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Abstract 

This study estimates the combined direct and indirect rebound effects from energy efficiency 

improvements in the delivery of six energy services to UK households, namely: heating; lighting; 

cooking; refrigeration and clothes washing; entertainment and computing; and travel. We estimate a 

two-stage almost ideal demand system for household expenditure, with these energy services as 

expenditure categories. We estimate rebound effects in terms of carbon emissions and only include the 

‘direct’ emissions associated with energy consumption. Our results suggest direct rebound effects of 

70% for heating, 54% for travel and ~90% for the other energy services. But these effects are offset by 

negative indirect rebound effects. As a result, our estimates of combined rebound effects are smaller, 

namely 54% for heating, 67% for travel and ~40% for the other energy services. We also find some 

evidence that rebound effects have declined over time. We provide several caveats to these results, 

and indicate priorities for future research. 

Keywords: rebound effects; linear almost ideal demand system; energy efficiency  
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1 Introduction 

Major investments in energy efficient technologies are central to tackling climate change and a key 

source of green growth. Indeed, attempts to decouple energy services from energy use are crucial 

given the continually rising demand for energy. But to assess the effects of these investments on 

energy demand, it is important to understand the nature and magnitude of any associated ‘rebound 

effects’. 

The term ‘rebound effects’ refers to a variety of economic responses to improved energy efficiency 

whose net result is to increase energy consumption and greenhouse gas (GHG) emissions relative to a 

counterfactual baseline in which those responses do not occur. For example, more energy efficient 

lighting reduces the effective price of lighting which encourages consumers to use higher levels of 

illumination over longer periods of time, thereby offsetting some of the potential energy and emission 

savings. The magnitude of these effects has been a source of controversy for years, but an increasing 

volume of research has reduced some of the key uncertainties (Dimitropoulos et al., 2016; Sorrell, 

2007; Turner, 2013). However, for energy efficiency improvements by consumers, the evidence base 

has three important limitations (Chitnis and Sorrell, 2015). 

First, the majority of studies focus upon car travel, since reliable data on the effective price and 

quantity demanded of other household energy services is much harder to obtain (Galvin, 2015; Sorrell, 

2007). Studies of rebound effects for lighting, for example, remain relatively rare (Saunders and Tsao, 

2012; Tsao et al., 2010). 

Second, most studies focus solely upon direct rebound effects and neglect the associated indirect 

rebound effects. For example, fuel-efficient cars may encourage more driving (direct rebound), but the 

savings on road fuels may be spent on other goods and services whose provision also requires energy 

use and emissions along their global supply chains (indirect rebound) (Chitnis et al., 2013; Druckman 

et al., 2011). From a global perspective, these emissions may further offset the environmental benefits 

of the energy efficiency improvements. 
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Third, most of the studies that estimate indirect rebound focus on the income effects of energy 

efficiency improvements and neglect the associated substitution effects - or in other words, they rely 

upon expenditure rather than price elasticities (Alfredsson, 2004; Bjelle et al., 2018; Murray, 2013; 

Thomas and Azevedo, 2013). As a result, their estimates of rebound effects are incomplete and likely 

to be biased (Chitnis and Sorrell, 2015). 

To overcome these limitations, it is necessary to obtain estimates of both the own-price elasticity of 

demand for the relevant energy service (e.g. the own-price elasticity of lighting) and the elasticity of 

demand for other goods and services with respect to the price of that energy service (e.g. the elasticity 

of demand for food products with respect to the price of lighting). This can be achieved through 

estimating a system of equations for household expenditure on different categories of goods and 

services (a household demand model), where one of the categories is the relevant energy service. For 

example, to estimate the direct and indirect rebound effects associated with lighting, the model would 

need to include lighting as one of the categories of household expenditure, alongside other categories 

such as food and housing. This requires time-series, panel or pooled cross-sectional data on the price 

and expenditure share of each category of good and service, including the energy service (Chitnis and 

Sorrell, 2015; Sorrell, 2010). The price and expenditure share of lighting will, in turn, depend upon 

both the price of electricity and the average energy efficiency of the installed stock of light bulbs. 

Improvements in lighting efficiency will make lighting cheaper, thereby encouraging increased 

consumption of lighting along with increased (reduced) consumption of goods and services that are 

complements (substitutes) to lighting.  

To convert these elasticity estimates into estimates of rebound effects, it is further necessary to 

estimate the energy use or emissions associated with household expenditure on each category of goods 

and service. For energy services such as lighting, these primarily derive from the direct energy use 

and emissions associated with household consumption of the relevant energy commodities - such as 



5 

gas and electricity.1 For other goods and services such as food and furniture, these primarily derive 

from the embodied energy use and emissions associated with manufacturing, processing, shipping and 

retailing those goods and services. Embodied energy use and emissions can be estimated with the help 

of multi-regional, environmentally-extended input output models (Breusch and Pagan, 1979; Chitnis 

and Sorrell, 2015; Chitnis et al., 2014; Chitnis et al., 2013; Druckman et al., 2011). 

To date, as far as we know, no study has used this approach to estimate the combined (i.e. direct plus 

indirect) rebound effects for household energy services - owing primarily to a lack of data on the 

effective price of those services and their share of total household expenditure. However, several 

studies have estimated combined rebound effects for the energy commodities used to provide those 

energy services. For example, the combined rebound effect associated with household gas 

consumption has been estimated by combining estimates of the own- and cross-price elasticities of 

demand for natural gas with estimates of the energy or emission intensity of different categories of 

household expenditure. But this approach has two drawbacks. First, using energy commodity price 

elasticities as a proxy for energy service price elasticities will lead to biased estimates of the rebound 

effect (Chitnis and Sorrell, 2015; Sorrell, 2010). Second, additional bias will be introduced if the 

relevant energy commodity provides more than one energy services (e.g. electricity provides both 

lighting and entertainment), and/or the same energy service is provided by more than one energy 

commodity (e.g. heating is provided by both gas and oil) (Chan and Gillingham, 2015). 

An earlier study by the authors (Chitnis and Sorrell, 2015) used the own and cross price elasticities of 

energy commodities to estimate combined rebound effects for UK households over the period 1964-

2013. This gave estimates of 41% for measures affecting gas consumption, 48% for measures 

affecting electricity consumption and 78% for measures affecting vehicle fuels. This paper seeks to 

improve upon Chitnis and Sorrell (2015) in two ways. First, we estimate elasticities with respect to the 

                                                 
1 The emissions associated with electricity consumption are normally classified as direct emissions, even though they occur at the 

generating plant rather than the household. 



6 

price of energy services rather than the price of energy commodities, thereby allowing individual 

energy services to be isolated and reducing one source of bias. Second, we distinguish between six 

categories of energy service, namely: i) space and water heating; ii) lighting; iii) cooking; iv) 

refrigeration and clothes washing; v) entertainment and computing; and vi) travel. This approach is 

made possible by a unique database on the consumption and price of those services in the UK over the 

last 51 years (Fouquet, 2008; Fouquet and Pearson, 2006). 

This paper also differs from Chitnis and Sorrell (2015) in two other ways. First, to avoid the 

complications caused by different atmospheric lifetimes and radiative forcings, we estimate rebound 

effects solely in terms of carbon emissions rather than GHG emissions. In practice this makes little 

difference to the results, since carbon emissions dominate overall GHG emissions. Second, we confine 

attention to the direct emissions associated with the consumption of energy commodities and hence 

ignore the embodied (i.e. supply chain) emissions associated with the consumption of these and other 

goods and services (e.g. those associated with manufacturing and distributing clothes and furniture). 

This means we ignore the indirect rebound effects associated with increased/reduced consumption of 

non-energy goods and services (e.g. spending the cost savings from more efficient lighting on new 

clothes), but we include the indirect rebound effects associated with increased/reduced consumption 

of other energy services (e.g. spending the cost savings from more efficient lighting on more heating). 

One reason for adopting this simplified approach is that our earlier results suggested that own- and 

cross-price effects between different energy commodities (i.e. changes in direct emissions), accounted 

for the majority (i.e. >80%) of the combined rebound effect - implying that the neglect of embodied 

emissions should not lead to large errors. A second reason is that the limited degrees of freedom in our 

model greatly constrains the number of categories of goods and services that we can include - so we 

prioritise accurate estimates of the cross-price elasticities between different energy services rather than 

between those energy services and other commodity groups. 

The following section summarises how we use estimates of the own- and cross-price elasticities and 

emission intensities of different goods and services to derive estimates of the combined rebound effect 



7 

for a particular energy service. Section 2 describes the economic model used to derive the elasticities 

while Section 3 summarises the econometric techniques employed. Section 4 summarises our data 

sources, including our estimates of the effective price and quantity demanded of different energy 

services in UK households since 1964. Section 5 presents our results including our estimates of own-

price and cross-price elasticities for each energy service, together with the associated rebound effects. 

Section 6 concludes by highlighting the limitations of this approach and providing some suggestions 

for future research.  

2 Analytical expression for the combined rebound effect 

Let x represent total household expenditure on all goods and services (e.g. in £); iq  the quantity of 

good or service i  purchased by households and ip  the unit price of good i . We define a total of N+1 

categories of goods and services ( Ni ,...1 , plus the energy service s), and allow these ‘other’ goods 

and services (i) to include both traded goods (e.g. furniture, clothes) and other energy services 

(heating, cooking). Total household expenditure may then be written as: 





Ni

iiss qpqpx
...2,1

 1 

Let 
sDR  represent the direct rebound effect following a marginal improvement in the energy 

efficiency of delivering energy service s and let sIR  represent the associated indirect rebound effect. 

The combined rebound effect for energy service s ( sCR ) is given by the sum of the two: 

sss IDC RRR  . With these definitions, Annex 1 derives the following expression for the combined 

rebound effect: 





)(

,,
sii

pqipqC sisss
R   2 

Where ss pq , is the own-price elasticity of demand for energy service s, si pq , is the elasticity of 

demand for good i with respect to the price of energy service s and i  is the ratio of the carbon 
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emissions associated with expenditure on good i to the carbon emissions associated with expenditure 

on energy service s:  

ss

ii

wu

wu
i 

 
3 

Where iw  is the share of category i in total household expenditure ( xqpw iii /)( ), iu  is the carbon 

emission intensity of that expenditure (tCO2/£) and sw  and su  are the corresponding variables for 

energy service s. The emission intensities ( iu  and su ) may include both direct and embodied 

emissions, but in what follows we focus solely upon direct emissions. 

The first term in Equation 2 is the direct rebound effect for energy service s (
sDR ): 

sss pqDR ,  4 

Equation 8 indicates that for there to be no direct rebound effect, the own-price elasticity of energy 

service consumption would need to be zero ( 0, 
ss pq ).  

The second term in Equation 2 is the indirect rebound effect for energy service s (
sIR ): 





)(

,
sii

pqiI sis
R   5 

The total indirect rebound effect for energy service s ( sIR ) is the sum of the indirect rebound effects 

associated with each of the individual goods and services (i). The latter depend upon the elasticity of 

demand for the relevant good or service with respect to the effective price of the energy service 

( si pq , ) and the emissions associated with expenditure on that good or service ( ii wu ) relative to those 

associated with expenditure on energy service s ( ss wu ). Equation 5 demonstrates that goods and 

services with a small cross-price elasticity may nevertheless contribute a large indirect rebound effect 

if they are relatively emission intensive and/or have a large expenditure share (and vice versa). 

However, in what follows we focus solely upon direct emissions, which means that the only goods and 
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services contributing to our estimates of the indirect rebound effect are other energy services.  For 

example, improvements in heating efficiency may lead to indirect rebound effects associated with 

increased demand for lighting.  

Note that the magnitude of the direct rebound effect is independent of the energy or emissions 

intensity of energy service s, and therefore independent of the metric used to measure rebound effects 

(e.g. energy, carbon or GHGs). In contrast, the magnitude of the indirect rebound effect depends upon 

the energy/emissions intensity of the energy service relative to other goods and services and hence 

depends upon the metric used.   

3 Econometric model 

Estimates of the required elasticities can be obtained by estimating a household demand model. One 

standard approach is to divide expenditures into a limited number of aggregate categories (r=1…R), 

and then to subdivide expenditure on each category into a number of subcategories (i=1,…Ir) - with 

the number of subcategories (Ir) varying from one aggregate category (r) to another. For example, the 

aggregate category of food products could be separated into ‘animal products’, ‘vegetables and fruit’ 

and ‘other’. This approach assumes weak separability of preferences between aggregate commodity 

groups, such as food and transport - implying that household decisions on how much to spend on one 

group (e.g. food) are separate from decisions on how to allocate this expenditure between the goods 

and services within that group (e.g. animal products, vegetables and fruit) (Deaton and Muellbaeur, 

1980). Although standard, this assumption can be a source of bias.  

We follow the majority of studies in household demand analysis in using the Linear Approximation to 

the Almost Ideal Demand System (LAIDS), since this has a number of advantages over competing 

approaches (Deaton and Muellbauer, 1980). As a compromise between resolution and degrees of 

freedom, we split household expenditure into three categories and assume weak separability to give a 

two-stage budgeting framework (Figure 1). We assume households first allocate expenditure between 

three aggregate categories (household energy services, transport services, and other goods and 

services), and then distribute the expenditures on each of these aggregate categories (r) between 
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individual subcategories (i). For this study we define six subcategories of household energy services, 

and two subcategories of transport services, but we do not disaggregate the aggregate category of 

other goods and services. This framework allows expenditure on individual subcategories to be 

specified as a function of the expenditure on the relevant aggregate category and the price of the 

subcategory.  

Figure 1 Two-stage budgeting model 

 
This framework includes a total of six energy services: namely, the five household energy services 

plus travel by private cars, motorbikes and vans. In each case, the relevant expenditures relate to the 

‘energy cost’ of the energy service ( sss qpx  ) and exclude the associated capital and non-energy 

operating costs. For travel, the latter costs form part of the ‘other transport’ subcategory, which also 

includes expenditures on public transport. For household energy services, the capital and non-energy 

operating costs associated with the relevant equipment are included within the ‘other goods and 

services’ category. 

The econometric model is specified as follows. Let r
tx  represent the expenditure on aggregate category 

r in period t and r
tw  the share of that category in total household expenditure ( tx ):  
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t

r
tr

x
xw

t
  6 

In the first stage of the LAIDS model, this is specified as: 

wt
r = αr + θrt + ∑ γrslnpt

s + βrln⁡(
xt

Pt
L
)

s=1,…,R

+ ∑ λrswt−1
s

s=1,…,(R−1)

+ νt
r
 7 

Where: r and s index over the aggregate categories (R=3); t is a time trend, s
tp  is the price of the 

aggregate category s in period t; xt is total expenditure per household in that period; PtL⁡is a log-linear 

analogue of the Laspeyres price index for household goods and services; s
tw 1  is the lagged 

expenditure share of category s; r , θr,⁡ rs , r  and rs are the unknown parameters and νtr is the error 

term. 2  

Our model departs from typical applications of LAIDS by using a loglinear analogue of the Laspeyres 

price index instead of standard Stone’s price index⁡(Pt). Pt is defined as the expenditure-share 

weighted sum of the prices for the individual aggregate categories where the weight varies over time:  

𝑙𝑛⁡(𝑃𝑡) = ∑ 𝑤𝑡
𝑟𝑙𝑛⁡(𝑝𝑡

𝑟

𝑟=1,…,𝑅

) 8 

Moschini (1995) shows that Pt⁡is not invariant to changes in the units of measurement for prices and 

quantities, which may seriously affect the approximation properties of the model. Moschini (1995) 

suggests log-linear analogue of the Paasche price index (PtP) and log-linear analogue of the Laspeyres 

price index (PtL) as possible solutions: 3 

                                                 
2 We also added a measure of heating degree days (to capture weather-related influences on energy demand) in both stages of 

estimation. This variable was generally insignificant and only had a minor effect on the size of estimated rebound. Hence, given the 

limited number of observations, it was dropped from the model.   

3 Moschini (1995) performed a simulation to illustrate the type of problems that may arise with the use of the Stone index. The linear 

AIDS with the standard Stone index, P, performed rather poorly. Indices PtP and PtL vastly improved the model with similar estimates, 

producing virtually the same results as the true non-linear AIDS model. 
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𝑙𝑛(𝑃𝑡
𝑃) = ∑ 𝑤𝑡

𝑟𝑙𝑛⁡(
𝑝𝑡
𝑟

𝑝0
𝑟

𝑟=1,…,𝑅

)⁡ 9 

𝑙𝑛(𝑃𝑡
𝐿) = ∑ 𝑤0

𝑟𝑙𝑛⁡(𝑝𝑡
𝑟

𝑟=1,…,𝑅

)⁡ 10 

When the prices are expressed as indices, Equations 8 and 9 should be equivalent. However, since the 

expenditure share (wt
r) in both equations is endogenous, the use of these price indices could result in 

biased estimates of Equation 7. We therefore use a log-linear analogue of the Laspeyres price index to 

overcome the endogeneity problem. In this index, (PtL), expenditure shares are held constant at their 

base year values (t=0).   

We also include lagged expenditure shares ( s
tw 1 ) to the model. These have been found reduce serial 

correlation, while also capturing the inertia in price responses - for example as a result of the time 

taken to adjust spending habits to changes in prices (Edgerton, 1997; Klonaris and Hallam, 2003; 

Ryan and Plourde, 2009; Shukur, 2002). Since the lagged expenditure shares sum to unity, we drop 

one in each equation to avoid multi-collinearity. We also include a time trend (t) to capture the effect 

of time-varying factors influencing demand - an addition that we found to reduce serial correlation. 

As with most applications of LAIDS, we impose restrictions on the parameter values to ensure the 

results are compatible with consumer demand theory. Specifically, adding up requires that 

expenditures on each category add up to total expenditure; homogeneity requires that the quantity 

demanded remains unchanged if prices and total expenditure change by an equal proportion; and 

symmetry requires that the Slustky matrix is symmetric.4 These restrictions are implemented as 

follows: 

Adding up: 



Rr

r

..1
1 ; 




Rr

r

..1
0 ; 




Rr

rs

..1
0  s=1,.R; 




Rr

rs

..1
0  s=1,.(R-1); and ∑ θrr=1,..R = 0⁡ 

                                                 
4 In other words, the compensated impact on the quantity demanded of category r of a unit increase in the price of category s should 

equal the compensated impact on the quantity demanded of category s of a unit increase in the price of category r. This condition 

halves the number of independent terms in the matrix. 
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Homogeneity:  



Rr

rs

..1
0  s=1,..R;    Symmetry: srrs     

The second stage of the LAIDS model distributes the category expenditures ( r
tx ) between sub-

categories. Let r
itx  represent expenditure on subcategory i in aggregate category r during period t 

( ri ) and r
itw  represent the share of that subcategory in the expenditure on category r ( r

tx ): 

r
t

r
itr

it x
xw   11 

This is specified as: 

wit
r = αi

r + θi
rt + ∑ γij

r lnpit
r + βi

rln⁡(
xt
r

PLt
r)

j=1,…,kr

+ ∑ λij
rwjt−1

r

j=1,…,(kr−1)

+ νit
r

 12 

Where i and j index over the subcategories within aggregate category r ( rji , ); 
rk  is the number of 

subcategories in aggregate category r (i.e. five for household energy services, two for transport 

services); r
itp  is the price of subcategory i in aggregate category r in period t; r

tx  is the expenditure on 

category r period t; PLt
r
⁡is the log-linear analogue of the Laspeyres price index for category r; r

i , θir, 

r
ij  r

i  and r
ij  are the unknown parameters and νitr  is the error term. The price index for category r is 

defined as follows:   

𝑙𝑛(𝑃𝐿
𝑡

𝑟
) = ∑ 𝑤𝑖0

𝑟 𝑙𝑛⁡(𝑝𝑖𝑡
𝑟

𝑖=1,…,𝑘𝑟

)⁡ 13 

Again, the adding up, symmetry and homogeneity restrictions are imposed. 

To estimate the expenditure and price elasticities for each category, we utilise the expressions derived 

for a two-stage budgeting model by Edgerton (1997). With this approach, ‘total’ elasticities are 

calculated from estimates of the ‘between-category’ and ‘within-category’ elasticities.5 The relevant 

                                                 
5 For interpretation of these elasticities see Chitnis and Sorrell (2015). 
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formulae are summarised in Table 1. Note that rs , kronecker delta, is equal to unity when r=s (i.e. 

own-price elasticity) and zero otherwise, and r
ij  is equal to unity when i=j and zero otherwise.  

Table 1 Analytical expressions for the between-category, within-category and total elasticities within 

a two-stage LAIDS model 

Elasticity Expenditure Price 

Between-category 

( srsjri  ;; ) 
r

r

xq wr


 1,  rs

r

s
rrs

pq w
w

sr



 


,  

Within-category 

( rji , ) r
i

r
ir

xq wri


 1,  r

ijr
i

r
j

r
i

r
ijr

pq w

w
ji




 


,  

Total 
xq

r
xqxq rrii ,,,    s

jpqrs
r

xq
r

pqrspq w
srrijiji
)( ,,,,    

Source: Edgerton (1997) 

Note that when subcategories i and j are in different aggregate categories ( sr  ), 0rs  and the 

expression for the total price elasticity reduces to: 

s
jpq

r
xqpq w

srriji ,,,    14 

When i and j are in the same category (r=s), the total price elasticity becomes: 

r
jpq

r
xq

r
pqpq w

rrrijiji
)1( ,,,,    15 

We estimate these elasticities using the mean expenditure shares of each subcategory over the whole 

period. Finally, we use the total elasticities for each energy service ( ss pq ,  and si pq , ) to estimate the 

direct and indirect rebound effects for that energy service (Equation 2).  
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4 Data  

4.1  Expenditures and carbon intensities 

Data on prices6 and household expenditures for transport and other goods and services is taken from 

Consumer Trends published by the UK Office of National Statistics (ONS).7  Data on the consumption 

and price of other energy services is taken from a variety of sources, as discussed below.8 All data 

series are annual over the period 1964 to 2015. Note that, with our definitions, the total expenditure on 

household energy services is the same as the total expenditure on household energy commodities (e.g. 

heating oil, gas, electricity) while the expenditure on travel is the same as the expenditure on vehicle 

fuels (petrol and diesel). Since the composition of UK households has changed considerably over this 

period, we ‘equivalise’ total expenditure in each (sub) category as follows: 

𝑥𝑡 =
𝑥�̅�

1 + 0.5𝑎𝑡 + 0.3𝑐𝑡
⁡⁡⁡⁡⁡⁡⁡⁡⁡ , 𝑥𝑡

𝑟 =
�̅�𝑡
𝑟

1 + 0.5𝑎𝑡 + 0.3𝑐𝑡
 16 

Where xt and xtr are the equivalised expenditure of UK households on all categories and main 

category r respectively; x̅t and x̅tr are the unadjusted expenditure on that category; ta is the number of 

people over the age of 14 and tc  is the number of children below the age of 14. We take data on UK 

population size and composition from ONS.  

We take data on the carbon intensities (tCO2/kWh) of fuels from BEIS (2016a), and construct the 

carbon intensity of electricity from data on the share of different fuels in total electricity generation.9 

Combining data on the fuel mix for each energy service (see section 4.2.1) with data on household 

expenditure on each service, we construct the carbon intensity of expenditure on each service ( su ). For 

                                                 
6 Implied deflators (2012=100) are used for prices. 

7 www.ons.gov.uk  

8 For the purpose of estimation and consistency with non-energy services categories, we have used implied deflators (2012=100) from 

ONS to re-construct prices for energy services categories.    

9 Data for fuel mix and generation are taken from: www.gov.uk/government/statistical-data-sets/historical-electricity-data-1920-to-2011 

http://www.ons.gov.uk/
http://www.gov.uk/government/statistical-data-sets/historical-electricity-data-1920-to-2011
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consistency with expenditure shares, we use the mean of the carbon intensities over the whole time 

period. 

4.2 Energy services 

It is useful to consider energy services such as heating and car travel as being provided by a 

combination of energy conversion devices which transform energy from one form to another, and 

passive systems which hold or trap energy for a period of time (Cullen and Allwood, 2010; Cullen et 

al., 2011). For example, a boiler converts chemical energy into heat energy and a building traps heat 

energy for a period of time to deliver the energy service of heating. Similarly, an engine converts 

chemical energy into mechanical energy, and an (aerodynamic) car holds momentum for a period of 

time to deliver the energy service of travel. In what follows, we use the term energy system, to refer to 

the combination of conversion device and passive system that together deliver a particular energy 

service. We define the energy efficiency ( ) of this system as the ratio of energy service delivered 

(qs⁡)⁡to energy consumed⁡(qe⁡): es qq / . This in turn depends upon both the efficiency of the 

conversion device in converting energy, and the efficiency of the passive system in holding energy. 

In any population of households, energy services such as heating may be supplied by more than one 

energy commodity (e.g. gas and electricity) and by more than one type of energy system (e.g. boilers, 

storage heaters). The average efficiency of the relevant energy systems will vary from one energy 

commodity to another (e.g. coal versus gas boilers) and will also change over time. Similarly, the 

quantity of energy services supplied by different energy commodities and/or energy systems will also 

change over time (e.g. shifts from coal to gas for heating, or from compact fluorescents to LEDs for 

lighting).  

Fouquet (2008, 2014a) has constructed a database that includes annual estimates (t=1,..T) of the 

quantity consumed of each of E types of energy commodity (e=1,..E) within each of D types of 

energy system (d=1,..D) to produce each of S types of energy service (s=1,..S) within the population 

of UK households. We designate these estimates by sedt . This dataset also includes estimates of the 
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energy efficiency of each system/commodity combination ( sedt ) together with the unit price of the 

relevant energy commodities ( etp ). The quantity of energy service s produced by commodity e and 

system d in year t is then given by:  

sedtsedtsedtq   17 

Similarly, the ‘effective price’ of that energy service is given by: 

sedtetsedt pp /  18 

The ‘total cost’ of the energy service also include the non-energy operating costs and discounted 

capital costs, but these are included in the ‘other transport’ category for travel and in the ‘other goods 

and services’ category for household energy services. 

The total quantity of energy service s consumed in year t ( stq ) is then given by summing over the 

relevant system/commodity combinations: 

 
 


Ee Dd

sedtst qq
,..1 ,..1
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While the effective price of energy service s in year t is given by the weighted average of the effective 

price of the energy service from each system/commodity combination: 

 
 
















Ee
sedt

Dd st

sedt
st p

q
q

p
,..1 ,..1
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For simplicity, we drop the time subscript in what follows, and represent the quantity demanded of 

energy service s by sq  and the effective price by sp . We use the following measures for the quantity 

consumed ( sq ) of each energy service:  

 travel: vehicle kilometres; 

 space and water heating: kWh heat  
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 cooking: kWh heat  

 lighting: lumen-hours 

 washing: kg of washed clothes  

 refrigeration: litres of refrigerated space 

 entertainment: kWh of effective appliance activity   

 computing: kWh of effective computing.  

4.2.1 Data sources for energy services 

Our starting point in constructing time series for energy services is BEIS (2016b), which provides 

estimates of UK household energy consumption for each of five end-use categories (space heating, 

water heating, cooking, lighting and appliances), broken down by four types of energy commodity 

(coal, petroleum, natural gas and electricity), over the period 1970 to 2015. We obtain estimates for 

earlier years (1964 to 1970) using the process described in Fouquet (2014a) REMOVE “a” in (2014a). 

That is, it uses the energy commodity data available from past Digest of United Kingdom Energy 

Statistics and makes assumptions about the share of end-uses extrapolating back in time from 1970 

and based on historical information about appliance markets – for the period from 1964 to 1970, the 

shares change little. BEIS (2016b) also provides estimates of electricity consumption for six end-use 

categories (lighting, cold appliances, wet appliances, consumer electronics, home computing and 

cooking) and breaks down each of these into individual energy systems (Table 2). We aggregate and 

combine this data to obtain estimates of energy consumption by commodity type (e) and energy 

system (d) for our five categories of household energy service (s), namely lighting, heating, 

refrigeration and washing, entertainment and computing, and cooking ( sedt ). 

Table 2 End-use categories and energy systems for electricity consumption 

End-use category Energy system 
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Lighting Incandescent bulbs, halogen, fluorescent strip lighting, compact 

fluorescents, LEDs 

Refrigeration Chest freezer, fridge-freezer, refrigerators, upright freezers 

Washing Washing machines, washer-dryers, dishwashers and tumble dryers 

Consumer electronics TV, set top box, DVD/VCR, games consoles, power supply units 

Home computing desktops, laptops, monitors, printers and multi-function devices 

Cooking Electric ovens, electric hobs, microwaves and kettles for water heating 

As described in Fouquet (2014a) REMOVE “a” in (2014a)., we use a variety of sources to obtain 

corresponding estimates of the energy efficiency of each system/commodity combination ( sedt ). For 

example using and updating Fouquet (2014a) REMOVE “a” in (2014a)., we estimate that the energy 

efficiency of incandescent bulbs have increased from 11.7 lumens per watt (lm/W) 1964 to 15.2 lm/W 

in 2015. We obtain similar estimates for halogens, fluorescent strip lighting, compact fluorescents and 

LEDs, and use Equations 19 and 20 to estimate the total consumption and effective price of lighting in 

UK households since 1964. 

We use a similar approach for other household energy services. In the case of refrigeration and 

washing, we use data from DCLG (2014) on the UK stock of refrigerators and washing machines 

(Table 2) at each energy rating band (i.e. A++, A+, A, B, D, E, F and G) in each year since 1996. 

Combining this with data on the energy efficiency of each band (Koomey et al., 2013), we estimate 

the weighted average energy efficiency of the UK stock of each appliance over the period 1996-2015. 

For earlier years, we incorporate less efficient label levels (H, I and J) and estimate the share of each 

using estimates of past diffusion rates (Fouquet, 2008).  

For space heating, we use estimates from BEIS (2016b) on the efficiency of the residential energy 

system. The data is based on information from 1970 to 2015 on the Standard Assessment Procedure 

(SAP) rating, which measures the energy rating of residential dwellings, taking account of the typical 
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building materials, level of insulation, rate of ventilation, and conversion efficiency of boilers. Using 

the observed correlation between heat loss and the date of construction of buildings (BEIS, 2016b), 

we estimate average heating efficiencies for the earlier period 1964 to 1969. 

For entertainment and computing, we lack data on the share of different conversion devices by energy 

rating band. Instead, we base our trend estimates on the assumptions made by Brockway et al. (2014), 

which assumes a linear nine-fold increase in energy efficiency between 1970 and 2010, with the trend 

linearly extrapolated forward to 2015, but the rate of efficiency improvement prior to 1970 was only 

one quarter of the rate from the 1970s, reflecting the greater concern about efficiency. While highly 

simplistic, these estimates appear broadly consistent with the exponential improvements in the energy 

efficiency of computing technology reported by Koomey et al. (2013). They suggest that the energy 

efficiency of the combined category of entertainment and computing has improved twelve-fold 

between the 1960s and 2015. These efficiency estimates are then combined with the price of 

electricity to estimate the cost of entertainment and computing from 1964 and with the detailed break-

down of consumption estimated in BEIS (2016b) back to 1970. Once estimates of consumption and 

prices for entertainment and computing are produced, and indexes are calculated for each, the indices 

are combined by weighting by the share of energy consumption for each service.  This give a series 

for the price of entertainment and computing from 1964 to 2015 and the quantity consumed from 1970 

to 2015. The latter is extrapolated back to 1964 using the 1970 share of entertainment in the total 

electricity use for appliances multiplied by the consumption of electricity for appliances - based on 

data from Fouquet (2014b) REMOVE “b” in (2014a).. 

For transport services, we use DfT (2016) which provides data on passenger kilometres by car and 

motorcycle. The price of travelling one kilometre is estimated by dividing passenger expenditure by 

distance travelled (in billions of passenger kilometres). Passenger road transport costs are more 

complex when the consumer provides the transport service by driving a car or motorcycle. At least 

three costs can be identified: the fuel costs, other marginal costs and annualized costs. Fouquet (2012) 

breaks-down the annual costs of car travel between 1971 and 2008. Fuel costs accounted for between 
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28%-40% of the total annual expenses. Few of the other expenses listed are obvious marginal costs – 

tyre consumption also depends on distance travelled. So, fuel costs were used as the price (or main 

private marginal cost) of passenger transport. Fouquet (2012) provides further detail on the method for 

estimating the price of different transport services. The efficiency of travel is calculated by dividing 

distance travelled (vehicle-kilometre) by fuel consumption (MJ). 

We emphasise that all the above estimates are subject to uncertainty - particularly for refrigeration and 

washing, and entertainment and computing. Improving the accuracy of these estimates should be a 

priority for future research.  

4.2.2 Estimated trends 

Here, we summarise our estimates of the effective price and consumption of each energy service in 

UK households since 1964. Figure 2 indicates the estimated trends in energy efficiency ( st ) for each 

energy service between 1964 and 2015.10 These represent the net effect of improvements in the 

efficiency of individual energy systems and changes in the mix of energy systems used for each 

energy service. For heating, average efficiencies (incorporating boiler efficiency and the thermal 

performance of the dwelling) improved more than three-fold between 1964 to 2015 (BEIS 2017) - a 

change driven by the shift from coal to gas heating in UK households and the increasing use of 

efficient, gas-fired condensing boilers. The efficiency of lighting improved steadily up to 2008 and 

then very rapidly following the penetration of CFLs and LEDs. We estimate the average efficiency of 

lighting to be ~39 lumens per watt (lm/W) in 2015 compared to only ~12 lm/W in 1964. The slight 

dip in lighting efficiency in 2014 and 2015 was due to a decrease in the share of relatively efficient 

fluorescent strips and a modest increase in less efficient halogen lighting.  

We estimate that the efficiency of refrigeration and washing improved more than three-fold between 

1964 and 2015, with most of this improvement occurring since 2000. The energy efficiency of travel 

                                                 
10 Note that the axis for appliances is on the right-hand side of the figures. 
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increased by a more modest 55%, with technical improvements in energy efficiency being offset by 

the trend towards larger and more powerful vehicles (Ajanovic et al., 2012). Finally, we estimate that 

the energy efficiency of entertainment and computing increased by a factor of 12 over this period – 

although this estimate is uncertain. 

Figure 2 Efficiency of providing household energy services in the UK 1964-2015 (1964=100) 

 

Figure 3 illustrates the estimated trends in the average ‘energy input price’ ( etp ) for lighting and 

appliances, cooking, heating and travel respectively. For lighting and appliances the trend represents 

the unit price of electricity, while for cooking, heating and travel the trend represents the quantity-

weighted average unit price of two or more energy commodities (Equation 20).11 The trends reflect 

the net impact of changes in the real price of energy commodities and changes in the mix of energy 

commodities used for each category. The estimates suggest that energy input prices have fluctuated 

considerably over this period, with a steady decline between 1980 and 2004, significant increases to 

2013 and a slight fall since that date. In real terms, the average energy input prices for lighting and 

appliances, heating and cooking are all estimated to be between 13% and 45% higher in 2015 

compared to 1964, while the price of vehicle fuels is estimated to be around 13% higher (down from a 

peak of 48% in 2009).  

                                                 
11 In all cases, standing and other charges are ignored. 
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Figure 3 Energy input real price for UK household energy services 1964-2015 (1964=100) 

 

The real effective price of energy services ( stp ) depends upon both average efficiencies (Figure 2) and 

energy input prices (Figure 3). The resulting trends are illustrated in Figure 4. Between 1980 and 

2003, a combination of falling energy prices and improving efficiencies led to significant reductions 

in the effective price of household energy services. The real price of most energy services began to 

increase again after 2002, with a correlation in the price trends for lighting, cooking and refrigeration 

and washing - which are primarily provided by electricity. The effective price of travel began to rise 

after 1991 with the modest improvements in vehicle efficiency being insufficient to offset rising fuel 

prices. The most dramatic changes were in electronics and computing, with the effective price in 2015 

being one fifth of that in 1964. In 2013, the real price of lighting was around 48% lower than in 1964, 

refrigeration and washing 23% lower, entertainment and computing 88% lower, cooking 17% lower 

and heating only 20% lower. 
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Figure 4 Real effective price of UK household energy services 1964-2015 (1964=100) 

 
Figure 5 illustrates the resulting trends in household consumption of energy services over this period. 

Consumption of residential heating and lighting is estimated to have increased by a factor of four 

since the mid-1960s, while consumption of refrigeration and washing increased seven-fold and 

entertainment and computing 100-fold. In contrast, consumption of cooking is estimated to have 

increased only 30% - perhaps reflecting greater reliance upon ready-meals and eating out. 

Consumption of refrigeration and washing appears to have accelerated after 2000, while consumption 

of other services has stabilised or even begun to decline. The latter trend is particularly important for 

travel, where it has been labelled peak car’. Note that the annual variations in heating consumption are 

related to variations in average winter temperatures.  
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Figure 5 Consumption of UK household energy services 1964-2015 (1964=100) 

 
Finally, Figure 6 illustrates the estimated trends in energy consumption for each service. Consumption 

of energy has not growing as fast as consumption of the energy services themselves, owing to the 

improvements in energy efficiency. For example, consumption of energy for heating was around 20% 

higher in 2015 and 1964, while consumption of heating services was around 100% higher. For 

cooking, improvements in efficiency have combined with reductions in cooking demand to lead to a 

~60% reduction in energy consumption. For appliances, efficiency improvements have moderated but 

not offset the rise in service demand, with the result that energy consumption for refrigeration 

increased 220%, electricity use for washing rose by 365%, energy for electronics soared by 765% 

between 1964 and 2015, and that for computing increased by 110% between 2000 and 2015. 
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Figure 6 Consumption of energy for UK household energy services 1964-2015 (index) 

 

5 Results 

5.1 Elasticity estimates  

Our two-stage budgeting model (Figure 1) leads to three equations for the aggregate groups, five 

equations for the household energy services group and two equations for the transport group. We 

impose the adding-up restriction by dropping one of the equations in each group.  

Tables B.1 to B.3 in Annex B summarise the resulting parameter estimates for the aggregate groups, 

household energy services group and transport group respectively. To interpret the results we need to 

derive the elasticity estimates. Table C.1 and C.2 in Annex C summarise the between-group elasticity 

estimates while Table C.3 and C.4 summarise the within-group estimates – with the results from the 

household energy services and transport groups being combined within the same table. We insert 

these results into Equations in Table 1 to provide estimates of the total expenditure ( xqi
 ) and total 

price (
ji pq ) elasticities for each of our six energy services - which are summarised in Table 3 and 

Table 4. We then insert the total price elasticity estimates into Equation 2 to derive estimates of the 

direct and indirect rebound effects for each of our six energy services. Table 5 indicates the resulting 

estimates of the indirect rebound effect between each energy service (for example, between heating 

0

100

200

300

400

500

600

700

800

900

1000

0

50

100

150

200

250

300

350

400

450

En
te

rt
ai

nm
en

t &
 c

om
pu

tin
g 

Li
gh

tin
g,

 R
ef

rig
er

at
io

n 
&

 w
as

hi
ng

, C
oo

ki
ng

, H
ea

tin
g,

 
Tr

av
el

Lighting Refrigeration & washing Heating
Cooking Car transport Entertainment & computing



27 

and lighting). Finally Table 6 sums the estimates in Table 5 to give the overall direct, indirect and 

combined rebound effect for each energy service. 

From Table 3 we observe that the estimated expenditure elasticities for the energy services are all 

greater than 0.86, and for both heating and refrigeration and washing they exceed unity. This contrasts 

with Chitnis and Sorrell (2015) who found relatively low expenditure elasticities for the energy 

commodities supplying those services. Efficiency improvements may partly explain this difference, 

but other factors are likely to have influenced the results. Very few studies have estimated expenditure 

elasticities for these energy services (either for the UK or for other countries), but we observe that our 

estimate of the expenditure elasticity of lighting is approximately twice that found by Fouquet (2014b) 

REMOVE “b” in (2014b).,12 while our estimate of the expenditure elasticity of heating is 

approximately 40% larger. 

The estimated own-price elasticities for the energy services are indicated in the main diagonal of 

Table 4 (in bold). These all have the expected sign but are larger than anticipated: namely, -0.7 for 

heating, -0.5 for travel and ~-0.9 for other energy services. Again, few studies provide comparable 

estimates of these elasticities, but we observe that our estimate of the own price elasticity of lighting is 

almost twice as large as that found by Fouquet (2014) , while our estimates of the own price 

elasticities of heating and travel are at the upper end of the range found in the literature (Galvin, 2015; 

Madlener and Hauertmann, 2011; Sorrell, 2007). 

Table 4 also indicates the estimated cross-price elasticities between the six energy services. Looking 

first at the signs of the elasticities we observe that travel is estimated to be a complement to household 

energy services ( 0, 
si pq ), while the individual household energy services are estimated to be 

substitutes ( , 0
i sq p  ). This suggests, for example, that improvements in the energy efficiency of 

lighting are associated with increased demand for travel but reduced demand for heating. The 

emissions associated with the former will amplify the rebound effect from energy efficient lighting, 
                                                 
12 These estimates relate to the year 2000 and hence are prior to the rapid efficiency improvements of the last decade. 
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while those associated with the latter will offset it. It is difficult to judge whether the estimated signs 

are plausible or not, since there are no other studies with which we can compare.  

Looking next at the estimated magnitude of these elasticities, we observe that most are relatively 

modest in size (i.e. <0.09) - which is what we would expect. The main exception is heating, where a 

1% reduction in the effective price of heating (i.e. a 1% improvement in energy efficiency) is 

associated with a ~0.35% reduction in demand for other household energy services, but only a 0.03% 

increase in travel demand.  

5.2 Rebound effects  

Our estimates of the own price elasticities of each energy service translate directly into estimates of 

the direct rebound effect for those services (Table 5). The results suggest very large direct rebound 

effects, namely: 70% for heating, 54% for travel and >90% for the other energy services.13 As noted, 

these are larger than the majority of estimates in the literature.  

Table 5 also summarises the estimated indirect rebound effects between each pair of energy services 

(e.g. between heating and lighting), while Table 6 summarises the total indirect effect summing over 

all energy services, together with the total combined (i.e. direct plus indirect) rebound effect. Taking 

lighting as an example, the indirect rebound effects associated with other household energy services 

(e.g. heating) offset the direct rebound effect, while the indirect rebound effect associated with travel 

amplifies the direct rebound effect. Overall, the sum of individual effects over all energy services is 

significant (Table 6). For example, the total indirect rebound effect for lighting is estimated to be -

54%. This offsets the estimated direct rebound effect of 94% for lighting to leave a combined rebound 

effect of 40%. Similar comments apply to the other household energy services. But for travel the 

direct and indirect rebound effects have the same sign, so the combined rebound effect is larger than 

                                                 

13 We experimented two estimation methods/models: Ordinary Least Square (OLS) with Heteroskedastic and Autocorrelation 

Consistent (HAC) estimator for a model with no lagged budget shares, and Iterative Seemingly Unrelated Regressions (ISUR) for a 

model with lagged budget shares. Overall, our estimates of direct rebound appeared relatively insensitive to above choices. 
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the direct effect. Overall, we estimate a combined rebound effect of 40% for lighting, 54% for heating, 

67% for travel and ~40% for the other energy services. 

One notable feature of the results is the similarity of the estimated direct and indirect rebound effects 

for lighting, refrigeration and washing, and entertainment and computing. While each is provided by 

electricity, we would have expected the results to be different given the diverging trends in the 

effective price of each service (Figure 4). But given the similarity in the results, we re-estimated the 

model with these three expenditure categories combined. This led to lower estimates of the combined 

rebound effect for each of our energy service categories (Table 7): namely 30% for lighting and 

appliances, 50% for travel, 48% for heating and 27% for cooking. These lower estimates primarily 

derive from lower estimates of the direct rebound effect. This suggests that the results are sensitive to 

the level of aggregation used, which demonstrates the need for caution in interpretation. 

We also estimated the combined rebound effects for each energy service in 1964 and 2015 ( 
Table 8) This was achieved by using the expenditure share of each good and service in those years, 

together with the corresponding carbon intensity of electricity consumption. The results suggest that 

the magnitude of the combined rebound effects have fallen over time. For example, the combined 

rebound for lighting is estimated to have fallen from 36% in 1964 to only 7% in 2015 while that for 

heating has fallen from 56% to 51%, and that for travel has fallen from 72% to 51%. The exception is 

cooking, where the combined rebound effect has increased from 20% to 25%.  

Table 3 Total expenditure elasticity estimates ( xqi , ) 

Energy service Total expenditure elasticity 

Lighting 0.9618 

Heating 1.2924 

Refrigeration and washing 1.1036 

Entertainment & computing 0.8607 

Cooking 0.9748 

Travel 0.8880 
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Table 4 Total price elasticity estimates (
ji pq , ) 

  Total price elasticity  

 Lighting Heating Refrigeration 

and washing 

Entertainment 

& computing 

Cooking Travel 

Lighting -0.9362 0.3811 0.0880 0.0587 0.0361 -0.0375 

Heating 0.0405 -0.6960 0.0650 0.0309 0.0435 -0.0504 

Refrigeration 

& washing 

0.0495 0.3432 -0.9224 0.0436 0.0492 -0.0430 

Entertainment 

& computing 

0.0554 0.3996 0.0897 -0.9440 0.0586 -0.0336 

Cooking 0.0353 0.3696 0.0811 0.0468 -0.9188 -0.0380 

Travel -0.0036 -0.0264 -0.0058 -0.0033 -0.0038 -0.5417 

Note: Each row represents an equation. So for example, a 1% increase in the price of lighting will lead to a 0.93% 

reduction in lighting consumption and a 0.04% increase in heating consumption. 

 

Table 5 Estimated direct and indirect rebound effects for each energy service 

 Lighting Heating Refrigeration 

& washing 

Entertainment 

& computing 

Cooking Travel 

Lighting 93.6% -39.4% -8.0% -4.7% -3.5% 1.8% 

Heating -3.9% 69.6% -5.7% -3.5% -3.8% 1.4% 

Refrigeration & 

washing 

-5.5% -39.3% 92.2% -4.7% -5.0% 1.8% 

Entertainment & 

computing 

-7.0% -35.6% -8.3% 94.4% -5.5% 2.0% 

Cooking -3.6% -42.7% -8.0% -5.0% 91.9% 2.0% 

Travel 0.7% 9.7% 1.4% 0.6% 0.8% 54.2% 
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Table 6 Direct, indirect and combined rebound effects for each energy service 

Energy service Direct rebound Indirect rebound Combined 

rebound 

Lighting 93.6% -53.7% 39.9% 

Heating 69.6% -15.5% 54.1% 

Refrigeration & washing 92.2% -52.7% 39.5% 

Entertainment & computing 94.4% -54.3% 40.0% 

Cooking 91.9% -57.3% 34.6% 

Travel 54.2% 13.1% 67.3% 

 
 

Table 7 Direct, indirect and combined rebound effects for each energy service – lighting and 

appliances combined 

Energy service Direct rebound Indirect rebound Combined 

rebound 

Lighting and appliances 84.8% -54.8% 30.0% 

Heating 63.6% -15.7% 48.0% 

Cooking 95.0% -67.4% 27.6% 

Travel 57.2% -7.0% 50.2% 

 
Table 8 Comparing estimates of the direct, indirect and combined rebound effects for each energy 

service in 1964 and 2015 

Energy service 1964  2015 

 Direct 

rebound  

Indirect 

rebound 

Combined 

rebound 

 Direct 

rebound  

Indirect 

rebound 

Combined 

rebound 

Lighting 94.0% -48.0% 46.0%  93.7% -86.2% 7.5% 

Heating 68.5% -12.2% 56.2%  64.9% -13.8% 51.1% 

Refrigeration & washing 95.8% -59.3% 36.6%  90.0% -82.4% 7.5% 

Entertainment & computing 96.0% -45.6% 50.4%  89.2% -81.9% 7.3% 

Cooking 89.7% -69.5% 20.2%  91.4% -66.9% 24.5% 

Travel 44.2% 27.6% 71.8%  44.5% 6.1% 50.6% 



32 

6 Conclusion  

This study has sought to estimate the combined direct and indirect rebound effects associated with 

improvements in the energy efficiency of UK household energy services over the period 1964 to 2015. 

These effects have been estimated solely in terms of the carbon emissions associated with energy 

consumption - the emissions ‘embodied’ in non-energy goods and services have been ignored. To our 

knowledge, this is the first study of its type to estimate both own and cross-price elasticities between 

different household energy services, as well as the first to use these to estimate rebound effects. The 

study improves upon earlier work by Chitnis and Sorrell (2015), since it does not rely on the 

assumption that the own-price elasticity of energy service demand is equal to the own-price elasticity 

of energy demand. 

The approach relies upon a unique database on the price and consumption of household energy 

services in the UK since 1964. These estimates suggest that the effective price of most energy services 

have fallen significantly since 1964 (Figure 4), although rising energy prices over the last few years 

have partly offset the effect of improving efficiency. The only exception is vehicle travel, where the 

price per kilometre in 2015 was ~14% higher than in 1964. 

The results suggest, first, that the direct rebound effects from energy efficiency improvements over 

this period have been relatively large – for example, 94% for lighting and 70% for heating. While few 

other studies have estimated these effects, our estimates are at the high end of the range found in the 

literature. 

Second, our results suggest that the indirect rebound effects associated with other energy services are 

significant – namely +13% for travel, -16% for heating and -55% for other household energy services. 

These indirect effects offset the direct rebound effect for household energy services, but amplify the 

direct rebound effect for travel. This is because household energy services are estimated to be 

substitutes for each other, while travel is estimated to be a complement. The net result is that the 

combined rebound effect is smaller than the direct rebound effect for household energy services, but 

larger for travel. Overall, we estimate a combined rebound effect of 40% for lighting, 54% for heating, 
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67% for travel and ~40% for the other energy services. These results suggest that around one half of 

the potential emission savings from improved energy efficiency over this period have been ‘taken 

back’ by consumer responses to cheaper energy services. 

There are multiple caveats to these results. First, our re-estimation of the model with aggregated 

categories of energy services leads to lower estimates of the combined rebound effect ( 

Table 7), suggesting that the results are sensitive to the level of aggregation used. This sensitivity may 

derive in part from the relatively small share of total expenditure accounted for by individual energy 

services. Second, there are considerable difficulties in compiling estimates of the effective price and 

quantity demanded of household energy services over this period - and particularly for years prior to 

1970. The resulting uncertainties limit the level of confidence we can have in the results - especially 

for categories such as entertainment and computing where the quality of data is particularly poor. 

Third, the limited number of observations in our model prevents us from including additional 

covariates and necessitates the imposition of separability assumptions - both of which could 

potentially bias the results. Fourth, our estimates of expenditure elasticities are relatively large and 

notably larger than those found by Fouquet (2012) who used a comparable dataset. Fifth, some of our 

cross price elasticity estimates are puzzling, including the finding of substitutability between heating 

and lighting. Since energy efficient lighting produces less waste heat, we would expect an increase in 

heating consumption to compensate (the ‘heat replacement effect’), but our results suggest the 

opposite. Finally, we note that our study neglects embodied emissions and hence the indirect rebound 

effects associated with changes in the consumption of non-energy goods and services. Although the 

sign of these effects is ambiguous and their magnitude is likely to be small, their inclusion would 

necessarily change our estimates of the total rebound effect. 

Future work should seek to address some of these limitations and improve the level of confidence in 

the results. This is particularly important since other studies that have used a comparable methodology 

- only with energy commodities rather than energy services - have also estimated large rebound 

effects (Chitnis and Sorrell, 2015; Mizobuchi, 2008). For example, Brannlund et al (2016) estimated 

rebound effects in excess of 100%. At this stage, it is not clear whether these large estimates reflect a 
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problem with this type of methodology (i.e. multistage household demand models), or whether they 

provide an accurate reflection of the size of rebound effects from household energy efficiency 

improvements. Nevertheless, the consistency of these results – and their potentially significant 

implications for climate policy - reinforces the need to investigate rebound effects more carefully.  
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Annex A – Rebound model 

Assume a household makes a costless investment that increases the energy efficiency ( s ) of 

providing energy service s by ss  /  ( 0 ), thereby reducing the energy cost ( sp ) of that 

service by ss pp /  ( 0 ). Let Q represent the household’s baseline carbon emissions (direct 

plus embodied), H  the change in emissions that would occur without any behavioural responses to 

the lower cost energy service (the ‘engineering effect’), G  the change in emissions that results from 

those behavioural responses (the ‘re-spending effect’), and GHQ   the net change in carbon 

emissions. The combined rebound effect (
sCR ) is then given by: 

H
G

H
QHR

sC








  21 

As discussed in Section 2, this is comprised of direct and indirect effects (
sss IDC RRR  ). The 

baseline carbon emissions for the household may be written as: 





)( sii

i
x
ss xuuxQ i  22 

Where ix  is the expenditure on commodity i (in £), x
i

u  is the carbon intensity of that expenditure (in 

tCO2/£) and sx  and su  are the corresponding values of these variables for energy service s. The carbon 

intensities may include both direct and embodied emissions. 

To estimate the engineering effect ( H ), we assume the consumption of all commodities remains 

unchanged while the energy cost of the energy service falls. The change in expenditure on the energy 

service as a consequence of the engineering effect is then given by ss
H
s pqx  . Given that 

ss pp   and H
s

x
s xuH   we obtain the following expression for the engineering effect: 

sxuH s  23 
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To estimate the re-spending effect ( G ), we must allow for the change in expenditure on each 

commodity group ( ix ).The change in expenditure on the energy service itself as a consequence of 

the engineering effect is given by ss
G
s qpx  .14 Adding in the change of expenditure on other 

commodity groups we obtain the following expression for the re-spending effect: 





)( sii

i
G
ss xuxuG i  24 

Assuming marginal changes, we can use elasticities to substitute for 
G
sx and ix  in this equation: 





)(

,, )1(
sii

pxipxss siiss
xuxuG   25 

Substituting the expressions for H  (Equation 23) and G  (Equation 25) into Equation 21 and 

noting that xxw ii / , we arrive at the following expression for the combined rebound effect: 





)(

,, )1(
sii

pxipxC sisss
R   26 

Where: 

ss

ii

wu
wu

i   27 

For ease of exposition, we typically express elasticities in quantity form. Given that 

, ,(1 )
s s s sx p q p    and , ,i s i sx p q p  , the combined rebound effect can also be written as: 





)(

,,
sii

pqipqC sisss
R   28 

The first term in Equation 28 is the direct rebound effect for energy service s ( sDR ) and the second is 

the indirect rebound effect ( sIR ). The first depends solely upon the own-price elasticity of energy 

service demand ( ss pq , ), while the second depends upon the elasticity of demand for commodity i 

                                                 

14 For the energy service itself, the total change in expenditure is the sum of the engineering and re-spending effects: 
G
s

H
ss xxx   
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with respect to the energy service ( si pq , ) and the carbon intensity and expenditure share of that 

commodity relative to that of the energy service ( i ).  
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Annex B – Parameter estimates 

Table B.1 Parameter estimates from stage 1 - aggregate groups 

 r  
r  

r  
rs  rs  2

R  

    Household 

energy services 

Transport 

services 

Other goods 

and services 

Household 

energy services 

Transport 

services 

 

Household energy services **0.0176 

(0.0069) 

***-0.0002 

(0.0001) 

0.0055 

(0.0057) 

***0.0166 

(0.0023) 

-0.0057 

(0.0034) 

***-0.0109 

(0.0038) 

***0.5276 

(0.0761) 

**0.0721 

(0.0351) 

0.93 

Transport services -0.0059 

(0.0129) 

***0.0004 

(0.0001) 

**-0.0208 

(0.0107) 

-0.0057 

(0.0034) 

**0.0239 

(0.0099) 

*-0.0182 

(0.0098) 

0.1902 

(0.1343) 

***0.8175 

(0.0670) 

0.94 

Other goods and services 0.9883 -0.0002 

 

0.0153 -0.0109 0.0239 0.0291 -0.7178 0.8896 - 

Notes: 

 Standard errors in parenthesis. ***, ** and * indicate statistical significance at 1%, 5% and 10% probability levels respectively. 
2

R is the adjusted 2R . 

 Coefficients for ‘other goods & services’ are estimated from the adding-up and homogeneity restrictions. 

 The lagged budget share of ‘other goods & services’ is dropped to avoid co-linearity.  

 



39 

Table B.2 Parameter estimates from stage 2 – household energy services group 

 r
i

 r  
r
i

 r
ij  

  r
ij  

  2
R  

    Lighting Heating Refrigerati

on and 

washing 

Entertainment 

& computing 

Cooking Lighting  Heating Refrigeration 

and washing 

Entertainment 

& computing 

 

Lighting ***0.2643 

(0.0963) 

***0.0018 

(0.0003) 

***-0.0153 

(0.0060) 

***0.0010 

(0.0004) 

0.0000  

(0.0002) 

***0.0004 

(0.0001) 

0.0001 

(0.0001) 

***-0.0014 

(0.0005) 

  -0.0230 

(0.1897) 

***-0.3248 

(0.0903) 

***-0.2203 

(0.0860) 

***-0.9623 

(0.1662) 

0.94 

Heating ***-0.8697 

(0.3526) 

***-.01089 

(0.0012) 

***0.0598 

(0.0227) 

0.0000 

(0.0002) 

***0.0019 

(0.0004) 

***-0.0005 

(0.0002) 

***-0.0005 

(0.0001) 

***-0.0008 

(0.0002) 

 *** 3.0646 

(0.6791) 

***2.1054 

(0.3353) 

***1.2415 

(0.3417) 

***4.6474 

(0.6346) 

0.93 

Refrigeration 

and washing 

***0.4870 

(0.1478) 

***0.0036 

(0.0005) 

-0.0085 

(0.0093) 

***0.0004 

(0.0001) 

***-0.0005 

(0.0002) 

***0.0002 

(0.0001) 

0.0001 

(0.0001) 

-0.0001 

(0.0001) 

***-1.2923 

(0.2933) 

***-0.5085 

(0.1403) 

***0.4328 

(0.1414) 

***-1.7589 

(0.2558) 

0.96 

Entertainment 

& computing 

0.1512 

(0.1125) 

***0.0036 

(0.0004) 

***-0.0206 

(0.0073) 

0.0001 

(0.0001) 

***-0.0005 

(0.0001) 

0.0001 

(0.0001) 

***0.0004 

(0.0001) 

-0.0000 

(0.0001) 

**-0.4854 

(0.2126) 

***-0.2564 

(0.1036) 

***-0.4000 

(0.1023) 

-0.02692 

(0.1930) 

0.99 

Cooking 0.9672 0.0019 -0.0239 -0.0014 

 

-0.0008 

 

-0.0002 

 

-0.0000 

 

0.0024 

 

-1.2639 

 

-1.0157 

 

-1.054 

 

-1.9531 

 

- 

Notes: 

 Coefficients for ‘cooking’ are estimated from the adding-up restriction. 

 The lagged budget share of ‘cooking’ is dropped to avoid co-linearity.  
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Table B.3 Parameter estimates from stage 2 –transport group 

 r
i

 r
i

 r
i

 r
ij  r

ij  2
R  

    Travel Other transport Travel  

Travel 

 

***0.2390 

(0.0773) 

-0.0006 

(0.0004) 

0.0145 

(0.0242) 

***0.0937 

(0.0116) 

 

***-0.0937 

(0.0116) 

 

***0.2569 

(0.0693) 

0.73 

Other transport 

 

0.761 0.0006 -0.0144769 

 

-0.0937 0.0937 -0.2569 - 
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Annex C – Between group and within group elasticity estimates 

Table C.1 Between-group expenditure elasticity estimates ( xqr
 ) 

 Between-group expenditure elasticity 

Household energy services 1.1781 

Transport 0.8336 

Other goods and services 1.0182 

 

Table C.2 Between-group price elasticity estimates (
sr pq )  

 Between-group price elasticity 

 Household 

energy services 

Transport Other goods and 

services 

Household energy services -0.4664 -0.2071 -0.5045 

Transport -0.0402 -0.7881 -0.0052 

Other goods and services -0.0135 -0.0239 -0.9809 

 

Table C.3 Within-group expenditure elasticity estimates ( r
xq ri , ) 

 Within-group expenditure elasticity 

Lighting 0.8164 

Heating 1.0970 

Refrigeration & washing 0.9368 

Entertainment & computing 0.7306 

Cooking 0.8275 

Travel 1.0653 
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Table C.4 Within-group price elasticity estimates ( r
pq ji , ) 

  Within-group price elasticity  

 Lighting Heating Refrigeration 

& washing 

Entertainment 

& computing 

Cooking Travel 

Lighting -0.9724 0.1126 0.0292 0.0254 -0.0028 - 

Heating -0.0081 -1.0568 -0.0139 -0.0139 -0.0087 - 

Refrigeration 

and washing 

0.0080 0.0352 -0.9898 0.0053 0.0046 - 

Entertainment & 

computing 

0.0230 0.1593 0.0371 -0.9739 0.0238 - 

Cooking -0.0014 0.0975 0.0216 0.0130 -0.9582 - 

Travel - - - - - -0.5917 
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