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C Strategic Foundations when Firms Offer Menus of Con-
tracts

We now extend the results from Online Appendix A to the case where firms can offer menus of
contracts. We consider exactly the same preferences as in Online Appendix A, but now each
firm can offer a menu of contracts. We will see that, when firms are not very differentiated
and capacity is sufficiently small, pure-strategy equilibria exist, and profits per unit sold of
every contract are low. In particular, even though firms could cross-subsidize contracts, they
choose not to in equilibrium. The reason is that a firm that tries to sell some contracts at a
loss ends up with a disproportionate demand for those unprofitable contracts, making this a
bad strategy. Thus, the results in this section justify the no cross-subsidization assumption
in our definition of a competitive equilibrium and show that the analysis of Online Appendix
A is robust to firms offering menus of contracts.

We now formally state the assumptions and results, and then discuss the assumptions.
Throughout this section, fix an economy E = [Θ, X, µ] and a perturbation (E, X̄, η). To
simplify notation, take the total mass of consumers µ(Θ) + η(X̄) to equal 1. Assume that
preferences are quasilinear, so that U(x, p, θ) = u(x, θ)− p.

Consider Bertrand competition between differentiated firms selling varieties of each con-
tract. Each firm i ∈ {1, 2, · · · , n} chooses a subset of contracts to offer, and at which price.
We will simplify the model by assuming that each firm offers the entire set of contracts. This
is without loss of generality because offering a strict subset of contracts is dominated by
offering that subset, plus selling the other contracts at a sufficiently high price. Consumers
have logit demand with semi-elasticity parameter σ and errors at the firm-product level.

Consider the case where all firms but one set the same price vector p. It is sufficient to
define demand in these situations because we consider symmetric equilibria. Assume that
firm i sets a price vector P , while all other firms set prices p. Then, the share of standard
types θ purchasing contract x from firm i is almost everywhere equal to

S(P, p, x, θ) =
eσ·(u(x,θ)−P (x))∑

x′∈X(n− 1) · eσ·(u(x′,θ)−p(x′)) + eσ·(u(x′,θ)−P (x′))
.

For a behavioral type θ = x, this share equals

S(P, p, x, x) =
e−σ·P (x)

(n− 1) · e−σ·p(x) + e−σ·P (x)
,

and 0 for all other products. The quantity of product x supplied by the firm is

Q(P, p, x) =

∫
θ

S(P, p, x, θ) d(µ+ η).
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The total quantity is denoted by Q̄(P, p) =
∑

x∈X Q(P, p, x).
Each firm has constant returns to scale up to a capacity limit of k consumers and infinite

costs of supplying to more than k consumers. Profits on contract x from a firm setting prices
P while all other firms price according to p equal

Π(P, p, x) =

∫
θ

(P (x)− c(x, θ)) · S(P, p, x, θ) d(µ+ η). (C1)

The firm’s total profits Π̄(P, p) equal the sum of profits on all contracts if Q̄(P, p) ≤ k and
−∞ otherwise.

A symmetric Bertrand equilibrium under parameters (n, k, σ) is a vector p∗ such
that, for all x ∈ X̄,

p∗ ∈ arg max
P≥0

Π̄(P, p∗).

Define the constants
c̄ = max

(x,θ)
c(x, θ)

and
η̄ = min

x∈X̄
η({x}).

Let |X| denote the number of contracts in X. The proposition below shows that an equi-
librium exists if there are enough firms to serve the market of each variety (n · k > 1), the
semi-elasticity parameter is high enough (σ > 1/c̄), and firms have small enough capacity
(k < η̄/4 and k < b/σ):

Proposition C1. There exists a constant b such that a symmetric Bertrand equilibrium p∗

exists if n · k > 1, σ > 1/c̄, k < η̄/4, and

k <
b

σ
. (C2)

Moreover, total profits per unit sold equal

Π̄(p∗, p∗)

Q̄(p∗, p∗)
=

n

n− 1
· 1

σ
,

and the profit per unit of each contract sold are bounded by

|Π(p∗, p∗, x)

Q(p∗, p∗, x)
− 1

σ
| ≤ 6|X| c̄

η̄
· k.

This result extends Proposition A1 to the case where firms offer menus of contracts.
Consumer preferences are the same as in Online Appendix A, with the key difference here
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being that each firm can offer a menu of contracts. In particular, we continue to use logit
error terms for preference shocks, which considerably simplify the statement of the results.
Nevertheless, the proof only depends on bounds of the semi-elasticity and curvature of de-
mand, and not on fine details of the logit functional form, as in Proposition A1, and as will
be clear in the proof below. Moreover, the proof does not depend on cross-derivatives of
demand across products converging to zero. What is important is that the own derivatives
grow faster than cross-derivatives, so that a firm that tries to gain by offering cross-subsidies
ends up facing a high demand for its money-losing products.

Proposition C1 differs from Proposition A1 because we consider a different game. The
conditions for existence are more stringent in Proposition C1. While capacity has to be
of the order of the semi-elasticity parameter, there is no simple formula for the constant in
this relationship, unlike in Proposition A1. Moreover, Proposition C1 imposes additional, not
very restrictive, conditions on parameters. As bounds on profits, both propositions show that
per-unit profits are small for all contracts, and the bounds are of similar order of magnitude.
Crucially, the bounds work for all contracts, which shows that the limit of this strategic
model does not feature cross-subsidies between contracts.

C.1 Outline of the Proof of Proposition C1

The proof is based on the first and second derivatives of profits and on the first-order condi-
tions of firms. To gain some intuitive understanding of the proof, note that the first derivative
of profits with respect to the price of a contract is approximately equal to

d

dP (x)
Π̄(P, p) ≈ (

1

σ
− Π(P, p, x)

Q(P, p, x)
) · σQ(P, p, x),

and the second derivative is approximately equal to

d2

dP (x)2
Π̄(P, p) ≈ (− 2

σ
+

Π(P, p, x)

Q(P, p, x)
) · σ2Q(P, p, x).

The key points in Proposition C1 are established in three claims. Claim 3 establishes
the existence of a candidate equilibrium price vector. The proof works by demonstrating the
existence of equilibrium in a game where each player controls the price of one product, and
the proof is similar to the existence proof in the one-contract case. Claim 6 demonstrates
that profits are low in the candidate equilibrium. The proof uses the first-order conditions
of firms, which implies that profits per unit are approximately equal to 1/σ (as can be seen
from the approximate formula for the first derivative of profits). This proof is similar to the
one-contract case.

The most difficult point is established in Claim 11, which shows that the candidate
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equilibrium is an equilibrium. The proof is by contradiction. If the candidate equilibrium
is not an equilibrium, then there exists a best response that yields higher profits. We use
the firm’s first-order conditions to show that, in both the candidate equilibrium and in the
best response, profits per unit sold are approximately equal to 1/σ (this is suggested by the
approximate formula for the first derivative of profits above). Moreover, the profit function
is strictly concave at the candidate equilibrium prices (this intuition is consistent with the
approximate formula for the second derivative of profits above). This implies that there exists
a price that is a convex combination of the best response and the candidate equilibrium that
yields lower profits than the candidate equilibrium, and where the profit function is not
strictly concave. We apply the Gershgorin circle theorem to the Hessian matrix of profits
and show that it implies that profits per unit are higher than approximately 2/σ at these
prices (this intuition can be grasped from the approximate formula for the second derivative
of profits). We reach a contradiction by showing that it is impossible for profits per unit to
vary so much in this range.

Even though the proof is based on this intuitive argument, it involves several steps, where
we carefully bound the necessary approximations and establish auxiliary results. We divided
the proof into subsections, so that readers understand the purpose of the auxiliary results.
The intermediate results are presented as a series of claims, and we collect them in the proof
of the proposition at the end.

C.2 Preliminary Definitions

Throughout the proof, whenever there is no risk of confusion, we use the shorthand Sx for
S(P, p, x), Qx for Q(P, p, x), Πx for Π(P, p, x), cx for c(x, θ), Px for P (x) and px for p(x).

We begin by defining a number of constants that will be used in the proof. Let

δ =
k

η̄
,

P̄ =
1

1− k
c̄+

1

1− k
1

σ
,

¯
P =

1

σ
− kc̄,

and
λ̄ = (1− δ)−1 · (4|X|+ 2)P̄ δ.

We take note that the assumptions that δ = k/η̄ ≤ k ≤ 1/4 and 1/σ ≥ c̄, which were
made in the proposition statement, imply that
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P̄ ≤ 2
1

1− 1/4
c̄ =

8

3
c̄ ≤ 3c̄.

Finally, we use a value for the constant b in the proof that is low enough so that bounds
(C8), (C12), (C17), (C18), (C23), and (C25) stated below hold.

Throughout the proof we will use the fact that, if Q̄(P, p) ≤ k, then, for all contracts x
and types θ,

S(P, p, x, θ) ≤ δ.

This bound follows from the same argument as in Claim 1.

C.3 Derivatives of Market Shares and Profits

The proof uses derivatives of market shares and profits with respect to prices. To simplify
the exposition, we collect these formulas here, and define error terms ξ, which we will bound
in the course of the proof. In the derivative formulas, contract y is different than contract x.

Using the logit demand we can derive the formulas for derivatives of market shares.

d

dP (x)
Sx = −σSx + σS2

x = −σSx(1− Sx). (C3)

d

dP (y)
Sx = σSxSy.

The derivative of profits equals

d

dP (x)
Π̄ =

∫
Sx − σ(Px − cx) · Sx + σ

∑
x′∈X

(Px′ − cx′)Sx′Sx d(µ+ η). (C4)

This can be simplified as
d

dP (x)
Π̄ = Qx − σΠx + ξx,

where
ξx =

∑
x′∈X

∫
(P (x′)− c(x′, θ)) · σSxSx′ d(µ+ η).

The second derivative of profits with respect to the price of a contract equals

d2

dP (x)2
Π̄ = −σQx − σ

d

dP (x)
Π̄ + ξxx, (C5)

where
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ξxx = σ

∫
S2
x − 2σ(Px − cx)S2

x + 2σ
∑
x′∈X

(Px′ − cx′)Sx′S2
x d(µ+ η).

The second cross-derivative of profits equals

d2

dP (x) dP (y)
Π̄ = ξxy, (C6)

where

ξxy = σ

∫
SxSy − σ(Px − cx) · SxSy + 2σ

∑
x′∈X

(Px′ − cx′)Sx′SxSy d(µ+ η)

−σ2

∫
(Py − cy)SySx d(µ+ η).

The derivative of quantity equals

d

dP (x)
Q̄ = −σQx + ξQ,x, (C7)

where
ξQ,x = σ

∫ ∑
x′∈X

SxSx′ d(µ+ η).

C.4 Existence of a Candidate Equilibrium

Claim 1. Assume that Q̄(P, p) < k. If P (x) > P̄ and P (x′) ≤ P (x) for all contracts x′, then
∂P Π̄(P, p) < 0. If P (x) <

¯
P and P (x) ≤ P (x′) for all contracts x′, then ∂P Π̄(P, p) > 0.

Moreover, if
¯
P ≤ P (x) ≤ P̄ , then, for all types θ,

|P (x)− c(x, θ)| ≤ P̄ .

Proof. The first derivative of profits is

d

dP (x)
Π̄(P, p) =

∫
Sx[1− σPx + σcx + σ

∑
x′∈X

Px′Sx′ − σ
∑
x′∈X

cx′Sx′ ] d(µ+ η).

Assume first that P (x) > P̄ and P (x) ≥ P (x′) for all x′. Then

d

dP (x)
Π̄(P, p) ≤

∫
Sx[1− σPx + σc̄+ σ

∑
x′∈X

PxSx′ ] d(µ+ η)

≤
∫
Sx[1− σ(1− k)Px + σc̄] d(µ+ η) < 0.
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Here the first inequality follows from Px′ ≤ Px, cx′ ≥ 0, and cx ≤ c̄, the second inequality
follows from

∑
x′ Sx′ ≤ k, and the last inequality from Px > P̄ .

Consider now the case where P (x) <
¯
P and P (x) ≤ P (x′) for all x′. Then

d

dP (x)
Π̄(P, p) ≥

∫
Sx[1− σPx − σ

∑
x′∈X

c̄Sx′ ] d(µ+ η)

≥
∫
Sx[1− σPx − σc̄k] d(µ+ η) > 0.

The first inequality follows from dropping positive terms, and from cx′ ≤ c̄, the second
inequality follows from

∑
x′ Sx′ ≤ k, and the last inequality follows from Px <

¯
P .

The bound for |P (x)− c(x, θ)| follows from

P̄ ≥
¯
P − c(x, θ) ≥ −(1 + k)c̄ ≥ −P̄ .

Claim 2. If Q(P, p, x) ≤ k and 0 ≤ P (x) ≤ P̄ for all x, then

|ξxx(P, p)| < σQ(P, p, x).

Proof. We have

|ξxx(P, p)| = |σ
∫
S2
x − 2σ(Px − cx)S2

x + 2σ
∑
x′∈X

(Px′ − cx′)Sx′S2
x d(µ+ η)|

≤ σ

∫
δSx + 2σP̄ δSx + 2σ|X|P̄ δ2Sx d(µ+ η)

= (1 + 2σP̄ + 2σδ|X|P̄ ) · δ · σQ(P, p, x).

The second line follows from the triangle inequality, Sx′ ≤ δ, and |Px′ − cx′| ≤ P̄ . The last
line follows from evaluating the integral. To obtain the result, note that 1/σ < c̄, P̄ < 3c̄,
δ ≤ 1

4
, and δσ < b/η̄ imply that

(1 + 2σP̄ + 2σδ|X|P̄ ) · δ < (1/σ + 2P̄ + 2δ|X|P̄ ) · σδ

< (c̄+ 6c̄+
3

2
|X|c̄) · 1

η̄
· b.

Hence, the claim holds as long as b is small enough so that

(7 +
3

2
|X|) · c̄

η
· b ≤ 1. (C8)
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Claim 3. Consider a game where there are |X| players for each of the n firms. Each player
chooses the price of a product. The player receives a payoff equal to the entire profits of
her firm, but capacity constraints are set for each product separately. Formally, denote by
Π̃(P0, p) the payoff that a player choosing the price of contract x0 gets if she sets a price of
P0 and all other players set prices according to a vector p = (p(x))x∈X . We have

Π̃(P0, p, x0) =
∑
x′∈X

Π((P0, p−x0), p, x)

if
Q((P0, p−x0), p, x0) ≤ k

and the payoff is −∞ otherwise. A symmetric equilibrium of this game is a vector p∗ =

(p∗(x))x∈X such that, for all x0 ∈ X and P0 ∈ R,

Π̃(P0, p
∗, x0) ≥ Π̃(P ′0, p

∗, x0).

This game has a symmetric equilibrium p∗ with 0 ≤ p∗(x) ≤ P̄ for all x ∈ X.

Proof. The key part of the proof is showing that if x0 ∈ X,
¯
P ≤ P0 ≤ P̄ ,

¯
P ≤ p(x) ≤ P̄ for

all x, and
∂P0Π̃(P0, p, x0) = 0

then
∂P0P0Π̃(P0, p, x0) < 0.

To see this note that Equation (C5) implies that

∂P0P0Π̃(P0, p, x0) = −σQ+ ξxx.

Claim 2 implies that this expression is strictly negative.
Given this fact, the argument is the same as in the existence proof in Proposition A1.

Define a payoff function that equals Π̃ if it is greater than −∞, and

Π̃(P̃0(p, x), p, x)− (P̃0(p, x)− P0)

otherwise, where P̃0(p, x) is the lowest price for which profits are greater than −∞. Consider
the game with this profit function and strategies restricted to [

¯
P, P̄ ]. The fact that all points

with ∂P0Π̃ = 0 have strictly negative second derivatives implies that the payoff function is
quasi-concave. Because the payoff function is continuous, a symmetric equilibrium exists
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(Fudenberg and Tirole, 1991 p. 34 Theorem 1.2). Claim 1 implies that this is an equilibrium
of the game with the original payoff function and unrestricted action spaces.

C.5 Useful Bounds

Henceforth, we refer to the symmetric equilibrium of the game in Claim 3 as the candidate
equilibrium, denoted by p∗.

Claim 4. For any contract x and price vector P such that Px ≥
¯
P and

Q̄(P, p∗) ≤ k,

we have that, for any type θ,

|S(P, p∗, x)− S((Px, p
∗
−x), p

∗, x, θ)| ≤ δ ·max{S(P, p∗, x), S((Px, p
∗
−x), p

∗, x, θ)}.

Moreover,

|Q(P, p∗, x)−Q((Px, p
∗
−x), p

∗, x, θ)| ≤ δ · (Q(P, p∗, x) +Q((Px, p
∗
−x), p

∗, x, θ)),

1− δ
1 + δ

≤ Q(P, p∗, x)

Q((Px, p∗−x), p
∗, x, θ)

≤ 1 + δ

1− δ
,

|Π(P, p∗, x)

Q(P, p∗, x)
−

Π((Px, p
∗
−x), p

∗, x, θ)

Q((Px, p∗−x), p
∗, x, θ)

| ≤ δ
1 + δ

1− δ
(|Px|+

Π(P, p∗, x)

Q(P, p∗, x)
).

If, moreover, |
¯
P | ≤ c̄, then

|Π(P, p∗, x)

Q(P, p∗, x)
−

Π((Px, p
∗
−x), p

∗, x, θ)

Q((Px, p∗−x), p
∗, x, θ)

| ≤ δ
1 + δ

1− δ
(c̄+ 2

Π(P, p∗, x)

Q(P, p∗, x)
),

and

|Π(P, p∗, x)− Π((Px, p
∗
−x), p

∗, x, θ)| ≤ δ · |Px| · (Q(P, p∗, x) +Q((Px, p
∗
−x), p

∗, x, θ)).

Proof. We have that
S(P, p∗, x)− S((Px, p

∗
−x), p

∗, x, θ)
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equals

eσ(u(x,θ)−P (x))

(n− 1) ·
∑

x′∈X e
σ(u(x′,θ)−p∗(x′)) + eσ(u(x,θ)−P (x)) +

∑
x′ 6=x e

σ(u(x′,θ)−P (x′))

− eσ(u(x,θ)−P (x))

(n− 1) ·
∑

x′∈X e
σ(u(x,θ)−p∗(x)) + eσ(u(x,θ)−P (x)) +

∑
x′ 6=x e

σ(u(x′,θ)−p∗(x′))

=
eσ(u(x,θ)−P (x))

(n− 1) ·
∑

x′∈X e
σ(u(x,θ)−p∗(x)) + eσ(u(x,θ)−P (x)) +

∑
x′ 6=x e

σ(u(x′,θ)−P (x′))

·
∑

x′ 6=x e
σ(u(x′,θ)−p∗(x′)) −

∑
x′ 6=x e

σ(u(x′,θ)−P (x′))

(n− 1) ·
∑

x′∈X e
σ(u(x,θ)−p∗(x)) + eσ(u(x,θ)−P (x)) +

∑
x′ 6=x e

σ(u(x′,θ)−p∗(x′)) .

This expression is bounded below by

−(
∑
x′ 6=x

S(P, p∗, x′, θ)) · S((Px, p
∗
−x), p

∗, x, θ)

and above by
(
∑
x′ 6=x

S(p∗, p∗, x, θ)) · S(P, p∗, x, θ).

This implies the desired bound for market shares. The bounds for the absolute value of
differences between quantity and profits follow from the bound for market shares and the
triangle inequality. The bound on the ratio of quantities follows from the bound for differences
in quantities and an algebraic manipulation.

Claim 5. Consider a vector of prices P such that Q̄(P, p∗) ≤ k and P (x) ≥
¯
P (x) for all

contracts x. Then, for any contract x and type θ,

|(P (x)− c(x, θ)) · S(P, p∗, x, θ)| ≤ 2P̄ δ. (C9)

Moreover, for all x and y in X̄,

|ξx(P, p∗)| ≤ 2|X|P̄ · δ · σQx,

|ξxx(P, p∗)| ≤ (1/σ + 4P̄ + 4|X|P̄ δ) · δσ · σQx,

|ξxy(P, p∗)| ≤ (1/σ + 4P̄ + 4|X|P̄ δ) · δσ · σQx, and

|ξQ,x(P, p∗)| ≤ δ · σQx.

Proof. If P (x) ≤ p∗(x), then inequality (C9) follows from |P (x) − c(x, θ)| ≤ P̄ , because

¯
P ≤ P (x) ≤ P̄ , and S(P, p∗, x, θ) ≤ δ because Q̄(P, p∗) ≤ k. If P (x) ≥ p∗(x), we can bound
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market shares by

S(P, p∗, x, θ) <
eσ(u(x,θ)−P (x))

(n− 1) · eσ(u(x,θ)−p∗(x))

= e−σ(P (x)−p∗(x)) · S(p∗(x), p∗, x, θ) · n

n− 1

≤ e−σ(P (x)−p∗(x)) · δ · n

n− 1
·

If profits are negative, they must be bounded by −P̄ · δ because P (x) − c(x, θ) ≥ −P̄ . If
profits are positive, they are bounded above by

P (x) · e−σ(P (x)−p∗(x)) · δ · n

n− 1
. (C10)

This is a unimodal function of P (x) with a maximum at P (x) = 1/σ. Thus, if 1/σ ≤ p∗(x),
profits are bounded by

p∗(x) · δ · n

n− 1
≤ P̄ · δ · n

n− 1
.

If 1/σ > p∗(x), this is bounded above by substituting P (x) = 1/σ into expression (C10),
which is no greater than

1

σ
· δ · n

n− 1
.

The bound (C9) then follows from 1/σ ≤ P̄ and n/(n − 1) ≤ 2. The other bounds follow
from application of the triangle inequality and bound (C9) to the formulas for the error terms
ξ.

C.6 Profits are Low

Claim 6. If all firms set prices according to p∗, then total profits per unit sold equal

Π̄(p∗, p∗)

Q̄(p∗, p∗)
=

n

n− 1
· 1

σ
.

Profits of per unit sold of each contract are bounded by

|Π(p∗, p∗, x)

Q(p∗, p∗, x)
− 1

σ
| ≤ 2|X|P̄ δ.

Proof. The first-order condition ∂P (x)Π̄ = 0 can be written, using equation (C4), as

Πx

Qx

=
1

σ
+

ξx
σQx

.



13

Claim 5 implies the bound on the profits of each contract. To obtain the formula for total
profits we add Qx multiplied by the equation above for each x, and divide by Q̄ obtaining

Π̄

Q̄
=

1

σ
+

1

σ

1

Q̄
·
∑
x

ξx

=
1

σ
+

1

Q̄
·
∑
x,x′

∫
(P (x′)− c(x′, θ)) · SxSx′ d(µ+ η)

=
1

σ
+ Π̄.

Substituting Q̄ = 1/n and rearranging we have the desired expression.

Claim 7. If P is a best-response to p∗ then, for any contract x,

1

σ
− 2|X|P̄ δ ≤ Π(P, p∗, x)

Q(P, p∗, x)
≤ 1

σ
+ (1 + δ)λ̄+ 2|X|P̄ δ.

Proof. If P is a best response, then there exists a Lagrange multiplier λ ≥ 0 such that

∇PΠ(P, p∗, x)− λ∇PQ(P, p∗, x) = 0.

Using the formulas for the derivatives of profits and quantities we have that, for all contracts
x,

(1 + λσ)Qx − σΠx = λξQ,x − ξx.

This can be rearranged as

Πx

Qx

=
1

σ
+ λ(1− ξQ,x

σQx

) +
ξx
σQx

. (C11)

Consider first the case where the quantity constraint is not binding, so that λ = 0. We
have

Π(P, p∗, x)

Q(P, p∗, x)
=

1

σ
+

ξx(P, p
∗, x)

σQ(P, p∗, x)
.

Claim 5 then implies the desired bounds.
Consider now the case where the capacity constraint binds, so that λ > 0. There exists

at least one contract x for which Q(P, p∗, x) > Q(p∗, p∗, x), and therefore P (x) < p∗(x). This
implies that P (x) ≥

¯
P so that Claim 4 applies, and

Πx ≤ Π((Px.p
∗
−x), p

∗, x) + 2P̄ δQ(P, p∗, x)

≤ Π(p∗, p∗, x) + 2P̄ δQ(P, p∗, x).
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The second inequality follows from the fact that p∗ is an equilibrium of the game in Claim
3. Thus,

Πx

Qx

≤ Π(p∗, p∗, x) + 2P̄ δQ(P, p∗, x)

Q(P, p∗, x)
=

Π(p∗, p∗, x)

Q(p∗, p∗, x)
+ 2P̄ δ.

By Claim 6 we have
Πx

Qx

≤ 1

σ
+ (2|X|+ 2)P̄ δ.

Applying this bound to equation (C11), we get

1

σ
+ (2|X|+ 2)P̄ δ ≥ 1

σ
+ λ(1− ξQ,x

σQx

) +
ξx
σQx

.

Rearranging this expression,

λ ≤ (1− ξQ,x
σQx

)−1 · ((2|X|+ 2)P̄ δ − ξx
σQx

).

Applying the bounds in Claim 5,
λ ≤ λ̄.

Equation (C11) and Claim 5 imply that the per-unit profits of any contract are bounded
above by

Πx

Qx

≤ 1

σ
+ λ̄(1− ξQ,x

σQx

) +
ξx
σQx

≤ 1

σ
+ (1 + δ)λ̄+ 2|X|P̄ δ.

The lower bound follows from equation (C11), the fact that λ is weakly positive, and that
λ̄ ≥ 0 by because δ < 1.

C.7 Sufficient Conditions for Concavity of the Profit Function

Claim 8. Consider a vector of prices P such that Π̄(P, p∗) > −∞ and ∂P (x)Π̄(P, p∗) = 0 for
all x in X. Then Π̄ is strictly concave in P at (P, p∗)

Proof. The formulas for the derivatives of the profit function imply that

∂P (x)P (x)Π̄ +
∑
y 6=x

|∂P (x)P (y)Π̄| = −σQx + ξxx +
∑
y 6=x

|ξxy|.

Therefore,
∂P (x)P (x)Π̄ +

∑
y 6=x

|∂P (x)P (y)Π̄| ≤ −σQx +
∑
x′∈X

|ξxx′|.



15

Claim 5 implies that

∂P (x)P (x)Π̄ +
∑
y 6=x

|∂P (x)P (y)Π̄| ≤ (−1 + |X| · (1/σ + 4P̄ + 4|X|P̄ δ) · δσ)σQx.

The fact that 1/σ < c̄, P̄ < 3c̄, δ ≤ 1/4, and δσ < b/η̄ imply that the right hand side can
be bounded above, so that

∂P (x)P (x)Π̄ +
∑
y 6=x

|∂P (x)P (y)Π̄| < (−1 + |X| · (c̄+ 12c̄+ 3|X|c̄) · b
η̄

)σQx.

Moreover, the right-hand side of this expression is strictly negative as long as we take b small
enough so that

(13|X|+ 3|X|2) · c̄
η̄
· b < 1. (C12)

The Gershgorin circle theorem implies that all of the eigenvalues of the Hessian matrix
of Π̄ at (P, p∗) are strictly negative. Therefore, Π̄ is strictly concave in P at (P, p∗).

Claim 9. Consider a vector of prices P such that Π̄(P, p∗) > −∞ and

Πx

Qx

<
2

σ
− |X|( 1

σ
+ 6P̄ + 4|X|P̄ δ) · δσ · 1

σ

for all contracts x. Then Π̄ is strictly concave in P at (P, p∗).

Proof. The formulas for the derivatives of the profit function imply that

∂P (x)P (x)Π̄ +
∑
y 6=x

|∂P (x)P (y)Π̄| = −2σQx + σ2Πx − σξx + ξxx +
∑
y 6=x

|ξxy|

= (− 2

σ
+

Πx

Qx

− ξx
σQx

+
1

σ

ξxx
σQx

+
∑
y 6=x

1

σ

|ξxy|
σQx

) · σ2Qx.

Claim 5 implies that this expression is bounded above by

(− 2

σ
+

Πx

Qx

+ 2|X|P̄ · δσ · 1

σ
+ |X|( 1

σ
+ 4P̄ + 4|X|P̄ δ) · δσ · 1

σ
) · σ2Qx,

or
(
Πx

Qx

− (2− |X|( 1

σ
+ 6P̄ + 4|X|P̄ δ) · δσ) · 1

σ
) · σ2Qx.

The assumption in the claim’s statement implies that this expression is strictly negative.
The Gershgorin circle theorem then implies that all eigenvalues of the Hessian matrix of the
profit function are negative at (P, p∗). Thus, profits are strictly concave at (P, p∗).
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C.8 Monotonicity of the Profit per Unit Ratio

Claim 10. Define the function
r : R×X → R

as
r(ρ, x) =

Π((ρ, p∗−x), p
∗, x)

Q((ρ, p∗−x), p
∗, x)

.

Let Ix be the set

{ρ :
¯
P ≤ ρ ≤ 2P̄, ∃P−x ∈ [

¯
P,∞)|X|−1 : Q̄((ρ, P−x), p

∗) ≤ k}.

Then, for all x, Ix is an interval and r(ρ, x) is strictly increasing in Ix.

Proof. The fact that Ix is an interval follows from Q̄ being strictly decreasing in ρ.
To establish the monotonicity of r(ρ, x), we explicitly calculate its derivative. By the

quotient rule, and by the formulas for the derivatives of profits and quantities, the derivative
of r(ρ, x) with respect to x equals

d

dρ
r(ρ, x) =

∂ρΠ̄

Q
− Π

Q

∂ρQ

Q

=
Q− σΠ

Q
+
ξx
Q

+
Π

Q

σQ

Q
− Π

Q

ξQ,x
Q

= 1 + (
ξx
Q
− Π

Q

ξQ,x
Q

). (C13)

To show that this derivative is strictly positive, we need to establish bounds for some of
the terms in expression (C13). We first bound the market share of a firm setting prices of
(ρ, p∗−x). If ρ is in Ix, there exists P−x such that

Q̄((ρ, P−x), p
∗) ≤ k.

Therefore, for any type θ and contract y,

S((ρ, P−x), p
∗, y, θ) ≤ δ

Claim 4 implies that

S((ρ, p∗−x), p
∗, y)− S((ρ, P−x), p

∗, y, θ) ≤ δ(S((ρ, p∗−x), p
∗, y, θ) + S((ρ, P−x), p

∗, y, θ)).

Thus,

S((ρ, p∗−x), p
∗, y, θ) ≤ 1 + δ

1− δ
S((ρ, P−x), p

∗, y, θ) ≤ 1 + δ

1− δ
δ.
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This implies, by the same argument in the proof of Claim 5, that

|ξy((ρ, p∗−x), p∗)|
Q((ρ, p∗−x), p

∗, y)
≤ 2|X|P̄ · δσ · 1 + δ

1− δ
(C14)

and
|ξQ,y((ρ, p∗−x), p∗)|
Q((ρ, p∗−x), p

∗, y)
≤ δσ · 1 + δ

1− δ
. (C15)

We then bound the ratio r(ρ, x). By the definition of profits it follows that

ρ− c̄ ≤
Π((ρ, p∗−x), p

∗, x)

Q((ρ, p∗−x), p
∗, x)

≤ ρ.

Because
¯
P ≤ ρ ≤ 2P̄ , we have

¯
P − c̄ ≤

Π((ρ, p∗−x), p
∗, x)

Q((ρ, p∗−x), p
∗, x)

≤ 2P̄ .

The fact that |P̄ − c̄| ≤ P̄ implies that

|
Π((ρ, p∗−x), p

∗, x)

Q((ρ, p∗−x), p
∗, x)
| ≤ 2P̄ . (C16)

Finally, we can use these bounds to show that the derivative of r is strictly positive.
Applying bounds (C14), (C15), and (C16) to equation (C13), we have that

d

dρ
r(ρ, x) ≥ 1− 2|X|P̄ · δσ · 1 + δ

1− δ
− 2P̄ · δσ · 1 + δ

1− δ

= 1− (2|X|+ 2)P̄ · 1 + δ

1− δ
· δσ.

The bounds P̄ < 3c̄, δσ < b/η̄, and δ < 1/4 imply that the right-hand side of this expression
is bounded below by

1− (2|X|+ 2) · 3c̄ · 5

3
· 1

η̄
· b.

Thus, the claim holds if we take b to be small enough so that

10(1 + |X|) · c̄
η̄
· b < 1. (C17)
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C.9 The Candidate Equilibrium is an Equilibrium

Claim 11. p∗ is an equilibrium.

Proof. The proof is by contradiction. To reach a contradiction, assume that p∗ is not an
equilibrium. We will bound profits per unit at three points and show that these bounds
contradict the monotonicity established in Claim 10. Then there exists a price vector P̂ that
is a best response to p∗ such that Π̄(P̂, p∗) > Π̄(p∗, p∗).

Consider the function
π : [0, 1]→ R

such that
π(t) = Π̄((1− t) · p∗ + t · P̂, p∗).

The function π is continuous because the set of prices for which Q̄ is below k is convex. The
function π is strictly concave and attains a local maximum at t = 0, by Claim 8. Moreover,
π(0) < π(1). Thus, the function π has a local minimum at some t̃ in (0, 1). Let

P̃ = (1− t̃) · p∗ + t̃ · P̂ .

The fact that t̃ is a local minimum of π implies that π is not strictly concave at t̃. This
implies that Π̄ is not strictly concave at P̂ . Claim 9 implies that there exists a contract x
such that

Π(P̃, p∗, x)

Q(P̃, p∗, x)
≥ 2

σ
− |X|( 1

σ
+ 6P̄ + 4|X|P̄ δ) · δσ · 1

σ
.

Claim 4 implies that

Π((P̃x, p
∗
−x), p

∗, x)

Q((P̃x, p∗−x), p
∗, x)

≥ 2

σ
− |X|( 1

σ
+ 6P̄ + 4|X|P̄ δ) · δσ · 1

σ

−δ1 + δ

1− δ
(c̄+

4

σ
+ 2|X|( 1

σ
+ 6P̄ + 4|X|P̄ δ) · δσ · 1

σ
).

Using that 1/σ < c̄, P̄ < 3c̄, and δσ < b/η̄, we have that the right-hand side of this expression
is bounded below by

2

σ
− |X|(c̄+ 18c̄+ 3|X|c̄) · 1

η̄
b · 1

σ
− 1

4

5

3
(c̄+ 4c̄+ 2|X|c̄+ 36|X|c̄+ 6|X|2c̄) · 1

η̄
· b · 1

σ
)

= (2− (
25

12
+

209

6
|X|+ 11

2
|X|2) · c̄

η̄
· b) · 1

σ
.
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We take b to be small enough so that

(
25

12
+

209

6
|X|+ 11

2
|X|2) · c̄

η̄
· b < 1

2
. (C18)

This implies the first bound that we will use in the proof:

Π((P̃x, p
∗
−x), p

∗, x)

Q((P̃x, p∗−x), p
∗, x)

> (1 +
1

2
) · 1

σ
. (C19)

We now derive the second bound used in the proof. Claim 6 implies that

Π(p∗, p∗, x)

Q(p∗, p∗, x)
≤ 1

σ
+ 2|X|P̄ δ.

<
1

σ
+ 3|X| · c̄

η̄
· b · 1

σ
.

Bound (C18) implies that
Π(p∗, p∗, x)

Q(p∗, p∗, x)
< (1 +

1

2
) · 1

σ
. (C20)

Claim 7 implies that

Π(P̂, p∗, x)

Q(P̂, p∗, x)
≤ 1

σ
+ (1 + δ)λ̄+ 2|X|P̄ δ. (C21)

Claim 4 then implies that

Π((P̂x, p
∗
−x), p

∗, x)

Q((P̂x, p∗−x), p
∗, x)

≤ 1

σ
+ (1 + δ)λ̄+ 2|X|P̄ δ

+δ
1 + δ

1− δ
(c̄+

2

σ
+ 2(1 + δ)λ̄+ 4|X|P̄ δ).

We can bound the right-hand side of this expression using the fact that 1/σ < c̄, δ < 1/4,
δσ < b/η̄, and P̄ < 3c̄. The right-hand side is bounded above by

1

σ
+

5

4
λ̄+ 6|X| c̄

η̄
· b · 1

σ
+

5

3
(c̄+ 2c̄+

5

2
λ̄+ 3|X|c̄) · 1

η̄
· b · 1

σ
. (C22)

To bound this expression, note that λ̄ is bounded by

4(4|X|+ 2)
c̄

η̄
· b · 1

σ
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and by
(4|X|+ 2)c̄.

Substituting these two bounds for λ̄ we find that expression (C22) is bounded above by

(1 + 5(4|X|+ 2) · c̄
η̄
· b+ (6|X|+ 5 +

5

3

5

2
(4|X|+ 2) + 5|X|) · c̄

η̄
· b) · 1

σ
.

If we take b to be small enough so that

(
55

3
+

143

3
|X|) · c̄

η̄
· b < 1

2
, (C23)

it follows that.
Π((P̂x, p

∗
−x), p

∗, x)

Q((P̂x, p∗−x), p
∗, x)

≤ (1 +
1

2
) · 1

σ
. (C24)

We wish to use these bounds to find a contradiction with Claim 10. To do so, we first
have to show that P̂ (x) ≤ 2P̄ . We have that

P̂ (x)− c̄ ≤ Π(P̂, p∗, x)

Q(P̂, p∗, x)
.

Applying inequality (C21), we have

P̂ (x) ≤ c̄+
1

σ
+ (1 + δ)λ̄+ 2|X|P̄ δ

< P̄ +
5

4
λ̄+ 2|X|P̄ δ.

Using the bounds for λ̄, P̄ and δ, we have

P̂ (x) < P̄ + 5(4|X|+ 2) · c̄
η̄
· b · 1

σ
+ 6|X| c̄

η̄
· b · 1

σ

< P̄ + (10 + 26|X|) · c̄
η̄
· c̄ · b.

This is smaller than 2P̄ if the latter term is smaller than c̄. This is true as long as b is small
enough so that

(10 + 26|X|) · c̄
η̄
· b < 1. (C25)

We can now complete the proof. Bounds (C19), (C20), and (C24) imply that

Π̄((ρ, p∗−x), p
∗, x)

Q̄((ρ, p∗−x), p
∗, x)
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is not monotone in ρ, contradicting Claim 10.

C.10 Proof of Proposition C1

We can now collect these results in the proof of the proposition.

Proposition C1. Existence of an equilibrium follows from Claim 11, with b chosen to satisfy
the necessary bounds. The profit bounds follow from Claim 6 and the fact that

2|X|P̄ δ ≤ 6|X| c̄
η̄
· k.

D Robustness of the Set of Competitive Equilibria

This section discusses the robustness of the set of competitive equilibria to small changes in
the distribution of consumer preferences and costs. The sensitivity of equilibria with respect
to fundamentals is a particularly relevant issue with adverse selection, where it is possible
that the introduction of consumers with very high costs creates equilibria where no contracts
are traded, as in Akerlof (1970) and Hendren (2013, 2014).

There are two situations where small perturbations to fundamentals can have large effects
on the set of equilibria. First, it may be that average cost and demand curves intersect each
other tangentially, so that a small change in average cost shifts the equilibrium far from the
initial point. Economies where average cost and demand curves intersect tangentially are
knife-edge, however. Second, it may be that small perturbations in fundamentals leads to
large changes in the average cost curve. We illustrate these situations in the context of the
one-contract Akerlof (1970) model in Section D.1.

In Section D.2, we formally establish a robustness result that allows for multiple con-
tracts, albeit under more restrictive conditions than our general model. We show that the
equilibrium price correspondence is continuous with respect to fundamentals under certain
conditions. The key condition is that changes in fundamentals do not drastically change
average cost curves.

D.1 The one-contract case

Consider the Akerlof model from example 1. There is a single non-null contract, with demand
and average cost curves D(·) and AC(·). It is helpful to consider the effect of a change
in the fundamentals in two steps: how it affects demand and average costs, and how the
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resulting change in demand and average costs affects equilibria. There are three important
observations.

1. Equilibria of the Akerlof model are not always robust to small changes in average cost
and demand curves.

To see this, consider Figure D1a. In this example, a small upward shift in the average cost
curve eliminates the interior equilibrium. Note, however, that this is only possible because
the average cost and demand curves intersect each other tangentially, which is a knife-edge
situation.

2. Large changes in the average cost curve can have large effects on the set of equilibria.
This point is illustrated in Figure D1b. The left panel depicts demand and average cost

curves with an interior equilibrium. In the right panel we added a small measure of types
with very high costs and very high demand for insurance. The original interior equilibrium
continues to exist. However, after the change, there are two additional equilibria, one with
complete unravelling and another with almost complete unravelling. This is only possible
if we make large changes in the average cost curve, changing the conditional distribution of
costs in the tail of willingness to pay.

Adding a small measure of high-cost types cannot have a large impact on the average cost
curve when there is a positive mass of consumers with even higher willingness to pay. Consider
an example where willingness to pay is uniformly distributed between $0 and $1,000,000, and
there is a unique interior equilibrium as in Figure D2a. If we add a small measure of types
with willingness to pay of $1,200,000 and costs of $1,300,000, the model will have a new
equilibrium with full unravelling and a price of $1,300,000. However, if the distribution of
willingness to pay were uniform between $0 and $2,000,000, a sufficiently small measure of
types with willingness to pay of $1,200,000 would not change the set of equilibria very much.

A last observation is that the new equilibria are less plausible from a tâtonnement perspec-
tive. Scheuer and Smetters (2014) propose a tâtonnement procedure to study the stability
of equilibria in markets with adverse selection. Their model works similarly to models of
network effects in industrial organization. According to their definition, the equilibrium with
full unravelling and the original equilibrium are stable, while the new equilibrium with almost
full unravelling is unstable. Even though the full unravelling equilibrium is stable, its basin
of attraction is small because initial conditions above the intermediate equilibrium converge
to the original equilibrium.

3. Generically, the set of equilibria is robust to small changes in average cost and demand.
Finally, we note that in a typical case the set of equilibria changes continuously with small

changes in average cost and demand curves. This is illustrated in Figure D2. The lower panels
depict a market with an interior equilibrium. A small decrease in average cost lowers the
equilibrium price, but the change is continuous with respect to the reduction in average
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Figure D1: Cases where the set of equilibria is not robust to changes in fundamentals.

Notes: Each subfigure ((a) and (b)) depicts how equilibria of the Akerlof model respond to changes in the
average cost curve. The left panel depicts original demand and average cost curves as the thick lines, and the
average cost curve in a perturbation with 1% of behavioral consumers as the thin line. Equilibria are depicted
by dark red dots. The right panel depicts demand and average cost curves after a change in fundamentals by
the thick dark lines. The thin blue line depicts average cost before the change. Equilibria after the change are
depicted by dark red dots, and any points that were equilibria before the change but not after are depicted
as light blue dots.
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Figure D2: Cases where the set of equilibria is robust to changes in fundamentals.

Notes: See the notes in Figure D1.



25

cost. The lower panels depict a market where full unravelling is the unique equilibrium, and
remains so with small changes in the average cost curve. In the next section, we show that
this generic robustness property holds even when there is more than one potential contract.

D.2 Robustness with many contracts and formal result

We now state a formal result showing that, generically, the set of equilibria is robust to small
changes in the distribution of types. The result formalizes the points made in the examples
in Figure D2 and extends them to the case of multiple contracts. The key substantial as-
sumptions are that average cost and demand curves vary continuously with fundamentals,
and the set of changes in fundamentals is rich enough. We also make technical assumptions
to focus on the main ideas and simplify the mathematical exposition. We assume a finite set
of contracts, smoothness of demand and average cost curves, and that the support of the set
of valuations does not change with fundamentals.

Consider a set of economies
{E(z) : z ∈ Z}

indexed by an Euclidean vector of parameters in some open subset of Euclidean space Z.
The economies only differ in their distribution of types, so that E(z) = [X,Θ, µ(z)]. X is
finite, and there exists a null contract x = 0 that costs 0.

Assume that, at any price, the set of types who are indifferent between two contracts has
measure 0. In particular, demand for and total cost of supplying a contract are uniquely
defined given prices. Denote demand and total cost of supplying contract x given prices of
non-null contracts p = (p(x))x∈X\{0} and parameter vector z as

Dx(p|z) =

∫
1 dα

and
Cx(p|z) =

∫
c(x, θ) dα,

where α is any allocation in which almost all consumers choose optimal contracts given the
price vector (0, p). Note that demand and cost functions are defined for vectors of prices
of non-null contracts, with the prices of the null contract equal to 0. This definition will
simplify notation below.

Assume that there exists p̄(x) such that demand for contract x is strictly positive if and
only if p(x) ∈ [0, p̄(x)). In particular, the set of prices where demand for all contracts is
strictly positive is

P = ×x∈X\{0}[0, p̄(x)).
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Let P̄ be the closure of P . Proposition 1 part 2 implies that all equilibrium prices are in
{0} × P̄ .

Define the average cost of supplying contract x given prices p in P and parameter vector
z as

ACx(p|z) =
Cx(p|z)

Dx(p|z)
.

Denote by D, C, and AC the vectors of demand, costs, and average costs for non-null
contracts x ∈ X\{0}. Assume that AC can be continuously extended to P̄ × Z, and that
D,C, and AC are smooth functions over P̄ × Z.

Define the equilibrium price correspondence as

P ∗(z) = {p∗ : p∗ is an equilibrium price of E(z)}.

We assume that, if p∗ is an equilibrium price, then, for all non-null contracts, p∗x ≥
¯
p for some

constant
¯
p > 0.

Our goal is to state a result that is true for typical economies. To formalize this statement,
we need to assume that E(z) varies with z in a sufficiently rich way so that E(z) is typical
for most values of z. We assume that

∂z(ACx(p, z))x∈A

has rank |A| for all z ∈ Z, A ⊆ X\{0}, and p ∈ P̄ . With these definitions, we have the
following result:

Proposition D2. For almost every z,

1. P ∗(z) consists of a finite number of isolated points, and

2. P ∗ is continuous at z.

D.3 Proof of the proposition

The proof uses differential topology techniques, which give conditions for the solutions of
systems of equations to vary continuously with parameters. We refer the reader to Guillemin
and Pollack (2010) for a textbook treatment. We will use their definitions of transversality
and stable properties of maps (pp. 28, 34).

The proof applies differential topology results to two maps, TA and T̃A, which we define
below. The key steps are established in two lemmas. Lemma D1 shows that certain regularity
properties are satisfied for most values of z. Lemma D2 shows that, under these regularity
properties, equilibrium prices are a subset of the roots of TA.
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The two maps used in the proof are defined as follows. Let A ⊆ X\{0} be a set of
non-null contracts. Define the map

T̃A : ×x∈A(p, p̄(x))× Z → RA × RX\(A∪{0})

as follows. The input to T̃ is a vector p = (p(x))x∈A of prices for the contracts in A and
z ∈ Z. To describe T̃ , let p̃ be a price vector with p̃(x) = p(x) for x ∈ A, and p̃(x) = p̄(x) for
contracts x ∈ X\(A ∪ {0}). T̃A(p|z) is a vector, and its component associated with contract
x equals

T̃A(p|z)(x) = ACx(p̃|z)− p̃(x).

Let TA be a map
TA : ×x∈A(p, p̄x)× Z → RA

equal to the coordinates of T̃A corresponding to the contracts in A.
Let Zr be the set of z ∈ Z such that:

1. TA(·|z) intersects {0} transversally for all subsets A of non-null contracts, and

2. If TA(p∗A|z) = 0, and if p̃ is a price vector with p̃(x) = p∗A(x) for x ∈ A and p̃(x) =

p̄(x) for all non-null contracts x /∈ A, then for all non-null contracts x /∈ A we have
ACx(p̃|z) 6= p̄(x).

The first lemma shows that most values of z satisfy these regularity properties.

Lemma D1. Zr is open and Z\Zr has measure 0.

Proof. Property (2) in the definition of Zr is equivalent to T̃A(·|z) not attaining the value
0 for any A ( X\{0}. The map T̃A(·|z) is transversal to {0} if and only if it does not
attain the value 0 because the dimension of its image is larger than the dimension of its
domain. Therefore, property (2) is equivalent to the map T̃A(·|z) being transversal to {0} for
all A ( X\{0}. Therefore, z ∈ A if and only if all maps TA(·|z) and T̃A(·|z) are transversal
to {0}.

The rank assumption on ∂z(ACx(p, z))x∈A implies that the maps TA(·|·) and T̃A(·|·) are
transversal to {0} for all A. Thom’s Transversality Theorem implies that the maps TA(·|z)

and T̃A(·|z) are transversal to {0} for almost all z ∈ Z (Guillemin and Pollack, 2010 p. 68).
Moreover, both maps are transversal in an open set of values of z because transversality is a
stable property (Guillemin and Pollack, 2010 p. 35).

Lemma D2. (Generic equivalence between equilibria and roots) Take z ∈ Zr and p∗ ∈ P̄ ,
and let

A = {x ∈ X\{0} : Dx(p
∗|z) > 0}.
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We have that (0, p∗) is an equilibrium price of E(z) if and only if

TA((p∗(x))x∈A|z) = 0 (D26)

and ACx(p∗) > p̄(x) for all non-null contracts x in X\A.

Proof. Part 1 (only if).
Assume that p∗ is an equilibrium price of E(z). Then, p∗ is also a weak equilibrium, so

equation (D26) holds. Moreover, by the definition of an equilibrium, there exists a sequence
of perturbations (E(z), X, ηk)k∈N converging to the original economy E(z), with a sequence
of equilibria (pk)k∈N converging to p∗. The zero profits condition for x implies that

ACx(p
k|z) = pk(x) · (1 +

ηkx
Dx(pk|z)

) ≥ pk(x).

Taking the limit, we have ACx(p∗|z) ≥ p̄x. The fact that z is in Zr implies that ACx(p∗|z) >

p̄x.
Part 2 (if).
Assume that p∗ satisfies the conditions in the statement of the lemma. To prove that (0, p∗)

is an equilibrium price in E(z), we must construct a sequence of perturbations (E(z), X, ηk)k∈N

converging to the original economy E(z) and a sequence (pk)k∈N where (0, pk) is an equilib-
rium of the perturbation (E(z), X, ηk) and

(
pk
)
k∈N converges to p∗.

We define pk as follows. Let

A = {x ∈ X\{0} : p∗(x) < p̄(x)}.

For non-null contracts x /∈ A set

pk(x) = p̄(x)− 1/k.

Note that TA(·|z) maps a neighborhood of (p∗(x))x∈A diffeomorphically into a neighbor-
hood of 0. Therefore, there exists a sequence ((pk(x))x∈A)k∈N such that

ACx(p
k|z)− pk = 1/k

for all sufficiently large k and x ∈ A. Moreover, pk(x) converges to p∗(x).
Let

ηkx =
ACx(p

k|z)− pk(x)

pk(x)
·Dx(p

k|z) (D27)
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for non-null contracts and ηkx = 1/k for the null contract. For contracts x ∈ A we have

ηkx =
1

k · pk(x)
·Dx(p

k|z).

This is positive and converges to 0 because p∗(x) ≥
¯
p(x). For non-null contracts x /∈ A,

expression (D27) is positive for sufficiently high k because ACx(p∗|z) > p∗(x). The expression
converges to 0 because p∗(x) = p̄(x) > 0 and Dx(p

∗|z) = 0. Therefore, all ηkx are strictly
positive and converge to 0. This implies that (E(z), X, ηk)k∈N is a sequence of perturbations
converging to the original economy.

Equation (D27) implies that, at prices (0, pk) and at any allocation where consumers
optimize, firms make 0 profits in the perturbation (E(z), X, ηk). Therefore, (0, pk) is an
equilibrium price of the perturbation (E(z), X, ηk). This implies that (0, p∗) is an equilibrium
of E(z).

Proof of the proposition. By Lemma D1, we only need to demonstrate the desired properties
for z ∈ Zr.

Let P0(z) be

{(0, p∗) : TA((p∗(x))x∈A, z) = 0 for some A ⊆ X\{0}, p(x) = p̄(x) for x /∈ A ∪ {0}}.

Fix z0 ∈ Zr. The transversality of the maps TA to {0} implies that there is a neighborhood
Z0 of z0 where

P0(z) = ∪Kk=1{(0, ρ∗k(z))},

where each ρ∗k is a smooth function. We can take Z0 ⊆ Zr because Zr is open (Lemma D1).
Therefore, for any k and any non-null contract x with

Dx(ρ
∗
k(z0)|z0) = 0,

we have
ACx(ρ

∗
k(z0)) 6= p̄x.

Consequently, we can take Z0 so that the sign of

ACx(ρ
∗
k(z))− p̄x

does not depend on z. Lemma D2 then implies that equilibrium prices P ∗(z) are the union
of {(0, ρ∗k(z))} for which ACx(ρ∗k(z0)) > p̄x for all non-null contracts x with

Dx(ρ
∗
k(z0)|z0) = 0.
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This implies that the correspondence P ∗ consists of a finite number of points and is continuous
at z0.

E Calibration with Nonlinear Contracts

We calibrated a model with linear contracts and normally distributed losses in Section 5.
We made these simplifying assumptions to obtain a transparent closed-form expression for
willingness to pay and costs. Here, we calibrate a model with nonlinear health insurance
contracts with characteristics commonly found in practice and a log-normal distribution of
losses. The main qualitative results are robust to this more realistic specification.

Preferences and health shocks are the same as in example 3. The only difference is that
losses are log-normal. Consumers still have four dimensions of heterogeneity: absolute risk
aversion A, moral hazard H, mean lossesM and variance of losses S2. We continue to assume
that types are log-normally distributed. In our baseline scenario, we set the moments of the
distribution of types to match Einav et al.’s (2013) central estimates. In the calibration with
linear contracts, we reduced the value of mean risk-aversion, because Einav et al.’s central
estimates implied implausible substitution patterns with linear contracts. However, with
the nonlinear contracts we use Einav et al.’s central estimate of absolute risk aversion of
1.9E-3. Parameter values are displayed in Table E1, and we discuss the calibration in Online
Appendix B.

Table E2 displays the set of contracts we consider. All contracts have a deductible, up
to which consumers pay for all of their expenditures. After the deductible, consumers are
responsible for a fraction equal to a copay. Expenses are then bounded by an out-of-pocket
maximum. The table reports the (endogenous) expected percentage of losses covered by
each contract, calculated for an average consumer and assuming that the consumer makes
privately optimal expenditure decisions. This is known as the actuarial value of the policy
and is a standard measure of contract generosity.

We selected contracts to represent a broad range of the quality spectrum, much like the
calibration with linear contracts. The most generous contract we consider (contract 12) is the
most generous contract in Einav et al. (2013)’s data from a large employer among the five new
plan options for single employees. It has an actuarial value of 93%. All of the five plan options
in Einav et al. (2013) are quite generous. To perform similar analyses as we did with linear
contracts, we also included contracts with lower coverage, although this takes us far from the
range of the data. We included a typical bronze plan. We used contract parameters from
an “average bronze plan” described in www.healthpocket.com based on typical 2014-2015
offers in health insurance exchanges (contract 6). This plan has an actuarial value of 60% for

www.healthpocket.com
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an average consumer in our calibration. Moreover, we added a public insurance option for
consumers who purchase no insurance (contract 0). The reason is that, with the lognormal
loss distribution and CARA preferences, consumers would have negative infinity utility from
being uninsured. We followed Kowalski (2014) and assumed that uninsured patients have
expenditures above $30,000 covered by a third party. We assume that the uninsured cannot
engage in moral hazard and thus always have expenditures equal to their health shock.
Third party expenditures do not affect equilibrium because the price of public insurance is
0, but we included these expenditures in welfare calculations. This turned out to be of little
consequence because few consumers are uninsured under the parameters we consider. Finally,
we added ten other contracts by linearly interpolating contract characteristics between the
most generous plan and the bronze plan, and between the bronze plan and contract 0. We
slightly modified these parameters to have round numbers and to space their actuarial values
somewhat evenly. Thus, consumers had a rich set of quality choices, but contracts are
vertically differentiated, as in the calibration with linear contracts.

We considered the same exercise as in the linear model. We first calculated equilib-
rium without any government intervention. We then calculated equilibrium with mandated
minimum coverage of the bronze contract (contract 6) and a welfare-maximizing allocation.
Equilibria were calculated in a perturbation with 1% of behavioral consumers and the same
computational procedures as in the linear contracts case.

The results are in Table E3. The results are qualitatively consistent with equilibrium
patterns in the linear model. There is considerable adverse selection on the intensive margin.
Even though virtually all consumers purchase positive coverage, they pick less generous plans
than what would be optimal, and welfare per consumer is $371 lower than in the optimal
allocation. Interestingly, the endogenously determined set of traded contracts is quite narrow,
with many contracts not being traded at all. Moreover, the optimum involves a single contract
being sold, the phenomenon that we also observed in the linear model with a high variance
of the moral hazard parameter σ2

H . This result suggests that, under these parameters, much
of the variation in choices is due to differences in moral hazard. Because the social planner
would like to offer less insurance for types with higher moral hazard, it becomes optimal to
give up on sorting and offer a single contract.

Under the baseline Einav et al. (2013) parameters, the mandate has almost no effect.
The reason is that almost all consumers purchase a contract that is better than the bronze
contract, rendering the mandate moot. This is not surprising because their data considers
quite generous contracts (the least generous contract has an actuarial value of 77%), and
CARA utility does not adequately describe choices over very different domains of losses
(Rabin (2000); Handel and Kolstad (forthcoming)). Thus, the variation in tastes is too small
under these parameters for many consumers to purchase less than 60% insurance.
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To gauge the qualitative effects of a mandate, we considered alternative parameters with
more heterogeneity in tastes. Table E3 reports simulations with the log variance of risk
aversion increased to 2 (few consumers purchase less than bronze insurance when the variance
is much lower). To intuitively understand the amount of preference variation necessary to get
dispersion in choices, note that a log variance of 2 implies that a consumer in the top 95th
percentile of risk aversion has absolute risk aversion about 100 times higher than a consumer
at 5th percentile.

In this last example, the equilibrium effects of the mandate are qualitatively similar to the
linear case. Before the mandate, about 22% of consumers purchased bronze coverage or less.
After the mandate, many consumers (27%) purchase the minimum contract. That is, the
mandate forces some consumers to purchase more insurance. But the mandate also induces
some consumers to purchase less, with the fraction purchasing 60% or less going up from
22% to 27%. This unintended consequence is similar to what we found with linear contracts.

In this example, the mandate decreases welfare by 272. This result differs from what we
found in the baseline parametrization with linear contracts, where the mandate increased
welfare. However, it is consistent with the findings of Einav et al. (2010) that mandates can
sometimes increase and sometimes decrease welfare. Finally, our findings are consistent with
the idea that regulations aimed at the intensive margin are important. We see that, with
more variation in preferences, the optimum calls for some diversity in the set of contracts that
are offered, and that subsidies that address selection on the intensive margin can increase
welfare (Table E3).
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Table E1: Calibrated distribution of consumer types

A H M S
Mean 1.9E-3 1,330 4,340 24,474

Log covariance
A 0.25 -0.01 -0.12 0
H σ2

logH -0.03 0
M 0.20 0
S 0.25

Notes: Consumer types are log normally distributed with the moments in the table. The log variance of
moral hazard σ2

log H is set equal to 0.98 and 2.
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Table E2: Contracts used in the calibration with nonlinear contracts.

Contract number Deductible Coinsurance Out of pocket maximum Mean Coverage
0 (public insurance) 30,000 100% 30,000 29%
1 23,000 82% 23,500 34%
2 17,000 65% 17,500 40%
3 12,000 52% 13,000 45%
4 9,200 46% 10,000 51%
5 6,700 39% 7,800 56%
6 (bronze) 5,200 35% 6,400 60%
7 3,300 26% 5,000 66%
8 2,100 20% 4,200 71%
9 1,300 16% 3,500 77%
10 600 13% 2,900 82%
11 300 12% 2,700 87%
12 (Einav et al.) 0 10% 2,500 93%

Notes: Actuarial values equal the expected fraction of covered expenses for an average consumer type under privately optimal behavior.
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Table E3: Prices, quantities, and welfare with non-linear contracts.

σ2
A = 0.25 σ2

A = 2
No Mandate Mandate Optimum No Mandate Mandate Optimum

Contract number Q P Q P Q P Q P Q P Q P
0 (public insurance) 0.00 0 0.00 0 0.02 0 0.00 0
1 0.00 0 0.00 10,513 0.00 515 0.00 192
2 0.00 0 0.00 11,655 0.00 944 0.00 196
3 0.00 0 0.00 11,922 0.01 1,337 0.00 351
4 0.00 163 0.00 12,497 0.03 1,692 0.00 402
5 0.00 1,155 0.00 13,121 0.06 2,067 0.00 448
6 (bronze) 0.00 1,878 0.00 1,838 0.00 13,223 0.10 2,415 0.27 2,310 0.00 453
7 0.02 2,745 0.02 2,719 0.00 13,414 0.24 3,009 0.20 2,977 0.00 516
8 0.97 3,447 0.97 3,432 0.00 13,790 0.53 3,724 0.52 3,693 0.00 566
9 0.00 4,339 0.00 4,303 0.00 13,902 0.00 4,627 0.00 4,572 0.46 652
10 0.00 5,160 0.00 5,107 1.00 14,034 0.00 5,463 0.00 5,389 0.54 1,254
11 0.00 5,499 0.00 5,440 0.00 14,397 0.00 5,815 0.00 5,734 0.00 1,667
12 (Einav et al.) 0.00 5,969 0.00 5,904 0.00 14,942 0.00 6,305 0.00 6,216 0.00 2,233

Welfare 0 -6 371 0 -272 250
Notes: The table reports results without government intervention, with a mandate of at least bronze insurance, and under optimal regulation.
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