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Abstract

We analyse data on the performance of investment funds, 99 out of 309
of which report a loss and on the prof tability of 1,405 f rms, 407 of which
report losses. The problem in both cases is to use regression to predict per-
formance from sets of explanatory variables. In one case, it is clear from
scatterplots of the data that the negative responses have a lower variance
than the positive ones and a different relationship with the explanatory vari-
ables. Because the data include negative responses, the Box-Cox transfor-
mation cannot be used. We develop a robust version of an extension to
the Yeo-Johnson transformation which allows different transformations for
positive and negative responses. Tests and graphical methods from our ro-
bust analysis allow the detection of outliers, the assessment of values of the
two transformation parameters and the building of simple regression models.
Performance comparisons are made with non-parametric transformations.
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1 Introduction
In practice data are often transformed to approximate normality, leading to straight-
forward analyses and insightful conclusions. The f rst four pages of Box and Cox
(1964) provide a thoughtful analysis of these advantages, to which may now be
added the universal availability of f exible software for the analysis of normally
distributed data with a variety of complex structures including time series and mul-
tivariate data. However, the widely-used and effective parametric family of power
transformations introduced by Box and Cox for regression can only be applied
to positive responses. Yeo and Johnson (2000) generalised this transformation to
allow for the inclusion of zero and negative response values, which arise for ex-
ample in economics (we analyse two examples in which losses have been made
as well as prof ts) and in the analysis of difference data. However, like Box and
Cox, Yeo and Johnson use likelihood methods based on aggregate statistics; their
method is neither diagnostic nor robust. In this paper we:

• provide extensive analyses of data for which the Yeo-Johnson transforma-
tion is appropriate;

• detect the effect of individual observations on the estimated transformation
parameter by the use of robust methods combined with insights on the cor-
rect transformation given by the “fan” plot;

• extend the methods to cases when there are different transformation pa-
rameters for positive and negative responses and provide a new test for the
correctness of the parameter estimates, together with information on the
distribution of the test statistic;

• use the test and novel graphical procedures to determine appropriate robust
transformations of positive and negative responses when, as is the case in
our examples, they are markedly different in the two response classes;

• provide brief comparisons with two nonparametric methods for response
transformation.

We focus on the transformation of the response in linear models. Data on in-
vestment funds, some of which have negative returns, are introduced in §2 and
the problem in data analysis presented. In §3 we give references to diagnostic and
robust procedures for the Box-Cox transformation and def ne its extension, the
Yeo-Johnson transformation. We introduce the normalized form of the transfor-
mation which includes the Jacobian, providing a convenient form for the analysis
of data. In §4 we introduce an approximate score test for the value of the transfor-
mation parameter based on constructed variables from a Taylor series expansion
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of the model. We thus avoid numerical maximization for estimation and tests of
the transformation parameter λ. Constructed variables for the Yeo-Johnson trans-
formation are derived in §5. As our two data examples show, it is not always
true that positive and negative observations should be transformed with the same
value of λ. A model for the extended Yeo-Johnson transformation for such data is
presented in §6 and the constructed variables derived.

The resulting score tests are functions of aggregate statistics and so do not
provide information on the effect of individual observations on the estimate of the
transformation parameter. For this we employ a robust procedure, the forward
search (Atkinson et al., 2010), to order the observations from those closest to the
model for the transformed data to those furthest from it. We thus obtain subsets
of increasing sizes of the least outlying observations. The fan plot of §7 plots
the score statistics from the search against subset size, indicating observations
that do not agree with the proposed transformation. The procedure is extended
to three tests: for the overall transformation and those for positive and negative
observations, yielding an extended fan plot. Once the data have been transformed,
the extended fan plot provides a robust method for testing the correctness of the
transformation. Simulations show that the null distribution of these statistics can
be very close to that of Student’s t.

In §8 we give an extended analysis of the data on investment fund perfor-
mance. Our method f nds an overall transformation to normality. But the ex-
tended fan plot shows that the positive and negative observations should have
different transformations, which we f nd. There is no evidence of any outlying
observations. We compare these results with those from two nonparametric trans-
formations: ACE (Breiman and Friedman, 1985) and AVAS (Tibshirani, 1988),
which are based on smoothing and do not require the data to be positive. In the
following §9 we analyse a more complicated set of data taken from balance sheets
with 1,405 observations. Again, positive and negative observations require dif-
ferent transformations but now 42 outlying observations are detected. Despite
deletion of these observations, the F statistic for the regression, given in Table 3,
shows an increase equivalent to doubling of the sample size. Section 9 also illus-
trates the use of linked plots from the robust analyses of the data, which leads to
exclusion of the outliers and the estimation of uncorrupted parameter estimates.
Some remarks on the null distributions of the test statistics are in §10 with closing
comments in §11. The two sets of data and Matlab programs for their analysis are
available online.
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2 Investment Funds
The purpose is to relate the medium term performance of 309 investment funds
to two indicators. Of these funds 99 have negative performance. The data come
from the Italian f nancial newspaper Il Sole - 24 Ore and the variables are:

y medium term (36 month) performance;
x1 short term (12 month) performance;
x2 short term volatility.
Performance is measured as the percentage change in the price of units of the

fund.
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Figure 1: Investment fund data: scatterplots of y against x1 and x2

Scatterplots of y against the two explanatory variables are in Figure 1, with
the negative responses shown as circles. It is clear that there is a strong, roughly
linear, relationship between the response and both explanatory variables. It is also
clear that the negative responses have a different behaviour from the positive ones:
the variance is less and the slope of the relationship with both explanatory vari-
ables appears to be smaller. We employ an extended version of the Yeo-Johnson
transformation to see whether we can achieve a transformation which satisf es
the three requirements of homogeneity, additivity and approximate normality of
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errors discussed in §3.

3 The Yeo-Johnson Transformation
In §8 we analyse the investment fund data using the Yeo-Johnson transformation,
derived from the Box-Cox transformation for non-negative responses for which
the transformed response is:

yBC(λ) =

{

(yλ − 1)/λ (λ 6= 0)
log y (λ = 0).

(1)

Box and Cox and Hinkley and Runger (1984) show that the interpretation of
data analyses is improved by use of a normalized transformation that incorpo-
rates the Jacobian of the transformation, J =

∏n
i=1 y

λ−1
i = ẏ

n(λ−1)
BC , where ẏBC

is the geometric mean of the observations. The normalized transformation is
z(λ) = y(λ)/ẏ

(λ−1)
BC , with z(0) = ẏBC log y. The physical dimension of z(λ) is

that of y so that sums of squares of z(λ) can be directly compared. Andrews
et al. (1971) and Gnanadesikan (1977) extended the Box-Cox transformation to
the analysis of multivariate data.

Box and Cox (1964) rely on complete-sample likelihood inference. Methods
for the detection of outliers and the assessment of the inf uence of individual or
groups of observations on the estimated transformation parameter are described
by Cook and Weisberg (1999) and Atkinson and Riani (2000).

Although Box and Cox work with a normal theory likelihood, the aim of the
transformation is to produce responses which have homogeneous variance, simple
additive models and an approximately normal distribution of errors. All three
aims are satisf ed in the examples given by Box and Cox (1964), as they are in the
analyses of numerous other data sets, such as those in Atkinson and Riani (2000,
Chapter 4). The aims of the Yeo-Johnson transformation are similar.

Box and Cox stress that they do not recommend transformation of the data by
the maximum likelihood estimate λ̂. Rather, they recommend the use of a value
that lies within the conf dence region for λwhile belonging to a grid of values with
physical interpretability. In their two examples these are the log transformation
(λ = 0) and the reciprocal transformation (λ = −1). The consequences for sta-
tistical inference are investigated by Bickel and Doksum (1981), Carroll (1982),
Box and Cox (1982), Hinkley and Runger (1984) and by Chen et al. (2002) and
discussants.

The Box-Cox transformation has two regimes, that for λ 6= 0 and that for
λ = 0. In both cases, y > 0. To allow for y being either positive or negative, the
Yeo-Johnson transformation of the response y requires four regimes, depending
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both on the transformation parameter and on the response value. The forms of the
transformed response are

yYJ(λ) =







































(y + 1)λ − 1

λ
y ≥ 0 λ 6= 0

log(y + 1) y ≥ 0 λ = 0

−{(−y + 1)2−λ − 1}
2− λ

y < 0 λ 6= 2

− log(−y + 1) y < 0 λ = 2.

(2)

For y ≥ 0 this is the generalized Box-Cox power transformation of y + 1. For
negative y the transformation is of −y + 1 to the power 2− λ.

Analysis of data from this transformation also needs to include the Jacobian
of the transformation to allow for changes of scale as λ varies. The required Ja-
cobian, again for n observations, from equation (3.1) of Yeo and Johnson (2000),
is

log JYJ = (λ− 1)
n

∑

i=1

sgn(yi) log(|yi|+ 1). (3)

We continue to work with a normalized transformation z(λ) = y(λ)/J1/n in
which the Jacobian is spread over all observations. If ẏYJ is the nth root of JYJ

in (3),
ẏYJ = exp

[

∑

{sgn(yi) log(|yi|+ 1)}/n
]

. (4)

The normalised versions of the transformations in (2) then become

zYJ(λ) =











































(y + 1)λ − 1

λẏλ−1
YJ

y ≥ 0 λ 6= 0

ẏYJ log(y + 1) y ≥ 0 λ = 0

−{(−y + 1)2−λ − 1}
(2− λ)ẏλ−1

YJ

y < 0 λ 6= 2

− log(−y + 1)/ẏYJ y < 0 λ = 2.

(5)

4 An Approximate Score Test for the Transforma-
tion Parameter

For the linear regression model z(λ) = xTβ + ǫ, where x is p× 1 and the errors
are independently normally distributed with variances σ2, let R(λ) be the residual
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sum of squares of the z(λ). Then, ignoring a constant, the prof le loglikelihood of
the observations, maximized over β and σ2, is

Lmax(λ) = −(n/2) log{R(λ)/n}.
maximized by the value λ̂ that minimizes R(λ). To test the hypothesis that λ =
λ0, Box and Cox use the likelihood ratio test n log{R(λ0)/R(λ̂)} which has an
asymptotic chi-squared distribution. An alternative to the likelihood ratio test for
the value of λ is the approximate score test (Atkinson, 1973) derived from a Taylor
series expansion of z(λ) around λ0 as

z(λ)
.
= z(λ0) + (λ− λ0)w(λ0), (6)

where
w(λ0) =

∂z(λ)

∂λ

∣

∣

∣

∣

λ=λ0

.

The regression model can then be approximated as

z(λ) = xTβ − (λ− λ0)w(λ0) + ǫ = xTβ + γ w(λ0) + ǫ. (7)

The new variable w(λ0) is the constructed variable for the transformation. The
approximate score statistic for testing the transformation λ = λ0 is the t statistic
for regression on w(λ0) in (7), that is the test for γ = 0 in the presence of all
components of x.

An explicit form for the score test can be found by writing the extended model
in matrix form as

E(Z) = Xβ + wγ,

where Z is n×1, X is n×p and γ is a scalar. The least squares estimate γ̂ is found
explicitly from the normal equations for this partitioned model using the algebra
for added variables (Atkinson and Riani, 2000, §2.2). With H = X(XTX)−1XT

(the hat matrix) and A = I −H

γ̂ =
wT (I −H)y

wT (I −H)w
=

wTAz

wTAw
, (8)

where w is the n× 1 vector of constructed variables.
Calculation of the statistic also requires s2w, the residual mean square estimate

of σ2 from regression of z on X and w,

(n− p− 1)s2w = zTAz − (zTAw)2/(wTAw).

The t statistic for testing that γ = 0 is then

tγ =
γ̂√{s2w/(wTAw)} ,

on n− p− 1 degrees of freedom.
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5 Constructed Variables
For the Box-Cox transformation there are two constructed variables, one for gen-
eral λ and one for λ = 0, found by series expansion of the two forms of zBC(λ)
coming from the two for yBC(λ) in (1), expressions for which are given by Atkin-
son and Riani (2000, p. 86). For the Yeo-Johnson transformation there is corre-
spondingly a constructed variable for each of the four normalized transformations
in (5). For y ≥ 0 let vP = y + 1 with vN = −y + 1 when y < 0. The constructed
variables are

wYJ(λ) =























{vλP (log vP − kP ) + kP}/qP , y ≥ 0 λ 6= 0

ẏYJ log vP (log vP/2− log ẏYJ) y ≥ 0 λ = 0

{v2−λ
N (log vN + kN)− kN}/qN y < 0 λ 6= 2

{log vN(log vN/2 + log ẏ)}/ẏYJ y < 0 λ = 2.

(9)

In (9)

kP = λ−1 + log ẏYJ

qP = λẏλ−1
YJ

kN = log ẏYJ − (2− λ)−1

qN = (2− λ)ẏλ−1
YJ .

6 Homogeneity of Transformation

6.1 The Extended Yeo-Johnson Transformation
The transformations for negative and positive responses were determined by Yeo
and Johnson (2000) by imposing the smoothness condition that the second deriva-
tive of zYJ(λ) with respect to y be smooth at y = 0. However some authors, for
example Weisberg (2005), query the physical interpretability of this constraint
which is indeed violated by the sets of data analysed in §§8 and 9. Accordingly,
we extend the Yeo-Johnson transformation to allow two values of the transforma-
tions parameter: λN for negative observations and λP for non-negative ones.

To start we need the Jacobian of the transformation, but we now have separate
calculations for positive and negative y. The Jacobian is def ned for all observa-
tions in (4) above. Let

SN =
∑

yi<0

− log(−yi + 1) =
∑

yi<0

− log vi,N and ẏN = exp(SN/n). (10)
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Note division by n, not nN (the number of negative yi) as the Jacobian is spread
over all observations.

Likewise, for the non-negative observations

SP =
∑

yi≥0

log(yi + 1) =
∑

yi≥0

log vi,P and ẏP = exp(SP/n). (11)

With these def nitions the normalised form of the extended Yeo-Johnson transfor-
mation is

zEYJ(λN , λP ) =











































vλP

p − 1

λP ẏ
λN−1
N ẏλP−1

P

y ≥ 0 λP 6= 0

(ẏP/ẏ
λN−1
N ) log vP y ≥ 0 λP = 0

− v2−λN

N − 1

(2 − λN )ẏ
λN−1
N ẏλP−1

P

y < 0 λN 6= 2

− log vN/ẏN ẏ
λP−1
P y < 0 λN = 2.

(12)

Since ẏ = ẏN ẏP this extended transformation reduces to the standard Yeo-Johnson
transformation when λN = λP .

Determining whether a specif c extended Yeo-Johnson transformation is ap-
propriate for a set of data requires testing whether some specif ed value λN0 is
appropriate for the negative observations and some λP0 for the non-negative ones.
We give below the constructed variables for testing the value of one transforma-
tion parameter, with the other held f xed. With data reasonably balanced over
positive and negative responses both tests may be informative. We start with the
variables for λP .

6.2 Test Transformation of Positive y
With an extension of the notation of §5 the constructed variables are

wEYJ(λP ) =















{vλP

P (log vP − k∗
P ) + k∗

P}/q∗P y ≥ 0 λP 6= 0

ẏP log vP{(log vP )/2− log ẏP} y ≥ 0 λ = 0

zEYJ(λN , λP ) log ẏP y < 0,

(13)

where k∗
P = λ−1

P +log ẏP and q∗P = λP ẏ
λP−1
P . The structure is similar to that of the

constructed variables in §5. The result for y < 0 arises because the transformation
for y < 0 only depends on λP through the Jacobian.
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6.3 Test Transformation of Negative y

wEYJ(λN) =















−zEYJ(λN , λP ) log ẏN y ≥ 0

{v2−λN

N (log vN + k∗
N)− k∗

N}/q∗N y < 0 λN 6= 2

log vN{(log vN )/2 + log ˙yN}/ ˙yN y < 0 λN = 2,

(14)

where k∗
N = λ−1

N + log ẏN and q∗N = λN ẏ
λN−1
N .

6.4 Establishing Two Transformations
Finding robust values of the two transformation parameters is in two stages. We
f rst use the score test derived from the constructed variables (9) for the Yeo-
Johnson transformation to f nd an overall estimate of λ. Score tests based on the
constructed variables for positive and negative observations (13) and (14), with a
common value λ0 for λN and λP , allow determination of whether separate values
of λN and λP are required. Once the data have been satisfactorily transformed
using (12), no further transformation is required. As a consequence, the score test
for the standard Yeo-Johnson transformation with the null hypothesis that λ0 = 1
will not lead to rejection. The second stage of determining robust values of λN

and λP consists of transforming the data with various values of the two parameters
until the hypothesis λ0 = 1 for the transformed data is not rejected.

7 The Fan Plot and its Extension
Like the Box and Cox likelihood ratio test, the approximate score test of §4 is
based on aggregate statistics and so will be sensitive to the presence of outliers
and more general model mis-specif cation. If only a very few outliers are present
they can sometimes be determined by the use of deletion diagnostics. However
these methods, working back from a f t to all the data, rapidly become compu-
tationally infeasible. If there are outliers or other anomalous observations they
can be more effectively exposed by robust methods. Marazzi et al. (2009) choose
MM estimation (Yohai, 1987). Since they use a robust form of the likelihood ratio
test for λ, they need to establish an approximation to λ̂, to establish which they
search over 201 values of λ. To detect the effect of individual observations on the
estimated transformation we use the forward search (Atkinson et al., 2010). Since
we use a score test we do not need to f nd λ̂ and typically need to search over
only f ve or six values of λ. This robust method orders the data from those closest
to the f tted model to those most remote: any outliers will enter at the end of the
search. We thus obtain a series of subsets of the data of size m,m0 ≤ m ≤ n for
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each of which we ref t the model and calculate the values of the score statistics
for selected values of λ. These are then plotted against the number of observa-
tionsm used for estimation to give the “fan plot”. The subsets range in size from
m0 = p + 2 to the full sample, where p + 1 is the number of covariates includ-
ing the constructed variable. The fan plot for the Box-Cox transformation was
introduced in Riani and Atkinson (2000), which also includes a description of the
forward search for regression. A more extended treatment is in Atkinson and Ri-
ani (2000), which additionally exhibits the failure of deletion diagnostics. This
discussion demonstrates how seeming outliers may be generated by use of an in-
correct value of λ0. When the value of λ0 is incorrect, these apparent outliers will
enter towards the end of the search and give rise to increasing values of the score
statistic. For a different value of λ0 other observations may appear outlying or, for
a value supported by the data, none may.

Here we use the constructed variables of §5 to introduce the fan plot for the
Yeo-Johnson transformation and extend it, using the results of §6, to include test-
ing for homogeneity of the transformation. The procedure involves one search
and almost 3n calculations of the score statistic for each value of λ, typically f ve.
There is thus an appreciable computational saving over procedures such as the
likelihood ratio or Wald tests which required numerical optimization to f nd the
value of λ̂ at each step of the search. The fan plot was also used by Atkinson and
Riani (2002a) for monitoring t-tests for regression coeff cients in a linear model;
they employ orthogonality arguments to show that the forward test statistics have
exactly a t distribution. However for transformations the constructed variables
are functions of the response and so the statistics cannot exactly follow this t dis-
tribution. Comments on the distribution of the score tests for the Yeo-Johnson
transformation are in §11.

Once the data have been correctly transformed, the extended fan plot for the
transformed data with λ0 = 1 should lie within the bounds for all values ofm. We
use this method at the end of our analysis of the investment fund data in §8 and
of the balance sheet data in §9 to conf rm a transformation of the data which has
different values of λ for positive and negative observations. Before analysing our
sets of data, we use simulation to illustrate the null and non-null distributions of
this score test.

Figure 2 shows the results of 10,000 simulations of 200 observations from a
normal regression model in which no response transformation is needed; there
are three explanatory variables and the parameters are chosen to give fairly strong
regression with an average R2 value of 0.8. This extended fan plot is a “forward
plot” in which the value of the score test is plotted against the size of the sub-
set for which it was calculated. There are trajectories of 5 empirical quantiles of
the simulated distribution: 0.5%, 25%, 50%, 75% and 99.5%, the outer quantiles
thus providing a 99% interval for values of the statistic. For each quantile, three
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Figure 2: Extended fan plot showing null distribution of score statistics; 0.5%,
25%, 50%, 75% and 99.5% envelopes. For each quantile, reading down, the three
statistics are for positive, all and negative observations (green, blue and black in
the online version); continuous (red) line, t distribution on m − 5 d.f. 10,000
simulations of 200 observations. Null hypothesis λ0 = 1

envelopes are plotted. In all cases, reading downwards, these are the statistics
for the tests of positive, all and negative observations. Also included are percent-
age points of the t distribution on m − 5 degrees of freedom, which provide an
excellent approximation to the values of the envelopes. The f gure shows how
rapidly these envelopes approach the constant values of the normal quantiles. In
§10 we discuss some points of the f ne structure of this plot which do not affect
the interpretation given here.

Figure 3 shows a similar plot, but now when the null hypothesis of no transfor-
mation is false. The simulated positive observations were inversely transformed to
require the transformation λP = 1.5 and the negative observations were inversely
transformed to require λN = 0. For visual simplicity only the 25%, 50% and 75%
quantiles of the empirical distribution of the statistic are shown. Now, at the end
of the search, the intervals for the three statistics are separate with all lying below
the 50% interval for the t distribution. The three uppermost trajectories are for the
test for positive observations, with the trajectories for the overall transformation
and the negative observations departing more from the bounds for the null distri-
bution. This plot shows that, as the subset size increases, so does the power of the
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Figure 3: Extended fan plot showing non-null distribution of score statistics; 25%,
50% and 75% envelopes. For each set of three quantiles, reading down, the statis-
tics are for positive, all and negative observations (green, blue and black in the
online version); continuous (red) line, t distribution onm− 5 d.f. 10,000 simula-
tions of 200 observations; λP = 1.5, λN = 0, null hypothesis λ0 = 1

tests for positive and negative observations, as well as the power of the overall test.
Further simulations, not included here, show how the power of the test increases
with increasing the number of observations or reducing the error variance.

8 Analysis of the Investment Fund Data

8.1 Parametric Transformations
We start our analysis of the investment fund data using the transformation of §3 in
which negative and positive observations are subject to the same transformation.
The upper panel of Figure 4 shows the fan plot for values of λ0 in the range 0.5
to 1. All curves are relatively smooth; there are no sudden changes towards the
end of the trajectories which might indicate the presence of outliers. A value of
0.7 seems to be indicated for λ, although the trajectory for this value is outside
the upper 1% bound around m = 200, returning inside from m around 240. This
behaviour is typical of the masking caused by a sizable group of observations that
differ systematically from the majority of the data. Indeed, the extended fan plot
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Figure 4: Investment fund data. Upper panel, fan plot indicating the overall trans-
formation λ = 0.7; lower panel, extended fan plot for λ0 = 0.7 suggesting differ-
ent transformations for positive (upper green trajectory) and negative responses
(lower black trajectory)

for λ = 0.7 in the lower panel of Figure 4 shows that the value of 0.7 is not
satisfactory for all observations. The upper trajectory for the majority positive
observations lies relatively close to that for an overall transformation of λ = 0.7,
whereas that for the negative responses is outside the lower bound at the end of
the search. This plot is a conf rmation of the suggestion of a different distribution
for positive and negative observations suggested by the scatterplots of Figure 1.

The indication of the extended fan plot of Figure 4 is that the positive ob-
servations require a transformation higher than 0.7, since, from the upper panel,
higher values of λ give a lower curve. Likewise, the negative observations require
a value lower. Our strategy is to try sets of pairs of values. When we have found
the correct transformation, the fan plot of the transformed data will indicate that
no further transformation is required; that is we will accept the value λ0 = 1 in
this fan plot. For each tentative transformation we not only look at the fan plot of
the transformed data but also look at the scatterplots and perform the full-sample
regression on the two explanatory variables.

There are now two transformation parameters which, in line with the notation
of §6, we call λP and λN . We start with two values straddling 0.7 and take λP = 1
and λN = 0.5. Comparison of the scatterplots in Figure 5 with those of the un-
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Figure 5: Investment fund data. Scatterplots of y against x1 and x2 for transformed
data with λP = 1 and λN = 0.5

transformed data in Figure 1 shows that the variance of the negative observations
is now closer to that of the positive ones. We check this impression with the ex-
tended fan plot for λ0 = 1 for the transformed data in the upper panel of Figure 6.
This plot provides a robust test that the transformation is λP = 1 and λN = 0.5.
The correct transformations have not been found; although the trajectories for the
positive and negative observations are far closer together than they are in the lower
panel of Figure 4 for the overall transformation λ = 0.7, when all trajectories are
well outside the lower bound at the end of the search.

The extended fan plot for λP = 1 and λN = 0.25 is in the centre panel of
Figure 6 with that for λP = 1 and λN = 0 in the lower panel. These plots show
improving properties; that for λN = 0 lies in the overall bounds throughout, with
the trajectories for positive and negative observations virtually identical to the
overall trajectory. The conclusion is that the positive observations should not be
transformed, but that the negative observations should be transformed with λ = 0.
From (2) it follows that this is not the log transformation for negative y.

The scatterplots of this f nal transformation are in Figure 7. The movement
from the scatterplots of the original data in Figure 1 to a linear model with ho-
mogeneous scatter is clear. An interesting feature of the right-hand scatterplot in
Figure 7 is that the observations appear to fall into three clusters, with funds with
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Figure 6: Investment fund data, checking the two transformation parameters. Ex-
tended fan plots for λ = 1 for the transformed data. Upper panel, λP = 1 and
λN = 0.5; centre panel λP = 1 and λN = 0.25; lower panel λP = 1 and
λN = 0, the preferred transformation. Upper (green) trajectory, positive obser-
vations, lower (black) trajectory, negative observations

high volatility being the most prof table over this time period.
We now consider two other statistical properties of the transformed and un-

transformed data. Table 1 shows summary properties of the regression on the two
variables for λP = 1 and four values of λN . The line labelled F is the value of
the F statistic for testing regression on a constant, x1 and x2 against regression
on only a constant. As λN goes from 1 (the untransformed data) to 0 the value
of the F statistic steadily increases from 556 to 685 in line with the results from
the extended fan plots of Figure 6 which show the transformation becoming in-
creasingly acceptable over this range. Likewise, the adjustedR2 for the regression
increases from 0.783 to 0.816. Interestingly, there is little change in the two tab-
ulated values as λN goes from 0.25 to 0, although the centre panel of Figure 6
rejects the transformation with λN = 0.25.

The second assessment of the statistical properties of the transformation is
given by the Normal QQ plots of Figure 8, with 90% pointwise intervals. The
original data are in the left-hand panel. The transformation has made both tails
more nearly normal and also produced a distribution which, for central values is
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Figure 7: Investment fund data. Scatterplots of y against x1 and x2 for f nal trans-
formation of the data with λP = 1 and λN = 0

slightly closer to the line of expected values for a normal sample. The differences
between the two panels are clarif ed by the envelopes, especially in the tails of the
distributions. The differences may not seem large, but slightly over 2/3rds of the
observations are untransformed in both plots. The scatterplots showmore forcibly
the effect of transformation.

These results indicate that the Yeo-Johnson transformation and its extension
to differing transformations for positive and negative values, has here achieved
the three goals of the Box-Cox transformation. As the scatterplots of Figure 7
and the QQ plots of Figure 8 show, we have achieved a homogeneous and normal
distribution of errors. The results summarized in Table 1 quantify the increasing

Table 1: Investment fund data: summary properties of regression for different
transformations of positive (λP ) and negative (λN ) observations

λP 1 1 1 1
λN 1 0.5 0.25 0
F2,306 556 643 681 685
R2 0.783 0.807 0.815 0.816
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Figure 8: Investment fund data; normal QQ plots of residuals. Left-hand panel,
original data; right-hand panel, f nal transformation of the data with λP = 1 and
λN = 0

amount of the total variation in the data that is explained by regression using the
correct transformation of the data. It is interesting that with 210 positive obser-
vations out of 309, linear interpolation in the estimates of λ suggests an overall
transformation value λ̃ = (99 × 0 + 210 × 1)/309 = 0.680, very close to the
value of 0.7 arrived at in the overall fan plot of Figure 6. This satisfactory linear
interpolation accords well with the Taylor series linearisation used to develop the
approximate score statistic. These results could not have been achieved without
the extension of the Yeo-Johnson transformation to test for and accommodate two
transformation parameters.

8.2 Nonparametric Transformations
The Box-Cox and Yeo-Johnson transformations produce a smooth relationship
between y(λ) and the original y determined by the value of the parameters λ. A
non-parametric alternative is to use smoothing to estimate this relationship. We
use two such methods.

Both methods can transform explanatory variables and the response. The as-
sumed model is a generalized additive model, that is one with transformations of
both response and explanatory variables but without interactions. Both rely on
repeated application of univariate smoothers. In ACE (alternating conditional ex-
pectations) Breiman and Friedman (1985) maximize a measure of correlation be-
tween all variables. As a consequence, the response variable in regression is not
treated as being different from the explanatory variables. Tibshirani (1988) de-
scribes a related method in which the transformation for the response is intended
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to yield additivity and variance stabilization (AVAS). The asymptotic variance sta-
bilizing transformation is applied to the response.

Hastie and Tibshirani (1990, Chapter 7) provide a description of both ACE
and AVAS with an emphasis on response transformation and the mathematical
relationship to the Box-Cox transformation. Breiman and Friedman (1985) and
their discussants, as well as Tibshirani, show examples of data analyses which
raise questions about the performance of the two algorithms under certain con-
ditions. In their contribution to the discussion of ACE, Buja and Kass (1985)
express concern about inference, diagnostics and robustness. In the rejoinder to
the discussion of their paper, Breiman and Friedman (1985) admit that ACE is not
robust.

A diff culty in the comparison of parametric transformations with ACE and
AVAS is that these are both model f tting techniques lacking many of the usual
statistical justif cations and machinery. In the Box-Cox and Yeo-Johnson trans-
formations, the Jacobian of the transformation provides the basis for the compar-
ison of analyses with various values of parameters λ. But the outputs of ACE
and AVAS are a set of transformed responses, scaled to have unit variance. The
aggregate statistic for comparison of models is the values of R2.

The original progams for both and AVAS are written in ‘classical’ Fortran,
without comments and with often non-informative variable names. This Fortran
code also provides the basis of the R package Acepack. For our comparisons we
have rewritten the packages in Matlab that has been fully compared and validated
against the original Fortran.

Figure 9 shows the plot of parametrically transformed y against original y for
the investment fund data when λN = 0 and λP = 1, with the transformed values
scaled to have unit variance. Since there is no transformation for the positive
observations, the right-hand part of the plot is a straight line. There is a clear
change to a different relationship for negative data.

The two panels of Figure 10 compare the non-parametric transformations with
the parametric transformation of Figure 9. In the left-hand panel the transforma-
tion from ACE is virtually straight for negative y, but more curved for positive y,
with two points of inf ection, the f rst around y = 4. There is also disagreement at
the f ve or so smallest observations and the three largest. The transformation for
AVAS in the right-hand panel is virtually the same as the parametric transforma-
tion for the more extreme observations. There are again two points of inf ection,
with the largest distance from the parametric transformation around y = 20.

We repeated the estimation of these transformations starting from λN = 0 and
λP = 1 rather than from a value of one for each parameter. The changes were
slight, the largest being that AVAS produced a transformation for the three largest
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Figure 9: Investment fund data. Transformed responses from the extended Yeo-
Johnson transformation with λN = 0 and λP = 1 against original response

observations closer to that found by ACE in the left-hand panel of Figure 10.
Some values of R2 for regression on different transformations of the response

are shown in Table 2. As Table 1 shows, the parametric transformation increases
R2 from 0.783 to 0.816. The comparable values for ACE and AVAS, starting
from the untransformed data, are 0.836 and 0.817. ACE in this case performs bet-
ter than the parametric transformation. The left-hand panel of Figure 10 suggests
this may in part be because this transformation is not restricted to having only two
transformation regimes which meet at zero. It is perhaps an indication that the
cluster of observations for funds with medium volatility in the right-hand panel
of Figure 7 would benef t from a different transformation. Although the AVAS
transformation also curves in a similar way, it gives a value of 0.817 for R2, very
close to that for the parametric transformation, perhaps because there is appre-
ciable divergence from the parametric transformation for values of y around 20,
rather than close to zero for ACE, with agreement in the tails of the distribution.
Starting the search for either nonparametric transformation from that found peri-
metrically results in values of R2 very slightly less than those found when starting
from the untransformed data.
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Figure 10: Investment fund data. Transformed responses from nonparametric
transformations and from the extended Yeo-Johnson transformation with λN = 0
and λP = 1 against original response. Left-hand panel ACE, right-hand panel
AVAS

9 A Robust Analysis of Balance Sheet Data

9.1 Parametric Transformation
After transformation, the investment fund data are surprisingly well behaved. In
particular, there are no obvious indications of any outliers. We now analyse a
larger data set taken from balance sheet information on limited liability compa-
nies, which does include outliers.

The response is prof tability of individual f rms in Italy. There are 998 ob-
servations with positive response and 407 with negative response, making 1,405
observations in all. The model variables are:

y prof tability, calculated as return over sales;
x1 labour share; the ratio of labour cost to value added;
x2 the ratio of tangible f xed assets to value added;
x3 the ratio of intangible assets to total assets;
x4 the ratio of industrial equipment to total assets;
x5 the f rm’s interest burden; the ratio of the f rm’s total assets to net capital.

The aim is to explain the prof tability by regression on the f ve explanatory
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Table 2: Investment fund data: values of R2 from regression for some parametric
and non-parametric transformations: EYJ, the extended Yeo-Johnson transforma-
tion. For ACE and AVAS the values of λN and λP are the initial transformation of
the data

λP 1 1
λN 1 0
EYJ 0.783 0.816
ACE 0.836 0.834
AVAS 0.817 0.814
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Figure 11: Balance sheet data: scatterplots of y against x1 − x5

variables. We start with the untransformed response. Scatterplots of y against
the explanatory variables are in Figure 11. It is clear that there is a negative rela-
tionship between y and x1. The relationships with the other variables are not so
obvious. However, the values of the t-tests for the coeff cients in Table 3 show
signif cant regression on all variables except x4. Unlike the plot of the investment
fund data in Figure 1, these plots do not convey an obvious message about the
need for transformation.

We check the need for a transformation using fan plots. The top panel of Fig-
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Figure 12: Balance sheet data. Upper panel, fan plot of overall statistic for λ0 =
0.5, 0.75, 1 and 1.25, perhaps indicating the transformation λ = 1; lower panel,
extended fan plot for λ0 = 1; the need for different transformations for positive
and negative observations is apparent, as is the effect of outliers. Upper (black)
trajectory, negative observations, lower (green) trajectory, positive observations

ure 12 presents trajectories for the overall statistic for values of λ0 = 1.25, 1, 0.75
and 0.5. Comparison with the fan plot for the investment fund data in Figure 4
shows the increase in power consequent on moving from a sample of 309 to one
of 1,405. The hypothesis of no transformation (λ0 = 1) seems to be acceptable,
although there is an abrupt increase in the value of the statistic towards the end of
the search which might indicate the presence of outliers. The extended fan plot
for testing λ0 = 1 in the lower panel of the f gure clarif es this structure. This
plot shows that the positive and negative observations apparently need different
transformations. Unlike all the extended fan plots we have seen so far from Fig-
ure 2 onwards, the (black) trajectory for the negative observations is uppermost,
indicating the need for a value of λN > 1. Likewise the lowest (green) trajectory
indicates that λP should be less than one. (The upper panel of the f gure shows
the effect of the value of λ0 on the plot of the overall score statistic). The plot
also shows a sharp increase in the values of all three statistics at the end of the
search. This increase for the overall transformation is preceded by a decline in
values, perhaps indicative of two different kinds of outlier.

Following the indication of Figure 12, we continue this analysis by f nding the
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Figure 13: Balance sheet data, checking the two transformation parameters. Ex-
tended fan plots for λ0 = 1 for the transformed data when λP = 0.5 and λN = 1.5
Upper (green) trajectory, positive observations, lower (black) trajectory, negative
observations

best values of the two transformation parameters. The extended fan plot for testing
the hypothesis that λ0 = 1 for data transformed with λP = 0.5 and λN = 1.5 is in
Figure 13. Although the trajectories for the three statistics do not overlap as they
do for the well-behaved investment fund data in Figure 6, the three statistics lie
virtually in the t-statistic boundaries until almost the end of the search, where the
trajectories coincide when the suspected outliers enter. Other parameter values can
be found for which the three trajectories are much closer, for example λP = 0.75
and λN = 1. However, the trajectories stray outside the t-statistic boundaries and
indicate around 200 outliers.

The fan plot and its extension have been central to our modelling process. The
fan plot depends on the forward search which orders the observations by closeness
to the model f tted for each value of the subset sizem. We now f nish with part of
a forward search analysis of data with the recommended transformation λP = 0.5
and λN = 1.5 which leads to identif cation of outlying observations.

The top left-hand panel of Figure 14 shows a forward plot, that is a plot against
subset size, of all 1,405 scaled residuals for values ofm from 800. There is a broad
upper band of residuals, in pale blue in the online version of the paper, which

24



λP = 0.5 λN = 1.5

y x1 − x5

±2



full sample of 1,405 observations. Outlying observations cause the data values
(in blue) to fall outside the envelopes. This is a f rst step in outlier detection;
the automatic outlier detection procedure establishes the outlier free sample size
against which outliers are judged. The lower panel of Figure 14 shows scatterplots
of y against the explanatory variables.

To exhibit more information, these three plots have been linked. The high-
lighted, red, residuals in the top left-hand panel were subjectively identif ed by
brushing the plot. We selected the trajectories, 19 in all, that lay within the brush
in the centre of the f gure. The trajectory of the 19 brushed observations in the
forward plot of deletion residuals in the upper right-hand panel is shown in red.
Sixteen of these observations are the last observations to enter the search, the other
three entering from 21 units before the end of the search. These 19 observations
are plotted as f lled (red) circles in the scatterplot in the lower panel. The extreme
negative trajectory in the top left-hand panel is clearly caused by the outlier in the
bottom left of the scatterplot for x1. This is a gross outlier, since x1, the ratio of
labour cost to value added, is rarely negative. The continuous lines in the panels
come from multiple regression on all observations. The panels for x1 and x4, in
particular, show the source of the many large negative residuals.
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Figure 15: Balance sheet data: scatterplots of transformed y against x1−x5 show-
ing the 42 outliers found by the automatic procedure for outlier detection when
λP = 0.5 and λN = 1.5

Brushing led to the subjective choice of 19 observations with large negative
residuals. However, our automatic procedure for outlier detection (Riani et al.,
2009) identif es a total of 42 outliers. These observations are plotted in the panels
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of Figure 15. On this transformed scale the outliers are evident, which they are
not on the original scale in Figure 11.

The purpose of the analysis of these data was to build a regression model
relating y to the f ve potential explanatory variables. Table 3 gives summary prop-
erties of the regressions for the untransformed data and the transformed data with
42 observations deleted. The F statistic for the regression, as against a constant
model, increases on transformation and deletion from 293 to 588, a ratio of just
over 2. Thus, despite the deletion of 42 observations, the transformation has led
a doubling of the amount of information available, that is to an effective doubling
of sample size; the t test values for the intercept and all variables except x5 show
appreciable increases in signif cance. The strengthening of evidence for multiple
regression to include x1, from -35.8 to -51.4, is in line with the pattern of out-
liers shown deleted in the f rst panel of Figure 15. However, the evidence for
x2 strengthens from -8.3 to -11.3, which is not particularly to be expected from
inspection of the second panel of the f gure.

The lower panel of Figure 14 also includes, as continuous lines, the f tted
regression relationships before the outliers have been deleted. The dotted lines
are for the relationships after transformation and outlier deletion. Although the
signif cance of the f t has greatly increased due to outlier deletion, the f gure shows
that deletion of the outliers has a negligible effect on the estimated regression
coeff cients.

The negative sign for x1 shows decreasing prof tability for f rms with high
labour input. This is by far the most signif cant relationship. The negative signs
for x2 and x3, ratios of f xed assets and intangibles such as software, are surprising.
One possibility is that the investments that have been made are not yet yielding
the intended advantages in, for example, labour reduction, whilst incurring capital
costs (Bartoloni, 2013, §3). The fourth variable is not signif cant, whereas the
negative effect of interest is to be anticipated. There is however a danger in over-
interpreting the values of t-tests in multiple regression with correlated explanatory
variables. Table 3 shows that the increase in the precision of estimation of the
regression coeff cients has been achieved by the transformation coupled with the
deletion of only 3.9% of the total data.

9.2 Nonparametric Transformations
The results of the nonparametric analysis of the investment fund data in §8.2
showed that ACE provided a somewhat higher value of R2 than the extended
Yeo-Johnson transformation, although the shapes of the transformed responses
in the two panels of Figure 10 do not show large differences between the para-
metric and non-parametric transformations. However, due to the presence of the
outliers, there is a sharper difference between these two forms of transformation
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Table 3: Balance sheet data: summary properties of regression for original data
and for data with outliers removed with different transformations of positive (λP )
and negative (λN ) observations

λP 1 0.5
λN 1 1.5
Number of observations 1405 1363
Error d.f. ν 1399 1357
tν values
Intercept 42.0 60.5
x1 -35.8 -51.4
x2 -8.3 -11.3
x3 -3.6 -5.4
x4 1.0 2.3
x5 -3.4 -3.1
F5,ν for regression 293 588
R2 0.511 0.684

when analysing the balance sheet data.
A summary through the values of R2 of the effect of outliers on the perfor-

mance of the transformations is in Table 4. The outliers were identif ed in §9.1
on a scale found using the extended Yeo-Johnson transformation. Deletion of
these observations without transformation increases R2 from 0.511 to 0.638. For
the extended Yeo-Johnson transformation in the presence of outliers the value is
0.559. The combination of transformation of the data and deletion of 42 outliers
increases R2 further to 0.684, which is the meaningful comparison. For ACE
deletion of the same 42 outliers increases R2 from 0.558 to 0.697; for AVAS the
increase is from 0.526 to 0.646. Thus, after the outliers have been deleted, ACE
produces a slightly large value of R2 than the extended Yeo-Johnson transforma-
tion, whereas the value from AVAS is smaller.

10 Distribution of the Score Statistics
Mathematical analysis of the properties of the Box-Cox transformation is not
straightforward, due to the need to f nd expectations of functions similar in struc-
ture to the constructed variables of §5. Examples are Draper and Cox (1969),
Taylor (1986) and Cox and Reid (1987) who work with the un-normalized trans-
formation y(λ). Atkinson and Riani (2002b) provide some numerical results on
the distribution in the fan plot of the score statistic for the Box-Cox transforma-
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Table 4: Balance sheet data: values ofR2 from regression for parametric and non-
parametric transformations on complete data and data with 42 outliers deleted:
EYJ, the extended Yeo-Johnson transformation

Data Complete Outliers deleted
Untransformed 0.511 0.638
EYJ 0.559 0.684
ACE 0.558 0.697
AVAS 0.526 0.646

tion. Following the results on forward t-tests mentioned in §7, they examine the
departures from the null distribution, which are most extreme towards the end of
the search, where the statistic has too large a variance. They show that increas-
ingly strong regression relationships lead to distributions that are closer to t, a
f nding that explains the results of Atkinson and Lawrance (1989) on the compar-
ison of tests for the Box-Cox transformation. Careful inspection of the simulated
null distribution of the statistics in Figure 2 shows that towards the end of the
search, all three envelopes for the extreme quantiles likewise indicate a slightly
longer-tailed distribution than t. Furthermore, they are slightly too tight in the
middle of the search.

The simulation of the null distributions of the statistics in the extended fan
plots of Figure 2 also shows that, for all quantiles, the statistic for positive y
lies slightly above the overall statistic and that for the negative observations lies
slightly below. Some insight into this result comes from the structure of the score
statistic (8), which depends on quadratic forms in w and z. In the Yeo-Johnson
transformation the quadratic forms contain two terms, one for the positive ob-
servations and one for the negative. When testing for positive y the constructed
variable for the negative observations for general λ is z(λ) log ẏP . From the def-
inition in (11), ẏP is always positive, so that the contribution to the numerator of
γ̂ is a multiple of the residual sum of squares of the negative transformed obser-
vations. Similarly, for testing the negative observations, with ẏN likewise positive
(10), the contribution is minus a multiple of the residual sum of squares of the
positive transformed observations.

11 Discussion
The Yeo-Johnson transformation has been widely cited, particularly in hydrology,
perhaps because zero values of rainfall are common, combined with a skew pos-
itive distribution of values. However many authors, for example Su et al. (2009)
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in a medical context, argue that such semi-continuous data are better analysed
by treating separately the continuous and zero parts. QQ plots of residuals after
transformation would reveal the effect of a spike of observations at zero by giving
a horizontal part of the plot. The (un-normalized) transformation has also been
applied to the distribution of explanatory variables (Peterson, 2018), much in the
spirit of Whittaker et al. (2005) who use the related neglog transformation.

Our extended Yeo-Johnson transformation allows different transformations for
positive and negative observations. An extension is to two transformation regimes
for observations above and below some threshold, for example medical subjects
with high or normal measurements of a response. The two non-parametric trans-
formations we have discussed should be helpful in indicating the value of the
threshold. Indeed, there is an indication of a threshold higher than zero for the
ACE transformation of the investment fund data in the left-hand panel of Fig-
ure 10. Such transformations can also be expected to have advantages over para-
metric transformations for large data sets, where there may be more than two
groups divided by response value that require distinct transformations. Comments
on the forward search for large data sets are given by Riani et al. (2019). Compu-
tation times can be appreciably reduced by moving forward in blocks of K > 1
observations, rather than incrementing the subset one observation at a time as we
have done here.

Both ACE and AVAS allow the transformation of explanatory variables as well
as of the response. These methods thus provide a generalization of the transfor-
mation of explanatory variables (Box and Tidwell, 1962). The approach is distinct
from the ‘transform both sides’ method described in Carroll and Ruppert (1988,
Cap.4), in which the relationship between the mean response and the model is
known. The purpose of the transformation is to achieve approximate normality
and constancy of variance for the response. In any such developments of transfor-
mation methodology, robustness, such as we have achieved here, combining the
forward search and a fan plot, will be important.

The calculations in this paper used Matlab routines from the FSDA toolbox,
available as a Matlab add-on from the Mathworks f le exchange
https://www.mathworks.com/matlabcentral/fileexchange/.
The data, the code used to reproduce all results including plots, and links to FSDA
routines are available at http://www.riani.it/ARC2019.
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