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Abstract: Policy making for complex Social-Ecological Systems (SESs) is a multi-factorial and multi-10 

stakeholder decision making process. Therefore, proper policy simulation in a SES should consider both 11 

the complex behavior of the system and the multi-stakeholders’ interventions into the system, which 12 

requires integrated methodological approaches. In this study, we simulate impacts of policy options on 13 

a farming community facing water scarcity in Rafsanjan, Iran, using an integrated modeling 14 

methodology combining an Agent Based Model (ABM) with Fuzzy Cognitive Mapping (FCM). First, 15 

the behavioral rules of farmers and the causal relations among environmental variables are captured with 16 

FCMs that are developed with both qualitative and quantitative data, i.e. farmers’ knowledge and 17 

empirical data from studies. Then, an ABM is developed to model decisions and actions of farmers and 18 

simulate their impacts on overall groundwater use and emigration of farmers in this case study. Finally, 19 

the impacts of different policy options are simulated and compared with a baseline scenario. The results 20 

suggest that a policy of facilitating farmers’ participation in management and control of their 21 

groundwater use leads to the highest reduction of groundwater use and would help to secure farmers’ 22 

activities in Rafsanjan. Our approach covers four main aspects that are crucial for policy simulation in 23 

SESs: 1) causal relationships, 2) feedback mechanisms, 3) social-spatial heterogeneity and 4) temporal 24 

dynamics. This approach is particularly useful for ex-ante policy options analysis. 25 

Keywords: Social-ecological systems; Fuzzy cognitive mapping; Agent-based modelling; Policy option 26 

analysis; Water scarcity.  27 
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1. Introduction 45 

Environmental management and policy making for complex Social-Ecological Systems (SESs) are 46 

multi-factorial and multi-stakeholder decision-making processes. This has two important implications. 47 

First, SESs include multiple, interacting social and ecological factors (variables), e.g. natural resources, 48 

climate change, human interventions, emigration and social vulnerability. Interactions between these 49 

factors influence the behavior of the whole system. Therefore, policy analysis methods for SESs should 50 

be able to simulate the ex-ante impact of policies by considering the dynamic behavior and interactions 51 

of all important factors. Second, SESs involve many different stakeholders, from resource consumers to 52 

policy makers and managers, all of whom have different interests, which sometimes leads to conflicting 53 

decisions and actions. This heterogeneity may change the impact of policy options in different contexts 54 

(Levin et al., 2013, Mease et al., 2018).  55 

This study aims to support policy making in an SES of a farming community in Rafsanjan, Iran, which 56 

is facing severe water scarcity. Rafsanjan is among the top producers and exporters of pistachios in the 57 

world. Being in an arid and semi-arid region, pistachio farmers in Rafsanjan depend entirely on 58 

groundwater to irrigate their orchards, however, their production has been severely threatened by water 59 

scarcity in recent years (Mehryar et al., 2015, Mehryar et al., 2016). Water scarcity in Rafsanjan is 60 

clearly a multi-factorial and multi-stakeholder problem. Many social and ecological variables are 61 

influencing or being influenced by water scarcity in this region e.g. precipitation, groundwater use, 62 

pistachio production, land cover change, farmers’ social-economic vulnerability, land subsidence, etc., 63 

dynamics of which should be considered in water scarcity policy making. Also, different groups of 64 

farmers (based on their social-spatial situations) take various and sometimes conflicting adaptive actions 65 

to satisfy their water demand for water scarcity. The buying-out of small farmers by large-farmers, water 66 

marketing between small and large farmers, integrated farming, installing desalination system, 67 

deepening well and reducing orchard extents are among the famers’ adaptive actions to water scarcity. 68 

For water scarcity policy making in Rafsanjan, such actions and interactions between multiple 69 

stakeholders should also be considered (Mehryar et al., 2016, Mehryar et al., 2017). The objective of 70 

this study is to develop a model to compare the impacts of water scarcity policy options on overall 71 

groundwater use (i.e. rank policy options) in Rafsanjan, Iran, through multi-factorial and multi-72 

stakeholder approach. 73 

This paper is organized as follows. Section 2 provides a literature review of the modelling techniques 74 

used in this study. Section 3 introduces an overview of our model development and implementation of 75 

the model in the case study. Section 4 represents and discusses the results of the policy simulation in the 76 

case study. Sections 5 and 6 reflect on the final results and the model, and conclude.  77 

2. Literature review 78 

To consider the two aspects of multi-factorial and multi-stakeholder decision-making, two approaches 79 

have been developed in simulating the impacts of policy options in SES: A factor-based (system-level) 80 

approach that represents changes in factors (variables) of a system and their interactions (Macy and 81 

Willer, 2002), e.g., Fuzzy Cognitive Mapping (FCM) (Kosko, 1986) and an actor-based (individual-82 

level) approach that represents decisions, behaviors and interactions of stakeholders, e.g., Agent-Based 83 

Modelling (ABM) (Gilbert, 2008).  84 

2.1. Fuzzy Cognitive Mapping 85 

FCM, a combination of fuzzy logic and cognitive mapping, is widely used in environmental 86 

management and SES studies to represent knowledge of systems under conditions of data scarcity and 87 

data uncertainty (Özesmi and Özesmi, 2004, Papageorgiou and Kontogianni, 2012, Reckien, 2014). 88 

Structurally, it consists of a set of nodes1 (representing various variables) and fuzzy signed directed 89 

edges (representing the strength of the causal relationships between variables) (Kosko, 1986). Thus, it 90 

encodes multiple causal relationships between variables of a system. FCM models are usually developed 91 

with a participatory approach. Stakeholders who are familiar with the operation and behavior of a system 92 

                                                      
1 Known as “Concept” in FCM literature. In this paper we refer to FCM’s s/concepts by using the general term 

of “variable”. 
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or specific problem of a system are asked to mention the most important variables (e.g. environmental, 93 

social, ecological or economic variables), their causal relations, and the weights of the connections (i.e., 94 

how much a change of one variable causes a change in another variable) (Özesmi and Özesmi, 2004). 95 

A range of individual mental models of stakeholders is developed and aggregated into a semi-96 

quantitative and standardized FCM model for simulation (Mehryar et al., 2017, Vasslides and Jensen, 97 

2016).  Thus, the connections in participatory FCMs represent causality perceived by participants. 98 

FCM uses individuals as the units of data collection and analysis but aggregates their knowledge to 99 

provide a macro-level view of an entire system’s behavior. Thus, FCM does not represent individuals’ 100 

dynamic interactions with their environment. Besides, FCM provides semi-quantitative output data from 101 

qualitative stakeholders’ knowledge, which may be used in combination with mathematical models. 102 

Therefore, FCMs are potentially useful in modelling aggregate human behavior and decisions (An, 103 

2012). However, their lack of stakeholders’ interactions, as well as temporal and spatial explicitness are 104 

their main limitations. 105 

2.2. Agent Based Modelling 106 

ABM provides a micro-level view of a system since each agent is explicitly represented and interacts 107 

with other agents as well as with the environment (Giabbanelli et al., 2017). Typically, ABMs are 108 

spatially explicit and simulate dynamics over time, which makes them appealing to model SESs. 109 

However, ABMs face the challenge of acquiring data for describing: 1) agents’ behavioral options, 2) 110 

decision-making processes (the way an agent makes decisions), and 3) decision outcomes (impacts of 111 

their actions on others and on the environment). Due to the complexity of human decisions and actions, 112 

ABM studies regularly rely on rational choice theory to describe agents’ behavior (Schlüter et al., 2017, 113 

Groeneveld et al., 2017). However, actual human behavior is subjective and has bounded rationality due 114 

to limitations of information access, time, personal beliefs and perceptions (Elsawah et al., 2015). This 115 

is particularly important in models for policy support (Schlüter et al., 2017). As a result, many modelers 116 

using ABMs try to replicate actual human behaviors and decision-making as closely as possible 117 

(Filatova et al., 2013) via participatory methods (An, 2012) such as role-playing games (Bousquet et al., 118 

2002, Castella et al., 2005), Bayesian belief networks (Sun and Müller, 2013), cognitive mapping 119 

(Elsawah et al., 2015) or ethnographic methods (Ghorbani et al., 2015). Yet, the formulation and 120 

parametrization of qualitative knowledge gained through such approaches, their combination with 121 

quantitative data, and the identification and calibration  of causal feedback mechanisms of a SES remain 122 

key challenges (Robinson et al., 2007, Sun and Müller, 2013, Ghorbani et al., 2015, Venkatramanan et 123 

al., 2017).  124 

2.3. Techniques used in the present study 125 

FCM and ABM are complementary in supporting SES policy making. Surprisingly, there have been 126 

only a few attempts to combine these two methods for SES modelling. Two studies have suggested 127 

distinct approaches to combine FCM and ABM. Elsawah et al. (2015) proposed a methodology that 128 

developed cognitive maps for use in ABM development. More specifically, they used cognitive maps to 129 

translate the subjective qualitative description of decision-making into formal rules in the ABM. In 130 

contrast, Giabbanelli et al. (2017) proposed two options for creating hybrid models, in which FCM and 131 

ABM are coupled and co-exist over a model run. In one option, an ABM represents the mental model 132 

of each agent as an FCM that can change through interactions with other agents. In another option, 133 

selected parts of an FCM are informed by an ABM. To our knowledge, no study has yet reported on 134 

implementing a combination of an FCM and an ABM such that the FCM informs both the agents’ 135 

behavioral rules at the micro-level and the human-environment interaction rules at the macro-level. This 136 

is where our study steps in. For our case of water management in Rafsanjan we used FCMs to 137 

conceptualize an actor-based ABM. This ABM allows for testing the effects of different policy options 138 

and thus enables us to investigate dynamic processes and interactions among agents; a process which an 139 

FCM alone cannot do.  140 

Similar to Elsawah et al. (2015), our focus is on structuring and using the collected qualitative data from 141 

a set of FCMs to develop an ABM. Yet, our approach significantly differs in two ways from theirs. First, 142 

we use FCMs instead of cognitive maps. Second, we use FCMs to model the whole system, including 143 
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and not limited to stakeholders’ actions. Thus, the FCM provides a macro-level view of the system i.e., 144 

the perceived interactions between social, ecological, environmental and economic variables, and also 145 

provides information for micro-level decision-making of agents i.e., type of actions and impacts of 146 

actions on the environment. The same variables collected in FCMs are used in ABM as environmental 147 

parameters and behavioral rules of agents. The outcome of our proposed modelling framework is useful 148 

for ex-ante policy options analysis.    149 

3. Model building 150 

3.1. Overview of model development 151 

Our methodology consists of three main steps (Figure 1): 1. FCM modelling, 2. Translating FCM to 152 

ABM, and 3. ABM implementation and assessment. In step 1, the individual maps are first collected by 153 

interviewing stakeholders (step 1.1). Then, the individual maps are merged to create one FCM for each 154 

specific group of stakeholders (step 1.2). Finally, the time-series data is added to these subjective group 155 

FCMs to create the subjective-objective FCMs (step 1.3). In step 2, first the Overview, Design concepts, 156 

and Details (ODD) protocol is used to define the main elements required for ABM development in this 157 

study. Then, a Condition-Action-Impact (CAI) diagram is introduced and developed to translate and 158 

categorize the FCMs’ variables into the set of available actions, and conditions-impacts for each action. 159 

Finally, a UML activity diagram is used to represent the sequential steps of actions and spatial-temporal 160 

aspects of decision-making processes by using the outcome of the CAI diagrams. In step 3, the ABM 161 

model is simulated and the results are validated with the historical data. The validated ABM is used to 162 

simulate the possible impacts of policy options via “what-if” analysis and compare their results with 163 

those of the baseline scenario. Finally, a sensitivity analysis is applied to the parameters of the model.  164 

In the following sub-sections, each of these steps is discussed in more detail.   165 

 166 
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167 
Figure 1: Main steps and sub-steps of methodology. Coding scheme - A: Action, C: Condition, I: Impact, CAI: 168 
Condition-Action-Impact, UML: Unified Modeling Language. In FCMs: red connections: weighted based on 169 
objective data, black connections: weighted based on subjective data, dashed lines: impact connections, solid 170 
lines: driving connections. 171 
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3.2. Step 1: FCM modeling 172 

3.2.1. Collecting individual maps 173 

There are different methods for individual FCMs’ data collection, e.g. extracting data from transcripts 174 

of interviews, remotely online mapping with stakeholders, and face-to-face semi-structured interviews 175 

that can be done via either individual or group discussions with stakeholders (Özesmi and Özesmi, 2004, 176 

Gray et al., 2014, Jetter and Kok, 2014). While all of these methods can be valid, different contexts may 177 

require specific methods. In this case study, due to 1) the multi-variable and multi-aspect environment 178 

of water scarcity, and 2) the farmers’ mistrust to share their information and perceptions, we chose to 179 

collect data with face-to-face interviews. These were useful in building a trustful relationship with 180 

interviewees, making the interview purpose explicit, and repeatedly offering explanations to the 181 

interviewees (Rahimi et al., 2018). Furthermore, due to the diversity of farmers in the area, and the 182 

heterogeneous impacts of water scarcity on different farmers, we chose individual interviews. In this 183 

way, we could capture the diverse, individual perceptions and local knowledge of farmers without them 184 

being influenced by larger, more powerful farmers (which could be the case in focus group discussions). 185 

Thus, we conducted individual interviews with 60 farmers (20 in each category of small, medium and 186 

large farmers) in August-September 2015—for demographic description of the interviewees see 187 

supplementary E. All the interviews were done with in-depth, open-ended questions. Interviewees were 188 

selected to represent different farm sizes (large, medium and small), from different sub-regions of 189 

Rafsanjan. A sample of the oral consent script alongside the interview questions can be seen in 190 

supplementary D.  191 

The interviews were led by two main questions and two sub-questions:  192 

1. What have been the main causes and impacts of water scarcity in your region/farm? 193 

1.1. How much has each of these variables caused an increase or decrease of other variables?  194 

2. What have been your adaptive actions to combat water scarcity in your farm, and what have 195 

been the conditions to implement each action?  196 

2.1. How much has each action impacted other variables mentioned earlier? 197 

The interviewees were free to mention any variables related to the questions 1 and 2: causes and impacts 198 

of water scarcity (e.g. precipitation, irrigation efficiency, agricultural productivity, economic situation, 199 

etc.), their adaptive actions (irrigation system change, deepening wells, integrated farming, etc.), and 200 

conditions of actions which could be a word or a phrase (e.g. having government loan for irrigation 201 

change, having permission for well’s deepening, willingness of neighbor farmers for integrated farming, 202 

etc.). The variables related to question 1 and 2 provided environmental variables, and 203 

condition/action/impact variables, respectively (figure 1, step 1.1). 204 

The interviewees were also asked about the degree of influence of each variable (i.e. actions or 205 

environmental variables) on other variables (questions 1.1 and 1.2). They were asked to identify causal 206 

weights of relations based on the linguistic values of “very low”, “low”, “average”, “high” and “very 207 

high”. Later on, such values were equated with a five point numerical scale: very low = 0.1, low = 0.3, 208 

average = 0.5, high = 0.7, very high = 0.9—While the transformation from a linguistic variable into a 209 

crisp number often uses fuzzy membership function, our study applied a simpler process but 210 

acknowledging that approaches examining uncertainty in answers are an important objective for future 211 

work (section 5.2). A positive value indicated that an increase in one variable caused an increase in 212 

another. A negative value indicated that an increase in one variable caused a decrease in another variable 213 

(Mehryar et al., 2017).  214 

Regarding the second question, farmers were also asked to specify the frequency of each action, i.e., if 215 

the action is repeated every month, every year, etc. or taken only once (e.g. desalination). Moreover, 216 

farmers were asked about the situation that leads them to take each specific action, which could be 217 

constant variables. Therefore, the interviewer wrote down the fixed, i.e. true/false, conditions as input 218 

variables into the actions e.g. having documents or legal permission. For such variables, we used the 219 

structure of cognitive maps, i.e. including connections without weights where connection arrows 220 

represent implication and are interpreted as “may lead to” (Elsawah et al., 2015).  221 
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Important variables and causal connections were drawn on paper during the interviews by the researcher 222 

who constantly validated these with interviewees (an example from one of the interview maps can be 223 

seen in supplementary F). The result of this step is many individual maps including the environmental 224 

network and actions of farmers. Each map is then stored as an adjacency matrix. 225 

3.2.2. Generating group specific FCMs 226 

To develop an FCM model, all of the individual maps are aggregated to a single unified model that 227 

encompasses all of the individual’s knowledge. The individual maps are merged through matrix algebra, 228 

whereby each entry of the merged model is the average of the connection weights assigned by 229 

individuals (Vasslides and Jensen, 2017)—other approaches for group-level aggregation of FCMs are 230 

proposed in Gray et al. (2014) and Lavin et al. (2018). However, stakeholders may differ in their 231 

preferences, decisions and rules of behavior. By aggregating all individual maps, the heterogeneity of 232 

stakeholders is lost. To preserve the diversity of decision makers’ mental models, the individual 233 

cognitive maps can be aggregated into different groups of FCMs. Categorizing FCMs can be based on 234 

the structure of the maps’ outputs (e.g. centrality, number of inputs and outputs, etc.) or content of the 235 

outputs (e.g. specific variables that are important for different research objectives). 236 

In our case, the action variables mentioned by farmers (in their FCMs) were significantly different 237 

among three groups of small, medium and large farmers mainly due to the size of their lands and their 238 

economic situation. For instance, large farmers (> 80 ha) can buy-out small and medium farms that have 239 

little access to irrigation water, or set up a water desalination system which is a very expensive option 240 

for providing good quality irrigation water, or purchase surplus water from small and medium farmers 241 

who are no longer harvesting their orchards. Whereas medium farmers (15 to 80 ha) tend to integrate 242 

their farms and irrigation systems amongst themselves to increase the efficiency of their lands’ irrigation 243 

water use and productivity, or modify their irrigation systems from flood irrigation into drip irrigation, 244 

something that most large farmers have already done. Small farmers (< 15 ha) have fewer options to 245 

adapt to water scarcity: these are basically changing the irrigation system or turning off their well pumps 246 

during the night or over the winter. There are also some common adaptive actions among all groups of 247 

farmers, e.g. deepening wells or shrinking the orchard size. The extent of shrinking differs based on the 248 

location and size of the farms. Because of such differences in behavior, we aggregated the individual 249 

maps in three groups of large, medium and small farmers (figure 2 and supplementary A)2. In the ABM, 250 

we used the numerical values for the group-specific weights for the agents’ decision-making.  251 

 252 

                                                      
2 The initial FCM model that we developed in the field work included a much larger number of variables 

indicating causes and impacts of water scarcity than what we used in this study. Since the aim of this study was 

to investigate the impact of farmers’ actions on groundwater use and emigration, we only kept the variables 

relevant to this objective. However, considering the objective of policy makers and researchers, the size of FCMs 

can be larger or smaller, by using different simplification methods in FCM (Hatwagner et al., 2018, Lavin and 

Giabbanelli, 2017) 
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 253 

Figure 2. Large-farmers’ FCM combined with objective data. The red squares show farmers’ actions and their size 254 
shows the number of farmers who took this action i.e. level of preference or priority of actions. Yellow diamonds 255 
are conditions and green circles are either impacts or condition for some variables and impacts for other. Dashed 256 
and solid lines represent impact and driving connections, respectively. Black and red lines represent perceived 257 
connections and data-driven connections, respectively. FCMs of medium and small farmers are given in 258 
supplementary A. 259 

3.2.3. Combining subjective and objective data in FCM  260 

In modeling SESs, many social and ecological variables interact with each other. For some of these 261 

variables, we may lack accurate objective data but have information about stakeholders’ knowledge and 262 

perceptions, e.g. individual land productivity and farmers’ vulnerability. For other variables, we may 263 

have access to objective data measured by formal scientific methods, e.g. precipitation and groundwater 264 

levels. Therefore, both subjective and objective data are crucial and complementary to enable a full 265 

understanding of the system (Gosselin et al., 2018), particularly for building an ABM. In this step, we 266 

combined both subjective knowledge derived from farmers and the objective knowledge derived from 267 

formal scientific studies. First, among all available connections between variables in farmers’ FCMs, 268 

we identified the connections that can be measured more accurately with available empirical data, e.g. 269 

hydrological and ecological variables. Then, such connections received a data-driven value based on 270 

correlation coefficients between two variables’ time-series data (supplementary C). Since the correlation 271 

coefficient alone does not imply causation, we only applied the correlation values to the connections for 272 

which the causality has already been determined by farmers3. The results of this step are group specific 273 

FCMs containing two groups of connections: 1) those perceived by farmers (black connections in figure 274 

1, step 1.3), and 2) those for which the causality is perceived by farmers and the correlation values are 275 

derived from time-series data (red connections in figure 1, step 1.3). Therefore, such group specific 276 

                                                      
3 Another recommended approach is using statistical techniques such as Granger causality test to test whether 

there is a causal impact among the time-series data. 
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FCMs are combinations of farmers’ perceptions and data-driven knowledge covering different aspects 277 

of an SES. 278 

All data-driven connection values developed by available time-series data and validated by farmers’ 279 

perceived FCM are listed in supplementary C. These data-driven values were used instead of perceived 280 

values in all three group-specific FCMs, to cover the ecological and data-abundant part of the system 281 

(red connections in figure 2). Yet all other connections, including those representing the impacts of 282 

actions, remained with their perceived values obtained from farmers (black connections in figure 2).  283 

3.3. Step 2: Translating FCM to ABM 284 

3.3.1. ODD protocol 285 

We used the ODD protocol for describing the ABM (Grimm et al., 2010). The ODD protocol is a 286 

standard framework of elements that need to be covered when developing and describing an ABM. It 287 

requires descriptions of entities in the model, their characterized attributes and behavioral rules (which 288 

entity does what, in what order, what rules do entities have for making decisions or changing their 289 

behavior in response to environmental changes), and model rules (what are the direct interactions among 290 

entities and indirect interactions via environmental variables) (Grimm et al., 2017). The behavioral rules 291 

of agent, and model rules were extracted from FCM models developed in step 1. The agents, their 292 

characterized attributes, initial values for environmental parameters and process overview (model 293 

updates and activities in each time step) are the new ABM elements. 294 

A full ODD description is given in supplementary A. Below, we provide a summary of the ODD. 295 

Agents represent a total of 154 farmers in three groups: 21 large-farmers, 49 medium-farmers, and 84 296 

small-farmers (section 3.2.2). These farmers are distributed across a stylized representation of the 297 

Rafsanjan landscape, distinguished by nine sub-regions in the ABM, out of which two represent non-298 

vegetated areas (i.e., arid land). Each sub-region consists of 15 by 15 cells, leading to a total of 45*45 299 

cells (figure 3, details on initialization based on empirical data are given in supplementary A). Each cell 300 

can be owned by one farmer; each farmer may own 1 or more cells. Agents are distributed equally in 301 

the seven sub-regions (mainly because there is no significant difference in the number of farmers in 302 

these 7 sub-regions) and randomly within each region (figure 3). Each cell represents 5ha of pistachio 303 

land. Cells are characterized by: 1) Depth of groundwater level, 2) Groundwater quality, 3) Land 304 

subsidence level, 4) Groundwater use 5) Well depth, and 6) Allowed well depth. 305 

  306 

 307 
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Figure 3. Set-up and allocation of farmers and farms in Netlogo. Green, orange and yellow cells represent large, 308 
medium and small farms, respectively. The two black regions in the middle are not farming regions (to represent 309 
the real U-shape landscape of Rafsanjan).  310 

Temporal resolution: The time step is 1 month. Actions in reality can be repeated at different time 311 

intervals, therefore, we took the smallest time interval (i.e. 1 month) for the temporal resolution. The 312 

time horizon of the model is 15 years, i.e. 180 time steps. This time horizon is chosen to be able to see 313 

some effect, but not go too far into the future since new technologies we cannot foresee now might 314 

emerge as well as other political and economic uncertainties which would make these simulations 315 

useless. 316 

Process overview: Within each time step two main activities take place in the following order:  317 

1) Cells’ update: There are two types of updates for each cells’ properties: 1) based on variables’ 318 

dynamic changes collected from empirical data, e.g. groundwater level change and land subsidence 319 

level change, 2) based on impacts of actions from the previous step on environment variables. 320 

2) Agents’ decision-making: First, each agent checks its groundwater access. If the agent is not 321 

satisfied with the groundwater access, it enters a decision making process to adapt its groundwater 322 

access. Otherwise, it exits this time step.     323 

Agents’ decision-making: At each time step, agents observe the environmental situation of their cells 324 

and make a decision. Therefore, all agents have full knowledge about the state of their groundwater 325 

access, groundwater quality, land subsidence, their neighbors’ willingness to sell their water/lands, and 326 

the execution of different policies. The possible actions that each group of agents can take are listed in 327 

table 1. Their decision-making is described using CAI diagrams (section 3.3.2) and formalized in UML 328 

activity diagrams (section 3.3.3). 329 

 330 

Table 1. The set of possible actions that can be taken by large, medium and small farmers. 331 

Action Description Farmers who take this 

action 

Buying small/medium 

farms  

Buying farms from medium or small farmers who are 

not willing to continue pistachio production  

Large farmers 

Desalination Set up desalination system on farms with saline 

groundwater to remove salt and minerals 

Large farmers 

Water purchase Buying water from medium or small farmers who are 

not using their well’s water for irrigation 

Large farmers 

Deepening wells Digging water wells to get access to groundwater Large/Medium  farmers  

Irrigation area 

reduction 

Shrinking (dry-off) small part of the farm to increase the 

efficiency of water use for rest of the farm 

Large/Medium/Small 

farmers 

Integrating farms Integrate irrigation systems of several farms to increase 

their efficiency 

Medium farmers 

Irrigation system 

modification 

Changing traditional flood irrigation to drip irrigation Medium/Small farmers 
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Well’s turn-off Increasing the wells’ off-time (overnight or during 

winter)  

Small/farmers 

Relocating farms Leave the region and buy a farm in another area with a 

better water situation 

Large farmers 

  332 

3.3.2. CAI diagrams 333 

At an abstract level, the behavior rules in an ABM constitute the set of actions that agents might take, 334 

the conditions under which these activities take place, and actions’ outcomes (impacts). The set of 335 

actions and order of actions stemming from the FCMs can be used in constructing the behavioral rules, 336 

and conditions and impacts of actions can be defined by inputs and outputs of those actions in FCM. 337 

Therefore, a set of Conditions-Action-Impacts (CAI) for each group-specific FCM is produced in this 338 

step, covering three main components of decision making: 339 

● Set of actions: represent different actions taken by each group of farmers. The priority of actions is 340 

represented by the number of times they have been mentioned by farmers as their chosen adaptive 341 

action (shown by the size of action variables in FCM, figure 2). Therefore, higher priority actions 342 

have a higher preference for farmers/agents to be implemented. However, the preference order may 343 

not be the actual order of decisions taken by farmers, since some actions cannot be performed in 344 

some locations or during some months of the year). These two aspects are added later in the ABM 345 

implementation. 346 

● Conditions of actions: are input variables of each action representing driving forces or situations 347 

that should be satisfied to make that action available. Condition of actions can be either dynamic 348 

e.g. groundwater level in figure 2 (accompanied with weighted connections to actions), or fixed 349 

(true/false) variables, e.g. proximity of farm in figure 2 (accompanied with connections without 350 

weight). 351 

● Impact variables: are output variables of each action along with their causal network, i.e. direct and 352 

indirect impacts of that action. Impact variables are dynamic variables (with changing states)4. 353 

Figure 4 indicates the series of CAI diagram transferred from large farmers FCM. The CAI diagrams 354 

for medium and small farmers are shown in supplementary A. For example, for the first action of large 355 

farmers i.e. buying small/medium farms the conditions are proximity of small/medium farms to the large 356 

farm and willingness of their owners to sell-off their farms. Thus, this action is possible for large farmers 357 

when there is at least one small or medium farm in their proximity whose owner is no longer willing to 358 

harvest pistachio and who is also willing to sell the land. This action affects pistachio production and 359 

groundwater use with different levels of influence, based upon the large-farmers’ FCM. Likewise, these 360 

two variables affect groundwater level, groundwater quality, pistachio production and land subsidence, 361 

which are the indirect impacts of action 1. Moreover, actions are prioritized based in their variable size 362 

for each group separately, and the variables with the same or similar variable size have the same priority.  363 

                                                      
4 One variable in FCM can be a condition for some actions and impact for others. The function of each variable 

is defined in relation to its connection (input or output) with action variables (figure 1, steps 1.1 and 1.3). 
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 364 
Figure 4: CAI of large farmers that represents set of conditions and impacts for each specific action. S/M: 365 

Small/Medium, ph: per hectare. 366 

 367 

To implement the direct impact of actions X onto variables A of the FCM model (represented as X 
𝑤
→A), 368 

in each time step that action X has executed the value of Variable A in that time step is calculated as: 369 

Equation 1:  𝐴𝑡+1 = 𝐴𝑡 + (𝐴𝑡 × 𝑤) 370 

For example, when we have desalination 
0.7
→  groundwater use (in figure 2), whenever that action 371 

desalination is executed, it impacts groundwater use by 0.7 of its current value. So Groundwater use t+1 372 

= Groundwater use t + (Groundwater use t * 0.7). Please note that this equation may cause the variables 373 

to get infinitely large or negative in a large number of runs (time steps). However, the result of our model 374 

did not reach infinite or negative values in 180 time steps. Moreover, due to the objective of this study, 375 

i.e. ranking policy options, we are not looking at the exact values of groundwater use, rather, we are 376 

exploring the order of policies by comparing their impacts on groundwater use. Thus, the results required 377 

for this objective are not affected by unbounded values. Yet, in other studies, to calculate the accurate 378 

values of variables over time one may need a clipping function that maps the infinite values into an 379 

operating range (which is missed in this equation). 380 

All indirect impacts of actions are calculated at the beginning of the next step (in the cell’s update step 381 

in section 3.3.1). Indirect impacts of actions are the impacts of variables affected by actions on other 382 

variables in FCM. To implement the impact of Variable A onto the Variable B (represented as A 
𝑤
→ B) 383 

the value of Variable B in the new time step is calculated as: 384 
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Equation 2:     385 

The direct and indirect impact of actions may also take the role of condition for the same or other 386 

actions in the next time step, which represent feedback loops in FCM (e.g. loop of water purchase → 387 

groundwater use → groundwater level → water purchase, in figure 2).  388 

3.3.3. UML diagram 389 

Unified Modeling Language (UML) was used to develop the ABM structure. UML proposes a set of 390 

well-defined and standardized diagrams to design and describe a system before coding it (Bersini, 2012). 391 

One of the most commonly used UML diagrams with ABM is the activity diagram, which represents 392 

the sequential steps of actions and timing of processes (Bersini, 2012, Elsawah et al., 2015). To transfer 393 

CAI diagrams into UML diagrams, there are some crucial aspects that cannot be collected and 394 

represented in FCM, i.e., randomness, temporal and spatial dimensions. We know from FCMs what are 395 

available actions, the conditions that make those actions available and the possible impact of those 396 

actions. However, human decision-making is not based on a linear and simple “what-if” relationship. In 397 

addition to conditions, decision making of farmers depends on their locations, what type of actions they 398 

have taken in previous steps, their relations with their neighbor farmers, etc. We captured part of such 399 

decision-making process by adding randomness, temporal and spatial dimensions. Such aspects have 400 

been added to each actions’ priorities, conditions and initial values of parameters by using quantitative 401 

data from studies and government reports, and estimates based upon local knowledge collected during 402 

interviews.  403 

● Time scale: Actions may be taken by farmers every month, every six months or every year. 404 

Moreover, some actions can be taken by farmers only once (e.g. desalination or irrigation system 405 

change), whereas other actions can be taken several times until their limits are reached (e.g.  well 406 

deepening or land shrinking). Therefore, the time scale (i.e. frequency and one-time or repetitive) 407 

are added to the condition of each action. Thus, if an action is executed annually, the condition for 408 

this action is to be in time step multiples of 12. 409 

● Randomness: Randomness is added to the priority set of actions in the behavioral rules of agents 410 

as well as in the initialization of parameters’ values. In the priority set of actions, some actions have 411 

the same or very similar priority5. In these cases, one action is randomly chosen to have priority 412 

over the other. Applying randomness in the agent’s behavior also helps to include the outliers’ 413 

behavior who may not follow the same behavior rules as other agents.  Randomness is also used in 414 

the distribution of agents over the seven sub-regions, as well as their farm sizes within the ranges of 415 

small, medium and large farms’ area mentioned in section 3.2.2. For the initialization of parameters’ 416 

values, an interval of initial values was collected for each parameter in each sub-region and 417 

randomly distributed over the farm patches (supplementary A, section 3.1).   418 

● Spatial dimension: Some environmental properties have significantly different values in different 419 

regions of Rafsanjan. For example, groundwater quality and land subsidence level are different in 420 

each of the seven sub-regions and thus have a different impact on farmers’ decisions. This spatial 421 

heterogeneity is represented in the cells’ properties and added to the conditions of each action. 422 

In supplementary A, the UML activity diagram of large farmers (i.e. the sequence diagram of farmers’ 423 

decisions and actions) is shown as an example. This UML diagram shows that at each step, agents first 424 

check their actions’ conditions through their priority order of actions. If the conditions are confirmed 425 

they execute the action, giving rise to associated impacts. If the conditions are not met, they go to the 426 

next action. If a small or medium farmer reaches the end of the action list the final action is to sell the 427 

farm to a large-farmer and leave the region. For large farmers, their final action is to leave the region.   428 

                                                      

5 When the number of times two actions mentioned as preferred action by stakeholders differs by less than 3, i.e. 

0.05 of the total population, we consider them as similar priority actions. 
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3.4. Step 3: ABM implementation and assessment 429 

In this step, the ODD and UML activity diagram from the previous section was used to build the pseudo-430 

code and then translate it into an actual code implementation. We used the Netlogo 6.0.1 platform to 431 

implement the ABM (Wilensky, 1999). The source code of this model can be found online in “CoMSES 432 

Computational Model Library” (https://doi.org/10.25937/rxqn-4g38).  433 

For building the model, we followed the stepwise-design approach suggested by Sun et al. (2016) i.e. 434 

starting with a simple model version that captures basic processes and then, adding more detailed 435 

processes and components to the model structure such that the relative importance of each component 436 

could be quantified and assessed along the way. For example, we started first with the same initial well’s 437 

depth and groundwater level for all cells of each region. This resulted to a staircase-like groundwater 438 

use for each region since all agents would lose groundwater access and start taking action at the same 439 

time. Therefore, we added variety of wells’ depth and groundwater level in different cells (and applied 440 

randomness) to model the heterogeneous reactions of farmers at each time step. When adding more 441 

details in a stepwise process, a point was reached eventually at which further additions had no impact 442 

on groundwater use or farmers migration (which are the main outcomes of our model). That is where 443 

we stopped adding more details to the model—other approaches are proposed in Edmonds and Moss 444 

(2004) and Sun et al. (2016). 445 

3.4.1. Validation  446 

Historical data on groundwater use for 2004 to 2011 were used to validate the simulation model since 447 

no other time series data (e.g. about farmers leaving the region, or groundwater use per each sub-region) 448 

was available. The idea was to see how well this model replicates the historical reality. To align with 449 

reality, the validation model only simulates the implementation of actions that were available in the past, 450 

but with the same level of impact, conditions, etc. as the present. First, the four environmental 451 

parameters (groundwater level, well’s depth, groundwater quality, and land subsidence) were initialized 452 

with their values in the year 2003. Second, desalination, water marketing, and land integration were 453 

removed from the validation model, since such actions are recent adaptation actions taken by farmers. 454 

Moreover, irrigation system change was still an option for large farmers over the period 2004-2011, so 455 

this action is included in the action set of large farmers for the validation.  456 

The setup of the simulation experiments is as follows. The validation covers the period from 2004 to 457 

2011, thus 84 time steps. 100 simulations were run, and confidence intervals for the acquired mean 458 

values of overall groundwater use suggest that this amount of simulation runs led to satisfactorily 459 

precision for this output variable (Figure 5A). The values of both simulation and reality data-sets were 460 

normalized to show the percentage of changes. We then compared the results of groundwater use in the 461 

simulation and reality via running (1) Feasible Generalized Least Square (FGLS) and (2) FGLS with 462 

linear time trend specifications (details in supplementary G).  463 

3.4.2. Baseline scenario and policy options  464 

First, the baseline scenario was simulated. In this scenario, agents decide and act based on their current 465 

situation and without any policy interference. Besides simulating the current situation, we also need a 466 

set of simulations to compare the impact of different policies that influence farmers’ decisions and 467 

actions. Among current government policies toward water scarcity (Kerman Provincial Government, 468 

2014, Mehryar et al., 2015), we chose three that aim to reduce groundwater use by changing behavior 469 

and actions of farmers:  470 

Policy of shrinking lands: This policy focuses on decreasing the irrigation water use by reducing the 471 

areas used for pistachio production. To implement this policy, the government buys-off parts of the 472 

farms and changes their land use to non-agriculture activities. Based on our field work experience and 473 

due to the severity of water scarcity in Rafsanjan, many farmers agree to sell-off some of their lands, 474 

but only to an extent that still enables them to profit from production.  475 

We implemented this policy by removing actions of land marketing and water marketing between large 476 

and small farmers, since as a result of this policy, small and medium farmers sell their lands to the 477 

government instead of large farmers.  478 

https://doi.org/10.25937/rxqn-4g38
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Policy of irrigation system change: This policy focuses on replacing current flood irrigation systems 479 

with a drip irrigation system. To encourage farmers, the government provides an irrigation modification 480 

subsidy for farmers with land tenure documents. Currently, about 50% of the small farmers and 30% of 481 

the medium farmers do not have land documents due to the informal exchange of lands during the 1978 482 

revolution. Therefore, the lack of land documents is the main obstacle for farmers who cannot afford to 483 

independently finance expensive drip irrigation systems. In this policy, the government aims to remove 484 

the land document problem and provide a subsidy to all farmers.     485 

We implemented this policy by removing the condition of land documents for small and medium 486 

farmers. Therefore, all medium and small farmers who reach this action in their priority list execute 487 

irrigation system change. 488 

Policy of farmer participation: This policy focuses on encouraging and involving farmers to reduce their 489 

water use by decreasing the priority of actions that increase their groundwater use like desalination and 490 

well deepening, as well as increasing the priority of actions that reduce their water use like integrated 491 

farming. 492 

Implementation of this policy was done by removing desalination, water purchase and well-deepening, 493 

and adding farm integration to large farmers. 494 

These new policies were simulated for the time period of 2015 to 2030 (i.e., 180-time steps), and the 495 

environmental parameters were initialized with their values in 2015. Similar to the validation runs, 100 496 

simulation runs were analyzed for each scenario, leading to large standard deviation for groundwater 497 

use in some regions (Figures 5B and 6). The reason for the large standard deviation in those regions is 498 

the randomness used in choice of actions (with similar priority but different impacts) in these regions 499 

(more details in section 4.4). To identify the adequate number of simulation replications, we tested the 500 

model with larger number of simulation runs (i.e. 200, 300 and 500) and compared their results with the 501 

result of 100 simulation runs (the results are shown in supplementary H). The result of our experiments 502 

showed that while the confidence intervals of the mean values decreased with increasing simulation 503 

runs, the order of policies (exploring which is the main objective of this study) would stay the same. 504 

Therefore, we concluded that this number of simulation suffices for the purpose of this study, i.e. the 505 

qualitative comparison of different policies.  506 

3.4.3. Sensitivity analysis 507 

We applied one-factor-at-a-time (OFAT) sensitivity analysis to explore the relationships between the 508 

model output and input parameters. OFAT consists of varying one parameter at each time over a wide 509 

range of its possible values while keeping all other variables fixed (Ten Broeke et al., 2016) and thereby, 510 

monitoring changes of the simulation model output. OFAT helps to identify those parameters that have 511 

a strong influence on model output, and are therefore most important (Thiele et al., 2014). However, 512 

OFAT does not take into account the simultaneous variation of input variables, thus does not detect the 513 

presence of interactions between input variables. To show the form of relationship between the 514 

interacting variables and the output other methods such as Regression-based analysis, and Sobol model 515 

(Ten Broeke et al., 2016) can be used.   516 

We used OFAT to evaluate the influence of: 1) parameters’ changes on groundwater use including 517 

impact values derived from FCM model and thresholds derived from hard data and estimated data, 2) 518 

stochasticity in our model results (i.e. random processes used in the initial distribution of farm sizes, 519 

initial well depths and choosing between actions with the same priority). A full list of parameters with 520 

their range of values used for sensitivity analysis is shown in supplementary B. 521 

4. Results 522 

4.1. Validation 523 

We used the FGLS estimation procedure to compare simulation run and historical data of groundwater 524 

use per each time step (considering the run time autocorrelations). Results show that our simulation 525 

model explains around 81% of variation in historical data, though the relationship is not one to one and 526 

the simulation does not explain all the temporal trend in data (details of the FGLS can be seen in 527 

supplementary G). There are two specific peaks of groundwater use, both in the simulation and in the 528 
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real data (Figure 5A). Such peaks (in reality) are because of significant well deepening in different 529 

regions (i.e. first in sub-regions 1 and 2 and later in sub-regions 6 and 7), where around 2015 most of 530 

the wells have already reached their maximum depth.  531 

4.2. Baseline scenario  532 

The result of the baseline scenario (i.e. the impact of aggregated farmer’s decisions and actions on 533 

overall groundwater use), is shown in figure 5B. Due to a lack of space, we do not report on actions 534 

taken by individual farmers. We explain these results in pairs of regions that show similar results. 535 

Regions 4 and 5: Farmers in these two regions still can deepen their wells at the beginning of the 536 

simulation, while other regions have either very poor water quality or very high land subsidence that 537 

prohibit more well deepening (supplementary A). Well deepening and water marketing in regions 4 and 538 

5 results in a rapid rise in their aggregated groundwater use. The peaks of groundwater use in these two 539 

regions occur when farmers reach their permitted well depth, at which time further deepening stops. 540 

Hereafter, trends of groundwater use are followed by a slight decrease due to actions like shrinking lands 541 

and buying/integrating farms. Since region 5 has better access to groundwater than region 4 542 

(supplementary A), farmers in region 5 start taking adaptive actions later than those in region 4. 543 

Therefore, the groundwater use in region 5 lags slightly behind that of region 4.  544 

Regions 1 and 2: These two regions have very poor water quality in the lower layer of their aquifer, thus 545 

deepening wells is not a useful option for their farmers. Facing low water access, large farmers install a 546 

desalination system which has a very high, though short duration, impact in increasing their groundwater 547 

use. Thus, after a short term peak in groundwater use, region 1 shows a steady decrease of groundwater 548 

use due to buying/integrating farms, land shrinking and irrigation system change. In region 2, after the 549 

initial peak, there is another slight increase in groundwater use because of water marketing between 550 

small and large farmers which is feasible in the southern part of this region.  551 

Regions 3 and 6: Parts of regions 3 and 6 do not allow for more well deepening due to poor water quality 552 

and land subsidence, respectively. Farmers in both regions start with buying/integrating land and 553 

irrigation system change at the beginning (when the water scarcity is less). With these two actions, they 554 

reduce their water use and increase their water access, both at a relatively low level. After about 5-6 555 

years, farmers who can, deepen their wells and purchase water, which increases groundwater use. After 556 

meeting their allowed well depth and the buy-out and emigration of small/medium farmers, they 557 

continue mostly by shrinking lands in order to steadily reduce their groundwater use. 558 

Region 7 has the best water situation, in terms of both access and quality, but faces high land-subsidence 559 

which prohibits more well deepening. When farmers face water scarcity, their available actions are 560 

buying/integrating lands, shrinking lands and irrigation system change, all of which reduce groundwater 561 

use to some extent. Therefore, region 7 shows a constant decrease of groundwater use.  562 

Overall, all regions face a slight and constant decline of groundwater use after meeting their peaks—563 

either at the beginning or in the middle of simulation process, at which time the farmers have no other 564 

options  than shrinking farms or selling their farms to the farmers who still have access to groundwater. 565 

This only happens after farmers meet limitations of other actions e.g. well deepening and well 566 

termination and/or accomplish all one time actions e.g. desalination, irrigation change and farms’ 567 

integration. Therefore, such groundwater use reduction only happens after a large increase of 568 

groundwater consumption by farmers which is followed by emigration of farmers.  569 

 570 



17 

 

 571 

Figure 5. A) Validation using groundwater use of whole Rafsanjan in simulation and reality over the period 2004-572 
2011. Due to difference in initial values of simulation and reality, their data-sets are normalized to show the 573 
percentage of changes. The bars depict confidence intervals (with confidence level of 95%) of the mean estimate 574 
over 100 replicated simulations. B) Groundwater use per region (for all groups of farmers) in the baseline scenario 575 
(2015 - 2030). The shaded areas depict standard deviation for each region over 100 time simulations. R: region.   576 

4.3. Policy options simulations 577 

Simulating the impact of different policy options revealed striking impacts on groundwater use overall 578 

and in the different regions (Figure 6):  579 

The policy of shrinking lands has a strong impact on reducing groundwater use because it also implies 580 

that water and land marketing are no longer feasible in the region. Yet, it results in higher emigration of 581 

farmers than in the other policy scenarios (Figure 7).  582 

The policy of irrigation system change is very similar to the baseline scenario. This is due to the past 583 

experience of irrigation system change among large farmers. According to large farmers’ perceptions 584 

(Figure 2), changing the irrigation system to drip irrigation has not changed their water consumption, 585 

but has been used by farmers to expand their pistachio area and/or increase the productivity of their 586 

lands. Therefore, this policy has a positive impact in encouraging medium-farmers and small-farmers to 587 

stay in the region, since it helps to improve their production quantity and quality. 588 
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The participation policy has the highest impact on reducing groundwater use and keeping farmers in the 589 

region. Stopping the high water consumption actions e.g. well deepening and desalination, besides 590 

focusing on reducing water demand by farm integration and reducing farm areas shows the largest 591 

reduction on overall groundwater use compared with other scenarios. Moreover, it has the least impact 592 

on emigration of large farmers and after the irrigation change the least impact of emigration of medium 593 

and small farmers.  594 

The results of baseline and irrigation change scenarios in regions 2-6 have a large standard deviation 595 

range (Figure 6). The sensitivity analysis of all parameters for such policies indicates well deepening as 596 

the most sensitive parameter. Regions 1 and 7 are the only regions that do not have the action of well 597 

deepening, and thus simulation of all policies in these two regions shows a small standard deviation 598 

range. Similarly, policy options of land shrinking and farmer participation are the only scenarios that 599 

do not change the execution or impact of well deepening, thus they also show a small standard deviation 600 

range in all regions (orange and yellow lines in figure 6).  601 
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 602 

Figure 6: Groundwater use per region and overall groundwater use in three policy options scenarios compared to 603 
the baseline. The shaded areas depict standard deviation for each scenario over 100 replicated simulations. 604 
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 605 

Figure 7: Number of large, medium and small farmers as a function of time in three policy scenarios compared to 606 
baseline. BL: baseline, SF: shrinking farms, IC: irrigation change, FP: farmer participation. The shaded areas 607 
depict standard deviation for each scenario over 100 replicated simulations. 608 

4.4. Sensitivity analysis 609 

The results of the sensitivity analysis (shown in supplementary B) indicate that well deepening and land 610 

shrinking on groundwater use have the largest influence on the overall groundwater use in Rafsanjan. 611 

By contrast, desalination has the least impact on groundwater use, though it has a high impact value in 612 

the FCM. This is because very few farmers actually execute this action either because of their farms’ 613 

location (i.e. being in good groundwater quality regions), or because of their economic situation (i.e. not 614 

being able to afford to install and operate desalination systems).  615 

Sensitivity analysis of random processes shows that changes in the spatial distribution of farm cells 616 

during initialization and initial values of well depths per cell do not lead to distinctly different outcomes, 617 

meaning that the model is not sensitive to these two random processes. However, the results show high 618 

sensitivity to the random choice between actions 3 and 4 of large farmers (i.e. water purchasing and 619 

well deepening). Specifically, if the model always executes action 3, water purchasing, the results show 620 

little sensitivity (standard deviation), whereas, if the model executes either always action 4, well 621 

deepening, or a random choice between these two, the results show high sensitivity (standard deviation). 622 

This highlights again the important role of the well deepening action on the overall groundwater use.  623 

5. Discussion  624 

To support effective policy making in SESs, a policy simulation has to consider the multi-factorial 625 

behavior of the system as well as multi-stakeholders’ decision making and the impact of these decisions 626 

on the physical system. This paper shows how a combination of FCM and ABM methods for simulating 627 

impacts of policy options in the case of water scarcity in Rafsanjan, Iran could be useful. In this section, 628 

we reflect on our approach in developing the model by presenting its strengths, limitations and 629 

suggesting possible future improvements.  630 

5.1. Strengths 631 

Our study showed that FCM and ABM are complementary and together can cover the four main features 632 

of an SES for policy making purposes: 1) Causal relationships between human actions and their 633 

surrounding social and ecological factors. FCM represents the decision making process of stakeholders 634 

and their impact on the environment in a causal directed graph. Therefore, it shows how each action 635 

causes direct and indirect changes in environmental variables. 2) Feedback mechanism: FCM’s 636 

outcomes explicitly incorporate feedback in human-environment interactions (e.g. the positive and 637 

negative impact of an action on environment reinforce a subsequent action). 3) Social-spatial 638 

heterogeneity: ABM incorporates various stakeholders’ preferences, available actions and long-term 639 

goals (i.e. part of individual heterogeneity) and it involves various environmental properties in different 640 

locations (i.e. spatial heterogeneity).  4) Temporal dynamics: ABM can represent time scale in agents’ 641 

actions and environment variables, (e.g. slowly changing variables such as population change) vs. fast-642 
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changing variables (e.g. annual agriculture production) or high-frequency actions (e.g. farm irrigation) 643 

and low-frequency actions (e.g. buying lands).  644 

In addition, the combined use of FCM and ABM in a modeling process is useful to formulate and 645 

parametrize the qualitative knowledge gained by stakeholders, combine it with quantitative knowledge 646 

from “hard” data and use both data types in simulating human-environment interactions. Our proposed 647 

modelling framework is particularly useful for policymakers to incorporate human perceptions, 648 

preferences, decisions and actions in the process of ex-ante policy options analysis. Moreover, it 649 

provides the macro level observation of the system’s elements, (i.e. multi-variables interactions), as well 650 

as the micro level view of the individual interventions and decision-making, which supports 651 

comprehensive policy analysis.    652 

5.2. Limitations and future studies 653 

One limitation of the FCM method is its limitation in defining the nonlinear relationships between 654 

variables (Voinov et al., 2018). For example, using FCM gave us the immediate and fixed impact of 655 

actions on variables, which resulted in presenting the linear relations among variables. However, some 656 

actions’ impacts may be nonlinear (i.e., adapt dynamically and increase or decrease over time). In this 657 

study, we used the traditional FCM method since the focus of our study was on translating FCM causal 658 

relationships and feedback loops into behavioral rules of ABM. However, there are some extensions to 659 

the FCM methodology to capture nonlinearities. Rule-Based Fuzzy Cognitive Map (RBFCM) (Mourhir 660 

and Papageorgiou, 2017, Carvalho and Tomè, 2000) is an approach that captures and represents non-661 

monotonic relations between variables, thus can better show the dynamic impact of actions on variables. 662 

Replacing FCM with RBFCM in this method is proposed for future studies involving the dynamic 663 

impact of actions. Additionally, fuzzy numbers could be used to incorporate sensitivity to the linguistic 664 

weights (i.e. how fuzzy participants’ perceptions may be) in the ABM; the impacts can be tested by 665 

using the fuzzy membership function (Papageorgiou et al., 2009, Papageorgiou et al., 2011, Giabbanelli 666 

et al., 2012). In our model, the uncertainty that participants have about the weights has not been 667 

considered.   668 

 669 

Second, an aggregated FCM represents the average of all individual FCMs. In our study, the variability 670 

of farmers’ preferences, decisions and actions are represented by grouping FCM models for large, 671 

medium and small farmers.  In some applications, it is necessary to take into account the distribution of 672 

stakeholders’ perceptions even within each group. Therefore, another interesting approach or extension 673 

to this work would be to use interval (or standard deviation) instead of a fixed average value for the 674 

FCM connections’ weights and apply randomness within the range of values in each time step. In this 675 

way, the variation of collected data from stakeholders can be used in describing the impact of agents’ 676 

actions in ABM. However, we need larger sample sizes for each group of stakeholders to estimate the 677 

standard deviations and variances of their FCM connections’ weights (Harrell Jr, 2015).  678 

 679 

Third, building an ABM on FCMs means that connections between variables are largely based on 680 

farmers’ perceptions and not calibrated to fit past time series data. Therefore, they are proper for 681 

qualitatively comparing potential impact of different policy options but not for quantitatively predicting 682 

the future of the system. 683 

 684 

Fourth, learning and prediction are two important properties of many ABMs. In this study, we did not 685 

integrate these two aspects as agents’ properties. However, for future studies, farmers’ abilities to learn 686 

from their experiences, adapt their actions and estimate future consequences of their decisions could 687 

also be added to the simulation model. 688 

 689 

Fifth, validation of the model has been done for the whole region due to the availability of historical 690 

groundwater use data only for the whole region but not for each specific sub-regions. However, in the 691 

case of data availability, validation of simulation for each sub-region separately would provide more 692 

confidence in the model.  693 
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 694 

Last, ODD+D protocol (Müller et al., 2013) can also be used in this methodology instead of standard 695 

ODD. This protocol rearranges the design concepts to better capture human decision-making. 696 

6. Conclusion 697 

This study introduces a step-wise methodology to integrate a factor-based modeling approach (i.e. 698 

FCM), with an actor-based modeling approach (i.e. ABM), to support policy option analysis in SESs. 699 

In this methodology: 1) FCM aggregates the qualitative stakeholders’ knowledge and perception to 700 

model the SES function and stakeholders’ adaptive reactions to the system, 2) the output of FCM is 701 

translated to be used as ABM input data 3) ABM is developed to simulate and compare the impacts of 702 

different policy alternatives considering human-environment dynamic interactions. We applied this 703 

methodology for the case of a farming community facing water scarcity in Rafsanjan, Iran. The results 704 

show that this integrated methodology takes into account aspects of complex SESs that cannot be fully 705 

covered by either modelling approach if used individually. 706 

Moreover, our case study indicates that among three policies of shrinking farms, irrigation change and 707 

farmers’ participation, the policy of shrinking farms is a high incentive policy for farmers to reduce 708 

their irrigation areas and thus decrease pressures on aquifer and groundwater use. However, due to the 709 

high emigration of farmers in this scenario, it is not a satisfactory policy from a socio-economic 710 

perspective. Rather a policy to facilitate farmers’ participation in the management and control of their 711 

groundwater use has the highest impact in reducing overall groundwater use, and it reduces emigration. 712 

Surprisingly, adopting new irrigation technologies does not have any significant impact on reducing 713 

overall groundwater use in the region. 714 
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