
Vol.:(0123456789)

Japanese Journal of Statistics and Data Science
https://doi.org/10.1007/s42081-019-00061-z

1 3

ORIGINAL PAPER

Spatial long memory

Peter M. Robinson1

Received: 4 July 2019 / Accepted: 14 October 2019 
© The Author(s) 2019

Abstract
We discuss developments and future prospects for statistical modeling and inference 
for spatial data that have long memory. While a number of contributons have been 
made, the literature is relatively small and scattered, compared to the literatures on 
long memory time series on the one hand, and spatial data with short memory on 
the other. Thus, over several topics, our discussions frequently begin by surveying 
relevant work in these areas that might be extended in a long memory spatial setting.
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1  Introduction

“Long memory’, or ’long range dependence’, or ’strong dependence’, in time 
series is a topic that has been quite extensively studied in recent years. After a 
number of probabilistic contributions and empirical studies, serious treatment of 
issues of statistical inference could be said to have begun in the mid-1980s, with 
activity then increasing through the 1990s and this century. Predominately, this 
literature has focussed on observations that are regularly spaced over time, and 
the bulk of the theoretical development has been in terms of asymptotic statistical 
theory, with the number of observations, n, regarded as diverging, finite-sample 
theory proving mathematically intractable, even under the precise distributional 
assumptions that are typically not required in a large-sample treatment. Paramet-
ric, semiparametric and nonparametric models have all featured. The major char-
acteristic feature of a long memory covariance stationary time series process is 
that its autocovariance function decays so slowly with increase in lag length as 
not to be summable, or, nearly equivalently, its spectral density diverges, typi-
cally at zero frequenccy; while some nonstationary processes, such as ones with a 
unit root can, a fortiori, be regarded as having even longer memory. By contrast, 
’short memory’ time series typically have autocovariances that are summable and 
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spectral density that is more or less smooth (for example a stationary autoregres-
sive moving average (ARMA) has exponentuially decaying autocovariance and 
analytic spectral density); though for some relevant purposes, a short memory 
process is sometimes defined as merely having spectral density that is positive 
and finite at zero frequency.

Spatial data have long attracted the attention of statisticians, and the configura-
tions of some such data, especially some arising in such fields as meteorology, cos-
mology and agriculture, can be viewed as generalizations of the typical regularly 
spaced time series one mentioned above. In particular, they constitute observations 
in M ≥ 2 dimensions, (where M = 1 in the tme series case), such that there are nm
observations across dimension m,  for m = 1,… ,M, so n = ΠM

m=1
nm . We call this a 

’(rectangular) lattice’, and data recorded on it belong to the class of ’random fields’. 
There is equal spacing across each dimension, but the spacing can vary across 
dimensions. In Fig.  1 for (horizontal) dimension 1, n1 = 15, while for (vertical) 
dimension 2, n2 = 7. When n1 = n2 we can speak of a ’square lattice’.

Figure 1 brings to mind regularly spaced agricultural plots on a field. In fact, 
‘spatial long memory’ goes back at least to the agriculturally motivated paper of 
Smith (1938), which is also a very early reference relative to the literature on 
time series long memory. Consider n = n1n2 agricultural plots on a field, as in 
Fig. 1. Denote the yield (of rice, say) at location i =

(
i1, i2

)
 by xi1i2 and the sample 

mean by x = n−1Σ
n1
i1=1

Σ
n2
i2=1

xi1i2 . Smith (1938) assumed in effect that

and estimated the unknown d and C from the logged relation

meaning that the left side is estimated from data over several fields. Now, in the spe-
cial square lattice case, n1 = n2 = n1∕2, the model (1) is consistent with the underly-
ing isotropic model

(1)Var
(
x
)
∼ Cn2d−1, 0 ≤ d < 1∕2,C > 0,

log
(
Var

(
x
))

∼ logC + (2d − 1) log n,

Cov
�
xi1i2 , xj1j2

�
∼ c

��
i1 − j1

�2
+
�
i2 − j2

�22d−1
= c‖i − j‖2d−1,

Fig. 1   Spatial lattice
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for i =
(
i1, i2

)
, j =

(
j1, j2

)
, which is equivalent to the usual autocovariance function 

of a stationary long memory time series with differencing or memory parameter d, 
e.g., a fractional autoregressive integrated moving average (FARIMA). To verify 
(1), note that

It is interesting that Smith (1938) thought of a power law decay: this might seem 
natural to one coming to the subject unschooled in time series modelng which, after 
World War II, stressed exponential decay, as in ARMA modeling.

Since then, many papers on ’spatial long memory’ have appeared, but the topic 
has not been developed as systematically or comprehensively as ’long memory 
time series’. Some distinctive issues arising in the ’spatial’ case, all of which have 
been studied far more under short memory than long memory, are:

1.	 Is there isotropy or not? If not, we might model each dimension separately, or 
with some interaction, and possibly with a different memory parameter for each 
dimension.

2.	 Is sampling regularly or irregularly spaced? Whereas in time series regular spac-
ing has been predominately studied, irregular spacing is perhaps more likely to 
be found with spatial data.

3.	 Should modeling be unilateral or multilateral? For time series unilateral modeling, 
reflecting one-sided transition from past to future, is usually natural, but this is not 
the case with spatial data, where, for example, the dimensions might be latitude 
and longitude.

4.	 The edge effect. In estimating lagged quantities, there is loss of information at 
the boundary of the observation region, which has negligible effect when M = 1 , 
but increasing, and damaging, effect as M increases unless corrected for.

In this, quite personal, view of the subject, we discuss the following topics in the 
remaining three sections of the paper:

1.	 Inference on location and regression with long memory errors.
2.	 Inference on second-order properties of long memory stationary processes.
3.	 Miscellaneous topics: nonstationary processes, irregular spacing, adaptive estima-

tion, nonparametric regression.

Var
�
x
�
=n−2

�
i1,i2

�
j1,j2

Cov
�
xi1i2 , xj1j2

�

∼cn−2
�
i1,i2

�
j1,j2

���
i1 − j1

�2
+
�
i2 − j2

�2�2d−1

=cn−2
�
h,k

�
n1∕2 − �k���n1∕2 − �h��

√
h2 + k2

2d−1

∼Cn2d−1.
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We do not consider ’spatial autoregressive’-type (’SAR’) models (which depend on a 
user-chosen weight matrix of geographic or economic inverse distances); these do not 
fit into our framework but typically possess a kind of short memory.

2 � Inference on location and regression with long memory errors

The sample mean x is a basic statistic, whose asymptotic properties are well known 
under time series short and long memory. In the time series case, suppose

where 
{
�j
}
 is a sequence of independent and identically distributed (iid) random 

variables with zero mean and unit variance, or even homoscedastic (but not nec-
essarily identically distributed) martingale differences. The model (2) implies xt is 
covariance stationary, and it can have ‘short memory’ or ‘long memory’ or ‘nega-
tive memory’.

First suppose xi has short memory, i.e., xi has spectral density

that satisfies

with also f (�) continuous at � = 0 . Then, x = n−1
∑n

i=1
 xi is an asymptotically nor-

mal and efficient estimate of �,

Long memory can be described by (2) with, for example,

for a slowly varying function �(j) so f (0) = ∞ . We can also consider the asymp-
totic approximation in (3) for −1∕2 < d < 0, assuming also 

∑∞

j=0
�j = 0, whence 

f (0) = 0 , and there is ’negative memory’. In both cases, there is interest in allow-
ing for a nonconstant �(j) (e.g., �(j) = log j ), and this has been done in limit theory 
for basic statistics, and also in (semiparametric) estimation of d. But for simpliciy, 
we focus on constant �(j), which covers FARIMA and fractional Brownian motion 
models. In this setting, x is no longer asymptotically efficient (Adenstedt 1974) but 
it can still be asymptotically normal, albeit with a different rate of convergence. In 
particular, under suitable conditions on 

{
�j
}
,

(2)xi = 𝜇 +

∞∑
j=0

𝛼j𝜀i−j,

∞∑
j=0

𝛼2
j
< ∞,

f (�) =
1

2�

∞∑
j=−∞

Cov
(
xi, xi+j

)
cos (j�), −� ≤ � ≤ �,

0 < f (0) < ∞.

√
n
�
x − �

�
→d N(0, 2�f (0)), as n → ∞.

(3)𝛼j ∼ �(j)jd−1, 0 < d < 1∕2,

n1∕2−d
(
x − 𝜇

)
→d N

(
0, 𝜎2(d)

)
as n → ∞, 0 < |d| < 1∕2,
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for a function �2(d) of known form.
More generally consider the centered and self-normalized statistic

Ibragimov and Linnik (1971) showed that

if only the �j are iid and

Note that under negative memory

diverges more and more slowly as d ↓ −1∕2 , indeed in the moving average (MA) 
model with an MA unit root, yt = � + �t − �t−1, we have 

∑n

i=1

�
xi − �

�
= �n − �0, 

and it does not diverge at all.
For spatial data, consider an M−dimensional lattice, as described in the previ-

ous section (though results can be extended to a more general, irregular region). 
Let i be the multiple index (i1,… , iM) with ij ∈ ℤ = {0,±1,…} , j = 1,… ,M. Con-
sider a covariance stationary process xt observed on the lattice ℕ={i ∶ 1 ≤ im ≤ nm , 
m = 1,… ,M},

for �j iid (say) with zero mean and unit variance. For example under isotropy, with 
M = 2,

with memory parameter 𝛿 > 1 . Note that for time series, long memory has been 
’explained’ as arising from cross-sectional aggregation of AR(1) processes, see, 
Robinson (1978), Granger (1980), an interpretation extended to spatial processes by, 
e.g., Lavancier (2011).

For n = ΠM
m=1

nm and the multiple partial sum process

u =
�
x − �

�
∕

⎧⎪⎨⎪⎩
E

�
n−1

n�
i=1

�
xi − �

��2⎫⎪⎬⎪⎭

1∕2

.

u →d N(0, 1), as n → ∞,

∞∑
j=0

𝛼2
j
< ∞,E

(
n∑
i=1

(
xi − 𝜇

))2

→ ∞, as n → ∞.

E

(
n∑
i=1

(
xi − �

))2

xi =
∑
j∈ℤM

𝛼i−j𝜀j,
∑
j∈ℤM

𝛼2
j
< ∞,

�j ∼ ‖j‖−� = �
j2
1
+ j2

2

�−�∕2
,

S =
∑
i∈ℕ

xi,
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Specializing their results to the case M = 2, Lahiri and Robinson (2016) obtained

with

and also

with

Such results can be extended to regression models, especially ones with determinis-
tic regressors. One interesting case, for M = 2, and with yi a response variable that is 
obserrvable on the lattice is, with �0, �1, �2, �1, �2 all unknown,

with xi now an unobservable error process. For a more general regression model, 
and with general M, Robinson (2012) considered nonlinear least squares estimation 
of the �′ s and �′s, for short memory xi, where 𝜃1 > −1∕2, 𝜃2 > −1∕2 is required 
(with negative values of the �i conferring a decaying trend that could be relevant 
for some spatial data). In this case, the estimates are asymptotically efficient (in the 
Gauss–Markov sense), but the �′ s are estimated slightly less well than the �′ s, with 
rates dependng on the �′ s (and slightly less well than if the �′ s were known) . With 
long memory xi , where regression powers will ’interact’ with memory parameters, 
the rates will be slower, and if memory is strong enough relative to the magnitude 
of the �′ s we may not be able to estimate some �′ s and �′s , due to domination of the 
regression component by the error xi.

3 � Inference on second‑order properties of long memory stationary 
processes

Now consider estimating either a full parametric model for the spectrum/autocovari-
ance function of xi , or else a ’semiparametric’ one specified for only low frequencies/
long lags. In the parametric case, for short memory time series, early work on asymp-
totics covered least squares and Yule–Walker estimates of stationary autoregressive 
(AR) processes. Continuous and discrete frequency Whittle, and Gaussian pseudo-
maximum likelihood, estimates of ARMA and other short memory time series were 
well covered by Hannan (1973). He relaxed the commonly imposed iid assumption on 

n�−3S →d N
(
0, �2(�)

)
,

� ∈(1, 2) (long memory),

� ∈(2, 2.5),
∑
j∈ℤ2

�j = 0 (negative memory),

n−1∕2S →d N
(
0, �2(�)

)

𝛿 > 2.5,
∑
j∈ℤ2

𝛼j = 0.

yi = �0 + �1i
�1
1
+ �2i

�2
2
+ xi,



1 3

Japanese Journal of Statistics and Data Science	

innovations, allowing them, and centred squared innovations, to be stationary martin-
gale differences (expressing the natural ordering of time series data), with only finite 
second moments required (for estimation of dependence parameters); in fact stationar-
ity can be relaxed, the squared innovations needing only to be uniformly integrable). 
His central limit theorem proof was essentially found to work under long memory with 
differencing parameter d ∈ (0, 1∕4) by Yajima, (1985). Using a different method of 
proof, Fox and Taqqu (1986) established a central limit theorem valid over the whole 
stationary long memory interval d ∈ (0, 1∕2).

For spatial lattice data, a vital early (short memory) reference is Whittle (1954). Not-
ing that multilateral MA/AR representations are more natural for spatial data than the 
unilateral or one-sided ones normal in time series, he pointed out identifiability prob-
lems with multilateral representations, and extended the (unilateral) Wold represen-
tation for purely nondeterministic time series (cf. (1)) to spatial processes, introduc-
ing ’half-plane’ representations. But a given multilateral ARMA does not necessarily 
have a neat half-plane representation, where AR or MA orders may be infinite; so this 
property may have limited practical use. Sometimes, a ’quarter plane’ representation is 
possible.

Whittle (1954) and others (e.g., Martin 1979,Tjostheim 1978,Kashyap and Lapsa 
1984; Huang and Anh 1992; Ma 2003) considered estimation of various short memory 
parametric spatial models, some extending ARMA in an isotropic or separable way, 
e.g., for M = 2,

where L1xt = xi1−1,i2 , L2xt = xi1,i2−1 and the �i are iid, a kind of first-order, unilateral 
AR in 2 dimensions. Other specifications, such as the Matern model, were consid-
ered by Stein (1999).

For asymptotic theory of estimates, one basic question is whether to use increasing 
domain (as usually in time series) or fixed-domain (infill) asymptotics (or some hybrid 
of the two, where the domain increases slowly while the sampling interval decays 
slowly). Since spatial observations can often be thought of as confined to a bounded 
region, infill asymptotics, as studied by Stein (1999), might seem natural. However, 
infill asymptotics can lead to results that are not easy to use in practice and even to 
inconsistency, whereas increasing domain asymptotics often provides a central limit 
theorem that is convenient for practical use.

Another important issue is the ’edge effect’. Consider estimating the autocovariance 
�j = Cov

(
xi, xi+j

)
 of a (zero mean) covariance stationary process xi on an M−dimen-

sional lattice, by

This is of great interest because various estimates of parameters, in particular 
ones based on a Gaussian pseudo-likelihood or approximation thereto (and indeed 
nonparametric spectral estimates) are essentially functions of the �̂j . For M = 1 , 
as in time series, the summation includes n − j points and so (for fixed j), �̂j has 
bias O

(
n−1

)
, which does not prevent a central limit theorem for n1∕2

(
�̂j − �j

)
 from 

(
1 − �1L1

)(
1 − �2L2

)
xt = �i,

�̂j =
1

n

∑
i,i+j∈ℕ

xixi+j.
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holding. But for M = 2, and ℕ =
[
1, n1∕2

]
×
[
1, n1∕2

]
 the bias is of exact order 

n−1∕2 so the limit distribution of n1∕2
(
�̂j − �j

)
 has nonzero mean. And for M = 3 

and ℕ =
[
1, n1∕3

]
×
[
1, n1∕3

]
×
[
1, n1∕3

]
 the bias is of exact order n−1∕3 ; so, no cen-

tral limit theorem results, likewise for M > 3 . Thus, the obvious extensions of time 
series estimates to such spatial lattice data do not work.

The following solutions, have been proposed, all in a short memory context.

1.	 (Guyon (1982)) Use unbiased estimates 

 of �j . However the �̃j become unstable for large ‖j‖ and a desirable non-negative 
definiteness property of the �̂j is lost.

2.	 (Dahlhaus and Kuensch (1987)) A data taper, of the type extending that used to 
correct for bias in a variety of time series settings, is applied to xi.

3.	 (Robinson and Vidal Sanz (2006); Robinson (2007)) Trimming is employed: 
omitting the �̃j defined above for large ‖j‖ , the first reference considering a para-
metric setting, the second a nonparametric one.

Because of the greater importance of long lags, i.e., large ‖j‖, in long memory 
processes relative to short memory ones, the edge effect seems an even bigger 
issue under long memory.

Nevertheless, a number of parametric long memory stationary linear spatial 
models, both isotropic and separable, have been considered in the literature, 
see, e.g., Sethuram and Basawa (1995), Boissy et al. (2005), Ghodsi and Shitan 
(2009), Beran et al. (2009). A simple illustration of a separable long memory spa-
tial parametric model is

For cyclic/seasonal long memory models, with a spectral pole at one or more non-
zero frequencies, see, e.g., Cisse et al. (2016).

For time series ’semiparametric’ estimates of the memory parameter, only 
local-to-zero assumptions are made about the spectrum, and an increasing num-
ber but vanishing fraction of Fourier frequencies near the origin, depending on 
a user-chosen bandwidth, are used. These have also been extended to spatial lat-
tice data. Log periodogram spatial estimates have been considered by Ghodsi 
and Shitan (2016), the latter extending asymptotic theory of Robinson (1995a) 
(though Ghodsi and Shitan (2016) assume a parametric model). Local Whittle 
or Gaussian semiparametric estimates have been developed by Guo et al. (2009), 
Durastanti et al. (2014), extending asymptotc theory of Robinson (1995b).

There is considerable scope for for further study of issues of model choice 
(especially due to the danger of ’curse of dimensionality’ in lattice models) and 
bandwidth choice. Basic asymptotic theory for estimation of second-order fea-
tures of long memory lattice processes has been developed by Lavancier (2006, 
2007, 2008), and Lavancier and Philippe (2011).

�̃j = n�̂j∕#{i ∶ i, i + j ∈ ℕ}

(
1 − L1

)d1(1 − L2
)d2xi = 𝜀i, 0 < d1, d2 < 1∕4.
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Sometimes, though observations are made only at discrete points in ℤM , it is 
natural to think in terms of an underlying continuous model defined on RM , where 
R denotes the real line. This topic was long ago extensively discussed in the time 
series case M = 1 , especially for short memory models. The most popular covari-
ance stationary model here has been expressed as a rational spectral density, of a 
continuous process x(t),  t ∈ R,

where a and b are polynomials of degrees r and s, respectively such that r > s 
(required for integrability of g,   equivalently for x(t) to have finite variance), and 
such that the zeroes of a have negative real parts. When s = 0 , we can think of x(t) 
as generated by a stochastic differential equation (of order r) driven by ’continuous 
white noise’, that is an unobservable process �(t), t ∈ R , having (non-integrable) 
spectral density

the b factor in (4) providing further structure when r > 1 , s > 0 . Suppose that 
xt = x(t) is observable at t ∈ ℤ only. Then (see, e.g., Bartlett 1946, Walker 1960, 
Phillips 1959; Robinson 1980a) xt has an ARMA(r, r − 1 ) representation. This can 
be established in more than one way. Note that, if f (�) denotes the spectral density 
of xt,

and Robinson (1980a) thence used (6) with contour integration/theorem of residues 
to derive the ARMA(r, r − 1 ) property of xt, also using it to derive the ARMA(r, r) 
property of the averaged process Xt = ∫ t

t−1
 x(u)du, t ∈ ℤ (as well as analogous prop-

erties when the underlying process is skip-sampled, being defined discretely at nar-
row intervals 1 / k,  for an integer k ≥ 2, see also Telser (1967)). Generally, there are 
efficiency gains if the underlying parameters in a and b are estimated, rather than 
an unconstrained ARMA. But f (�) is naturally parameterised in terms of the zeroes 
of a and b, and when r ≥ 2 its form depends on the extent of any multiplicities in a,  
whose number is likely unknown, even for given r. Note also that due to the aliasing 
property (6), a cannot be uniquely estimated from the AR coefficients of xt when 
r ≥ 2 , and though the presence of b may help, a Gaussian pseudo-likelihood may 
have multiple peaks from which it is difficult to choose (Robinson 1980b). Gener-
ally, corresponding to (6), there are uncountably many continuous processes consist-
ent with a given discrete one, so attempting to estimate a continuous model is highly 
hazardous. It should be added that though (4) is classical, the model has two parts, 
the frequency response function   b  / a and the noise � , and either might be speci-
fied differently, for example, the aliasing problem is avoided if � is band limited to 
Nyqvist frequency, so instead of (5)

(4)g(�) =
1

2�

|b(i�)|2
|a(i�)|2 , � ∈ R,

(5)h(�) =
1

2�
, � ∈ R,

(6)f (�) =
∞

Σ
j=−∞

g(� + 2�),
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leading to a quite different model for the discretely observed xt , see Robinson 
(1977a), while Robinson (1976a, b) evaluated bias of estimates based on (7) when 
in fact (4) holds, again using the theorem of residues. Extensions to vector x(t) were 
developed by Phillips (1974), Robinson (1993). The topic has been rediscovered 
more recently, with (4) referred to by the acronyms CAR (when s = 0 ) and CARMA 
(when s > 0).

For long memory, one can consider a continuous process such as

with memory parameter d ∈ (0, 1∕2) . Again (6) can be applied but there is now 
no neat analytic solution characterizing xt and f (�) (see Comte and Renault 1996; 
Chambers 1998).

For continuously defined spatial processes that are observed on a lattice, exten-
sions of the above are clearly possible (see, e.g. Matsuda 2019), and analogous 
issues discussed for the time series case apply.

4 � Miscellaneous topics

4.1 � Nonstationary processes

Really, a time series AR with a unit root is a ’long memory’ process because 
it has even longer memory than a stationary long memory process, and it coin-
cides with a fractional process with memory parameter d = 1 . Asymptotic theory 
for unit root processes in an AR setting produces nonstandard limit distributi-
ions, but nesting the unit root in the fractional, rather than AR, class leads to 
standard asymptotics, for example a central limit theorem with n1∕2 norming and 
classical local power properties, for memory and other parameter estimates, even 
under nonstationarity, using either tapering and skipping of frequencies in dis-
crete-frequency Whittle estimation (see Velasco and Robinson 2000), or using 
conditional sum-of-squares estimation (see Hualde and Robinson 2011). These 
ideas seem capable of extension to nonstationary fractional processes on a spatial 
lattice. Kuensch (1987) considered an alternative class of nonstationary spatial 
processes.

In a semiparametric time series setting, Velasco (1999) studied log-perio-
dogram regression estimation under nonstationarity, using tapering and skipping 
of frequencies, as did Yajima and Matsuda (2019) for data on a spatial lattice of 
dimension M = 2 with an underlying continuous nonstationary isotropic process. 
In econometrics, study of nonstationary time series has much focussed on multi-
variate processes, and cointegration and fractional cointegration. Clearly, there is 
scope for corresponding study of multivarate spatial processes.

(7)h(𝜆) = 0, |𝜆| > 𝜋,

S(�) =
�−2d

2�

|b(i�)|2
|a(i�)|2 , � ∈ R,
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4.2 � Irregular spacing

There is a time series literature on missing and irregularly spaced data, for example, 
Robinson (1977b) considered the underlying continuous model (4) with r = 1 , s = 0 , 
and showed that irregularly spaced observations have a kind of time-varying AR repre-
sentation, with unknown parameters estimable by Gaussian pseudo likelihood. Irregu-
lar spacing is more likely to be an issue with spatial data. A general approach, for a 
parametric underlying continuous stationary spatial process, would be to construct a 
Gaussian pseudo-likelihood, conditional on the observation points. But conditions for 
asymptotic theory are messy relative to the regularly spaced case, mixing properties of 
the continuous process x(t) with those of the observation points. Matsuda and Yajima 
(2009) developed parametric and nonparametric methods and theory in the frequency 
demain, for spatial data with an underlying model defined on RM . Another approach 
that could be pursued in an irregularly spaced long memory spatial setting involves 
averaging over the process generating the observation times as well as over x(t) itself. 
In particular, in the time series case, Robinson (1980b) considered the model (4) with 
irregularly spaced observation points �k , k ∈ ℤ , generated by a point process, deriving 
autocovariance properties that are not conditional on the observation times. For exam-
ple, treating the time intervals as a renewal process, he obtained an ARMA(r, r − 1 ) 
representation for the observed pseudo-regularly spaced process Xk = x

(
�k
)
 , k ∈ ℤ.

Sometimes irregular spacing is due to missing from a regular lattice. Parzen (1963) 
proposed an amplitude modulating sequence for missing data in time series xt , t ∈ ℤ , 
studying the regularly spaced process atxt , where at is a (possibly stochastic) zero–one 
sequence, taking the value 1 when xt, is observed, and 0 when it is missed. Dunsmuir 
and Robinson (1981) studied Whittle estimation of parametric models using this 
approach. It seems clear how it could be extended to cover spatial lattice processes with 
missing observations and long memory.

4.3 � Adaptive estimation in semiparametric models

As is well known, under regularity conditions Gaussian pseudo-maximum likelihood 
estimates for parametric models are typically consistent and asymptotically normal 
with the same asymptotic covariance matrix irrespective of whether or not Gaussianity 
actually holds. But such estimates are not asymptotically efficient if the proces is non-
Gaussian. Considering a semiparametric model, with innovations having distribution 
of unknown form, it is possible to obtain asymptotically efficient ’adaptive’ estimates, 
using nonparametric smoothing. For long memory time series, this was studied by Hal-
lin and Serroukh (1998) under stationarity, and by Robinson (2005) under stationarity 
and nonstationarity. Such ideas are certainly extendable to spatial lattice processes.

4.4 � When ordering does not matter

Unlike with time series data, there is no natural uni-dimensional ordering of spa-
tial data. For a spatial lattice, there is typically an ordering of locations only with 
respect to each of the dimensions. For inference on many features, such as spatial 
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dependence parameters, respect for relative spatial locations is crucial. But for esti-
mating some ’instantaneous’ features, such as location and static parametric regres-
sion, and in stochastic design nonparametric regression, ordering can be disregarded 
and the spatial process xi i ∈ ℕ, mapped arbitrarily into a sequence ui, i = 1,… , n.

We might assume, say (Robinson 2011), the nonstationary infinite MA

which can be checked in some spatial model settings. We have ’long memory’ if

For stochastic design nonparametric (kernel) regression, with spatial data, Robinson 
(2011) gave conditions for asymptotic normality, based partly on assuming (8) for 
the error process and on conditions on the distance between multivariate and prod-
uct univariate densities for the regressors, which can also cover long memory. Such 
conditions might be extended to other models and methods for spatial data.
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