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EFFECTIVE RISK AVERSION IN THIN RISK-SHARING MARKETS

MICHAIL ANTHROPELOS, CONSTANTINOS KARDARAS, AND GEORGIOS VICHOS

Abstract. We consider thin incomplete financial markets, where traders with heterogeneous pref-

erences and risk exposures have motive to behave strategically regarding the demand schedules they

submit, thereby impacting prices and allocations. We argue that traders relatively more exposed

to market risk tend to submit more elastic demand functions. Noncompetitive equilibrium prices

and allocations result as an outcome of a game among traders. General sufficient conditions for

existence and uniqueness of such equilibrium are provided, with an extensive analysis of two-trader

transactions. Even though strategic behaviour causes inefficient social allocations, traders with

sufficiently high risk tolerance and/or large initial exposure to market risk obtain more utility gain

in the noncompetitive equilibrium, when compared to the competitive one.

Introduction

It has been widely recognised that many financial markets are dominated by a relatively small

number of large investors, whose actions heavily influence prices and allocations of tradeable

securities—see, among others, discussions in [BK12, GSY03, RW15]. While such market impact

has been observed even in large exchanges like NYSE (see [KM95, KM96, MC97] and the more

recent empirical study [HLS17]), it is especially in over-the-counter (OTC) transactions that the

assumption of a competitive market structure is problematic. The majority of OTC markets in-

volve relatively few participants; therefore, even if all information is public, equilibrium forms

in a noncompetitive manner. Such financial markets with an oligopolistic structure are usually

characterised as thin (see [RW08] for a related reviewing discussion).

The main reason for trading between risk averse traders with common information and beliefs

is the heterogeneity of their endowments—see, for instance, related discussion in [BEK05, JST08].

Trading securities that are correlated with traders’ endowments may be mutually beneficial in

sharing the traders’ risky positions—see, among others, [AŽ10, Rob17]. In a standard Walrasian

uniform-price auction model, traders submit demand schedules on the tradeable securities and

the market clears at the prices resulting in zero aggregate submitted demand; and since demand
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depends on traders’ characteristics such as their risk exposure and risk aversion, the same is true for

the equilibrium prices and allocation. Whereas traders’ exposures to market risk (i.e., uncertainty

in the tradeable securities) may be considered as public knowledge, their risk aversion is subjective

and should be regarded as private information. In the realm of thin financial markets, traders may

have motive to act strategically and submit demand schedules with different elasticity than the

one reflecting their risk aversion. The goal of this paper is to model such strategic behaviour and

highlight some of its economic insights.

Model description and main contributions. We develop a model of a one-shot transaction

on a given collection of risky tradeable securities, under common information on the probabilistic

nature of their payoffs. Traders possess and exploit a potential to impact the market’s equilibrium.

We adopt the setting of CARA preferences and normally distributed payoffs, also appearing in

[Kyl89, RW15, Vay99], with traders assumed heterogeneous with respect to risk tolerance (defined

as the reciprocal of risk aversion) and initial risky positions. In contrast to the majority of related

literature, we do not assume that traders’ endowments belong to the span of the tradeable securities,

leading to market incompleteness.

Similarly to the models in [Kyl89, Vay99, Viv11], the market operates as a uniform-price auction

where traders submit demand functions on the tradeable securities, with equilibrium occurring at

the price vector that clears the market. When traders do not act strategically, the market structure

is competitive and the equilibrium price-allocation is induced by traders’ true demand functions.

However, as has been pointed out previously, such competitive structure is not suitable for thin

markets, and the way traders behave depends in principle on the risk exposure and risk tolerance

of their counter-parties. In a CARA-normal setting, demand functions are linear with downward

slope and their elasticities coinciding with the traders’ risk tolerance. Traders recognise their

ability to influence the equilibrium transaction, and may submit demand with different elasticity

than the one reflecting their risk tolerance. We formulate a best-response problem, according to

which traders submit demand functions aiming at individual utility maximisation, with strategic

choices parametrised by the elasticity of the submitted demand. This forms a noncompetitive

market scheme, where the Bayesian Nash equilibrium is the fixed point of traders’ best responses.

In any non-trivial case, traders have motive to submit demand with different elasticity than

their risk tolerance. The main determining factor of traders’ best response is their pre-transaction

projected beta, defined as the beta (in terms of the Capital Asset Pricing Model) of the projection

of the trader’s risky position onto the linear space generated by the securities. In the special case

where the traders’ positions belong to the span of tradeable securities, projected and actual betas

coincide. Following classical literature, traders’ projected betas (hereafter simply called betas)

measure their exposure to market risk. In terms of risk sharing, we distinguish traders to those

who increase or decrease their beta through the transaction.
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It is shown that traders submit demand corresponding to higher risk tolerance if and only if they

reduce their market risk exposure through trading. The economic insight of this strategic behaviour

is simple: traders with relatively higher initial exposure to market risk pay a risk premium to their

counter-parties in order to reduce their beta. Submitting more elastic demand has two main effects.

Firstly, the post-transaction reduction of beta is smaller, since more elastic demand implies higher

relative risk tolerance and hence higher post-transaction exposure to market risk, as the trader

appears willing to keep a more risky position. Secondly, the risk premium that is paid is also lower.

As it turns out, the effect of premium reduction overtakes the sub-optimal reduction of market risk

exposure. In order to obtain intuition on this, consider the impact of the other traders’ status on an

individual trader’s actions. Large pre-transaction beta for a specific trader implies low aggregate

beta for other traders. Acting in a more risk tolerant way, by submitting more elastic demand, a

trader essentially exploits this low aggregate exposure to market risk of the counter-parties, and in

fact decreases the premium that they ask in order to undertake more market risk.

On the contrary, traders who undertake market risk in exchange for a risk premium, i.e., those

with low pre-transaction beta, have motive to submit less elastic demand. Not only does such

a strategy result in less undertaken market risk, it also takes advantage of the large aggregate

counter-parties’ beta, increasing the premium received in order to offset their demand.

Continuing this line of argument, traders with overexposed to market risk, with pre-transaction

beta sufficiently higher than one, tend to behave as risk neutral, even though their actual risk

aversion parameter is strictly positive. In such a case, the trader takes over the whole market risk,

reducing the post-transaction beta of their position to one. At the same time, the other traders

are willing to offset such transaction since it makes their post-transaction beta equal to zero (i.e.,

becoming market-neutral); for this reason, they reduce the required risk premium. On the other

hand, traders with pre-transaction beta less than or equal to −1 submit extremely inelastic demand

functions, implying zero risk tolerance, appearing willing to become market neutral. Again, other

traders are eager to offset the transaction, since at this regime their aggregate pre-transaction beta

is relatively large, and selling market risk is a very effective hedging transaction.

We discover two regimes of noncompetitive equilibrium. When one of the trader’s pre-transaction

beta is sufficiently large, there exists a unique linear equilibrium which is extreme, in the sense that

the market-overexposed trader behaves as being risk neutral and at equilibrium undertakes all

market risk. Such extreme Nash equilibrium results in market-neutral portfolios for all other

traders, while securities are priced in a risk-neutral manner. In any other “non-extreme” case,

noncompetitive equilibria solve a coupled system of quadratic equations, which admits a unique

solution under the mild—and rather realistic—assumption that at most one of the traders may

have pre-transaction beta greater than one. We provide an efficient constructive proof of the latter

fact, which can be used to numerically obtain the unique linear equilibrium given an arbitrary

number of traders.



4 MICHAIL ANTHROPELOS, CONSTANTINOS KARDARAS, AND GEORGIOS VICHOS

The two-trader case is of special interest, mainly because the large majority of risk-sharing trans-

actions are bilateral between large institutions and/or their clients or brokers; related discussions

and statistics are provided in [BH16, Bab16, DSV15, Zaw13, HM15]. We obtain explicit expres-

sions for two-trader price-allocation noncompetitive equilibria, which allow us to analyse further

the model’s economic insight. Noncompetitive and competitive equilibria coincide if and only if the

competitive equilibrium transaction is null, in that the initial allocation is already Pareto-optimal.

In any other case, for both traders the elasticity of submitted demands in such thin market deviates

from the one utilising their risk tolerances. As emphasised above, the crucial factor is the traders’

pre-transaction beta. For non-extreme equilibria we have the following synoptic relationship:

true elasticity < equilibrium elasticity ⇔ post-transaction beta < pre-transaction beta.

Even if traders have common risk tolerance, deviations between their endowment will make them

behave heterogeneously. For a trader with higher (resp., lower) beta, who reduces (resp., increases)

market risk through the transaction, the equilibrium elasticity reflects more (resp., less) risk tol-

erance. One could argue, therefore, that in thin financial markets the assumption of effectively

homogeneous risk-averse traders is problematic, since it essentially implies that traders ignore their

ability to impact the transaction.

In the context of strategic behaviour, equilibrium prices and allocations are generally impacted.

In the two-trader case, the volume in noncompetitive equilibrium is always lower than in the

competitive one. More precisely, it is shown that the post-transaction beta after Nash equilibrium

is—interestingly enough—the midpoint between the trader’s pre-transaction beta and the beta

after the competitive transaction. This implies a loss of social efficiency, in the sense that the total

utility in noncompetitive equilibrium is reduced when compared to the competitive one. However,

such loss of total utility does not always transfer to the individual level. In fact, it follows from

the analysis of the bilateral game that the noncompetitive equilibrium is beneficial in terms of

utility gain for two types of traders: those with sufficiently high pre-transaction beta, and those

with sufficiently high risk tolerance. Such findings in noncompetitive markets are consistent with

results in [Ant17] and [AK17]. (A result in that spirit also appears in [MR17]; namely it is shown

that, when the market is centralised, less risk averse agents have greater price impact.)

As a final point, and as mentioned above, our model allows for incompleteness, and we study

its effect in noncompetitive risk-sharing transaction. Based on the two-trader game, we show that

traders who benefit from the noncompetitive market setting (i.e., those with high risk tolerance

and/or high exposure to market risk) have their utility gains reduced by the fact that endowments

are not securitised, highlighting the importance of completeness especially for large traders that

prefer thin markets for sharing risk.

Connections with related literature. The present paper contributes to the large literature on

imperfectly competitive financial markets. Based on the seminal works on Nash equilibrium in
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supply/demand functions of [KM89] and [Kyl89], most models of noncompetitive markets consider

strategically acting agents, whose set of choices corresponds to demand schedules submitted to

the transaction. Frequently, the departure from competitive structure stems from informational

asymmetry; such is the case in [Bac92, BCW00, Kyl89, KOW18], where agents are categorised

as informed, uniformed and noisy. Even without existing risky positions, asymmetric informa-

tion gives rise to mutually beneficial trading opportunities among traders, who submit demand

schedules based on the responses of their counter-parties. Another potential source of noncom-

petitiveness comes via exogenously imposing asymmetry on the bargaining power among market

participants. Bilateral OTC transactions between agents with different bargaining power are mod-

elled in [DGP07]; in [LW16], it is market makers who possess market power and optimally adjust

bid-ask spreads based on submitted orders by informed and uniformed investors. (See the references

in [LW16] for alternative models of strategic market makers.) Exogenously imposed differences on

market power are also present in [BP05], where traders are divided into price-takers and predatory

ones, the latter strategically exploiting the liquidity needs of their counter-parties.

In contrast to the above, our model assumes symmetry for traders’ market power; noncompet-

itiveness stems solely from the fact there is a small number of acting traders, each of whom can

buy or sell the tradeable securities and has the ability to affect the risk-sharing transaction.1 The

market here is assumed to be oligopolistic, without any form of exogenous frictions or asymmetries.

Market models close to ours considered by other authors include [MR17, RW15, Vay99]. In

[MR17, RW15, Vay99], and similarly to the present work, traders submit demand in a noncom-

petitive market setting by taking into account the impact of their orders on the equilibrium. The

main difference with our demand-game, when compared to the one-shot market of [RW15, Vay99]

and the centralised market of [MR17], is the set of traders’ strategic choices. More precisely, in

these works a trader’s price impact is identified as the slope of the submitted aggregate demand of

the rest of the traders. Traders estimate (correctly at equilibrium) their price impact and respond

by submitting demand schedules aiming for maximising their own utility. In particular, the set

of strategic choices consists of the slope of the submitted demand, and equilibrium arises as the

fixed point of the traders’ price impacts. In our model, we keep the linear equilibrium structure of

demand functions and parametrise the set of traders’ strategical choice to the submitted elasticity,

1Symmetric games in an oligopolistic market of goods (rather than securities with stochastic payoffs) have also

been studied in the seminal work of [KM89] and in the more recent papers [Viv11] and [Wer11]. The main structural

difference between these market models and ours is that players therein (i.e., firms) can take only the seller’s side,

while the buyer’s side (i.e., the demand for the goods) is essentially exogenous. Additionally, the fact that the

tradeable asset is a good creates further technical and economic deviations—for instance, the role of risk exposure is

essentially played by the cost function, the price can not be negative, etc. The model in [KM89] imposes randomness

on demand, whereas [Viv11] considers random suppliers’ cost and private information status. On the other hand,

the model of market power in [Wer11] is based on the same setting of price impact as in [RW15] and [MR17].
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and equilibrium is formed simply at the price where aggregate submitted demand is zero. In this

way, each trader responds to the whole demand function of other traders, and not just the slope.

This is a crucial trading feature motivated by the benefits of risk sharing, since the intercept point

of the demand function corresponds to the traders’ exposure to market risk (the correlation of

traders’ endowment with the tradeable assets). The difference becomes pronounced in the very

special case of a single tradeable security, where traders’ price impacts of [RW15] and [MR17]

can be seen as the reciprocal of their risk aversion. In [RW15], the so-called equilibrium effective

risk aversion—that is, the risk aversion that is reflected by the equilibrium submitted demands—

depends only on the number of traders (as well as a couple of other quantities that we do not use

in our model: interest rate and number of allowable trades until the end of each trading round).

In particular, heterogeneity of initial risky endowments is not addressed: even with different initial

positions at each period, traders do not take into account their counter-parties’ exposure to mar-

ket risk. Our demand-game may be more appropriate for thin risk-sharing transactions, since it

endogenously highlights the importance of traders’ initial positions for their strategic behaviour.

Another important trait of our model is that it can be applied to the practically important two-

trader case, while the models of [RW15], [MR17] and [Vay99] are ill-posed for bilateral transactions.

As already mentioned, bilateral transactions are significant part of thin market models, since the

majority of the OTC risk-sharing transactions consist of only two counter-parties. Existence of

a two-agent Bayesian Nash equilibrium exists under mild assumptions in the model of [RW12];

however, agents there have private valuations on the tradeable securities.

Further to what was pointed out above, our model allows market incompleteness: tradeable

securities do not necessarily span the traders’ endowments. We are thus able to generalise the

discussion on thin markets and deviations of noncompetitive equilibria from competitive ones in

the more realistic framework where traders’ endowments are nor securitised neither replicable.

Finally, models of thin risk-sharing markets, albeit with different set of strategic choices, have

been considered in [Ant17] and [AK17]. In [Ant17], traders choose the endowment submitted for

sharing, and a game on agents’ linear demand is formed; in contrast with the present paper, agents

in [Ant17] choose the intercept of the demand function instead of its elasticity. In [AK17], traders

strategically submit probabilistic beliefs, and the model is “inefficiently complete”, as securities are

endogenously designed by heterogeneous traders in order to share their risky endowments.

Structure of the paper. Section 1 introduces the market model and competitive equilibrium,

where traders do not act strategically. Section 2 introduces, solves and discusses the individual

trader’s best response problem. Noncompetitive equilibrium is introduced in Section 3; general

conditions ensuring existence and uniqueness of Nash equilibrium are provided in §3.2, conditions

for so-called extreme equilibrium are addressed in §3.3. The two-trader game is extensively analysed

in Section 4. The proof of the main Theorem 3.4 is presented in Appendix A.
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1. Model Set-Up

We work on a probability space (Ω, F , P), and denote by L0 ≡ L0(Ω,F ,P) the class of all

F-measurable random variables, identified modulo P-a.s. equality.

1.1. Agents and preferences. We consider a market of n+ 1 economic traders, where n ∈ N =

{1, 2, . . .}; for concreteness, define the index set I = {0, . . . , n}. Traders are assumed risk averse

and derive utility only from future consumption of a numéraire at the end of a single period, where

all uncertainty is resolved. To simplify the analysis we assume that all considered security payoffs

are expressed in units of the numéraire, which implies that future deterministic amounts have the

same present value for the traders. Each trader i ∈ I carries a risky future payoff in units of the

numéraire, which is called (random) endowment, and denoted by Ei. The endowment Ei ∈ L0

denotes the existing risky portfolio of trader i ∈ I, and is not necessarily securitised or tradeable.

We define the aggregate endowment EI :=
∑

i∈I Ei, and set E ≡ (Ei)i∈I to be the vector of traders’

endowments.

The preference structure of traders is numerically represented by the functionals

(1.1) L0 ∋ X 7→ Ui(X) := −δi logE [exp (−X/δi)] ∈ [−∞,∞),

where δi ∈ (0,∞) is the risk tolerance of trader i ∈ I. Note that Ui(X) corresponds to the

certainty equivalent of potential future random outcome X, when trader i ∈ I has risk preferences

with constant absolute risk aversion (CARA) equal to 1/δi. It is important to point out that

functional Ui(·) also measures wealth in numéraire units and hence can be used for comparison

among different traders (and equilibria). We also define the aggregate risk tolerance δI :=
∑

i∈I δi,

as well as the relative risk tolerance λi := δi/δI of trader i ∈ I. Note that λI ≡
∑

i∈I λi = 1.

Following standard practice, we shall use subscript “−i” to denote aggregate quantities of all

traders except trader i ∈ I; for example, δ−i := δI − δi and λ−i := 1− λi, for all i ∈ I.

1.2. Securities and demand. In the market there exist a finite number of tradeable securities

indexed by the non-empty set K, with payoffs denoted by S ≡ (Sk)k∈K ∈ (L0)K . The demand

function Qi of trader i ∈ I on the vector S of securities is given by

Qi(p) := argmax
q∈RK

Ui(Ei + 〈q, S − p〉), p ∈ RK .

Here, and in the sequel, 〈·, ·〉 will denote standard inner product on the Euclidean space RK .

We follow a classic model of standard literature (e.g. [Kyl89, RW15, Vay99] and [Viv11]) and

assume that the joint law of (E,S) is Gaussian. Since traders’ endowments do not necessarily

belong to the span of S, the market is incomplete. Note also that endowments are not assumed

independent of S, or independent of each other. Since only securities in random vector S are
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tradeable, we identify market risk with the variance-covariance matrix of S, denoted by

C := Cov(S, S).

In the sequel will impose the standing assumption that C has full rank. Additionally, for notational

convenience, we shall assume that

E[Sk] = 0, ∀k ∈ K.

Due to the cash-invariance of the traders’ certainty equivalent, the latter assumption does not entail

any loss of generality, as we can normalise tradeable securities to be S − E[S]. Straightforward

computations give

Ui (Ei + 〈q, S − p〉) = −δi logE [exp (−(Ei + 〈q, S − p〉)/δi)]

= E [Ei]− 〈q, p〉 −
1

2δi
Var [Ei + 〈q, S〉]

= E [Ei]−
1

2δi
Var [Ei]−

1

2δi
〈q, Cq〉 −

〈
q, p +

1

δi
Cov(Ei, S)

〉
.

We also define the following quantities

ui := E [Ei]−
1

2δi
Var [Ei] ≡ Ui(Ei),

and, for each i ∈ I,

ai := C−1Cov(Ei, S), and a−i := aI − ai,

where

aI :=
∑

i∈I

ai.

Then, it follows that

Ui (Ei + 〈q, S − p〉) = ui −
1

δi
〈q, Cai〉 −

1

2δi
〈q, Cq〉 − 〈p, q〉 ,

from which we readily obtain that the demand function of trader i ∈ I, given by

(1.2) RK ∋ p 7→ Qi(p) = −ai − δiC
−1p, i ∈ I,

is downward-sloping linear. The risk tolerance δi ∈ (0,∞) could be considered as the elasticity of

the demand function of trader i ∈ I, with higher δi implying more elastic demand. Furthermore,

ai ∈ RK gives the correlation of the tradeable securities with the endowment of trader i ∈ I, and

plays the role of the intercept point of the affine demand function (1.2). According to (1.2), when

prices of all securities equal zero, the sign of each element of ai indicates whether trader i ∈ I has

incentive to buy (when negative) or sell (when positive) the corresponding security.
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1.3. Competitive equilibrium. While our focus will be on noncompetitive equilibrium, we first

define competitive equilibrium of our market, to be later used and discussed as a benchmark for

comparison, similarly as in [Vay99] and [Viv11]. Trading the securities represented by S without

applying any strategic behaviour (i.e., by assuming a price-taking mechanism), the traders reach a

competitive equilibrium: prices are determined where the traders’ aggregate demand equals zero.

Definition 1.1. The vector p̂ ∈ RK is called competitive equilibrium prices if

∑

i∈I

Qi(p̂) = 0.

The corresponding allocation (q̂i)i∈I ∈ RK×I defined via q̂i = Qi(p̂) for all i ∈ I will be called a

competitive equilibrium allocation associated to (competitive equilibrium) prices p̂ ∈ RK .

Elementary algebra gives the following result.

Proposition 1.2. There exists a unique competitive equilibrium price p̂ given by

(1.3) p̂ = −
1

δI
CaI ,

with associated competitive equilibrium allocations given by

(1.4) q̂i = λiaI − ai, i ∈ I.

Remark 1.3. For i ∈ I, Di := 〈ai, S〉 is the projection of the endowment Ei onto the linear span

of the tradeable security vector S ≡ (Sk)k∈K . At competitive equilibrium, the position of trader

i ∈ I, net the price paid, is

〈q̂i, S − p̂〉 = 〈λiaI − ai, S〉+
1

δI
〈λiaI − ai, Ca〉 = λiDI −Di − EQ [λiDI −Di] , i ∈ I.

where Q is given through dQ/dP = exp(−EI/δI)/EP [exp(−EI/δI)], where DI :=
∑

i∈I Di. In

the case where the linear span of the securities equals the linear span of the endowments, it holds

that Di = Ei − EP [Ei], for all i ∈ I. Then, the competitive equilibrium coincides with the

complete-market Arrow-Debreu risk-sharing equilibrium—see, among others, [Bor62, Buh84] or

[MQ02, Chapters 2 and 3].

Remark 1.4. A very special—and as shall be discussed, trivial—situation arises when aI = 0, i.e.,

when Cov(EI , Sk) = 0 holds for every k ∈ K, where we recall that EI :=
∑

i∈I Ei. In words, aI = 0

means that the total endowment EI is independent of the spanned subspace of the securities. In

this case, in the setting of Proposition 1.2, competitive equilibrium prices of the securities are zero,

and q̂i = −ai. It follows that, in competitive equilibrium, traders simply rid themselves of the

hedgeable part of their endowment at zero prices, and end up after the transaction with the part

that is independent of the securities. (In this respect, recall the previous Remark 1.3.)
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Given that the case aI = 0 is covered by Remark 1.4 above, we shall assume tacitly in the sequel

that aI 6= 0. (The only point where we return to the case aI = 0 is at Remarks 2.1 and 3.2.) When

aI 6= 0, we define the following parameters, which will turn out to be crucial for our analysis:

(1.5) βi :=
Cov(EI , S)C

−1Cov(Ei, S)

Cov(EI , S)C−1Cov(EI , S)
=

〈aI , Cai〉

〈aI , CaI〉
, i ∈ I.

Note that

βI ≡
∑

i∈I

βi = 1.

When the traders’ endowments are tradeable, i.e., when the endowment vector Ei belongs in the

linear span of (Sk)k∈K for all i ∈ I, then βi literally coincides with the beta of the ith endowment,

in the terminology of the Capital Asset Pricing Model. In general, βi should be considered as

a “projected beta” of the ith endowment onto the space of tradeable securities; as stated in the

introduction, it shall be called simply (pre-transaction) beta in the sequel. Consistently to classical

theory, betas shall measure the level of exposure to market risk of each trader before and after the

equilibrium transaction.

Both equilibrium prices and allocations strongly depend on the traders’ heterogeneity. After the

competitive transaction, the position of trader i ∈ I is Ei + 〈q̂i, S − p̂〉, and one may immediately

calculate the post-transaction beta of the position to be equal to λi. Hence, at competitive risk

sharing, each trader ends up with a positive exposure to market risk, with a beta less than one,

even if initial positions are negatively correlated to market risk. Note also that traders with higher

risk tolerance are willing to get relatively more exposure to the market risk through the competitive

transaction.

The cash amount (signed risk premium) that trader i ∈ I pays to obtain post-transaction beta

equal to λi is

〈q̂i, p̂〉 = (βi − λi) 〈aI , CaI〉 /δI ,

which is linearly increasing with respect to βi. In fact, traders that reduce their beta after the

competitive transaction (i.e., those with λi < βi) pay a positive risk premium |〈q̂i, p̂〉| = 〈q̂i, p̂〉 to

their counter-parties. On the other hand, traders that undertake market risk at the competitive

transaction (i.e., those with βi < λi) are compensated with a risk premium |〈q̂i, p̂〉| = −〈q̂i, p̂〉.

Based on the formulas of equilibrium prices and allocations of (1.3) and (1.4), we readily calculate

and decompose the traders’ utility at competitive equilibrium as

Ui (Ei + 〈q̂i, S − p̂〉) = ui +
1

2δi

∣∣∣C1/2(λiaI − ai)
∣∣∣
2
= ui +

1

2δi

∣∣∣C1/2q̂i

∣∣∣
2

(1.6)

= ui +
1

2δi
〈ai, Cai〉 − λ2

i

〈aI , CaI〉

2δi︸ ︷︷ ︸
profit/loss from random payoff

−
βi − λi

δI
〈aI , CaI〉

︸ ︷︷ ︸
(signed) risk premium

, i ∈ I.
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Larger trades at competitive equilibrium result in higher utility gain after the transaction. The

above decomposition of utility into risk-sharing gain and risk premium allows one to analyse further

the exact sources of utility for each trader, and will prove especially useful later on, when comparing

competitive and noncompetitive equilibria.

2. Traders’ Best Response Problem

2.1. The setting of trader’s response problem. While it is rather reasonable to assume that

pre-transaction betas are publicly known, it is problematic to impose a similar informational as-

sumption on traders’ risk profiles. We view risk tolerance as a subjective parameter, and more

realistically consider it as private information of each individual trader. In the CARA-normal

market setting treated here, each trader’s risk tolerance is reflected in the elasticity of the sub-

mitted demand function. In particular, from Proposition 1.2 and the induced individual utility

gain (1.6), elasticities of traders’ submitted demand directly affect both the allocation of market

risk and the associated risk premia. Therefore, it is reasonable to inquire whether an individual

trader has motive to strategically choose the elasticity of the submitted demand function. More

precisely, adapting the family of linear demand functions with downward slope of the form (1.2),

strategically chosen elasticity is equivalent to submitting demand function

(2.1) Qθi
i (p) = −ai − θiC

−1p, p ∈ RK ,

where θi ∈ (0,∞) is the elasticity of the submitted demand function Qθi
i ; equivalently, 1/θi is the

risk aversion reflected by the submitted demand. In the extreme case where θi → ∞, trader i ∈ I

submits extremely elastic demand, or equivalently behaves as risk neutral, while θi → 0 indicates

extremely inelastic demand, i.e., a case where the trader does not want to undertake any risk.

The question addressed in the present section is how traders choose the elasticity of their demand

function within the family of demands (2.1), and whether this is different than their risk tolerance.

In order to make headway with examining the best response function of trader i ∈ I, we assume

that all traders except trader i ∈ I have submitted an aggregate linear demand function of the

form (2.1), where θ−i =
∑

j∈I\{i} θj ∈ (0,∞) is the aggregate elasticity of all but traders except

trader i ∈ I. Under this scenario, if trader i ∈ I chooses to submit the demand function (2.1) with

θi ∈ (0,∞), and recalling (1.3) and (1.4), the equilibrium price and allocations will equal

p̂(θi; θ−i) = −
1

θi + θ−i
CaI , q̂i(θi; θ−i) =

θi
θi + θ−i

aI − ai,

and hence the trader’s payoff will equal

Ei + 〈q̂i(θi; θ−i), S − p̂(θi; θ−i)〉 .

Since θ−i > 0, the limiting cases when θi = 0 (interpreted as extreme inelasticity) and θi = ∞

(interpreted as risk neutrality) are well defined; indeed, taking limits in the expressions above, it
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follows that

p̂(0; θ−i) = −
1

θ−i
CaI , q̂i(0; θ−i) = −ai,

p̂(∞; θ−i) = 0, q̂i(∞; θ−i) = aI − ai = a−i.

Risk-neutral acting traders satisfy all the demand of the other traders, accepting all their market

risk, without asking a risk premium (recall that we have assumed that E[Sk] = 0, ∀k ∈ K). On

the other hand, extremely unelastic demand implies hedging all the initial position, making the

post-transaction beta equal to zero and in fact delegating determination of equilibrium prices to

other traders. Using the standard terminology of portfolio management, we call market-neutral a

position with zero beta.

For θ−i ∈ (0,∞), and under the standing assumption of Gaussian endowments and securities

made in Section 1, the response function of trader i ∈ I is

(0,∞) ∋ θi 7→ Vi(θi; θ−i) ≡ Ui(Ei + 〈q̂i(θi; θ−i), S − p̂(θi; θ−i)〉)

ui +

〈
θi

θi + θ−i
aI − ai, C

(
1

θi + θ−i
aI −

1

2δi

(
θi

θi + θ−i
aI + ai

))〉
,

with θi indicating parametrisation of the trader’s strategic behaviour. Since the limiting cases for

θi are also well defined, we allow a trader to submit demand functions that declare extreme and

zero elasticity; for these cases, we have

Vi(0; θ−i) = Ui

(
Ei − 〈ai, S〉 −

1

θ−i
〈ai, CaI〉

)
= ui +

1

2δi
〈ai, Cai〉 −

1

θ−i
〈ai, CaI〉 ,

Vi(∞; θ−i) = Ui(Ei + 〈a−i, S〉) = ui −
1

2δi
〈a−i, C(aI + ai)〉 .

Summing up, given θ−i ∈ (0,∞), the trader i ∈ I’s best response problem is maximising the

post-transaction utility by strategically chosen the submitted demand elasticity, i.e.,

(2.2) θri(θ−i) = argmax
θi∈[0,∞]

Vi(θi; θ−i).

Remark 2.1. When aI = 0, Vi(θi; θ−i) = ui+〈ai, Cai〉 /2δi holds for all θi ∈ [0,∞]. In this case, the

response function is flat, and any response leads to the same equilibrium prices p̂(θi; θ−i) = 0 and

allocation q̂i(θi; θ−i) = −ai for trader i ∈ I, irrespectively of the value of θ−i. These are exactly

the prices and allocations one obtains at competitive equilibrium.

The following result shows that, under the assumptions made in Section 1 (in particular, that

aI 6= 0), the best response problem (2.2) admits a unique solution (recall that β−i denotes the

difference 1− βi, which is equal to
∑

j∈I\{i} βj).
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Proposition 2.2. Given θ−i ∈ (0,∞), the best response of trader i ∈ I exists, is unique and given

as follows:

θri(θ−i) =





0, if βi ≤ −1;

δiθ−i(1 + βi)/ (θ−i + δiβ−i) , if − 1 < βi < 1 + θ−i/δi;

∞, if βi ≥ 1 + θ−i/δi.

(2.3)

Proof. Fix θ−i ∈ (0,∞). Making the monotone change of variable

[0,∞] ∋ θi 7→ ki :=
θi

θi + θ−i
∈ [0, 1],

and using a slight abuse of notation, maximizing value function Vi is equivalent to maximising

Vi(ki; θ−i) = ui + 〈aI , CaI〉

(
(1− ki)ki

θ−i
−

k2i
2δi

)
− 〈aI , Cai〉

1− ki
θ−i

(2.4)

= ui + 〈aI , CaI〉

(
(1− ki)ki

θ−i
−

k2i
2δi

− βi
1− ki
θ−i

)
.

Since aI 6= 0, the above is a strictly concave quadratic function of ki ∈ [0, 1]; in particular, it has

a unique maximum. When βi ≤ −1 (resp., when βi ≥ 1 + θ−i/δi), it is straightforward to see that

[0, 1] ∋ ki 7→ Vi(ki; θ−i) is decreasing (resp., increasing). It follows that θri(θ−i) = 0 when βi ≤ −1,

while θri(θ−i) = ∞ when βi ≥ 1 + θ−i/δi. When −1 < βi < 1 + θ−i/δi, first-order conditions in

(2.4) give that the unique maximizer of [0, 1] ∋ ki 7→ Vi(ki; θ−i) is

(2.5) kri(θ−i) =

(
2 +

θ−i

δi

)−1

(1 + βi) .

It then readily follows from (2.5) that the unique maximizer of [0,∞] ∋ θi 7→ Vi(θi, θ−i) is θ
r

i(θ−i) =

δiθ−i(1 + βi)/(θ−i + δi(1− βi)) ∈ (0,∞). �

According to Proposition 2.2, extreme best responses θi for trader i ∈ I are possible, given

θ−i ∈ (0,∞). In fact, the best response is zero if and only if βi ≤ −1, irrespectively of the value of

θ−i, and the best response is infinity if and only if βi ≥ 1 + θ−i/δi. In view of this potentiality, it

makes sense to understand how a trader would respond if θ−i itself took an extreme value.

We start with the case θ−i = ∞. In this case, taking the limit as θ−i → ∞ in (2.4) gives

(2.6) θri(∞) = δi(1 + βi)+.

The case θ−i = 0 may be treated similarly, but it is worthwhile making an observation. Note

that θ−i = 0 means that all other traders except i ∈ I submit extremely unelastic demands.

According to the solution of the best response problem, and anticipating the definition of Bayesian

Nash equilibrium in Section 3, this only makes sense when βj ≤ −1 holds for j ∈ I \ {i}. Since

βi = 1 −
∑

j∈I\{i} βj and there are at least two traders, it should be that βi > 1. In this case,
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taking the limit as θ−i → 0 in (2.4) gives θri(0) = ∞. To recapitulate: when θ−i = ∞ the best

response is given by (2.6). The case θ−i = 0 is interesting only in the case βi > 1, where we set

θri(0) = ∞, whenever βi > 1.

It is clear from Proposition 2.2 that non-price-taking traders have motive to submit demand

function of different elasticity than their risk tolerance. The main determinant of departure from

agents’ true demand is their pre-transaction beta, defined in (1.5). In order to analyse the effect

of strategic behaviour on the equilibrium prices and allocations, we may consider the situation

where trader i ∈ I is the only one acting strategically against price-takers; all other agents submit

the elasticity corresponding to their true demand functions for the transaction. In symbols, we

set θ−i = δ−i. This can be seen as a one-sided noncompetitive equilibrium, in the sense that

only trader i ∈ I exploits knowledge on other traders’ elasticity and endowments, and responds

optimally. The post-transaction beta (2.5) becomes kri = 0 when βi ≤ −1, kri = 1 when βi ≥ 1/λi,

and kri = λi(1 + βi)/(1 + λi) when βi ∈ (−1, 1/λi). In obvious terminology, we shall call the latter

regime non-extreme, while the former two will be called extreme.

It is completely straightforward from the closed-form expressions for kri that

λi < βi if and only if λi < kri < βi.

Taking into account the discussion following Proposition 1.2, the above fact implies that traders

have motive to submit more elastic demand functions if and only if they reduce their market risk

through the transaction. At the non-extreme regime, this happens when βi ∈ (λi, 1/λi), where the

trader’s initial position is considered relatively more exposed to market risk.

A direct outcome when acting more aggressively by submitting more elastic demand is that the

post-transaction beta entails more risk: indeed, instead of λi 〈aI , S〉 at competitive equilibrium,

the (random part of) the portfolio after submitting demand with elasticity θri equals k
r

i 〈aI , S〉. In

particular, the post-transaction beta of trader i ∈ I is kri , instead of λi. Although the reduction of

risk exposure is lower when compared to the competitive equilibrium, it comes at a better price.

To wit, we readily calculate that in the whole non-extreme regime βi ∈ (−1, 1/λi) it holds that
2

〈qri , p
r〉 < 〈qri , p̂〉 ,

which means that the gain of the strategic behaviour comes from the lower premium that is paid.

2When β ∈ (−1, 1/λi), the exact cash benefit from the best response strategy equals

〈qri, p̂− pr〉 = 〈aI , CaI〉
λi(βi − λi)

2

δI(1 + λi)2(1− λi)
.

At competitive equilibrium trader i ∈ I pays 〈q̂i, p̂〉 = (βi − λi) 〈aI , CaI〉 /δI to reduce beta exposure to λi, while

acting strategically the trader pays 〈qri, p
r〉 = (βi−λi) 〈aI , CaI〉 (1−λiβi)/[(δI − δi)(1+λi)

2] to reduce beta exposure

to kr

i. Note that 〈qri, p
r〉 < 〈q̂i, p̂〉, when βi ∈ (λi, 1/λi).
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Remark 2.3. Under the very special case βi = λi, one obtains θri(θ−i) = δi, i.e., k
r

i = λi. In view of

(1.4), the latter condition implies q̂i = 0 and hence trader i ∈ I does not participate in the sharing

of risk; this is also the case in competitive equilibrium.

3. Noncompetitive Risk-Sharing Equilibrium

3.1. Nash equilibrium. With the best response problem (2.2) in mind, and assuming that all

traders act strategically, we now address noncompetitive Bayesian Nash equilibrium. More pre-

cisely, in a fashion similar to the demand-submission game of [Kyl89], traders submit linear demand

schedules of the form (2.1), where (θi)i∈I ∈ [0,∞]I and θI =
∑

i∈I θi > 0 are the corresponding in-

dividual and aggregate submitted demand elasticity. The market equilibrates at the pairs of prices

and allocations at which the submitted demands sum up to zero. According to Proposition 1.2, as

well as relations (1.3) and (1.4), for every submitted demands with elasticities (θi)i∈I ∈ [0,∞]I , the

prices and allocations that clear out the market are given by p̂((θi)i∈I) = −(1/θI)CaI , as well as

q̂j((θi)i∈I) = (θj/θI)aI − aj, for each j ∈ I. In other words, traders’ strategies are parametrised by

their submitted elasticity within the family of linear demands (2.1), according to the best response

(2.2), and noncompetitive equilibria are fixed points of these responses.

Definition 3.1. A vector (θ∗i )i∈I ∈ [0,∞]I , with θ∗I :=
∑

i∈I θ
∗
i > 0, is called Nash equilibrium

or noncompetitive equilibrium if, for each i ∈ I,

Vi(θ
∗
i ; θ

∗
−i) ≥ Vi(θi; θ

∗
−i), ∀θi ∈ [0,∞].

By a slight abuse of terminology, we also call a Nash price-allocation equilibrium the corre-

sponding pair (p∗, (q∗i )i∈I) ∈ RK × RK×I given by

(3.1) p∗ = −
1

θ∗I
CaI and q∗i =

θ∗i
θ∗I

aI − ai, i ∈ I.

where we set θ∗i /θ
∗
I = 1 whenever θ∗i = ∞, by convention.

From the discussion of Section 2, and particularly given (2.3) and (2.6), the possibility of non-

competitive equilibrium where some traders behave as being risk neutral (i.e., θ∗i = ∞ for some

i ∈ I) arises. We shall call such Nash equilibria where θ∗I = ∞ extreme, and any other case where

the total elasticity θ∗I belongs to (0,∞) will be called non-extreme.

Remark 3.2. When aI = 0, it follows from Remark 2.1 that any vector (θi)i∈I ∈ RI
+ is a Nash

equilibrium, resulting always in the same Nash price-allocation with p∗ = 0 and q∗i = −ai for all

i ∈ I. Therefore, prices and allocations at competitive and Nash equilibrium coincide. In the

sequel, we continue the analysis by excluding this trivial case aI = 0.

Remark 3.3. Having defined our notion of noncompetitive equilibrium, we highlight its differences

with the thin market models studied in [RW15, MR17]. As pointed out in the introductory section,
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the price impact in these papers equals the slope of the aggregate demand submitted by other

traders. Traders respond to—or equivalently, trade against—the price impact of their counter-

parties forming a slope-game; see [RW15, Lemma 1] and [MR17, Proposition 1]. Our model keeps

the form of equilibrium similar to the competitive one, as the family of demands are linear and

of the form (2.1); furthermore, although we parametrise traders’ strategies to the single control

variable that is elasticity, the key element is that responses, and hence equilibrium conditions, take

into account the whole demand function of other traders.

Our main goal in the sequel is to study existence and uniqueness of the aforementioned linear

Bayesian Nash equilibrium, and compare it with the competitive one. Departure from competitive

market structure reduces the aggregate transaction utility gain. Indeed, it can be easily checked

(see, for example, [AŽ10, Corollary 5.7]) that the allocation (q̂i)i∈I of (1.4) maximises the sum of

traders’ monetary utilities over all possible market-clearing allocations. As utilities given by (1.1)

are monetary, we can measure the risk-sharing inefficiency of any noncompetitive equilibrium as

the difference between aggregate utility at Nash and competitive equilibrium.

We shall verify in the sequel that risk sharing in the noncompetitive equilibrium is, except in

trivial cases, socially inefficient. However, it is not necessarily true that each individual trader’s

utility is reduced; in fact, it is reasonable to ask which (if any) traders prefer Nash risk sharing

in such a thin market, as opposed to the corresponding market that equilibrates in competitive

manner. For this, we compare the individual utility gains at two equilibria, that is, the difference

(3.2) DUi ≡ Ui (Ei + 〈q∗i , S − p∗〉)︸ ︷︷ ︸
utility at Nash equilibrium

− Ui (Ei + 〈q̂i, S − p̂〉)︸ ︷︷ ︸,
utility at competitive equilibrium

for each i ∈ I,

and ask when this is positive. Given this notation, and as discussed above, the inefficiency of the

noncompetitive risk-sharing is defined as the sum
∑

i∈I DUi.

3.2. Equilibrium with at most one trader’s beta being greater than one. Under the

condition3 that at most one of the traders have initial beta higher than one, that is

(3.3) # {i ∈ I | βi > 1} ∈ {0, 1},

the next result states that there exists a unique linear noncompetitive equilibrium.

Theorem 3.4. Under (3.3), there exists a unique Nash equilibrium as in Definition 3.1.

According to (2.3), traders behave as being risk neutral when their initial exposure to market risk

is sufficiently higher than one. As we will show in Proposition 3.6 below, this behaviour pertains

at equilibrium, making it an extreme one, if and only if the following condition holds:

(3.4)
∑

i∈I

δi(1 + βi)+ ≤ 2max
i∈I

(δiβi).

3We conjecture that Theorem 3.4 is true in all cases, although we do not have a rigorous proof of this claim.
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When (3.4) fails, the (unique) Nash equilibrium is non-extreme; in this case, and in view of (2.3),

the following coupled system of equations

(3.5)

(
2 +

θ∗I − θ∗i
δi

)
θ∗i
θ∗I

= 1 + βi, ∀i ∈ I with βi > −1,

should hold, where it is θ∗I which couples the equations. According to (2.3), any trader i ∈ I

with βi ≤ −1 optimally submits demand function with zero elasticity, inducing a market-neutral

post-transaction position, where recall that a position is called market-neutral when it has zero

induced beta. Theorem 3.4 states, in particular, that the system (3.5) admits a unique solution

for an arbitrary number of traders when (3.4) fails. This fact is proved in Appendix A, and it is

important to note that the proof is constructive, and hence can be used to numerically calculate

the equilibrium quantities when the number of traders is more than two; the case of two traders

admits in fact a closed-form solution and is extensively studied in §4.1 later on.

3.3. Risk-neutral behaved trader(s). Having established existence and uniqueness of Nash

equilibrium in Theorem 3.4, we now show that the condition (3.4) necessarily leads to an extreme

noncompetitive equilibrium. We start with an alternative characterisation of(3.4).

Lemma 3.5. Condition (3.4) is equivalent to

(3.6) βk ≥ 1 +
1

δk

∑

i∈I\{k}

δi(1 + βi)+, for some k ∈ I.

Furthermore, (3.6) can hold for at most one trader k ∈ I.

Proof. Start by assuming that (3.6) holds, and rewrite it as δkβk ≥ δk+
∑

i∈I\{k} δi(1+βi)+. Since

βk > 1, which implies that 1+βk = (1+βk)+, adding δkβk on both sides of the previous inequality

and simplifying, we obtain 2δkβk ≥
∑

i∈I δi(1 + βi)+, from which (3.4) follows. Conversely, (3.4)

holds if and only if 2δkβk ≥
∑

i∈I δi(1 + βi)+ holds for some k ∈ I. In this case, βk ≥ 0 > −1, and

subtracting δk(1 + βk) = δk(1 + βk)+ we obtain δk(βk − 1) ≥
∑

i∈I\{k} δi(1 + βi)+, which is (3.6).

Assume now that (3.6) held for two traders, say trader k ∈ I and l ∈ I with k 6= l. Then,

δk(βk − 1) ≥
∑

i∈I\{k}

δi(1 + βi)+ ≥ δℓ(1 + βℓ) and δl(βl − 1) ≥
∑

i∈I\{l}

δi(1 + βi)+ ≥ δk(1 + βk).

Adding up these inequalities we obtain −2(δk + δl) ≥ 0, which contradicts the fact that δk > 0 and

δl > 0. We conclude that (3.6) can hold for at most one trader. �

The next result gives a complete characterisation of extreme noncompetitive equilibrium; in

particular, it shows that at most one trader—and, in fact, exactly the trader k ∈ I for which (3.6)

holds—may behave as risk-neutral in noncompetitive equilibrium. Note that we do not assume

(3.3) for Proposition 3.6, as it was also not needed for Lemma 3.5
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Proposition 3.6. An extreme noncompetitive equilibrium (i.e., with θ∗I = ∞) exists if and only

if (3.4), or equivalently (3.6), is true. In this case, we have θ∗k = ∞ for the unique trader k ∈ I

such that (3.6) holds, and θ∗i = δi(1+βi)+ for i ∈ I \ {k}. In particular, the previous is the unique

extreme noncompetitive equilibrium under the validity of (3.4).

Proof. First, assume that a Nash equilibrium with θ∗I = ∞ exists. Since #I < ∞, there exists k ∈ I

with θ∗k = ∞. According to (2.6), for any trader i ∈ I\{k}, it holds that θ∗i = δi(1+βi)+. Therefore,

for θ∗k = ∞ to be the best response for trader k ∈ I, (2.3) gives βk ≥ 1+(1/δk)
∑

i∈I\{k} δi(1+βi)+.

It follows that (3.6) is a necessary condition for existence of an extreme noncompetitive equilibrium.

Conversely, if (3.6) holds, and defining θ∗k = ∞ and θ∗i = δi(1 + βi)+ for i ∈ I \ {k}, it is

immediate from (2.3) and (2.6) to check that the previous is indeed a Nash equilibrium. �

We proceed with some discussion, where we assume that (3.6) holds. In view of Proposition 3.6

and the relations in (3.1), at the extreme equilibrium trader k ∈ I undertakes all market risk, since

q∗k = aI − ak, and the rest of the traders exchange all their market risk (i.e., q∗i = −ai, for each

i ∈ I \{k}) at zero cost, since pricing is done in a risk-neutral way (p∗ = 0). In particular, the post

Nash-transaction beta of trader k ∈ I reduces to one, and all other traders become market-neutral.

While this transaction is not socially optimal, participating traders increase their utilities;

otherwise, equilibrium would not form. Straightforward calculations give the individual utility

gains at the extreme equilibrium: Uk (Ek + 〈q∗k, S − p∗〉) = uk + (〈ak, Cak〉 − 〈aI , CaI〉) /2δk and

Ui (Ei + 〈q∗i , S − p∗〉) = ui + 〈ai, Cai〉 /2δi, for each i ∈ I \ {k}. In particular, the difference of

utility gains in (3.2) between the extreme Nash equilibrium and the competitive one equal

(3.7) DUk =
〈aI , CaI〉

2δk
[λk(2βk − λk)− 1] , and DUi =

〈aI , CaI〉

2δi
λi(2βi − λi), ∀i ∈ I \ {k}.

It follows by straightforward algebra that

Risk-sharing inefficiency :=
∑

i∈I

DUi = −
〈aI , CaI〉

2δI

1− λk

λk
.

As expected, there is a reduction of the total utility gain when traders behave strategically regard-

ing the elasticity of their submitted demand functions. However, utility gains may be higher in

the noncompetitive equilibrium for individual traders. From (3.7), we conclude that, in extreme

noncompetitive equilibrium, traders that benefit from the market’s thinness are the ones with suf-

ficiently high initial exposure to market risk: for trader k ∈ I, when βk > (1 + λ2
k)/2λk and for

traders i ∈ I \ {k} when βi > 2λi.
4

4As easy examples show, condition (3.6) does not necessarily imply βk > (1 + λ2

k)/2λk. In the special two-trader

case I = {0, 1} with k = 0, condition (3.6) is equivalent to β0 > 2 − λ0, which always implies β0 > (1 + λ2

0)/2λ0

when λ0 > 1/3. Still in the same two-trader case with k = 0, condition (3.6) implies that β1 < 2λ1: in the bilateral

extreme equilibrium, only the trader that acts as risk neutral could benefit from the market’s thinness.
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The above quantitative discussion has the following qualitative attributes. Under condition

(3.6), in the noncompetitive extreme equilibrium trader k ∈ I reduces market-risk exposure to one

but pays zero premium to other traders. If the market’s equilibrium was competitive, trader k ∈ I

would decrease the post-transaction beta even more, to λ0 instead to one, but the premium would

be strictly positive according to the decomposition (1.6). The benefit of zero risk premium prevails

the lower reduction of risk if βk is sufficiently large. On the other hand, the rest of the traders

sell all their market-risk exposure at zero premium. For those traders with low initial beta (more

precisely, βi < λi/2), the noncompetitive equilibrium leaves them worse off than the competitive

one. This stems from the fact that in competitive equilibrium traders with low initial beta obtain

premium from traders who are overexposed to market risk, something that does not occur in the

noncompetitive extreme equilibrium. However, for traders with βi ≥ λi/2, the noncompetitive

equilibrium is preferable since they also benefit from the zero risk premium.

To recapitulate: traders that obtain more utility from the extreme noncompetitive equilibrium are

the ones with sufficiently high initial exposure to market risk.

4. Bilateral Strategic Risk Sharing

4.1. The case of essentially two strategic traders. As pointed out in the introductory section,

the two-trader case is of special interest since the majority of the OTC transactions consists of

only two institutions, or one institution and a client.

Since traders with pre-transaction beta less or equal to −1 always sell all their risk at equilibrium,

a risk-sharing game is essentially between two traders if exactly two of them (for concreteness’s

sake, traders 0 ∈ I and 1 ∈ I) have pre-transaction beta larger than −1. Then, traders 0 and 1

are the only ones to submit demands with non-zero elasticity. In view of the general analysis of

§3.3, we shall only treat the case of non-extreme equilibrium, i.e., when (3.4) fails. Straightforward

algebra yields that, in the present case, failure of (3.4) is equivalent to the following simplified

inequality

(4.1) |λ0β0 − λ1β1| < λ0 + λ1.

If I = {0, 1}, and recalling that β0 + β1 = λ0 + λ1 = 1 in this case, inequality (4.1) is equivalent to

−λi < βi < 2− λi for both i ∈ {0, 1}.

Proposition 4.1. Assume that β0 > −1, β1 > −1, βi ≤ −1 for i ∈ I \ {0, 1}, and impose (4.1).

Then a noncompetitive equilibrium is unique, satisfies θ∗i = 0 for i ∈ I \ {0, 1}, as well as

(4.2) θ∗0 = δ0
2λ1(β0 + β1)

(λ0 + λ1) + (λ1β1 − λ0β0)
, θ∗1 = δ1

2λ0(β0 + β1)

(λ0 + λ1) + (λ0β0 − λ1β1)
.

Proof. As already mentioned, Proposition 2.2 implies that the best response for each trader i ∈ I

with βi ≤ −1 is zero; for traders 0 and 1, θ∗0 and θ∗1 should satisfy (3.5). In this case of essentially
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two traders, the system takes the form of the following two equations

(4.3) (2δ0 + θ∗1)θ
∗
0 = δ0(1 + β0)(θ

∗
0 + θ∗1) and (2δ1 + θ∗0)θ

∗
1 = δ1(1 + β1)(θ

∗
0 + θ∗1).

Subtracting the first equation from the second and dividing by θ∗I = θ∗0 + θ∗1 gives

(4.4) 2(δ1k
∗
1 − δ0k

∗
0) = δ1(1 + β1)− δ0(1 + β0),

where k∗i ≡ θ∗i /(θ
∗
0 + θ∗1) for i ∈ {0, 1}. Since k∗1 = 1 − k∗0, (4.4) is a simple linear equation of k∗0

whose unique solution is

(4.5) k∗0 =
1

2
+

λ0β0 − λ1β1
2(λ0 + λ1)

.

The first equation in (4.3) can be written as (2δ0 + θ∗1)k
∗
0 = (1 + β0)δ0, which together with (4.5)

implies that θ∗1 should be given as in (4.2). A symmetric argument shows that θ∗0 should also be

given as in (4.2). Finally, note that assumption (4.1) and the imposed condition βi ≤ −1, for each

i ∈ I \ {0, 1} guarantee that both θ∗0 and θ∗1 are strictly positive and finite. �

At the above noncompetitive equilibrium, prices are given by p∗ = −CaI/(θ
∗
0 + θ∗1), while the

allocation is q∗i = aIθ
∗
i /(θ

∗
0 + θ∗1) − ai for each i ∈ I, i.e. only trader 0 and 1 are left with market

risk after the transaction.

Remark 4.2. As can be readily checked, a combination of Proposition 3.6, Theorem 3.4 and Propo-

sition 4.1 completely covers all possible configurations for trades including up to three players. On

the other hand, one may find a configuration of four traders that is not covered by the results; for

example, with I = {0, 1, 2, 3} and δi = 1 for all i ∈ I, let β0 = β1 = 2, β2 = 0, β3 = −3.

For the rest of this section we focus our analysis and discussion on bilateral transactions, where

we assume that I = {0, 1}. For the reader’s convenience, we note the following result stemming

immediately from Proposition 4.1.

Corollary 4.3. When I = {0, 1} and under inequality (4.1), there is a unique linear noncompetitive

equilibrium given by

(θ∗0, θ
∗
1) =

(
δ0

2λ1

λ1 + β1
, δ1

2λ0

λ0 + β0

)
.

The corresponding price-allocation equilibrium is given by

(4.6) p∗ = −
δI(λ0 + β0)(λ1 + β1)

4δ0δ1
CaI =

(λ0 + β0)(λ1 + β1)

4λ0λ1
p̂,

and

q∗i =
λi + βi

2
aI − ai =

q̂i
2
+

βiaI − ai
2

, i ∈ {0, 1} .
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Remark 4.4. The only case where the allocation at noncompetitive equilibrium coincides with the

competitive one is when β0 = λ0, which necessarily implies that β1 = λ1 also holds. This equality,

however, means that the competitive equilibrium is a trivial no-transaction equilibrium, since (1.4)

gives q∗0 = 0 = q∗1.

As expected from the analysis of Section 2, relatively higher initial exposure to market risk

implies more higher submitted elasticity at the noncompetitive equilibrium: for each i ∈ {0, 1},

δi < θ∗i ⇔ λi < βi ⇔ λ−i > β−i.

In particular, the trader who reduces (resp., increases) exposure to market risk through the trans-

action submits a demand function with higher (resp., less) elasticity than the one that corresponds

to that trader’s risk tolerance.

The above analysis implies that the trader with higher initial exposure to market risk is willing

to retain some of this risk in exchange of a lower risk premium. Correspondingly, the trader who

undertakes further market risk through the transaction tends to behave in more risk averse way,

hesitating to undertake more risk at the same risk premium. The direct outcome is that the volume

of risk sharing is lower than the one obtained at competitive equilibrium, which leads to risk-sharing

inefficiency. In fact, simple calculations yield that the Nash post-transaction beta of trader i ∈ I

changes from βi to (λi + βi)/2, instead of a competitive—and socially optimal—post-transaction

beta of λi. In other words, for both traders the noncompetitive equilibrium transaction makes

their betas exactly equal to the middle point between the initial and the socially optimal ones.

Remark 4.5. From (4.6), we can easily see that p∗ = p̂ holds if and only if λ0 = β0 or λ0 = (2−β0)/3.

While the former case is the trivial one (with zero volume at any equilibrium), the latter gives a

special non-trivial case where prices remain unaffected by the traders’ strategic behaviour. In this

case, the Nash post-transaction beta is (λi + βi)/2 = (1 + βi)/3 = λ−i for both i ∈ {0, 1}.

Similar to the decomposition of utility gains at competitive equilibrium in (1.6), we decompose

the corresponding utility gains at noncompetitive equilibrium for i ∈ {0, 1} as

(4.7) Ui (Ei + 〈q∗i , S − p∗〉) = ui +
1

2δi
〈ai, Cai〉 −

(
λi + βi

2

)2 〈aI , CaI〉

2δi︸ ︷︷ ︸
profit/loss from random payoff

−
βi − λi

δI
〈aI , CaI〉L

︸ ︷︷ ︸
(signed) risk premium

,

where L ≡ (β0 + λ0)(β1 + λ1)/8λ0λ1. The decompositions (1.6) and (4.7) give an expression for

the utility difference between the two equilibria DUi defined in (3.2); to wit,

(4.8) DUi =
〈aI , CaI〉

2δi

[
λ2
i −

(
λi + βi

2

)2
]
+

βi − λi

δI
〈aI , CaI〉 (1− L), i ∈ {0, 1} .

As was the case in extreme equilibrium discussed in §3.3, the difference of utility gains stems

from two sources: the gain from sharing the random (risky) payoffs and the risk premium paid
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or received. Let assume without loss of generality that β0 < λ0 (or equivalently, that β1 > λ1),

i.e., that trader 0 undertakes more market risk after the (competitive or not) transaction. Since

noncompetitive risk-sharing beta reaches only halfway compared to competitive risk-sharing, there

is less risk undertaken by trader 0. The risk premium received for undertaking market risk is higher

than the one in competitive equilibrium if and only if L > 1, which holds in particular when λ0

is close to one. When λ0 is not close to one, the risk premium is lower and could absorb all the

gain from the lower undertaken market risk. Hence, for traders who undertake market risk at the

transaction and have risk preferences close to risk neutrality, the noncompetitive equilibrium is

more beneficial.

On the other hand, trader 1 is selling market risk, with lower reduction of Nash post-transaction

beta (a fact that decreases utility), while the premium is lower at Nash equilibrium if and only if

L < 1. The difference 1−L is negative for λ1 close to zero, and the total difference (4.8) for i = 1

remains negative when β1 < 1 for every value of λ1. For fixed λ1, L is decreasing in β1 (when

β1 > 1− λ1) and the total difference (4.8) for i = 1 is positive when β1 is close to its upper bound

2− λ1.

Finally, it should be pointed out that when the risk preferences of trader 0 (i.e., the buyer

of market risk) are close to risk neutrality (that is, when λ0 is close to 1), the noncompetitive

equilibrium is always better than the competitive one if and only if |β0| < 1 or, equivalently, when

0 < β1 < 2. In particular, (4.8) and the discussion of extreme equilibrium in §3.3 imply that

lim
δ0→∞

DU0 =

{
〈aI , CaI〉 (1 + β0)(1− β0)

2/8δ1, if β0 ∈ (−1, 1);

0, otherwise.

Therefore, within non-extreme Nash equilibrium, traders that obtain more utility in the noncom-

petitive equilibrium are the ones with risk preferences close to risk neutrality.

In overall, we conclude that in two-trader transactions, traders that benefit with more utility

from the noncompetitive equilibrium are the ones with sufficiently high initial exposure to market

risk, and traders with sufficiently high risk tolerance.

4.2. The effect of incompleteness in thin markets. As emphasised above, our model allows

the market to be incomplete, in that the tradeable securities do not necessarily belong to the span

of the traders’ endowments. When traders’ endowments are not securitised, risk-sharing through

competitive trading of other securities is sub-optimal. The goal of this section is to examine the

effect of market’s incompleteness, both on aggregate and individual levels, when the risk-sharing

is noncompetitive. For this goal, we consider the indicative two-trader game, I = {0, 1}.

In order to examine the effect of market’s incompleteness we compare two market settings: an

incomplete one, and one where S = E. To highlight the effect of incompleteness, we assume that

besides (lack of) completeness, the rest of the parameters are the same; in particular, risk aversions

remain the same, and projected and actual betas are equal. We take into account the individual
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utility gains (1.6), (4.7) and utility difference (4.8). For quantities pertaining to the complete

market we use notation with superscript “o”, that is, (qoi , p
o) are the noncompetitive equilibrium

allocations and price and q̂oi the allocation under competitive equilibrium. Straightforward calcula-

tions give the following decomposition of utility gains, in terms of gains in competitive equilibrium

and the effect of market noncompetitiveness:

Utility gain in incomplete setting = Ui (Ei + 〈q∗i , S − p∗〉)− ui =
1

2δi

∣∣∣C1/2q̂i

∣∣∣
2

︸ ︷︷ ︸
gain in competitive equilibrium

+ DUi

Utility gain in complete setting = Ui (Ei + 〈qoi , E − po〉)− ui =
1

2δi

∣∣∣Cov1/2(E,E)q̂oi

∣∣∣
2

︸ ︷︷ ︸
gain in competitive equilibrium

+ DU
o
i .

Based on the above, we notice the following: The first term represents the gains of the risk-sharing

if the markets were competitive. In particular, we have that (see also Proposition 2.7 in [Ant17])
∣∣∣C1/2q̂i

∣∣∣
2
= Cov(S, λiEI −Ei)C

−1Cov(S, λiEI − Ei) ≤ Var(λiEI − Ei) =
∣∣∣Cov1/2(E,E)qoi

∣∣∣
2
,

where equality holds if, and only if, S belongs in the span of E. The above inequality means that,

under a competitive market setting, each trader loses utility due to market’s incompleteness.

The effect of market’s incompleteness on the noncompetitive transaction, after accounting for

the differences in the competitive environment, is captured by the difference DU
o
i − DUi. In view

of (4.8), we have

(4.9) DUi =
〈aI , CaI〉

2δi

[
λ2
i −

(
λi + βi

2

)2

+ 2λi(βi − λi)(1 − L)

]
, i ∈ {0, 1} .

Keeping the parameters βi, λi equal for the complete and incomplete market settings, the only

difference stems from the term 〈aI , CaI〉. In the incomplete market setting this term equals

Cov(S,EI)C
−1Cov(S,EI), while in the complete market setting it equals Var(EI). Since

(4.10) Cov(S,EI)C
−1Cov(S,EI) ≤ Var(EI),

market incompleteness decreases (resp., increases) the utility gain (resp., loss) that is caused by

the market’s noncompetitiveness. In other words, traders that benefit from the noncompetitive

market setting (i.e., those with high risk tolerance and/or high exposure to market risk), have their

utility gains reduced by the fact that endowments are not securitised. More precisely, we have seen

that traders with relatively high exposure to market risk behave as risk neutral in order to reduce

their exposure to one without paying risk premium. When the market is complete the reduction of

the risk is more effective, since the traders sell part of their endowments and not a security that is

simply positively correlated with their endowments, as in the incomplete setting. Recall also that

the utility gain of the traders with relatively lower risk aversion under noncompetitive setting stems

from the lower (resp., higher) risk premium that they pay (resp., receive). From (4.7), we get that
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the risk premium is always higher in the complete market setting (see also (4.10)) and hence the

aforementioned increase (resp., decrease) of risk premium is also higher in the competitive setting.

We may conclude that, although market’s incompleteness reduces the aggregate efficiency of

risk-sharing, it also reduces the differences of utility gains/losses among traders.

Appendix A. Proof of Theorem 3.4

Let us start with the case where both conditions (3.6) and (3.3) hold. Proposition 3.6, together

under the validity of (3.4) which is equivalently to (3.6), shows that the exists an extreme linear

Nash equilibrium. This is, in fact, unique over extreme linear Nash equilibria; indeed, note that

(3.6) immediately implies βk > 1. Let us assume that trader k ∈ I is the only trader with beta

greater than one, i.e., that βi ≤ 1 for all i ∈ I \ {k}. Let (θ∗i )i∈I be any linear noncompetitive

equilibrium in terms of Definition 3.1. According to (2.3), βi ≤ 1 implies that θ∗i ≤ δi(1+ βi)+, for

all i ∈ I \ {k}. But then,

βk ≥ 1 +
1

δk

∑

i∈I\{k}

δi(1 + βi)+ ≥ 1 +
θ∗−k

δk
.

By (2.3) again, it follows that θ∗k = ∞, and applying (2.3) once again, we have θ∗i = δi(1 + βi)+,

for all i ∈ I \ {k}, which establishes uniqueness of the extreme Nash equilibrium over all possible

linear Nash equilibria of Definition 3.1.

Having dealt with the case of extreme equilibrium, until the end of the proof we shall assume

that (3.3) holds but (3.6) fails. Without loss of generality, let trader 0 ∈ I have the maximal

pre-transaction beta: βi ≤ β0 for all i ∈ I \ {0}. In view of Lemma 3.5, we then have that,

necessarily,

(A.1) − 1 < β0 < 1 +
1

δ0

∑

i∈I\{0}

δi(1 + βi)+.

Define the set

J := {i ∈ I \ {0} | − 1 < βi ≤ 1} .

The set J0 := J ∪ {0} contains all traders that will eventually submit demand functions with non-

zero elasticity. Note that (A.1) implies that J 6= ∅; indeed, if J = ∅, then β0 = 1−
∑

i∈I\{0} βi > 1,

and (A.1) would fail, since the quantity at the right-hand side would equal 1.

A Nash equilibrium exists if and only if θ∗i = 0 holds for all i ∈ I \ J0, while
(
2 +

θ∗I − θ∗i
δi

)
θ∗i
θ∗I

= 1 + βi, ∀i ∈ J,

following from (3.5). Given θ∗I > 0, θ∗i for i ∈ J satisfies the quadratic equation

(A.2)
1

2
(θ∗i )

2 − (δi + θ∗I/2) θ
∗
i + δi(1 + βi)θ

∗
I/2 = 0, ∀i ∈ J.
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The discriminant is equal to (δi + θ∗I/2)
2 − δi(1 + βi)θ

∗
I , which, since −1 < βi ≤ 1, is always

(regardless of the value of θ∗I) nonnegative. The two roots of equation (A.2) are δi + θ∗I/2 ±√(
δi + θ∗I/2

)2
− δi(1 + βi)θ

∗
I . Note that since

δi + θ∗I/2 +

√(
δi + θ∗I/2

)2
− δi(1 + βi)θ∗I ≥ δi + θ∗I/2 +

√(
δi + θ∗I/2

)2
− 2δiθ∗I

= δi + θ∗I/2 + |θ∗I/2− δi| ≥ θ∗I ,

and θ∗0 has to be strictly positive, it holds that θ∗i < θ∗I for each i ∈ J . Hence, the only root that

is acceptable, i.e., the only nonnegative root is

θ∗i = δi + θ∗I/2−

√(
δi + θ∗I/2

)2
− δi(1 + βi)θ

∗
I , ∀i ∈ J.

(Recall that our Definition of noncompetitive equilibrium considers linear demand functions with

nonpositive slopes.) In other words, and upon defining the function φi : (0,∞) 7→ R via

φi(x) := δi + x/2−

√
(δi + x/2)2 − δi(1 + βi)x, x > 0,

we should have θ∗i = φi(θ
∗
I ) for all i ∈ J . The next result gives some necessary properties on φi for

i ∈ J .

Lemma A.1. Let i ∈ J . Then, φi(0+) = 0, φ′
i(0+) = (1 + βi)/2. Furthermore, φi is concave,

nondecreasing, and such that φi(∞) = δi(1 + βi).

Proof. The fact that φi(0+) = 0 is immediate. In the special case βi = 1, we have φi(x) =

δi + x/2− |x/2− δi| = x∧ (2δi) for x > 0, and the result is trivial. When −1 < βi < 1, φi is twice

continuously differentiable, and an easy calculation gives

φ′
i(x) =

1

2
−

x/2− δiβi

2
√

(δi + x/2)2 − δi(1 + βi)x
, x > 0,

from which it immediately follows that φ′
i(0+) = (1+βi)/2. Furthermore, another easy calculation

gives

φ′′
i (x) =

−1 + (x/2− δiβi)
2 /

(
(δi + x/2)2 − δi(1 + βi)x

)

2

√
(δi + x/2)2 − δi(1 + βi)x

, x > 0.

Therefore, φ′′
i (x) < 0 for all x > 0 is equivalent to (x/2− δiβi)

2 < (δi + x/2)2 − δi(1 + βi)x for

all x > 0. Calculating the squares and cancelling terms, we obtain δ2i β
2
i < δ2i , which is true since

−1 < βi < 1. Therefore, φi is concave. Continuing, a straightforward calculation gives

x

2
−

√
(δi + x/2)2 − δi(1 + βi)x =

(x/2)2 −
(
(δi + x/2)2 − δi(1 + βi)x

)

x/2 +
√

(δi + x/2)2 − δi(1 + βi)x

=
−δ2i + δiβix

x/2 +
√

(δi + x/2)2 − δi(1 + βi)x
,
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which, as x → ∞, has limit δiβi. Therefore, φi(∞) = δi(1+βi) > 0. Since φi(0) = 0 < δi(1+βi) =

φi(∞) and φi is concave, we conclude that it is nondecrasing. �

Regarding trader 0 ∈ I, since β0 > −1, in equilibrium we should have

(
2 +

θ∗I − θ∗0
δ0

)
θ∗0
θ∗I

= 1 + β0.

Note that θ∗I − θ∗0 =
∑

i∈J θ
∗
i =

∑
i∈J φi(θ

∗
I ). Therefore, upon defining

σ(x) :=
∑

i∈J

φi(x), x > 0,

we should have (
2 +

σ(θ∗I )

δ0

)
θ∗0
θ∗I

= 1 + β0,

which immediately gives

θ∗0 =
(1 + β0) δ0
2δ0 + σ(θ∗I )

θ∗I ,

Hence, in equilibrium, the following equation should hold for θ∗I > 0:

(1 + β0) δ0
2δ0 + σ(θ∗I )

θ∗I + σ(θ∗I ) = θ∗I .

In other words, at equilibrium θ∗I should solve the equation

(A.3)
(1 + β0) δ0
2δ0 + σ(x)

+
σ(x)

x
= 1, x > 0.

By Lemma A.1, it follows that the left-hand-side of equation (A.3) is decreasing in x > 0. Its limit

at x = 0+ is equal to

1 + β0
2

+
∑

i∈J

1 + βi
2

=
|J0|

2
+

1

2

∑

i∈J0

βi.

Since |J0| ≥ 2 (recall that J 6= ∅) and
∑

i∈J0
βi ≥ 1 (by definition of J and the fact that βI = 1),

the above limit is strictly greater than one. It follows that (A.3) will have a (necessarily unique)

solution if and only if the limit as x → ∞ of the left-hand-side of (A.3) is strictly less than one.

In other words, and since σ(∞) =
∑

i∈J (1 + βi) δi, it should hold that

(1 + β0) δ0 < 2δ0 + σ(∞) = 2δ0 +
∑

i∈J

(1 + βi) δi,

which is exactly (A.1).

The above discussion implies that a unique Nash equilibrium exists under the validity of (3.3)

and failure of (3.4), completing the proof of Theorem 3.4.
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