). The fact that f is the solution of (3.16) is easy. Indeed, using the spectral
representation

(1− γ)PTf + γφ(−A)f =

∫ ∞
0

e−λT (1− γ) + γφ(λ)

γφ(λ) + (1− γ)e−λT
dEλg = g.

Thus, it remains to show (3.18). However, this follows from Lemma 3.1 with B = Pt
and L = γ

1−γφ(−A). Note that the range of PT is included in the domain of φ(−A)

due to the assumption that supx≥0 e
−Txφ(x) <∞. �

Remark 4. The choice of γ in Theorem 3.1 is free and one can in fact obtain a
statement independent of γ by replacing g by (1− γ)g and φ by γ

1−γφ. However, the

representation in (3.16) is chosen in order to emphasise that the regularisation can be
viewed as a random mixture of two stochastic process. This point will be revisited and
explained in more detail at the end of this section. Moreover, this representation will
also be useful in Proposition 3.1 that studies the stability of the solutions of (3.16) as
γ → 0.

Remark 5. The assumption that lim infx→∞ φ(x) > 0 cannot be dispensed easily if
(3.16) is to have a solution for any given g ∈ L2(m). To see this take φ(x) = e−Tx.
Then (3.16) becomes PTf = g, which does not have a solution in general.

If g ∈ D(P−1T ), one should expect that the solutions of (3.16) converge to P−1T g as
γ → 0. This is indeed the case as the following proposition shows.

Proposition 3.1. Let φ be as in Theorem 3.1 and for each γ ∈ (0, 1) denote by fγ
the solution of (3.16). Assume further that g ∈ D(P−1T ). Then

lim
γ→0
‖fγ − P−1T g‖ = 0.

Proof. The hypothesis that g ∈ P−1T implies∫ ∞
0

e2λTd(Eλg, g) <∞.
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On the other hand,(
eλT − 1

γφ(λ) + (1− γ)e−λT

)2

≤
(

2− γ
1− γ

)2

e2λT .

Thus, in view of the Dominated Convergence Theorem, we have

lim
γ→0

∫ ∞
0

(
eλT − 1

γφ(λ) + (1− γ)e−λT

)2

d(Eλg, g) = 0,

which yields the claim. �

Although looking abstract, Theorem 3.1 furnishes us with a plethora of concrete
examples for regularising the inverse problem (1.1). To see this in a specific example
suppose that the transition function, (Pt), possesses a density with respect to m. Let
us denote this transition density with p(t, ·, ·) and introduce a new operator, B, on
L2(m) via

Bf(x) :=

∫
E

f(y)p(T ∗, x, y)m(dy)− f(x) = PT ∗f(x)− f(x), (3.19)

where T ∗ > 0 is fixed. Due to the symmetry of PT ∗ , B is a also bounded symmetric
operator on L2(m). Moreover, it corresponds to the generator of a Markov jump
process that remains constant between the jumps of a Poisson process with unit
parameter and moves between the points of E according to the transition function
PT ∗ (see Example 2.2). Thus, by enlarging the probability space if necessary, we can
assume the existence of a Markov jump process, J , with generator B and independent
from X. The semigroup, (P̃t), associated with J is easily seen to satisfy P̃t = etB =
φ(t;−A), where φ(t;x) = exp(t(e−T

∗x − 1)). Clearly, φ(T ; ·) satisfies the conditions
of Theorem 3.1 for every T > 0. Thus, for every t > 0, L2(m) = D(Q−1t ), where

Qt = (1− γ)Pt + γP̃t.

Note that (Qt) is the semigroup of the Markov process, Y , where

Y = ξX + (1− ξ)J,
and ξ is a Bernoulli random variable independent of X and J with Prob(ξ = 1) =
1 − γ. Therefore, mixing the original Markov process with a pure jump process we
observe that the inverse problem admits a solution. This construction readily extends
to the following result.

Corollary 3.1. Suppose that K is a bounded positive operator such that K = ψ(−A)
for some bounded continuous function ψ : R+ → [0, 1]. In an enlargement of the
probability space there exists a Markov process Y such that

Y = ξX + (1− ξ)J,
where ξ is a non-degenerate Bernoulli random variable, J is a jump Markov process
with generator

Bf = Kf − f, f ∈ L2(m),
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and ξ, J and X are mutually independent. Moreover, D(Q−1t ) = L2(m), where (Qt)
is the semigroup associated to Y .

Due to the relationship between the inverse problem and the backward PDEs the
above corollary leads to the following in view of Corollary 2.2.

Corollary 3.2. Suppose that K is a bounded positive operator such that K = ψ(−A)
for some bounded continuous function ψ : R+ → [0, 1]. Then, for any g ∈ L2(m) and
γ ∈ (0, 1), there exists a unique solution of

ut + γAu+ (1− γ)(Ku− u) = 0, u(0, ·) = g. (3.20)

The above corollaries show that if we construct a new process by randomly mixing
the original process with a suitably chosen independent jump process, the inverse
problem becomes well-posed when Pt is replaced with the corresponding transition
function of the new process. Note that γ can be chosen arbitrarily close to 1, which
in practice means that one would almost never see the jump process, Y .

Moreover, the equation (3.20) provides a numerical algorithm to find the approx-
imate solutions of the inverse problem when a sufficiently close approximation of K
is known as in the following examples.

Example 3.1. Suppose that X is a Brownian motion and m is the Lebesgue measure
on the real line. Then, the generator B defined in (3.19) corresponds to a compound
Poisson process with unit intensity, whose jumps are normally distributed with mean
0 and variance T ∗. In this case the process Y of Corollary 3.1 is a Brownian motion
with probability 1− γ and a compound Poisson process with probability γ.

Corollary 3.2, on the other hand, gives us a regularisation of the ill-posed backward
heat equation with an initial condition. The regularisation takes the form of a partial
integro-differential equation as follows:

ut +
γ

2
uxx + (1− γ)

∫ ∞
−∞

(u(t, y)− u(t, x))
1√

2πT ∗
exp

(
−(x− y)2

2T ∗

)
dy = 0;

u(0, ·) = g.

Corollary 3.2 yields the existence and uniqueness of a solution to the above for any
g ∈ L2(m).

Example 3.2. Let K = αUα for some α > 0, where Uα is the α-potential operator.
Observe that ‖K‖ ≤ 1 so Corollary 3.1 is applicable. In this case the process Y is
given by X with probability 1 − γ while it is equal to a Markov jump process with
generator K − I with probability γ.

Example 3.3. If the potential operator U is bounded, then K = U
‖U‖ will have norm

1 to which one can apply Corollary 3.1. A particular example of this situation occurs
when X is a one-dimensional diffusion on (`, r) with absorbing boundaries. In this
case U is bounded and it has the representation

Uf(x) =

∫ r

`

v(x, y)f(y)m(dy),
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where m is the speed measure, v(x, y) = s(x∧y)(1−s(x∨y)), and s is the normalised
scale function so that s(`) = 0 and s(r) = 1. Therefore, in view of Corollary 3.2, an
approximate solution to the inverse problem is given by the solution of

ut(t, x) + γAu(t, x) + (1− γ)

∫ r

`

{u(t, y)− u(t, x)} v(x, y)

‖U‖
m(dy) = 0;

u(0, ·) = g.

Remark 6. The above examples and more generally Corollary 3.2 show that the
solution of the regularised inverse problem coincides with that of a partial integro-
differential equation. Using the approach of [8] one can obtain a finite difference
scheme that approximates the solution. Development of an efficient numerical algo-
rithm and its comparison with other regularisation methods is beyond the scope of this
paper and left for future research.
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