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Abstract

Rothschild and Stiglitz [1976] proposed a model of a competitive market with adverse
selection and showed that a (pure strategy) Nash equilibrium may not exist. Among
the solutions proposed to deal with this problem, a particularly influential one is the
notion of Riley (or reactive) equilibrium [Riley, 1979]. We give an example that shows
that a Riley equilibrium may not exist if consumers are not ordered.
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Rothschild and Stiglitz [1976] proposed a model of a competitive market with adverse
selection where firms compete by offering insurance contracts to consumers. They showed
that a (pure strategy) Nash equilibrium may not exist. Among the solutions proposed to
deal with this problem, a particularly influential one is the notion of reactive equilibrium –
also known as Riley equilibrium [Riley, 1979]. In a Riley equilibrium, before introducing a
new contract, each firm anticipates how other firms would react to it. If, in response to the
new contract, another firm would introduce a profitable contract that makes the original firm
lose money, it chooses not to introduce it. Additionally, this new profitable contract cannot
be made unprofitable by the introduction of another contract.

Riley [1979] showed that the unique reactive equilibrium in the model of Rothschild and
Stiglitz is the “least costly separating equilibrium.” Engers and Fernandez [1987] general-
ized Riley’s result, while maintaining the assumption of one-dimensional, ordered types.1

However, subsequent empirical and theoretical work has shown that consumers are often
heterogeneous in more than one dimension, and that this is important for various policy
questions.2 In a recent influential paper, Handel et al. [2015] studied Riley equilibria in
a setting that allows for richer heterogeneity. It is therefore natural to ask whether Riley
equilibria exist more generally, allowing it to be used in empirically realistic settings.

In this note, we show that a Riley equilibrium may not exist. We give a natural example
of a market with no Riley equilibria. As in Handel et al. [2015], the set of contracts is simple,
as firms offer only two contracts. However, consumer types are not ordered along a single
dimension, unlike the settings considered by Riley [1979], Engers and Fernandez [1987], and
Handel et al. [2015]. This suggests that, to obtain predictions in more realistic environments,
other solution concepts are necessary.

1 Preliminaries

We start with the formal definition of a Riley equilibrium based on Engers and Fernandez’s
[1987] generalization of Riley [1979].3 The model studies the interaction between uninformed
firms who sell different contracts to privately-informed consumers. Firms compete by offering

1As Rochet and Stole [2003] point out, there is a close relationship between models with multidimensional
types and those with unordered types. For example, any model with finitely many multidimensional types
can be written as a model with one-dimensional types, but the resulting one-dimension type space is typically
not ordered.

2See, for example, Finkelstein and McGarry [2006], Cohen and Einav [2007], Fang et al. [2008]. Multidi-
mensional heterogeneity is discussed in detail by Chiappori and Salanié [2000], Smart [2000], Heckman [2004],
Araujo and Moreira [2010], Guerrieri and Shimer [2015], Veiga and Weyl [2016], Azevedo and Gottlieb [2017].

3See also Handel et al. [2015]. Our goal is to show that a Riley equilibrium may not exist. There is also
a literature that studies whether static equilibrium concepts intended to capture dynamic adjustments, such
as the Riley equilibrium, correspond to equilibria of a dynamic model (see, for example, Netzer and Scheuer
[2014] and Mimra and Wambach [2016]).
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menus of contracts to consumers. Let X = {x1, ..., xC} be the finite set of possible contracts.
A price vector p = {p1, ..., pC} specifies a price for each contract.

Consider a situation where firms offer price vectors p1, ... , pN , and let P = {p1, ...,pN}
be the set of price vectors being offered. In order to determine whether this is a Riley
equilibrium, we must consider what happens when an entrant offers a new price vector p0.
We write p0 ⊕P to denote the new set of price vectors that is obtained by including vector
p0 in P, i.e., p0 ⊕ P = {p0,p1, ...,pN}. For any p ∈ P, let Π(p,P) denote the per-unit
profit obtained by a firm that offers price vector p when the set of all offered price vectors
corresponds to P. In applications, Π is obtained by specifying preferences and the private
information of informed consumers (as we will do in Section 2). A price vector p ∈ P is safe
if it cannot be made unprofitable by including any other vector p0. That is, Π(p,p0⊕P) ≥ 0

for any p0.

Definition 1. A Riley equilibrium is a set of price vectors P with the following properties:

• Firms do not incur losses: Π(p,P) ≥ 0 for all p ∈ P.

• For any new price vector pA /∈ P that gives a positive profit

Π(pA,pA ⊕P) > 0,

there exists another price vector pB /∈ P such that:

◦ pA incurs losses when pB is included:

Π(pA,pB ⊕ pA ⊕P) < 0,

◦ pB does not incur losses when any new price vector pC (possibly ∅) is included
(pB is “safe”). That is, for any pC ,

Π(pB,pC ⊕ pB ⊕ pA ⊕P) ≥ 0.

Definition 1 states that a set of price vectors P fails to be a Riley equilibrium if and only if
either it makes negative profits, or there exists a profitable deviation pA such that: either
(a) pA is safe, or (b) if pA is not safe, any deviation pB that makes it unprofitable must not
be safe itself. In particular, taking pC = ∅, we find that pB cannot incur losses when added
to pA ⊕P.

Riley equilibria generalize (pure strategy) Nash equilibria of a model of Bertrand competi-
tion by ruling out any deviation that could be made unprofitable by some other deviation, as
long as this other deviation is safe. Therefore, when there are no safe prices, Riley equilibria
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and (pure strategy) Nash equilibria coincide. This observation will be useful in our proof of
Lemma 2 below.

2 An Example of Non-Existence of Riley Equilibria

We now show that Riley equilibria may not exist when types are not ordered. Our example
is based on a variation of the Hotelling model. Consumers are uniformly distributed in the
unit interval θ ∈ [0, 1]. There are two possible contracts: X = {0, 1}. A type-θ consumer
who buys contract x at price p gets utility

K − (x− θ)2

α
− p,

where α > 0 parameterizes the similarity between contracts (it is the inverse of the trans-
portation cost in the standard Hoteling model) and K is large enough to ensure that the
market is served. The model has adverse selection, in the sense that the cost of selling a
contract depends on the consumer who is buying it. Selling contract x ∈ {0, 1} to type θ
costs (

θ − 1

2

)2

.

The key aspect of our example is that types are not ordered along a single dimension in
preferences and costs. The lack of ordering is a key driver of non-existence, because Riley
[1979] and Handel et al. [2015] have obtained existence theorems under the assumption of
ordered types.4 In our model, preferences are ordered in one dimension by θ in [0, 1], which
measures how much a consumer likes contract x = 1 relative to contract x = 0. However,
costs are not monotonic in θ. The cheapest consumers are the intermediate ones, with
θ = 1/2, whereas the most expensive are the consumers with extreme values of θ = 0 and
θ = 1. Therefore, consumers cannot be ordered in a single dimension summarizing both their
costs and preferences.

Before proving that a Riley equilibrium does not exist under certain parameters, we briefly
discuss the intuition. This discussion is not necessary for the proofs and may be skipped.
Figure 1 plots costs as a function of type θ. To make the discussion more intuitive, suppose
prices are measured in thousands of dollars. The most expensive types θ = 0 and θ = 1

have a cost of 1/4 ($250). Consider Nash equilibria first. A plausible candidate is for both
contracts to have the same price. Consumers with θ in [0, 1/2] buy contract 0, and consumers
with θ in [1/2, 1] buy contract 1. For firms to make zero profits, the price has to be equal

4For example, in Handel et al. [2015], there are two contracts, one with 90% coverage and another with
60% coverage. For each type, the cost of providing the 90% contract is greater than the cost of providing the
60% contract. Moreover, consumers with higher types have a higher preference for the 90% coverage and are
are more expensive to cover.
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Figure 1: Unit cost as a function of consumer type.

to the average cost in Figure 1, which is 1/12 ($83.33). However, Lemma 1 shows that this
is not an equilibrium when the demand is very elastic (that is, α is high). A firm can profit
by offering contract 0 for a slightly lower price, such as $80. This corresponds to a deviation
such as pA = ($80,∞). The firm will gain all of the market share of contract 0 and will
attract some marginal consumers close to θ = 1/2, who are the cheapest consumers. The
upshot is that no Nash equilibrium exists when α is high (as demonstrated by Lemma 1).

The more interesting question is whether a Riley equilibrium exists. For example, it could
be that pricing both contracts at 1/12 (that is, $83.33) is not a Nash equilibrium but is a
Riley equilibrium. If so, then a deviation like pA = ($80,∞) must lose money if another safe
deviation pB is added. For example, a competitor could try to offer pB = (∞, $77), which
would steal low-cost consumers from the firm offering pA. The key point is that no such
deviation pB is safe. The reason is that there is always a deviation pC that steals even more
of the lower-cost consumers from the firm offering pB, making pB unprofitable. Formally,
Claim 1 shows that, for sufficiently high α, it is only safe to make offers that are above the
highest possible cost of 1/4 (that is, $250). Thus, the different ordering of preferences and
costs makes it so that there are few safe deviations, so that a Riley equilibrium also does not
exist.
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3 Proof that there is no Equilibrium

The type θ∗ who is indifferent between both contracts when the lowest prices are p0 and p1
is determined by:

K − θ2

α
− p0 = K − (1− θ)2

α
− p1 ∴ θ∗ =

1− α (p0 − p1)
2

. (1)

Then, because types are uniformly distributed, the demand for contract 0 is:

D0(p0, p1) ≡


0 if 1 + α (p1 − p0) < 0

1+α(p1−p0)
2

if 0 ≤ 1 + α (p1 − p0) ≤ 2

1 if 1 + α (p1 − p0) > 2

.

By symmetry, the demand for contract 1 is analogous. We say that a price vector (p0, p1)

yields an interior allocation if 0 < D0(p0, p1) < 1.

Because costs are symmetrically distributed, we can define C(q) as the expected per-unit
cost of selling to the mass q of consumers with the highest willingness to pay for each contract:

C(q) =

∫ q
0

(
θ − 1

2

)2
q

dθ =
q2

3
− q

2
+

1

4
.

For interior allocations, the per-unit profit of selling x = i at price pi equals

pi − C(Di(pi, p−i)) = pi −
1− α (p−i − pi) + α2 (p−i − pi)2

12
. (2)

The per-unit profit function Π can be easily calculated from equation (2).5

It is helpful to consider the existence of Nash equilibria before turning to Riley equilibria.
Lemma 1 shows that Nash equilibria do not exist when horizontal differentiation between
contracts is low (i.e., α is high).6

5To do so, let p∗i (P) ≡ min{p̃0 : (p̃0, p̃1) ∈ P} denote the lowest price being charged for contract i ∈ {0, 1}.
The per-unit profit of selling contract i is

φi(pi,P) ≡


0 if pi 6= p∗i (P) or p∗i (P)− p∗−i (P) ≥ 1

α

pi − 1−α(p−i−pi)+α2(p−i−pi)2
12 if pi = p∗i (P) and |p∗i (P)− p∗−i (P) | < 1

α
pi − 1

12 if pi = p∗i (P) and p∗−i (P)− p∗i (P) ≥ 1
α

.

The first line says that the firm gets zero profits if some other firm is charging a lower price, or if no consumer
is buying contract i. The second line specifies the per-unit profits if the allocation is interior, whereas the
third line specifies profits when all consumers buy contract i. Total per-unit profits are the sum of per-unit
profits from both contracts:

Π((p0, p1),P) ≡ φ0(p0,P) + φ1(p1,P).

6This is a natural result in light of existence problems with price competition and consumers differentiated
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Lemma 1. Let α > 12. Then, no (pure strategy) Nash equilibrium exists.

Proof. In any (pure strategy) Nash equilibrium, profits on all contracts are zero. Let (p0, p1)

denote the lowest prices charged for each contract. With interior allocations, setting per-unit
profits (2) equal to zero for both contracts yields p0 = p1 as long as α 6= 6. Thus, there
are three possible Nash equilibria: an interior, symmetric Nash equilibrium (p0 = p1) and
two asymmetric Nash equilibria at the boundaries (one where all consumers buy x = 0 and
another where they all buy x = 1). In the symmetric candidate equilibrium, we must have

p0 = p1 = C

(
1

2

)
=

1

12
.

In the asymmetric candidate equilibria, zero profits gives:

pi = C(1) =
1

12
,

where i ∈ {0, 1} denotes the only contract being sold. Notice that, in all candidate equilibria,
all traded contracts have price 1

12
.

We now verify that these are not Nash equilibria because firms can profit by offering a
contract at a price slightly below 1

12
and attracting a large mass of low-cost consumers. In the

symmetric candidate equilibrium, the per-unit profit from selling a contract at price p < 1
12

is

p−
1− α

(
1
12
− p
)

+ α2
(

1
12
− p
)2

12
.

The derivative of this expression with respect to p equals

1−
α− 2α2

(
1
12
− p
)

12
,

which, evaluated at p = 1
12
, becomes

1− α

12
< 0 ⇐⇒ α > 12.

Therefore, a small reduction in price below 1
12

yields positive profits whenever α > 12. Next,
consider the asymmetric candidate equilibrium where only contract x = i is sold at price
pi = 1

12
. By the same calculations as before, selling the other contract (x 6= i) at a price

slightly below 1
12

yields positive profits. Thus, no (pure strategy) Nash equilibrium exists
when α > 12.

a la Hotelling, even without adverse selection. In these models, much like in ours, profits can be discontinuous
as a function of prices, and a firm’s best response might not be convex-valued. See Caplin and Nalebuff [1991]
pp. 26-27 and references therein for an explanation of the existence issues in this type of model.
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We now turn to the existence of Riley equilibria. Before doing so, it is helpful to introduce
some terminology. We say that a price vector p is safe if there is no other price vector pA

that could make p unprofitable:
Π(p, {p,pA}) < 0.

Our next result shows that the set of Riley equilibria coincides with the set of Nash equilibria
when α > 4:

Lemma 2. Let α > 4. Then, a set of price vectors P is a Riley equilibrium if and only if it
is a (pure strategy) Nash equilibrium.

The proof will follow from two claims. First, we will show that a price vector is safe if and
only if all prices are at least 1

4
. Because there are no safe prices below 1

4
, this result implies

that, if we restrict to prices in this range, price vectors in Riley and Nash equilibria coincide.
Second, we will show that there are neither Riley nor Nash equilibria in which all prices are
above 1

4
.

Claim 1. A price vector (p0, p1) is safe if and only if p0 ≥ 1
4
and p1 ≥ 1

4
.

Proof. To see that any vector that charges at least 1
4
for all contracts must be safe, notice

that the cost of supplying a contract to type θ is
(
θ − 1

2

)2
, which has a maximum value of

1
4
. Therefore, no contract with a price above 1

4
can be unprofitable.

We now show that (p0, p1) is not safe when either p0 < 1
4
or p1 < 1

4
. Without loss of

generality, let p0 ≤ p1 and suppose that p0 < 1
4
(the case where p1 < p0 is symmetric). Let

pA
ε ≡ (p0+1, p0− 1

α
+ε), where 0 < ε < p1−p0+ 1

α
. Substituting in (1) verifies that a positive

mass of consumers buys each of the two contracts (contract 0 at price p0 and contract 1 at
price p0 − 1

α
+ ε). A firm offering p sells contract x = 0 at price p0, making a profit of

p0 −
1− α

(
pA1 − p0

)
+ α2

(
pA1 − p0

)2
12

= p0 −
2− αε+ α2

(
1
α
− ε
)2

12
,

which converges to p0− 1
4
as ε↘ 0. Since p0 < 1

4
, offering price vector p is unprofitable after

pAε is introduced when ε small enough, showing that p is not safe.

Claim 2. Let α 6= 6. There are no Riley equilibrium and no (pure strategy) Nash equilibrium
in which all prices are weakly greater than 1

4
.

Proof. We first show that in any (pure strategy) Nash equilibrium of the Bertrand game, each
traded contract makes zero profits. To see this, notice that if a firm makes strictly positive
profits from a contract, a firm that undercuts the price of this contract by a small amount
would capture the entire market for this contract at approximately the same per-unit profit
(since per-unit profits 2 are continuous in prices), thereby obtaining strictly positive profits.
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Recall that, as shown in the proof of Lemma 1, any traded contract that makes zero
profits must be sold at price 1

12
< 1

4
. Therefore, we cannot have a Nash equilibrium with any

contract traded at prices weakly above 1
4
.

Next, we show that there are no Riley equilibria with prices strictly above 1
4
. Notice that

we cannot have an interior Riley equilibrium in which at least one price is strictly above 1
4

(otherwise, introducing the price vector pA = (1
4
, 1
4
) is both safe and profitable). There are

two possibilities: (i) one contract is sold at price 1
4
and the price of the other contract is high

enough that no one buys, and (ii) both contracts are sold at price 1
4
.

To see that case (i) cannot be a Riley equilibrium, let P be a set of price vectors where
p0 = 1

4
is the lowest price offered for contract 0 and the lowest offered for contract 1 satisfies

p1 >
1
4

+ 1
α
. Under these prices, all types buy contract 0.

To verify that P is not a Riley equilibrium, it suffices to show that there exists a price
vector pA that makes a strictly positive profit when added to this market (Π(pA,pA⊕P) > 0)

and that does not incur any losses when any other pB is added (Π(pA,pB ⊕pA⊕P) ≥ 0 for
all pB). But this follows directly from Claim 1 (adding pA = (1, 1

4
) gives a per-unit profit

of 1
6
> 0 when included to P, and pA cannot be made unprofitable by introducing any price

vector pB to pA ⊕P).
Next, we verify that case (ii) cannot be a Riley equilibrium. To show that a set of price

vectors P is not a Riley equilibrium, it suffices to show that for any profitable deviation pA,
any deviation pB that makes pA unprofitable is not safe.

Let P be a set of price vectors under which both contracts are sold at price 1
4
. Note that

there exist price vectors pA ≤ (1
4
, 1
4
) that make strictly positive profits (since per-unit profits

2 are continuous in prices and the per-unit profit of offering (1
4
, 1
4
) is 1

6
> 0). Note also that

a new contract pA can only be profitable if it offers at least one contract (say, x = 0) at a
price pA0 <

1
4
(otherwise, no consumer would buy from pA and it would make zero profits).In

line with Definition 1, let pB be a new price vector that, when added to pA ⊕ P, makes
pA unprofitable. This can only be true if either pB0 < pA0 ≤ 1

4
(introducing pB steals all

customers who were buying x = 0 from pA) or pB1 < 1
4
(introducing pB affects the pool of

customers who buy x = 0 from pA, increasing the average cost of selling x = 0). By Claim
1, such pB exists. Moreover, also by Claim 1, pB is not safe, meaning that there is always a
vector pC that, when included to pB ⊕ pA ⊕P, makes pB itself unprofitable.

Combining Lemmas 1 and 2 gives our main result:

Proposition 1. No Riley equilibrium exists when α > 12.

While Riley equilibria may not exist, the model always has a competitive equilibrium,
as defined by Azevedo and Gottlieb [2017]. The interior allocation in which both contracts
are traded at price 1

12
is always an equilibrium. In addition, when α ≤ 6 (so that horizontal

differentiation between contracts is high enough), there are also two equilibria in which only
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one of the contracts is traded at price 1
12

and the non-traded contract is supplied at price
1
12

+ 1
α
. From Dasgupta and Maskin [1986], the model also has a Nash equilibrium in mixed

strategies. Another possible solution is to rewrite the model in a dynamic setting, such as in
Mimra and Wambach [2016], Netzer and Scheuer [2014].

4 Conclusion

Starting with Rothschild and Stiglitz [1976], a large theoretical literature has studied equi-
libria in adverse selection models with one-dimensional types. One of the most commonly
used equilibrium concepts is that of Riley [1979]. In recent years, however, several studies
have emphasized the importance of incorporating heterogeneity in more than one dimension.
This paper shows that the Riley equilibrium may fail to exist if one drops the assumption of
one-dimensional types.
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