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Abstract 
 
Many empirical studies have examined the various determinants of crime. However, the link 
between crime and air pollution has been largely overlooked. In this paper we study whether 
exposure to ambient air pollution affects crime using daily administrative data for London in 2004-
05. For identification, we estimate models with ward fixed effects and implement two instrumental 
variable strategies, using atmospheric inversions and wind direction as exogenous shocks to local 
pollution. We find that air pollution has a positive and statistically significant impact on overall 
crime and on several major crime categories, including those with economic motives. Importantly, 
the effect also occurs at pollution levels which are well below current regulatory standards and 
appears to be unevenly distributed across income groups. Our results suggest that reducing air 
pollution in urban areas may be an effective measure to reduce crime and that air pollution 
forecasts can be used to improve predictive policing.  
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I. Introduction 

 

Crime and its prevention is a major policy issue due to its significant social and economic 

costs. According to the U.K Government, the total cost of crime in England and Wales is 

approximately £60 billion per year1. This figure, which is far from comprehensive, suggests that 

effective crime reduction measures have the potential to provide substantial savings. Indeed, a 

large body of literature studying the determinants of crime has examined various measures used 

to tackle crime such as increased police presence and better education (Draca et al., 2011; Machin 

et al., 2011)2. However, the link between improved air quality and crime reduction has been largely 

overlooked in the empirical literature despite several potential pathways.  

In this paper, we study whether short-term exposure to elevated levels of ambient air 

pollution affects crime in London. We believe that London provides an almost ideal setting for 

this type of study for two key reasons. First, the high quality of the daily administrative crime data 

– in conjunction with the extensive network of air pollution monitoring stations – allows us to 

overcome identification problems such as measurement error and the presence of unobserved 

correlated factors. Second, London is similar to many major cities around the world in terms of its 

characteristics. According to the 2017 Economist Safe Cities Index and recent figures from the 

World Bank, both pollution and safety levels in London are almost identical to other major cities 

such as Chicago and New York3. Therefore, our results could inform policymaking, not just in 

London, but also in other large cities around the world.  

We estimate the effect of air pollution on crime using a unique data set, which combines 

readings of ambient air pollution concentrations with rich administrative records on over 1.8 

million criminal offences recorded in London during the years 2004-2005. To account for potential 

confounders, we take the following measures. First, we rely on the panel structure of the data to 

estimate models with ward fixed effects. Second, we use two instrumental variable approaches, 

where we use atmospheric inversion and wind direction as exogenous shocks to local air pollution 

                                                 
1 This figure is taken from the Home Office Research Study 217 (Brand and Price, 2000). In 2005, the Home Office 
revised the estimates for the total cost of crime against individual and households to about £36.2 billion per year but 
this figure does not include crimes against business and the public sector (. 
2 Policymakers also tend to focus on these measures. For example, the mayor of London recently claimed that real-
terms cuts in various public services such as community education and the police had “reversed decades of progress 
in tackling the root causes of violent offending” (The Independent, 2018). 
3 The 2017 Economist Safe Cities Index, which ranks 60 major cities around the globe, placed London in the 20 th 
spot for overall safety (between Chicago (19) and New York (21)). The pollution data is for PM10.  
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concentrations. Third, we use our instruments to confirm that the positive effect of pollution on 

crime also holds at different spatial scales. This enables us to account for the possibility that the 

location where the crime occurred may not always coincide with the location of the offender prior 

to the offence. Finally, we perform a range of robustness and placebo tests, which provide 

additional support to the causal interpretation of our analysis.  

 The results suggest that exposure to elevated levels of air pollution is associated with 

increased crime rates. In our fixed effects specification, we find that an additional 10 Air Quality 

Index (AQI) points increase the crime rate by 1.2% and experiencing an AQI of above 35 leads to 

3.7% more crimes. The latter result, which is equivalent to 0.04 of a standard deviation, is 

economically significant and similar to the estimated effect of a 10% decrease in police activity 

(Draca et al., 2011)4. Our preferred instrumental variable approaches yield statistically similar 

results to our fixed effect model. More specifically, we find that an additional 10 AQI points 

increase the crime rate by 2.6% when instrumenting pollution with wind direction. Finally, we 

explore whether ambient air pollution has heterogeneous effects on crime types and across the 

income distribution. We find that air pollution affects several types of crime and that the effect 

appears to be unevenly distributed across resident income groups.  

To discuss the possible underlying mechanism for our findings, we complement our 

empirical results with a formal economic framework rooted in the rational choice theory of crime 

(Becker, 1968). In the context of this seminal framework, the decision to commit a crime is a risky 

action and we expect short-term fluctuations in air pollution to influence criminal activity through 

any of the following three channels – (i) altering perceived payoffs, (ii) altering risk perceptions, 

or (iii) altering risk preferences. Based on our empirical results we posit that the effect of air 

pollution on crime is might be driven by higher discounting of future punishment (i.e. altering 

perceived payoffs). Given the strong underlying assumptions of this framework, we also discuss 

alternative possible explanations for the link between pollution and crime.  

Overall, this study provides several important contributions to the literature on crime, as 

well as carrying important implications for public policy more broadly. First, our results suggest 

that improving air quality in urban areas may provide an effective way to reduce crime. Second, 

the link between pollution and crime suggests that we can potentially improve the deployment of 

                                                 
4 Draca et al. (2011) focus on the effect of increased police presence following the July 2006 terror attacks in 
London. 
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law enforcement resources (e.g. local police personnel) by incorporating information from 

pollution forecasts (predictive policing)5. Third, our results are present at levels which are well 

below current U.S Environmental Protection Agency (EPA) and U.K Department for 

Environment, Food & Rural Affairs (DEFRA) standards which suggests that it may be 

economically beneficial to lower existing guidelines. Fourth, this study also contributes to the 

evolving body of research studying the link between ambient pollution and the impact on other 

aspects of human life such as productivity, cognitive performance and sports performance (Graff-

Zivin and Neidell, 2012; Ebenstein et al., 2016; Lichter et al., 2017). More specifically, given the 

link between air pollution and crime, our results suggest that examining the effects of air pollution 

on health impacts alone may lead to a substantial underestimation of its societal costs.  

Finally, while a few recent contributions have examined the link between air pollution and 

crime (see section II), there are several important differences between these papers and our study. 

Most notably, we provide evidence that pollution affects not only violent crime (which is the main 

focus of the other papers), but also other crimes including those that are economically motivated; 

that the positive effect of pollution on crime holds at different spatial scales by using two different 

instruments, and that the effect of air pollution on crime appears to be unevenly distributed across 

the income distribution. This paper also provides a systematic discussion regarding the potential 

underlying mechanism for the link between air pollution and crime, within an economic 

framework.  

 

II. Background: The Adverse Effects of Air Pollution on Human Life 

The adverse health effects of ambient air pollution are well-established in the epidemiology 

and economic literature.  Early epidemiological studies documented a strong association between 

extreme pollution events, such as the London Great Smog, and mortality (Logan, 1953). Later 

studies, which evaluate the link between pollution and health with lower and more common air 

pollution levels, found that ambient pollution affects life expectancy and hospitalisation (Dockery 

et al., 1993; Pope et al. 1995). The economic literature, which better accounts for potential 

                                                 
5 Predictive policing programs are already being used by many police forces around the world including several U.S 
states (e.g. California and Washington), European cities (mainly in the UK and the Netherlands) and in China 
(Suzhou). To the best of knowledge, these programs don't use data on air pollution in their analysis.  
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confounders, has also documented a strong link between air pollution and various health outcomes 

such as infant mortality and emergency room visits (Chay and Greenstone, 2003; Schlenker and 

Walker, 2015). More recently, a new wave of studies has examined the impact of pollution on 

other aspects of human life. For example, Graff Zivin and Neidell (2012) presented robust 

evidence for a causal link between ozone and productivity of agricultural workers in California; 

Ebenstein et al. (2016) found that elevated levels of PM2.5 reduce student test scores among Israeli 

students; Sager (2016) documented a robust causal relationship between pollution and road safety 

in the U.K; and Lichter et al. (2017) showed that variation in pollution affects the performance of 

professional soccer players in Germany.  

Despite this growing body of literature on the adverse effects of air pollution on many 

aspects of human life, the evidence on the link between pollution and crime is very scarce6. Reyes 

(2007; 2015) examines the link between childhood lead exposure and crime rates later in life in 

the United States. A recent paper in the psychology literature by Lu et al. (2018) finds an 

association between air pollution and a wide range of crimes in the United States by using yearly 

variations in crime and pollution and a robust set of controls. Finally, three recent papers in 

economics examine the contemporaneous link between air pollution and violent crime in the U.S 

using different identification strategies.  Li (2017) uses non-attainment designation in the U.S. as 

a source of seasonal variation, Zou (2018) uses variation in pollution driven by daily monitoring 

intensity and Herrnstadt et al. (2018) use daily variation in wind direction. All three find positive 

effects of pollution on violent crime in the United States. 

The above papers are the closest to our study but there are several important differences 

between these papers and our study. First, we analyse a wide range of crime types and find that 

pollution affects not only violent, interpersonal crime (which is the main focus of the other papers), 

but also other crimes including those that are more economically motivated. Second, since the 

location where the crime occurred may not always coincide with the location of the offender prior 

to the offence, our study confirms that the positive effect of pollution on crime holds at different 

                                                 
6 There are a few studies that examine the effect of other environmental factors, such as temperature, on crime. For 
example, a number of studies find a significant association between temperature and violent as well as property crimes 
(e.g. Ranson, 2014; Cohen and Gonzalez, 2018). A recent review of the literature on climate and conflict is provided 
by Burke et al. (2015). 
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spatial scales, using two different instruments (atmospheric inversions and wind direction)7. Third, 

we also provide evidence regarding the distributional aspects, where we analyse the relationship 

between air pollution and crime across different resident income groups. Fourth, whilst the other 

papers remain fairly agnostic regarding the underlying mechanisms, we take our analysis one step 

further and investigate the influence of pollution on crime within a rational choice framework. By 

combining our theoretical framework with our empirical evidence, we are able to provide a 

systematic discussion on the potential underlying mechanisms for this link. Finally, our study is 

the only paper that investigates the potential link between air pollution and crime outside of the 

U.S. 

 

III. Data 

Our final data set combines several files that contain administrative information on crime 

rates, ambient air pollution, weather and various demographics. For crime information, we use 

data from the London Metropolitan Police Service which contains ward level detailed daily police 

reports of all recorded crimes in the Greater London area for the years 2004-20058. Importantly, 

the data allows us to know not just the number of crimes per ward per day, but also the type of 

crime. Furthermore, the file also provides data on police deployment, tube journeys and 

unemployment levels which were originally obtained and defined as follows. Data on police 

deployment was taken from the police service’s human resource management system and contains 

the total weekly number of hours worked by officers for each of the 32 boroughs in London. The 

weekly data on the total number of tube journeys was taken from Transport for London (TFL) and 

information on borough’s unemployment levels were taken from the U.K Quarterly Labour Force 

Survey (LFS)9.  

For information on pollution, weather and atmospheric inversions, we use daily data from 

the Department for Environment Food and Rural Affairs (DEFRA, 2017), the Met Office (2012) 

and NASA (2013). The first two files provide information on daily means of five pollutants, 

                                                 
7 Although many offences take place in close proximity to the offender’s home address (Bernasco et al., 2013), it is 
very possible that offenders will also decide to attack in more distant locations. For example, Bernasco (2010) find 
that offenders are more likely to target not just their current but also at their former residential areas. If this is indeed 
the case, a highly localized empirical strategy may lead to spatial spillovers.  
8 This data file is taken from Draca et al.  (2011). The file does not include data on the City of London, which is one 
of the 33 local authority districts of Greater London.  
9 In our analysis we divided the weekly total number of tube journeys in each borough by the number of tube 
stations in the same borough.  
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temperature, relative humidity, rainfall and wind direction and speed from 96 monitoring stations 

in the London area (see figure 1). In our analysis we use the AQI, which is calculated according 

to the US EPA formula, as our main pollution measure.  More specifically, we define the overall 

daily AQI as the highest AQI among the individual pollutants, which is in line with the EPA 

reporting guidelines. The last data file contains satellite-based readings of atmospheric temperature 

profiles from the NASA Atmospheric Infrared Sonder Level 3 data (AIRS Science Team/Joao 

Texeira, 2013), which provides atmospheric temperature profiles every 12 hours with a spatial 

resolution of 1° x 1° (ca. 110km x 70km)10. 

We assign pollution and weather to wards by linking it with the three monitoring stations 

closest to the ward centroid. We then use the mean value of those three measurements weighted 

by the inverse squared distance between station and ward.  We also attempted alternative 

approaches of assignment and the results are nearly identical11. Finally, we add population data 

from London’s Ward Atlas (2017) and data on house prices by ward from the Land Registry (2017) 

to test whether the effect of pollution on crime varies across the resident income groups.  

Table 1 presents summary statistics for our key variables of interest. Our sample includes 

455,520 observations of daily crime counts (over 1.8 million criminal offences in total) across 624 

wards in London12.  The average daily AQI and the number of crimes per 100,000 people during 

our sample period were 30.06 and 34.06 respectively. Figure 2 plots the distributions of AQI and 

the total number of crimes in our sample. In columns (2)-(3) of Table 1 we stratify the sample by 

the median house price. As expected, we don’t find meaningful differences in temperature, relative 

humidity and rainfall. However, the table indicates that both, pollution levels and the average crime 

rate, are higher in wards where house prices are above the median.  

 

IV. Empirical Strategy 

There are several identification challenges for inferring a causal link between pollution and 

crime. The prime concern is the possible presence of unobserved correlated factors. For example, 

                                                 
10 Note that this is the spatial scale for atmospheric temperature profiles from satellite readings which we use only 
for the atmospheric inversion instrument. This is not the same as the temperature controls that we use throughout our 
analysis which are coming from the measuring stations (see Figure 1).  
11 Specifically, all key results are highly similar when using only the single closest monitor to each ward centroid or 
the unweighted average from the 3 closest monitors. 
12The day of the July 2005 attack is dropped from the sample (reducing it to 730 days) leaving a sample of 
730*624=455,520 observations. 
 



7 
 

if pollution is higher in poorer areas, a naïve simple linear regression estimate might overstate the 

effect of pollution on crime, as crime may be higher in those areas for other correlated reasons 

(e.g. lower quality of education). We overcome this and other related econometric challenges by 

using two separate identification strategies as follow.  

 

a. Panel Fixed Effects Model:  

In our first empirical approach, we crucially rely on the panel structure of the data to 

estimate models with ward fixed effects. More formally, we estimate models of the following 

form:  

 𝐶𝑟𝑖𝑚𝑒𝑖𝑡 = exp{ 𝐴𝑄𝐼𝑖𝑡 +  𝑓(𝑇𝑒𝑚𝑝𝑖𝑡, 𝑅𝐻𝑖𝑡) + 𝜏𝑊𝑖𝑛𝑑𝑖𝑡 + 𝜔𝑅𝑎𝑖𝑛𝑖𝑡 + 𝑪𝑖𝑡 +  𝝁𝑡 + 𝛾𝑖 } +  𝑖𝑡   (1) 

 

Here, 𝐶𝑟𝑖𝑚𝑒𝑖𝑡 is the number of crimes in ward i on day t and AQIit is the corresponding air quality 

index. We control for weather conditions through f(Tempit,RHit), which is a flexible function of 

mean temperature and relative humidity13, as well as local measures of wind speed (Windit) and 

total precipitation (Rainit). Cit is a vector of local area controls accounting for time-varying 

conditions potentially related to pollution and crime14. t and i are time and ward fixed effects 

respectively. Finally, it is an idiosyncratic error term. Throughout, we employ Poisson Pseudo-

Maximum Likelihood (PPML) estimation with ward population as the offset unless noted 

otherwise15. 

Through the inclusion of ward fixed effects our identification relies on the comparison of 

crime levels between days with higher and days with lower pollution levels within the same ward. 

This approach removes any potential confounding from time-invariant structural differences 

between wards, which as mentioned above, is a prime concern. 

                                                 
13 We control for a flexible influence of temperature and humidity by including: dummy variables for 5 temperature 
bins of equal size, 𝑅𝐻𝑖𝑡, (𝑅𝐻𝑖𝑡)2, 𝑇𝑒𝑚𝑝𝑖𝑡 ∙ 𝑅𝐻𝑖𝑡  , and (𝑇𝑒𝑚𝑝𝑖𝑡 ∙ 𝑅𝐻𝑖𝑡)2. 
14 We rely here on the following control variables from the data compiled by Draca et al. (2011): borough-level 
unemployment rate, the number of tube journeys (separately measured for weekdays and the weekend), and the 
(natural logarithm of) total hours of police deployment per capita (these characteristics vary by week.). As the police 
deployment variable may in theory be an outcomes of the treatment (‘bad control’) we also analysed the data 
without including it as a control and the resulting estimates were almost unchanged. Finally, we find no evidence 
that pollution influences police deployment (see table A4) which suggests that police deployment is not an outcome 
of the treatment and is therefore not a ‘bad control’. 
15 Compared to common log-linear OLS estimation, PPML makes use of zero counts and is consistent in the 
presence of heteroskedasticity (see e.g. Silva and Tenreyo, 2006). Compared to standard Poisson estimation, PPML 
does not constrain the conditional variance to be equal to the conditional mean.  



8 
 

Weather controls are included because of well-documented evidence which shows that 

weather conditions can influence both pollution levels (Zannetti, 2013) and criminal activity 

(Burke et al., 2015; Cohen & Gonzalez, 2018). We also include further control variables intended 

to account for time-varying local conditions that may influence criminal activity. Tube activity 

acts as a proxy for general levels of activity and crowdedness, which may again influence both 

pollution and crime. Unemployment rates and the level of police deployment serve as additional 

controls for potentially confounding factors. It is conceivable that more police officers being 

deployed influences both pollution and crime. Similarly, we may hypothesise that short-term 

fluctuations in unemployment are associated with both levels of pollution and crime16. 

A final concern may be periodic co-movement between pollution and crime unrelated to 

the causal effect hypothesised above. For example, we may expect busy weekdays to differ from 

quiet Sundays both in pollution levels and criminal activity. To account for such systematic time-

varying factors, we include in 𝝁𝑡 a collection of time fixed effects. These include dummies for the 

Day of the Week to counter the potential short-run seasonality problem described above. We also 

introduce 24 year-month dummies intended to account for any larger seasonal co-movement as 

well as time trends. Finally, we include dummies accounting for the six-week period of intensified 

police presence following the July 2005 terror attack, both in London as a whole and in special 

focus areas, shown by Draca et al. (2011) as having influenced criminal activity. 

 

b. Instrumental Variable Models:  

We believe that our fixed effect strategy in conjunction with the range of control variables 

yields credible estimates of the effect of air pollution on crime. However, since air pollution levels 

are not randomly assigned, we cannot conclusively rule out the presence of unobserved time-

varying correlated factors. Furthermore, the above model may be susceptible to reverse causality 

and measurement error which may also bias our results17. We therefore complement our above 

empirical strategy with instrumental variable approaches which rely on changes in wind direction 

                                                 
16 As these variables may also be seen as outcomes of the treatment (‘bad controls’) we also analysed the data 
without including them as controls. The resulting estimates were very similar although slightly higher. We decided 
to take a conservative approach and keep them in our final specification, as this specification yield slightly lower 
estimates.  
17 A reverse causality is conceivable if more crime causes more pollution either by additional police cars on the 
streets or via changes to normal traffic flow.  
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(and atmospheric temperature inversions) as exogenous shocks to local air pollution 

concentrations. More formally, we estimate the following model:  

 

   𝐴𝑄𝐼𝑖𝑡 =  𝝆𝒊𝑾𝒊𝒏𝒅𝑫𝒊𝒓𝒊𝒕 + 𝛿(𝑇𝑒𝑚𝑝𝑖𝑡, 𝑅𝐻𝑖𝑡) + 𝑊𝑖𝑛𝑑𝑖𝑡 + 𝑅𝑎𝑖𝑛𝑖𝑡 + 𝑪𝑖𝑡 + 𝜼𝒕 + 𝜃𝑖 + 𝑣𝑖𝑡    (2) 

 

𝐶𝑟𝑖𝑚𝑒𝑖𝑡 = 𝑒𝑥𝑝{ 𝛼𝐴𝑄𝐼𝑖𝑡 +̂ 𝑓(𝑇𝑒𝑚𝑝𝑖𝑡 , 𝑅𝐻𝑖𝑡) + 𝜏𝑊𝑖𝑛𝑑𝑖𝑡 + 𝜔𝑅𝑎𝑖𝑛𝑖𝑡 + 𝑪𝑖𝑡 + 𝝁𝒕 + 𝛾𝑖 } + 𝑖𝑡    (3)  

 

Crimeit is again the offence count in ward i on day t and 𝐴𝑄𝐼𝑖𝑡 the corresponding pollution 

level. We rely on hourly observation on the principal direction of wind, which we aggregate into 

the share of hours in the 24-hour period in which wind blows from one of four directions, 

𝑾𝒊𝒏𝒅𝑫𝒊𝒓𝒊𝒕
18. Wind direction is known to influence concentrations of air pollutants and has been 

previously employed successfully as an instrument for air pollution (see for example Anderson, 

2015).  

Appendix Figure A1 illustrates the basic mechanism underlying our instrumental variable 

approach. It shows the mean AQI across all wards in London on days where the predominant wind 

direction is as indicated. It clearly shows that days on which the wind is blowing from the East and 

Southeast on average have a significantly higher AQI than days where the wind blows for example 

from the West. We exploit this relationship between wind and pollution. 

We allow for the influence of wind direction on pollution (𝜌𝑖 in the first stage) to differ 

between five regions of London (Central, North, South, East, West)19. We do so because London 

covers a large area and wind patterns may transport pollution from different sources located in and 

around the city, which may result in the same wind direction having differential effects in different 

parts of the city. By allowing the first stage effect of wind direction on air pollution to differ 

between regions our approach is similar to that of Deryugina et al. (2016) who study the short-

term effect of fine particulate matter exposure on mortality and medical costs among the elderly 

                                                 
18 More precisely, we use as instruments the share of hours in the 24 hours of each day in which the principal 
direction of wind has been identified to belong to the three quadrants 0-90°, 91-180°, 181-270° respectively. The 
fourth quadrant serves as the baseline wind direction.  
19 The choice of regions is somewhat arbitrary, but results are robust to different groupings. In the results reported in 
this manuscript, we group boroughs into five regions as follows: West (Brent, Ealing, Harrow, Hillingdon, 
Hounslow, Richmond Upon Thames); North (Barnet, Enfield, Haringey, Waltham Forest); East (Barking and 
Dagenham, Bexley, Havering, Newham, Redbridge); Central (Camden, Hackney, Hammersmith and Fulham, 
Islington, Kensington and Chelsea, Tower Hamlets, Westminster); South (Lambeth, Southwark, Wandsworth, 
Bromley, Croyden, Greenwich, Kingston Upon Thames, Lewisham, Merton, Sutton). 
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in the United States. We again include the same set of control variables and fixed effects used in 

our first empirical strategy described above. Our key identifying assumption is that – after 

controlling for weather conditions, fixed effects and other control variables – the average wind 

direction in ward i on day t is unrelated to criminal activity in ward i on day t, except through its 

influence on air pollution. 

We also use atmospheric temperature inversions as another instrument for pollution. While 

on most days temperature decreases with altitude, on some days the temperature is higher above 

than at ground-level. During such inversion episodes pollutants are trapped close to the ground, 

resulting in higher concentrations at ground-level. As inversion episodes have been used before as 

an instrument for plausibly exogenous variation in air pollution levels (for example in Arceo et al., 

2016; Sager, 2016; Jans et al., 2018), we follow these examples. Specifically, we use as an 

instrument the continuous difference between temperatures at the ground-level and temperatures 

at ca. 750m altitude (925hPa pressure level) and follow the same specifications as in equations (1) 

and (2) above. 

These two instrumental variable strategies corroborate the findings of our fixed-effect 

strategy in two ways. First, these instruments—so long as they are valid—provide evidence of the 

robustness of our results to the presence of unobserved correlated factors. The fact that we obtain 

similar estimates with all three empirical strategies, including two separate instrumental variable 

approaches, strengthens our confidence in our results. Second, the two instruments induce 

plausibly exogenous variation in pollution levels at different spatial scales. Wind direction induces 

highly localized changes in air quality which enables us to detect an effect of pollution on crime 

at the level of London wards. However, criminal offenders move across space, which means that, 

the pollution level in the ward where the crime was committed may not fully account to the 

offender’s pollution exposure in the time leading up to the crime. A highly localized empirical 

strategy may miss such spatial spillovers, while an analysis at a larger spatial scale would capture 

them. We therefore also use daily variation in temperature inversions as an instrument, and confirm 

the effect of pollution on crime at the borough and the Greater London levels.  

Instrument validity requires that the chosen instrument—either wind direction or inversion 

episodes—do influence the concentration of pollution (Instrument Relevance), that there are no 

observations for which this relationship is systematically reversed (Monotonicity), and that the 

respective instrument only affects criminal activity through its influence on pollution (Exclusion 
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Restriction). Both wind direction and inversions are clearly relevant instruments, as supported by 

the F-test statistics in Tables 4 and 5. Monotonicity may be violated if the same wind direction that 

blows pollution towards certain wards, blows it away from others. To account for this possibility, 

we allow wind direction to differentially affect pollution in different regions of London20. While 

this mitigates the threat, it is still possible that Monotonicity may be violated across wards within 

each region. Therefore, we also report results (in Table A3) using an alternative wind instrument 

based on the ranking of 4 and 8 wind directions according to their long-term average AQI in each 

ward.21 Monotonicity is less of a concern for the inversion instrument, which relies on variation at 

a larger geographic scale and the physical dynamics of atmospheric ventilation. It seems unlikely 

that there are regions (or time of year) for which inversion episodes systematically decrease instead 

of increase pollution levels. Finally, while the Exclusion Restriction cannot be tested for, we are 

not aware of any known effect of either wind direction or inversions on criminal activity. We 

perform several robustness checks and discuss below the possibility of unobserved time-varying 

correlated factors, which would endanger the Exclusion Restriction. 

 

V. Results 

 

a. Main Results 

Table 2 reports on the link between air pollution and crime using our pooled PPML and 

fixed effects models. In the first two columns we present cross-sectional correlations between 

crime and ambient pollution. The coefficient estimate in column 1 suggests that an additional 10 

AQI units are associated with an increase in crime by 10.5%. In column 2, we add our set of time 

varying controls for weather, police deployment and local economic conditions (e.g. 

unemployment rate). We find that an additional 10 units of AQI are associated with an increase of 

3.6% in crime. Whilst both of these estimates are statistically significant at the 1% level, they are 

cross-sectional in nature which prevents a causal interpretation.  

                                                 
20 First-stage results showing the influence of wind directions on AQI are shown in Appendix Table A2. 
21 Specifically, we create a separate ranking of wind directions for each ward according to their long-term AQI in that 
ward on days where that wind direction was most common. The instrument is then a discrete indicator for each day if 
the wind direction on that day was the ward's 1st, 2nd, ... polluting wind direction. 
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In columns 3–6, we exploit the panel structure of the data to estimate models with time and 

ward fixed effects. Column 3, which estimates a within ward regression, suggests that 10 additional 

units of AQI lead to a 2.4% increase in crime. The estimate for our fixed effects specification, 

which includes the full set of controls and fixed effects (Year-Month, Day of the Week and ward), 

is reported in column 5. We find that additional 10 units of AQI increase crime by 1.2%, an 

estimate significant at the 1 percent level. The coefficient corresponds to an elasticity of 0.04 which 

is similar to the effect of air pollution on the productivity of call centre workers in China (Neidell, 

2017). Figure 3 complements our analysis in table 2 with a visual representation of the relationship 

between residual pollution and crimes. The figure clearly demonstrates that using variation within 

ward yield a strong positive link between pollution and crime. Finally, in column 6 of Table 2 we 

instead use crime rate per 100,000 people as our dependent variable in a linear second-stage 

specification (instead of PPML). We find that 10 additional units of AQI leads to 0.46 additional 

crimes per 100,000 people (or 1.4% of the mean).  

In Table 3 we examine the possible non-linear relationship between pollution and crime by 

substituting our continuous AQI measure with dummy variables for different levels of pollution. 

The results reveal a monotonic positive relationship between pollution and crime. For example, 

column 4 which report estimates from our preferred fixed effects specification suggests that 

criminal activity in London increases by 3.7% on days with AQI above 35. This estimate is 

statistically significant at the 1 percent level and equivalent to 0.04 of a standard deviation, which 

is very large and similar to the estimated effect of a 10% increase in police activity (Draca et al., 

2011). Importantly, we find that these large effects are present at levels which are well below 

current regulatory standards as an AQI score between 0-50 is classified by the U.S EPA as “Good”. 

Therefore, our results suggest that tightening existing pollution regulation may be economically 

beneficial.  

Whilst we believe that our above empirical strategy yields credible evidence on the 

arguably causal link between air pollution and crime, we cannot conclusively rule out the presence 

of unobserved time-varying correlated factors22. Therefore, in Table 4 we report estimates from 

our main IV strategy, where we use wind direction as an instrument for pollution.  In the first two 

columns we replicate our fixed effect strategy from Table 2 with the original and IV samples 

                                                 
22 There are other potential empirical concerns in this context such as measurement error and reverse causality which 
our IV approach should overcome.  
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(respectively) to verify that our results do not change due to the small reduction in the sample size. 

In columns 3-6 we report our IV PPML estimates using different sets of fixed effects and control 

variables. The first stage results clearly show that wind direction is indeed a strong predictor of 

local air pollution concentration and can therefore be used as an instrument23. Our second stage 

estimates are also highly economically and statistically significant across all specifications. In our 

preferred specification, which is reported in column 5, we find that 10 additional instrumented 

units of AQI increase crime by 2.6%. This result corresponds to elasticity of 0.08 and is not 

statistically different from our fixed effect estimate. This estimate is large and suggests that the 

crime rate in London is about 25% higher on the most polluted day (AQI=103.6) compared to days 

with the lowest level of pollution (AQI=9.3).  

In column 6 of Table 4 we use the crime rate per 100,000 people as our dependent variable. 

We find that 10 additional units of AQI lead to 0.945 additional crimes per 100,000 people (2.8% 

of the mean). To further explore the welfare implication of this finding we use cost of crime 

estimates from Brand and Price (2000) and Dubourg and Hamed (2005) to perform a back of the 

envelope calculation. We find that one standard deviation increase in daily pollution levels leads 

to an additional £782,512 in crime costs for the 7.1 million residents of London in 2005.24 To put 

this in perspective, Schlenker and Walker (2015) find that a one standard deviation increase in 

daily pollution levels for the 6 million residents living within 10km of the airports in California 

leads to an additional $540,000 (£279,000 in £2005) in hospitalization costs.   

Our analysis so far has focused on daily variation in pollution levels (and crime) at the 

level of London wards. One potential concern in linking environmental conditions to criminal 

activity is the fact that criminals can be mobile across space. More specifically, the identification 

issue here is that the location of the crime may not always coincide with the location of the criminal 

throughout the hours and the day before the crime is committed. Our ward-level analysis would 

miss any effect of air quality in a specific ward on crimes committed in another ward. We thus 

replicate our analysis from Tables 2 and 4 at more aggregated spatial scales—boroughs and the 

whole of London. Such an approach will capture the relationship between pollution and all crimes 

in London, even those committed in a different ward. In Panels A and B of Table 5, we report 

                                                 
23 Table A2 shows our first stage results.  
24 To do this, we only used cost estimates for crime categories that are effected by pollution according to our 
analysis in Section C below. We converted all unit costs to £2005 and calculated the mean cost per crime (£11,557).  
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coefficient estimates for the impact of air pollution on crime at the borough and whole of London 

levels respectively. We use four different specifications in columns 1-4. The first is a full PPML 

specification with covariates (equivalent to Table 2, Column 5). The second uses the 24-hour share 

of four wind directions as an instrument for average daily pollution (equivalent to Table 4, Column 

5). In the third column, we use atmospheric temperature inversions as an additional instrument for 

pollution and in the fourth, we use both instruments. As evident from the table, all four models 

suggest a positive effect of pollution on crime. While the sample size is significantly smaller than 

in Tables 2 and 4, we still have a strong first stage, the coefficient estimates are significantly 

different from zero, and the instrumental variable estimates are not statistically different from each 

other25. Overall, our analysis confirms that the positive effect of pollution on crime holds at three 

different spatial scales—at the ward-level, the borough level and the level of aggregate London—

and using three different instrumental variable approaches. 

 

b. Robustness Checks 

We conduct several placebo exercises and robustness tests to further support the causal 

interpretation of our analysis. First, we perform a placebo exercise in which we test the link 

between crime and air pollution concentration on irrelevant days26. Table A1 presents our set of 

results, where we look at pollution levels in the previous and later weeks, months and years27. 

Columns 3 and 4 replicate results from our preferred instrumental variable specification (Table 4, 

Column 5), which produce statistically significant estimates only for same-day pollution. The 

results confirm that the link between pollution and crime is present only on the same day with no 

significant relationships between the placebo pollution readings and crime.  

Second, we examine whether our results are sensitive to 6 alternative empirical 

specifications with AQI instrumented wind direction.  Column (1) and (2) of Table A3, report on 

estimates from models with a log-linear specification and alternative weather controls (10 bins of 

equal size for each temperature, humidity, wind speed, and rainfall) respectively. The estimates 

remain statistically significant and similar to the estimated effect of our main IV specifications. In 

                                                 
25 Given the large spatial nature of atmospheric inversions, there is very limited variation between boroughs and it is 
better to use this type of instrument at the London level. Furthermore, for the specification with both wind and 
inversion instruments (London level) the Sargan-Hansen test for over identifying restrictions is 1.50 with a 
corresponding p-value of 0.68.  
26 Similar approach to Ebenstein et al. (2016).  
27 More specifically, we replace our independent variable with 7, 31 and 365 days lagged and leads pollution level.   
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Column (3) we replace our day-of-week and year-month fixed effects with date fixed effects to 

ease concern regarding that some particular days of the year might have high pollution and high 

crime levels across the whole city due to other factors (e.g. sporting events and festivals). 

Importantly, we believe that this is unlikely to affect the validity of our IV estimates as these types 

of factors are unlikely to be correlated with wind direction and inversions. Nevertheless, it remains 

a possible concern to our fixed effect model without instruments. As evident from the table, the 

estimate remains positive and statistically significant. Next, we address concerns regarding the 

monotonicity assumption of our wind direction instrument (as discussed in the empirical strategy 

section). More specifically, in columns (4) and (5) we use an alternative wind instrument based on 

the long-term ranking of 4 (or 8) wind directions according to their long-term average AQI in each 

ward. Reassuringly, the results are similar to our preferred estimate reported in Table 4. Finally, 

in column 6 we include additional controls for AQI levels from the previous and following days. 

Again, the estimate remains almost identical but less precisely estimated.  Overall, all of the 

alternative specifications yield similar estimates and we therefore conclude that our results are not 

sensitive to alternative models. 

 

c. Heterogonous Effect of Air Pollution  

In this section, we examine the heterogonous effect of air pollution across the income 

distribution and on different types of crime. The motivation for the former is to explore the popular 

notion that environmental externalities disproportionally affect certain groups of individuals across 

the income distribution (Hsiang et al., 2017). The motivation for the latter is twofold. First, to 

study whether some crimes are more sensitive to air pollution. Second, to use the results, in 

conjunction with our formal economic framework, to discuss the underlying mechanism for our 

headline findings.  In Figure 5, we investigate whether our estimates vary across resident income 

groups. This analysis is challenging as we need to distinguish between two possible cases. First, 

different resident groups in the population may be exposed to different levels of pollution. 

Therefore, if the relationship between crime and pollution is nonlinear, those groups with higher 

exposure will be more affected by an additional unit of pollution. Second, the marginal unit of 

pollution may affect some groups more than others for other reasons (e.g. vulnerability)28.  

                                                 
28 For a full discussion on this subject see Hsiang et al. (2017). 
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To examine these aspects, we stratify our sample of 624 wards according to their average 

house price as a proxy for income (Figure 4). In Figure 5, we plot the point estimates and 

corresponding 95% confidence interval for each quantile29. We also include the long-term average 

AQI levels for each decile and find that long term pollution concentrations tend to be larger in 

wards with higher average house prices. Overall, we find that the larger effects seem to occur 

mainly at the bottom of the income distribution. This suggests that despite relatively low exposure, 

the effect of pollution on crime is large in the less wealthy wards. 

Next, we examine the effect of different types of crime in Figure 6.  The results suggest 

that 2 out of the 5 major crime types are positively affected by pollution. In Figure 7 we break up 

those 5 major crimes into sub-categories, which suggests two interesting findings. First, air 

pollution affects crimes that are more likely to be spontaneous (interpersonal violence, criminal 

damage), but not premeditated crimes (crimes which involve planning such as burglaries and 

robberies). Second, the effect exists not just in violent crimes but also in other types of 

crimes including those that are economically motivated. Previous research in economics focus 

only on violent crimes, but our results are consistent with results in Lu et al. (2018). We discuss 

the potential mechanisms for our findings in the next section.  

 

VI. Discussion of possible underlying mechanisms  

Acute exposure to air pollution leads to a myriad of physiological effects documented in 

the medical literature. It can impair the transport of oxygen to the brain, which in turn may reduce 

cognitive performance (Kampa and Castanas, 2008). In addition, pollution exposure has been 

linked to elevated levels of stress hormones such as cortisol (Li et al., 2017) and serotonin levels 

(Murphy et al., 2013). Both of these are linked to the behavioural changes that may plausibly result 

in more criminal activity.  

To better understand the potential mechanism for the link between pollution and crime we 

adopt an economic perspective. We embed our analysis in the canonical rational choice model of 

crime proposed by Becker (1968) and Ehrlich (1973), which characterises the supply of criminal 

activity as driven by individual decision making under risk. Whilst the rational choice is only one 

of many frameworks to understand criminal behaviour, we think that this leading economic 

                                                 
29 Estimates in Figure 5 are from separate regressions for each quantile. However, estimates for a joint regression 
including quantile interactions look very similar. 
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paradigm for crime analysis, provides valuable structure when investigating the effect of air 

pollution on crime—especially in our study which examines a wide range of crime types and their 

short-term fluctuations. Therefore, this section will leverage the rational choice framework to 

uncover the underlying mechanism for our empirical findings but will also discuss alternative 

frameworks.  

Following Becker (1968), a potential offender j chooses to commit an offence if her 

expected utility from the crime outweighs the utility of a certain outside option, so if: 

𝑝𝑗 𝑈𝑗(𝑊𝑗
𝑐 − 𝛽𝑆𝑗

𝑐) + (1 − 𝑝𝑗 )𝑈𝑗(𝑊𝑗
𝑐) > 𝑈𝑗(𝑊𝑗

𝑛𝑐) 

Given a fixed outside option 𝑊𝑗
𝑛𝑐 30, any potential offender j is more likely to commit an offence 

if: (i) the payoff from crime 𝑊𝑗
𝑐 increases relative to the cost of future punishment 𝑆𝑗

𝑐 which is 

discounted at the rate 𝛽, (ii) the probability of being punished 𝑝𝑗  is lowered, or (iii) the potential 

offender’s preferences 𝑈𝑗(. ) become more risk accepting31 32.  

As outlined above, exposure to air pollution has been linked to changes in behaviour, 

productivity and well-being. In the context of the rational choice framework, we may expect short-

term fluctuations in air pollution to influence criminal activity through any of the following three 

channels – (i) altering perceived payoffs (𝑊𝑗
𝑐 and 𝛽𝑆𝑗

𝑐), (ii) altering risk perceptions (𝑝𝑗 ), or (iii) 

altering risk preferences (𝑈𝑗(. )). In principle, the potential influence of air pollution may then 

either increase or decrease criminal activity. For example, if elevated levels of air pollution lead 

to increased risk aversion, we would expect to see a decrease in criminal activity on high polluted 

days. Conversely, if air pollution reduces the expected cost of future punishment, via lower 

discounting (𝛽) for example, we would expect to observe an increase in crime on days with 

pollution. We will now explore these channels in more detail. 

 

 

Risk perception and risk preferences: 

                                                 
30 A large share of the economics of crime literature focuses on longer term determinants of crime, so that 𝑊𝑗

𝑛𝑐 might 
for example correspond to earnings from legitimate work. In our framework, which focuses on short-term decisions, 
𝑊𝑗

𝑛𝑐 may reflect factors shaping the utility of refraining from committing an offence on that given day. 
31 There is indeed robust evidence that the expected gain as well as the likelihood and magnitude of punishment do 
influence the supply of offences in the expected direction. Most recently, Draca et al. (2018) find substantial responses 
of property crimes to commodity prices in the United Kingdom for the years 2002-2012. 
32Alternatively, we can use a more common additive time separable formulation as follow:  
Uj(Wj

0,c) + β[pj Uj(Wj
1 − Sj

c) + (1 − pj )Uj(Wj
1)] > Uj(Wj

0,nc) + βUj(Wj
1) 
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Changes that lead to more risk taking should be expected to also lead to more criminal 

offences. In the expected utility framework presented above, more risk taking and hence more 

crime, can result from changes in either risk preferences or risk perceptions. Existing evidence 

does not support changes in risk perception or risk preferences as an explanation for the observed 

effect of air pollution on crime. To explain an increase in crime, elevated levels of air pollution 

should be linked to a more optimistic evaluation of one’s odds of getting away with a crime 

unpunished (lower pj ) or a change towards more risk loving preferences (higher U′′j(. )). One 

possible way in which pollution may affect the actual likelihood of getting away with a crime is 

via changes in police activity. We test directly for the potential effect of pollution on police 

deployment in Appendix Table A4. Here, we again use our full specification—a PPML model 

with AQI instrumented by wind direction—but replace the outcome variable in the second-stage 

with the number of police units employed. As police deployment data is weekly, but pollution is 

measured at a daily level, we include both results for an analysis at the daily (Column 1) and the 

weekly level (Column 2). We do not find evidence that air pollution levels influence police 

deployment. 

While the existing empirical evidence on air pollution and risk taking is limited, it suggests 

an association in the opposite direction. Heyes et al. (2016) provide suggestive evidence that risk 

taking in financial markets is lower on days with elevated levels of air pollution. However, one 

may doubt the relevance of the behaviour of investment professionals for the understanding of 

criminal activity. We thus perform an additional test to check for an association between risk taking 

and air pollution using data on UK National Lottery sales. More specifically, we use data on over 

1,044 weeks of lottery draws (Wednesday and Saturday draw each) between 1998 and 201833. 

Again, we control for the same set of nation-wide weather conditions (temperature, relative 

humidity, their interactions and squares, wind speed, and precipitation) as well as fixed effects. 

We carry out this analysis once using observed AQI (Table A4, Column 3) and once instrumenting 

AQI using average wind direction (Column 4). We do not find evidence that pollution has an effect 

on lottery sales. 

This argument is also in line with the medical literature. Experimental evidence documents 

that, if anything, subjects become more risk averse when administered the stress hormone cortisol 

                                                 
33 We use data on Main Sales (Saturday and Wednesday) in the UK National Lottery available from 
http://lottery.merseyworld.com. Data cover all weeks in 1998-2018.  
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(Kandasamy et al., 2014) or when exposed to physical stress (Porcelli and Delgado, 2009). As we 

discuss further below, acute exposure to air pollution has been linked to elevated levels of cortisol 

(Li et al., 2017). We would consequently expect to result in individuals becoming more risk averse 

when exposed to higher levels of pollution. In sum, both existing empirical evidence and our 

rudimentary analysis using lottery sales suggest that more risky behaviour is unlikely to explain 

the observed increase in criminal activity on polluted days. 

 

Perceived payoff vs. punishment: The potential role of discounting 

If we wish to maintain the rational choice framework outlined above, and by the principle 

of exclusion, our results suggest that the increase in criminal activity may be driven by changes in 

the perceived gain relative to the punishment. Such a change in the perceived costs and benefits of 

a criminal offence can be driven by two changes – an increase in the perceived benefit (𝑊𝑗
𝑐), or a 

decrease in the perceived cost (𝑆𝑗
𝑐) discounted at the rate 𝛽,  

A first channel through which pollution may affect crime is by increasing the perceived 

benefit (𝑊𝑗
𝑐). While it is plausible that heightened aggression (or similar effects on emotional 

disposition) might drive an increase in the perceived benefit of interpersonal crime, it seems 

unlikely that altered emotional disposition affects the perceived benefit of crimes that are 

economically motivated and often committed by “professional” criminals. For example, we would 

not expect the emotional disposition of a pickpocket to significantly alter her expected gain from 

theft. We find that pollution drives several types of crimes (Figures 6-7), not only those which are 

interpersonal but also those which are more economically motivated34. Therefore, we conclude 

that an increase in the perceived benefit (𝑊𝑗
𝑐) of crime is not consistent with our findings. 

Whilst we do not expect air pollution today to influence sentencing (𝑆𝑗
𝑐) which occurs in 

the future (discussed further below), there is evidence from the medical literature which suggests 

that air pollution exposure may alter the relative perceived costs of punishment by raising the 

effective discount rate (β) applied to the future prospect of punishment. Acute exposure to elevated 

levels of air pollution has been linked to a heightened concentration of stress hormones. In a rare 

                                                 
34 This is in line with a recent paper in the psychology literature, which finds an association between air pollution 
and a wide range of crimes in the United States (Lu et al., 2018). Similarly, Sager (2016) finds an effect of pollution 
on traffic accidents, but not on the share involving “hit-and-run”, which may be considered particularly unethical 
and aggressive behavior. 
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experimental study, Li et al. (2017) provide evidence that acute exposure to elevated levels of 

PM2.535 leads to significant increases in cortisol (hydrocortisone), cortisone, epinephrine, and 

norepinephrine. Changes in blood levels of stress hormones are in turn expected to result in 

behavioural change. More specifically, heightened concentrations of stress hormones, especially 

cortisol, have been shown to alter time-preferences. In a controlled experiment, Riis-Vestergaard 

et al. (2018) find that subjects that were administered cortisol 15 minutes before the experimental 

task exhibited a strongly increased preference for small immediate rewards relative to larger but 

delayed rewards. The same was found in studies that randomly assigned physical stress rather than 

administering stress hormones. Again, individuals subject to physical stress (or pain) exhibited 

greater impatience than relevant control groups (Delaney et al., 2014; Koppel et al., 2017). In sum, 

acute exposure to elevated levels of air pollution (PM2.5) may temporarily increase the discount 

rate applied to intertemporal trade-offs via its effect on blood levels of stress hormones. Increased 

discounting lowers the cost associated with potential future punishment (𝑆𝑗
𝑐) and consequently 

results in an increase in criminal offences. Increased discounting also has the potential to reconcile 

the increase in crime (where potential future punishment is discounted relative to immediate gains) 

with the observed decrease in lottery sales (where potential future winnings are discounted relative 

to immediate ticket costs). 

 

While we work within the rational choice framework, there are evidently other models that 

can explain the relationship between air pollution and crime. We do not have clear evidence to 

support these alternative models but we cannot conclusively reject them either. One example is 

based on various findings in the psychology literature that may suggest a link between air pollution 

and aggressive behaviour—either through physical discomfort, lowered serotonin levels, or neuro-

inflammation (e.g. Rammal, 2010; Crockett et al., 2013). In fact, this is the motivating hypothesis 

for many of the working papers which we mentioned in section 2, that investigate the relationship 

between air pollution and violent crime. While they focus only on violent crimes, we investigate 

various types of crime, including those which are not commonly linked to aggressive behaviour 

(e.g. pickpocketing) and therefore we believe that this channel is less consistent with our results. 

                                                 
35 Li et al. (2017) conduct a randomised, double-blind crossover trial where subjects (college students) have air 
purifiers installed in their dormitories for a period of 9 days. Some purifiers are functioning (mean PM2.5 exposure 
of 24 mg/m3), others are not (mean PM2.5 exposure of 53 mg/m3). 
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Of course, another typology of crimes may lead to different conclusions regarding the likely 

mechanism. Other prominent theories of crimes which focus on persistent personality traits (e.g. 

Nagin & Paternoster, 1993) or social structure (Saw & McKay, 1942; Bursik, 1988) are also less 

applicable in the context of our study which focuses on short-term (daily) fluctuations in crime. 

Finally, as air pollution negatively affects cognition and cognitive performance (e.g. Ebenstein et 

al. 2016), we cannot rule out the possibility that individual miscalculate the costs and benefits 

associated with crime. However, for this channel to be the driver of our results, air pollution should 

be systematically correlated with over- (under-) estimation of future benefits (costs). It is not clear 

why we should expect that.  

 

VII. Conclusion 

This paper investigates the potential link between ambient air pollution and crime. Using 

two separate identification strategies, we find that daily variation in air pollution is positively 

linked to higher crime rates in London. We also find that pollution affects several crime types but 

appears to have larger effects on crimes which are more spontaneous. Based on the rational choice 

model and our empirical results, we posit that a possible underlying channel for our findings is 

higher discounting of future punishment on high pollution days. Finally, we investigate whether 

our estimates vary across resident income groups and find that the larger effects seem to occur 

mainly in less wealthy wards. 

While the results are robust to a wide range of different specifications it is important to 

note two potential caveats. First, since our data provides information on reported crimes, it is 

theoretically possible that reporting itself is affected by pollution. We believe that this is unlikely 

to drive our results since we find that pollution affects types of crimes that are likely to be reported 

(due to their severity or for insurance purposes). Second, while we provide a systematic discussion 

on the potential pathways of our findings, our results are reduced form and cannot causally identify 

the exact mechanisms. Overall, the study provides robust evidence that environmental factors are 

an important determinant of crime. Whilst previous studies focused on weather conditions, which 

are unlikely to be shaped by policymakers, we have studied an environmental condition which can 

be regulated. Our results suggest that improving air quality in urban areas by tighter environmental 

policy may provide an effective way to reduce crime. Furthermore, our results are present at levels 

which are well below current U.S Environmental Protection Agency (EPA) and U.K Department 
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for Environment, Food & Rural Affairs (DEFRA) standards which further suggest that it may be 

economically beneficial to lower existing guidelines. Finally, given the link between air pollution 

and crime, our results therefore suggest that examining the effects of air pollution on health impacts 

alone may lead to a substantial underestimation of its societal costs. 
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Table 1 

Descriptive Statistics 
  By House Prices 
 All Low High  
Variable (1) (2) (3)   

     
Crime (log) 1.39 1.43 1.36   

(0.67) (0.64) (0.70)   
Crime (# per 100k population) 34.06 32.73 35.38   

(38.43) (24.93) (48.25)   
Population of ward 11,900 12,152 11,648  
 (1,915) (1,788) (2,003)  
Air Quality Index (AQI) 30.06 28.51 31.60   

(9.177) (8.060) (9.934)   
PM10 (g/m3) 28.05 26.70 29.40   

(10.35) (9.863) (10.65)   
     

Nitrogen Dioxide (g/m3) 50.00 46.11 53.90   
(21.06) (18.15) (22.96)   

     
Sulfur Dioxide (g/m3) 4.710 4.667 4.752  

(3.492) (3.600) (3.380)   
     

Ozone (g/m3) 33.17 33.94 32.39  
(17.86) (17.81) (17.86)   

     
Temperature (Celsius) 11.76 11.86 11.67  

(5.805) (5.763) (5.844)  
     

Relative Humidity (%) 76.63 75.51 77.75   
(11.42) (11.46) (11.28)   

     
Wind Speed (knot) 7.588 7.435 7.741   

(4.036) (3.712) (4.330)   
     

Rainfall (mm) 1.581 1.497 1.670   
(3.526) (3.261) (3.786)   

     
Unemployment 0.0506 0.0497 0.0514   

(0.0155) (0.0152) (0.0158)   
Atmospheric temp. difference (Celsius) 5.771     

(2.183)     
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Tube activity (million # per week) 1.677 1.721 1.632  
(2.248) (2.304) (2.190)   

     
Police deployment (log) 0.527 0.469 0.585   

(0.379) (0.293) (0.441)   
          
Observations 455520  227760  227760    
Notes: Standard deviations are in parentheses. Each observation corresponds to one of 730 days and one of 624 wards. Data 
as described in the text from the following sources: Air pollution data from DEFRA (2017), weather conditions from the Met 
Office (2012), house prices from HM Land Registry (2017), and crime data from Draca et al. (2011). 
 

 
 
 
  

Table 2 
Pooled and Fixed Effect Models of Air Pollution’s Impact on Crime 

 Pooled PPML  Fixed Effects PPML / OLS 
 (1) (2)  (3) (4) (5) (6) 
        
AQI (10units) 0.105*** 0.036*  0.024*** 0.012*** 0.012*** 0.457*** 

 (0.0308) (0.0191)  (0.0038) (0.0028) (0.0032) (0.1134) 
        
Controls  N Y  Y Y Y Y 
Ward FE N N  Y Y Y Y 
DOW FE N N  N Y Y Y 
Year-Month FE N N  N N Y Y 
         
(Pseudo) R2 0.024 0.075  0.259 0.265 0.266 0.688 
Observations 455,520 433,277  433,277 433,277 433,277 433,277 
        
Notes: Each column in the table represents a separate regression. In column (1)-(5), the dependent variable is 
the number of criminal offences per day and Ward. The model is estimated using a Poisson pseudo maximum 
likelihood (PPML) specification with ward population as the offset. In column (6) the dependent variable is the 
crime rate per 100,000 people, and the model is estimated using a linear OLS specification. AQI is based on air 
pollution readings from the three closest AURN monitoring stations (weighted by inverse squared distance). 
Control variables include weather characteristics (temperature, relative humidity and wind speed), ward-level 
police deployment, tube activity and unemployment levels. Standard errors are cluster-robust in two 
dimensions, over Wards and 24 Year-Months. * p<0.1, ** p<0.05, *** p<0.01. 
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Table 3 
Air Pollution's Impact on Crime – Non-linear Models 

 Without Fixed Effects   With Fixed Effects 
 No Controls Controls  No Controls Controls 
 (1) (2)  (3) (4) 
      
Dummy for AQI   0.087*** 0.041***  0.046*** 0.017*** 
 >20 & <= 25 (0.0154) (0.0136)  (0.0118) (0.0065) 
       
Dummy for AQI    0.134*** 0.053***  0.069*** 0.024*** 
 >25 & <= 30 (0.0223) (0.0199)  (0.0149) (0.0071) 
       
Dummy for AQI    0.191*** 0.078***  0.085*** 0.029*** 
 >30 & <= 35 (0.0325) (0.0243)  (0.0182) (0.0089) 
       
Dummy for AQI   0.275*** 0.105***  0.102*** 0.037*** 
 >35 (0.0660) (0.0355)  (0.0204) (0.0091) 
       
Observations 455,520 433,277  455,520 433,277 
 
Notes: See Table 2. Each column in the table represents a separate regression, all using PPML 
specifications. * p<0.1, ** p<0.05, *** p<0.01. 
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Table 4 
Air Pollution's Impact on Crime – Instrumental Variable Models using Wind Direction 

 Without 
Instruments 

 With  
Instruments 

 (1) (2)  (3) (4) (5) (6) 
        
AQI 0.012*** 0.012***   0.087** 0.024*** 0.026*** 0.945*** 
(instrumented) (0.0032) (0.0032)   (0.0398) (0.0075) (0.0079) (0.2652) 
        
Controls  Y Y   Y Y Y Y 
Ward FE Y Y   N Y Y Y 
DOW FE Y Y   N Y Y Y 
Year-Month FE Y Y  N N Y Y 
          
First stage (F-
test) 

   19.67 13.52 14.37 14.37 

Observations 433,277 431,026   431,026 431,026 431,026 431,026 
        
Notes: See Table 2 for description of full specification. Column (1) is identical to Table 2, Column 5. Column 
(2) is the same, but for the subset of observations for which the wind instrument exists. Columns (3)-(6) are 
instrumental variable estimates, equivalent to Columns (2),(4)-(6) of Table 2. * p<0.1, ** p<0.05, *** p<0.01. 
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Table 5 
Air Pollution’s Impact on Crime – Different Levels of Aggregation 

 No 
Instrument 

Instrument 
(Wind) 

Instrument 
(Inversion) 

Instrument  
(Both) 

 (1) (2) (3) (4) 
     

Panel A: Borough level 
     
AQI 0.013*** 0.024*** 0.036* 0.028*** 
(instrumented) (0.0036) (0.0083) (0.0213) (0.0087) 
     
Controls  Y Y Y Y 
Borough FE Y Y Y Y 
DOW FE Y Y Y Y 
Year-Month FE Y Y Y Y 
      
First stage (F-test)  25.42 24.34 31.45 
Observations 21,767 21,765 21,767 21,765 
     

Panel B: London level 
     
AQI 0.014*** 0.023*** 0.033* 0.026*** 
(instrumented) (0.0044) (0.0083) (0.0197) (0.0077) 
     
Controls  Y Y Y Y 
DOW FE Y Y Y Y 
Year-Month FE Y Y Y Y 
      
First stage (F-test)  25.76 23.64 23.47 
Observations 701 701 701 701 
     
Notes: Coefficient estimates for full model with all covariates (except ward-specific ones), all in 
PPML specification. Panel A uses a sample with daily observations at the borough level; Panel B 
uses a sample with daily observations collapsed into a single observation for all of London. ‘Wind’ 
instrument is again the share of hours with wind blowing in either of 4 wind directions. ‘Inversion’ 
instrument is the continuous temperature difference ground-level temperature readings from MIDAS 
weather stations (London average) and NASA AIRS satellite readings of atmospheric temperature 
at 925 hPa pressure (ca. 750m altitude). Standard errors are cluster-robust over 24 Year-Months. * 
p<0.1, ** p<0.05, *** p<0.01. 
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Figure 1 
Geographic coverage – London wards, AURN/MIDAS stations 

    

 
 

Notes: Geographic coverage of greater London, divided into 624 wards (excluding the City of London) and 96 
AURN/MIDAS monitoring stations. 
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Figure 2 
AQI and Crime – Density plots 

    

 

 
 

Notes: Density plots of air quality index (AQI) measurements and total number of criminal offences by day 
and ward. Data as described in the text. 
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Figure 3 
Residual AQI and Crime - Binned scatterplot 

    

 
 

Notes: Plot of residual air quality index (AQI) and residual (log of) crime count. Residuals from a regression 
on ward fixed effects and weather controls. Data as described in the text. 
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Figure 4 
House prices - London wards 

    

 
 

Notes: Average house prices over the 2004-2005 period by ward. Data as described in the text. 
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Figure 5 
The Effect of Air Pollution by House Price Quantile 

    

 
 

Notes: Coefficient estimates and 95% confidence intervals (left axis) of full instrumented model (same as Table 
2, Column 5), estimated separately on sample stratified by 2004-2005 house price quantiles. Results are very 
similar for a single regression with interaction-terms for quantiles. Average AQI index by house price decile 
(right axis). Data as described in the text. 
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Figure 6 
The Effect of Air Pollution by Major Crime Type 

    

 
 

Notes: Coefficient estimates for separate estimations with different crime counts (5 largest major crime types) 
as outcome variable. Estimates from a full instrumented PPML specification with all covariates and fixed 
effects. Lines represent 95% confidence intervals. Data as described in the text. 
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Figure 7 
The Effect of Air Pollution by Crime Sub-Type 

    

 
 

Notes: Coefficient estimates for separate estimations with different crime counts (crime sub-types) as outcome 
variable. Estimates from a full instrumented PPML model with all covariates and fixed effects. Lines represent 
95% confidence intervals. Data as described in the text. 


