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Abstract 
 

Due to potential theoretical and societal implications, cognitive training has been one of the 

most influential topics in psychology and neuroscience. The assumption behind cognitive 

training is that one’s general cognitive ability can be enhanced by practicing cognitive tasks 

or intellectually demanding activities. The hundreds of studies published so far have 

provided mixed findings and systematic reviews have reached inconsistent conclusions. To 

resolve these discrepancies, we carried out several meta-analytic reviews. The results are 

highly consistent across all the reviewed domains: minimal effect on domain-general 

cognitive skills. Crucially, the observed between-study variability is accounted for by 

design quality and statistical artefacts. The cognitive-training program of research has 

showed no appreciable benefits, and other more plausible practices to enhance cognitive 

performance should be pursued. 
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Cognitive Training: A Controversy? 

General cognitive ability (GCA; see Glossary), or, more prosaically, intelligence, is a 

well-established scientific construct in psychology [1, 2] (Box 1). GCA is positively 

associated with a large number of socially relevant outcomes such as educational and 

professional achievement [3, 4], income [5] and even longevity [6]. Obviously, intelligent 

people are a fundamental resource for society, especially if they can preserve their skills 

throughout their whole life. 

Given the stakes at play, the last two decades have seen an impressive effort 

towards designing and implementing cognitive-training programs for enhancing GCA and 

slowing down its decline in the elderly. So far, the results have been inconsistent. 

Researchers are yet to reach an agreement in what has been called the “cognitive-training 

controversy.” This article aims to show that this so-called controversy can be easily 

resolved through the appropriate extraction, analysis, and interpretation of the empirical 

data. The apparently contradictory results are, in fact, highly consistent in all the reviewed 

domains: cognitive-training programs, while they do improve the skills that are being 

trained, do not enhance GCA or any of its components. 

Theories of Cognitive Training 

Substantial research into education and the psychology of expertise has established 

that skill acquisition is largely based on perceptual and conceptual domain-specific 

knowledge [7, 8]. Due to this specificity, the generalization of such knowledge across 

different domains, also called “far transfer”, rarely occurs [9]. Moreover, the more 

specialized the skill, the less the overlap between skills, and the more difficult the transfer 

will be [10]. 

If domain-specific skills cannot be transferred, how can a specific activity impact on 

GCA or any domain-general cognitive skill? Depending on the type of training, several 

explanations have been proposed. For example, working memory (WM) training has been 

claimed to boost fluid intelligence because these two cognitive constructs have a shared 
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capacity constraint [11]. Action video games have been suggested to improve one’s 

probabilistic inference and, in turn, visual-attentional skills [12]. Chess and music require a 

broad range of cognitive skills such as focused attention, reasoning, and WM. Therefore, 

practicing these activities might positively influence GCA [13]. Finally, brain-training 

research provides several explanations ranging from generic appeals to neuroplasticity to 

more elaborated hypotheses about the effects of sensory-discrimination training on 

information processing. (A detailed analysis of all these theoretical models is beyond the 

scope of this opinion article; for reviews, see [14, 15].) 

There is a common denominator across these explanations: the idea that the 

enhancement of domain-general cognitive mechanisms is a by-product of domain-specific 

training [16]. In line with the research on skill acquisition and expertise, engaging in 

cognitive-training programs improves performance on the trained task and similar tasks. 

However, these activities are also believed to boost GCA or, at least some of its 

fundamental components such as fluid intelligence, memory, and processing speed (Box 1). 

Once improved, cognitive skills foster professional and academic domain-specific abilities 

that depend on them. In this program of research, neural plasticity represents the crucial 

mediator of this process [17]. Cognitive-training regimens are thought to produce 

functional and anatomical changes in the neural system that, in turn, explain the 

improvements in cognitive function. In accordance with this hypothesis, the brain of 

experts such as professional musicians, chess masters, and assiduous video-game players 

exhibits specific functional and anatomical neural patterns. 

In the present article, we focus on the empirical evidence regarding the effects of 

five types of cognitive-training programs: WM training, video-game training, music 

instruction, chess instruction, and brain training. To date, these are the most studied and 

debated cognitive-training programs. We also briefly review other less-researched 

cognitive-training programs such as executive-functions training, cognitive-flexibility 

training, mindfulness/meditation training, exergame training, and spatial training. Finally, it 

must be noted that this article does not deal with non-cognitive interventions aimed at 
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optimizing cognitive function, such as lifestyle modifications [e.g. 18], health and fitness 

activities [e.g. 19], and drugs [e.g. 20]. 

Correlational and Cross-Sectional Studies 

Before reviewing the experimental data, we briefly discuss the evidence based on 

correlational and cross-sectional designs on playing video-games, music, and chess. 

While such studies do not allow causal inferences to be drawn, they might be suggestive of 

a possible link between cognitive ability and cognitive training. 

Researchers strongly disagree on the role played by GCA in video-game skill [15, 

21-23]. While many small experiments have found that video-game players outperform 

non-players in a broad range of cognitive tests [e.g. 24, 25], some large studies have failed 

to replicate these results [26]. It is even doubtful whether, within the population of video-

game players, video-game skill correlates with cognitive skills [23]. 

Our meta-analysis shows that the inconsistency of the results is only apparent [27]. 

To begin with, the correlation between video-game skill and cognitive skills is moderated 

by the way video-game skill is measured. Many studies use the number of hours per week 

of video-game practice as a proxy for video-game skill. However, how much one performs 

an activity is not necessarily a good measure of how good one is at this activity [7], and this 

applies to video-game playing as well. Performance assessed by video-game scores is a 

more reliable measure. In fact, our meta-analysis shows that, although no correlation is 

observed between frequency of video-game practice and any cognitive skill, there is a 

moderate correlation between video-game performance and some cognitive skills (e.g., 

spatial ability) in particular types of video games (e.g., non-action). However, there is no 

overall correlation between video-game skill and GCA. (For ease of exposition, this article 

will use “near-zero” to refer to effects sizes larger than -0.05 or less than 0.05, “small” to 

refer to effect sizes between 0.05 and 0.20, and “moderate” to refer to effect sizes between 

0.20 and 0.50.)  
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Regarding cross-sectional evidence (i.e., players vs. non-players), the results are, 

once again, highly consistent despite disagreement among researchers. All the large meta-

analyses on the topic concur that video-game players outperform non-players in many 

different cognitive tasks [27-29]. Where the few discrepancies occur, it is about the size of 

the difference between players and non-players. Our meta-analysis shows that, once 

corrected for publication bias (Box 2), the estimates should be relatively small [27]. 

With respect to musical skill, cross-sectional and correlational studies have 

consistently shown a clear relationship with superior GCA. Musicians often outperform 

non-musicians not only in cognitive tasks related to their domain of expertise (e.g., recall of 

notes and chord discrimination [30]), but also in a broad range of domain-general cognitive 

skills such as memory, fluid intelligence, and processing speed [31-34]. Thus, it is natural 

to postulate a possible causal link between engaging in music and superior GCA. 

Finally, studies on chess with a correlational or cross-sectional design provide 

strong evidence for a positive relationship between playing chess and cognitive skills. 

Chess masters consistently show an advantage over novices on recall and detection tasks 

with domain-specific material [8, 35]. In addition, in line with what has been found in 

music, chess skill predicts superior domain-general cognitive ability, as revealed by two 

meta-analyses. The first [36] showed that chess skill, often measured by the Elo rating, 

positively correlates with a broad range of measures of cognitive skills. The second [37] 

found that chess players exhibit overall superior cognitive skills when compared to non-

chess players. Notably, this pattern of results remains even when the participants’ 

educational level is controlled for.  

Under the Meta-Analytic Lens: Experimental Studies 

In true experiments on cognitive training, an experimental group carries out specific 

tasks (e.g., computer games practising working memory) and its performance on pre-tests 

and post-tests is compared with that of (ideally) both a passive and an active control group. 

When participants are randomly allocated to the groups, this design makes it possible to 
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draw strong inferences about causality – it is the specific intervention, and not unspecific 

effects such as placebo effects, that leads to an improvement in post-tests. 

 The experimental evidence regarding the influence of cognitive-training programs 

on cognitive function has been inconsistent. While some authors have reported data 

upholding the idea that such programs enhance cognition, some others have claimed the 

opposite. To resolve these discrepancies, independent laboratories have carried out dozens 

of systematic reviews and, most importantly, meta-analyses (Box 2). Regrettably (and 

ironically), these reviews and meta-analyses have sometimes provided opposite views 

about the actual effects of cognitive-training programs. In this section, we summarize these 

findings and argue that the observed inconsistencies (when any) are mainly due to mistakes 

in the interpretation of the results, placebo effects, and systematic biases in the statistical 

modelling of the data. 

Working-Memory Training 

WM is the cognitive system used to store and manipulate the information needed to 

perform cognitive tasks [38]. WM capacity – the amount of information WM can handle – 

is correlated with measures of fluid and general intelligence, cognitive control, and 

mathematical and reading abilities [39, 40]. Due to its fundamental role in cognitive 

function, it has been claimed that increasing WM capacity through training can foster 

several domain-general cognitive skills and, hence, GCA. To date, WM training is certainly 

the most studied and discussed type of cognitive-training program. 

The most influential and comprehensive meta-analytic review in the field [41] is 

sceptical about the alleged benefits of WM training. While WM training seems to improve 

performance on memory tasks, no appreciable effect is observed in measures of verbal and 

non-verbal intelligence. The lack of generalized benefits is particularly evident when the 

treated groups are compared to active control groups in order to rule out potential placebo 

effects. 

This pattern of results has been replicated in two other meta-analyses examining the 

effects of WM training on healthy adults [42] and typically developing children and young 
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adolescents [43], respectively. Notably, these meta-analyses have found near-zero effects 

not only on tests of intelligence, but also on measures of cognitive control and academic 

skills. Another smaller meta-analysis has reported similar outcomes in the population of 

children and adolescents with learning disabilities [44]. Finally, another meta-analysis [45] 

has found that transcranial direct-current stimulation (tDCS) does little to boost the effects 

of WM training on performance in measures of GCA or memory. 

Other authors show more optimism about the cognitive benefits of WM training, at 

least with regard to specific training regimens and populations. Another meta-analysis 

reported that practicing n-back tasks – a particular sub-category of WM tasks – exerts a 

small, yet significant, effect on fluid intelligence [46]. However, a re-analysis of the 

original data shows that the training effects are close to zero in studies including active 

control groups [47]. (For a detailed discussion, see [47-49]). The heterogeneity (Box 2) 

observed in the field is thus explained by the type of control group implemented in the 

studies. Therefore, there is again no evidence that the benefits of this particular cognitive-

training regimen go beyond placebo effects. Lastly, the effects of WM training on older 

adults’ GCA have been the subject of a lively debate [48, 50]. A recent large investigation 

suggests that, once again, the effects of WM memory on older adults’ cognitive 

performance are small and limited to memory tasks [51]. 

Video-Game Training 

Since their worldwide diffusion in the eighties, video games have represented one 

of the most popular leisure activities among young and adult populations. Due to their 

societal relevance, the impact of playing commercial video games on human behaviour is a 

topic of major interest. Like other cognitive-training activities, playing video games is 

cognitively demanding. Puzzle games such as Tetris require spatial ability and processing 

speed. Action video games such as Call of Duty involve quick and accurate visual-

attentional processing. Finally, strategy games such as Rise of Nations demand planning. 

Thus, it seems reasonable to propose that playing such games would improve cognitive 

function. 



8 
 

 

In spite of a large number of experimental studies, the alleged positive effects of 

video-game training on cognitive skills are much debated. Since the publication of a 

seminal study in 2003 [12], several experiments [e.g. 52] suggesting that playing action 

video-games enhances cognitive skills such as cognitive control and visual attention have 

been carried out. However, the initial positive results have rarely been replicated [28]. 

Mixed findings have also been reported about non-action video-game training [e.g. 53]. 

Several meta-analyses have concluded in the past five years that video-game 

training exerts a moderate effect on diverse cognitive skills [29, 54, 55]. However, we have 

showed [27] that the observed overall positive effects found in these meta-analyses are 

probably unreliable due to flaws in the modelling approach, such as the use of suboptimal 

formulas to calculate effect sizes and sampling error variances, the lack of an appropriate 

sensitivity analysis (e.g., examination of study-design quality as a potential moderator), and 

inadequate publication bias analysis. In fact, our own meta-analytic investigations suggest 

that the true effect of video-game training on GCA is close to zero, if not null. This 

negative conclusion is valid regardless of the type of cognitive tests, population age, and 

video-game genre. Finally, another recent meta-analysis [28] has claimed that action video-

game training exerts small to medium effects on cognitive skills such as spatial cognition 

and attention. However, this meta-analysis reports a highly asymmetrical distribution of the 

observed effects. As correctly acknowledged by the authors, this condition suggests that the 

overall effect is inflated by publication bias. 

Music Instruction 

Despite substantial inconsistency in the results reported in the primary studies, 

several reviews of the literature have cautiously suggested that music does exert a positive 

impact on GCA and cognitive skills [13, 56]. The experimental inconsistencies in the 

empirical evidence are, once again, only apparent and disappear when the data are correctly 

analysed. Contrary to the previous meta-analyses, our meta-analysis [30] estimated only a 

small overall effect of music instruction on children’s cognitive skills and academic 

achievement. Critically, our analyses show that the observed variability found in the 
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primary studies is mostly due to the type of control group (active or passive). When the 

music-trained group is compared to an active control group, the effects are close to zero or 

null. Thus, just like WM training, the degree of true heterogeneity (Box 2) observed in the 

field is accounted for by the type of control group. Therefore, the benefits of music training 

do not go beyond placebo effects. 

Corroborating our findings, a recent study [57] has shown that music-trained twins 

have the same IQ as their non-music-trained co-twins. In the same vein, another 

investigation [33] has found that, while musicians’ GCA correlates with music aptitude, it 

does not correlate with the amount of music training. Put together, these findings constitute 

substantial evidence that music does not enhance GCA or any other domain-general 

cognitive skill. Rather, intelligent people are more likely to engage and succeed in the field 

of music. 

Chess Instruction 

 Like music, the experimental studies on the cognitive effects of playing chess does 

not bring compelling evidence. Our meta-analysis [58] has shown that chess-training 

interventions exert a small to medium effect on cognitive and academic skills. However, 

the overall design quality of the primary studies is poor. To the best of our knowledge, only 

four studies have compared chess with alternative activities, finding no significant 

treatment effects [59-62]. Given the lack of an active control group in most experimental 

studies, it is not possible to rule out the possibility that the observed effects are in fact 

placebo effects. 

Brain Training 

The term “brain-training programs” denotes computer games specifically designed 

to improve cognitive skills. In this context, we thus refer to brain-training programs as a 

subset of cognitive-training programs. Examples are the games developed by companies 

such as CogMed, Lumosity, and BrainHQ. Brain-training programs usually include a series 

of activities aimed to boost several core cognitive skills such as processing speed, WM, and 
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reasoning. Enhancing such cognitive mechanisms is supposed to enhance GCA and, hence, 

academic and professional performance. 

Whether brain training works has been the topic of a heated debate, which is vividly 

reflected by two open letters about the cognitive benefits of commercial cognitive-training 

programs. The first one – issued by the Stanford Center on Longevity and the Max Planck 

Institute for Human Development – “object[ed] to the claim that brain games offer 

consumers a scientifically grounded avenue to reduce or reverse cognitive decline when 

there is no compelling scientific evidence to date that they do” [63]. The second one – 

published on the Cognitive Training Data website – argues that “there is, in fact, a large and 

growing body of such evidence” [64]. 

To the best of our knowledge, no comprehensive meta-analysis has been carried out 

on this topic so far. Meta-analyses including brain-training interventions usually contain 

studies about other cognitive-training programs as well [65]. Mixing studies makes it 

impossible to isolate the specific effects of brain-training programs. Also, most of these 

meta-analyses do not implement appropriate methods for correcting for publication bias. 

The reported overall effect sizes are often small to medium, are sometimes highly 

inconsistent (i.e., high degree of true heterogeneity; Box 2), and often do not distinguish 

between near- (i.e., domain-specific) and far-transfer (i.e., domain-general) effects. 

A recent comprehensive systematic review [15] offers the best discussion of the 

state of the art in this field. The authors highlight that, whilst brain-training regimens 

positively impact on performance on the trained tasks and, to a lesser extent, on similar 

tasks, there is no evidence of generalized effects on unrelated tasks. Thus, brain-training 

programs do not enhance either GCA or any broad cognitive construct (Box 3). 

 Another key point raised by that review concerns the relation between the observed 

effects and the design quality of the experiment. Limitations such as the use of passive 

control groups without active control groups, small samples, and selectivity in reporting the 

results often contribute to artificially inflating the overall effect of the treatment. 

Conversely, the effects decrease with better-designed studies. This pattern of results – that 
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is, the better the design, the smaller the size of the effect – militates in favour of the null 

hypothesis according to which brain-training programs do not exert any appreciable effects 

on cognition. 

Other Cognitive-Training Programs 

Other cognitive-training regimens have been recently examined. Examples include 

cognitive-flexibility training [66], task-switching training [67, 68], spatial training [69, 70], 

learning relational reasoning [71], exergames [72-74], meditation/mindfulness [75, 76], and 

multimodal cognitive training [77]. In accordance with the findings presented above, none 

of these types of training appears to exert appreciable effects on overall cognitive function. 

It is worth mentioning that, given the small number of experimental studies carried out so 

far, the impact on these programs on cognition requires further investigation. 

Cognitive Training: The Broader Picture 

Meta-analytic methods provide precious information about the overall effect of 

interventions, between-study variability, moderating variables, and publication bias. They 

have proved to be excellent tools for resolving open controversies in social and life sciences 

[78]. However, our scepticism about the alleged cognitive benefits of cognitive-training 

programs also stems from other broader considerations. 

To begin with, education has been found to have only a small impact on GCA [2, 79, 

80]. In fact, education exerts larger effects on those tests assessing skills taught in school 

rather than IQ tests [81]. Moreover, the observed slight improvements in IQ associated with 

additional years of schooling seem to be limited to specific subtests [80, 82] or mediated by 

the acquisition of other skills such as reading and mathematics [81, 83, 84]. If years of 

cognitively demanding school activities only marginally enhance GCA or its core 

components (e.g., working memory capacity, and processing speed), it is hard to see why a 

few hours of cognitive training should. Second, GCA is a substantially heritable factor [85], 

which means that, unlike domain-specific skills, it is hardly malleable to environmental 

factors such as education and training. Finally, as seen earlier, research into the psychology 

of expertise has consistently shown that generalized (i.e., far) transfer is rare because skill 



12 
 

 

acquisition is based on domain-specific conceptual and perceptual information [7, 10, 86-

88]. Thus, while prior levels of GCA influence the speed and quality of skill acquisition, 

domain-specific training does not foster GCA. In other words, the benefits of a particular 

training do not go beyond the trained tasks and, at best, similar tasks. Put together, the 

insights from these disciplines strongly suggest that the idea of enhancing GCA through 

training is scientifically implausible. 

Concluding Remarks and Future Directions 

Evidence from different laboratories supports the idea that practicing cognitively 

demanding activities has little, if any, impact on GCA or its components. The lack of 

generalized effects seems to manifest itself regardless of the type of training, the specific 

cognitive skills assessed, the age of participants, or the presence of training-induced neural 

changes (Box 4). In our opinion, the impossibility of training GCA should be regarded, to 

use a metaphor from Physics, as an “elementary particle” in the “standard model” of human 

cognition. Furthermore, the absence of generalized cognitive benefits should be considered 

a fundamental litmus test for theories in cognitive sciences. Theories whose predictions (or 

corollaries) are in line with this principle (e.g., theories of expert performance such as 

chunking and template theories [89, 90]) should be preferred over theories supporting the 

hypothesis that training can affect domain-general cognitive skills [91]. Similarly, theories 

that emphasize the difficulty of far transfer [9, 92, 93] should be preferred over theories that 

are more optimistic about far transfer [94, 95]. An important practical implication is that 

school instruction and professional training should concentrate on domain-specific material 

and avoid domain-general cognitive training. 

The impossibility of enhancing GCA by training does not imply that human 

cognition is not malleable to training (see Outstanding Questions). Rather, it must be 

acknowledged that the benefits associated with training are limited to the trained tasks and, 

sometimes, similar tasks. Our conviction is that cognitive-training programs should not be 

utterly abandoned, as long as the claims and expectations about the benefits do not go 

beyond what has been empirically verified. For example, brain-training programs 
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implementing arithmetic games do improve the participants’ ability to perform simple 

calculations [96]. Also, given the similarities between the chess board and the Cartesian 

graph, chess instruction may help children to learn basic geometrical concepts. Such 

improvements may not be considered cognitive enhancement, but that does not mean that 

they are not useful. In any case, improving the quality of experimental designs will be an 

essential requirement for future studies in order to estimate the extent to which these 

practices promote transfer of skills from the laboratory to real-life contexts. 

Furthermore, other avenues for improving performance in cognitively demanding 

tasks should be pursued. Learning strategies have been claimed to help people to learn 

more quickly and cope with cognitive decline. Examples include learning situations that are 

desirably difficult [97], retrieval-based learning [98], mnemonics [99], and elaboration 

strategies [100]. Once again, further research is needed to verify whether skills acquired via 

this type of training transfer to real-life situations [101]. 

 One additional step forward is the design of cognitive-training programs aimed at 

improving domain-specific performance. As mentioned above, experts such as professional 

musicians and chess masters exhibit largely superior cognitive performance compared to 

novices when the task involves domain-specific material (e.g., recall and detection of chess 

pieces or music notes). Such skills are almost certainly a by-product of practice in these 

fields. However, we do not know whether practicing cognitive tasks with domain-specific 

material (e.g., recalling chess positions) contributes to boosting domain-specific cognitive 

performance (e.g., playing chess well). We believe that domain-specific cognitive-training 

methods represent a new opportunity towards the amelioration of educational and 

professional performance. Only time will tell us whether this hypothesis is empirically 

correct.  
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Glossary 

Cognitive skills: in this context, this phrase refers to latent factors produced from cognitive 

tests that strongly correlate to each other. These factors constitute Stratum II of the Cattel-

Horn-Carroll model (Box 1). 

Correlational: a correlational study investigates the (linear) relationship between two or 

more variables (e.g., chess skill and intelligence) within a particular population (e.g., chess 

players). 

Cross-sectional: a cross-sectional study compares two or more populations (e.g., chess 

players and non-chess players) on one or more variables (e.g., cognitive skills). 

Domain-general: refers to  mental abilities that are used to solve complex tasks regardless 

of their content. 

Domain-specific: refers to mental abilities that are engaged only when material related to a 

particular field is involved. 

Experimental: refers to true experiments, that is, studies implementing an intervention 

(e.g., music instruction) aimed to exert an effect on one or more variables (e.g., academic 

skills). 

Far transfer: the generalization of acquired skills across domains loosely related to each 

other (e.g., studying mathematics to improve in Latin). 

General cognitive ability (GCA): also referred to as intelligence, Spearman’s g, and 

general mental ability, depending on the sources. This term refers to the latent factor 

emerging from all the tests of mental ability. It represents Stratum III in the Cattel-Horn-

Carroll model (Box 1). 

Latent factor: refers to a variable that is mathematically derived from observed variables. 

For example, scores in a large set of cognitive tests may be strongly correlated to each other 

and thus reflect the same underlying (i.e., latent) cognitive construct (e.g., GCA). The most 

common statistical technique to estimate latent factors is factor analysis. 
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Neural plasticity: refers to the capability of the neural system to adapt to environmental 

pressures. 
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Box 1. The Cattel-Horn-Carroll Model 

A well-known finding in psychology is that all tests of mental ability positively correlate 

with each other. This fact has led researchers to propose that all these tests measure a 

common factor: GCA. In psychometrics, GCA represents the portion of the between-

individual variance that is common across all tests of cognitive ability [102]. Thus, GCA is 

a theoretical construct expressed in the form of a latent factor. 

Correlations between cognitive tests are particularly strong when they refer to the same 

construct (e.g., processing speed). As a consequence, researchers have developed a 

hierarchical model – the Cattel-Horn-Carroll (CHC) model – that includes an intermediate 

level between GCA and tests of cognitive ability. This level consists of a series of latent 

factors referring to broad cognitive constructs (cognitive skills in the main text). The CHC 

model is thus designed on three levels (or strata). Stratum I refers to observed variables 

performance on cognitive tests. Stratum II consists of broad latent factors (i.e., cognitive 

skills) derived from cognitive tests (Stratum I) that highly correlate with each other. Finally, 

Stratum III (GCA) is the latent factor that subsumes all the common variance across latent 

factors in Stratum II [103]. 

Examples of cognitive skills in Stratum II are fluid reasoning (Gf), short-term memory 

(Gsm), processing speed (Gs), comprehension knowledge (Gc), and visual processing (Gv). 

Gf is the capability of solving new problems and adapting to novel situations. Gsm is the 

ability to retain and recall information over a short period of time. Gs refers to the ability to 

perform elementary cognitive tasks when high intellectual efficiency (i.e., speed and 

accuracy) is needed. Gc reflects language, knowledge and skills acquired through 

experience. Finally, Gv denotes the ability to generate and manipulate visual images. 

The CHC model does not make any specific predictions about the possibility of enhancing 

GCA through training. Nevertheless, the CHC model can provide a useful theoretical 

framework to understand the claims about the presumed benefits of cognitive training. 

According to cognitive-training theories, engaging in Stratum I activities boosts one or 

more cognitive skills (Stratum II) or even GCA (Stratum III). Fostered cognitive skills 
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increase GCA (Stratum III) which, in turn, exerts a positive influence on all the measures of 

Strata II and I. As seen in the main text, this hypothesis has never received robust empirical 

support, despite its appeal [e.g., 77]. 
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Box 2. Meta-Analytic Modelling 

Meta-analysis is a set of statistical techniques for integrating research findings across 

studies on a particular topic [104, 105]. Its primary objective is to evaluate (a) whether an 

effect (e.g., the relationship between two variables) is statistically significant and (b) how 

big and consistent the effect is. To date, meta-analysis is arguably the most effective tool 

for resolving disputes in quantitative empirical research. 

In its simplest form, meta-analysis is just a sample-size-weighted mean. The so-called 

overall effect size is calculated by averaging all the effect sizes (e.g., standardized mean 

differences between groups) extracted from the primary studies. Effect sizes are weighted 

on precision (i.e., inverse of the variance), which is primarily (sometimes solely) a function 

of sample size. This way, the bigger the sample, the bigger the weight of the effect in the 

analysis. 

Another fundamental information offered by meta-analysis is the degree of true 

heterogeneity (I2). I2 is a measure of the between-study variability in the population of the 

effect sizes that is not due to random error. While a low I2 is good evidence of the 

consistency of the effect across the primary studies, a high I2 suggests that the effect is 

moderated by some variables (e.g., type of control group). Accounting for true 

heterogeneity – when it exists – is essential to provide reliable and interpretable results. 

Finally, meta-analysis can estimate the amount of publication bias, that is, the inflation of 

the overall effect size due to the systematic suppression of statistically non-significant (p 

> .05) results from a particular literature. This problem has been unanimously recognized as 

one of the worst threats to credibility in scientific research [106]. Thus, estimating an 

overall effect corrected for publication bias is crucial. 

Techniques for detecting publication bias are often based on the degree of asymmetry of the 

distribution of the effect sizes around the meta-analytic mean [107], and the relationship 

between the variance and the size of the effect [108]. Ideally, unbiased overall effects are 

associated with symmetrically distributed effect sizes that are not directly related to their 
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variances. Other techniques focus on the distribution of statistically significant (p < .05) 

effect sizes [109] or test the robustness of the results by postulating a probability for the 

non-significant effects to be published [110, 111]. Technical details apart, it is worth noting 

that these methods not only correct for the suppression of smaller-than-average effect sizes, 

but, to some extent, also for statistical artefacts due to questionable research practices (e.g., 

p-hacking). 



20 
 

 

Box 3. Task Performance and Latent Factors 

Standardized cognitive tests are used to assess one’s cognitive skills. The performance on a 

cognitive test is considered a reliable proxy for more complex cognitive constructs such as 

memory or fluid intelligence. For example, we can assume that our performance in the n-

back task assesses our WM capacity. 

This equivalence is harder to establish in studies implementing an intervention than in 

cross-sectional and correlational studies. In fact, it is not simple to understand whether pre-

post-test differences represent cognitive enhancement or just the improvement in carrying 

out a cognitive task. Better performance may be due to the similarities between the trained 

task and the outcome measures rather than improved cognitive function. 

This is the main objection formulated against the alleged benefits of WM training on 

general memory skills [112]. WM training has been found to exert a moderate yet reliable 

positive effect on several memory tests. However, extended training in a particular memory 

task may help trainees to develop strategies to solve similar tasks. Similarly, playing Tetris 

is likely to boost the ability to carry out some mental-rotation tasks rather than general 

spatial ability. This problem is even more evident with brain-training interventions, which 

often consist of cognitive tasks that have been turned into computer games. It is thus 

obvious that these activities help to increase one’s performance on the original cognitive 

tasks. However, this does not represent any reliable evidence of cognitive enhancement. 

To address this issue, experiments must include multivariate measures of cognitive skills 

that are not too similar to the trained task(s). In fact, such a set of cognitive measures, rather 

than performance in a single cognitive task, is needed to investigate the impact of 

cognitive-training programs on latent factors representing cognitive skills. Designs based 

on latent factors have rarely been implemented in cognitive-training studies. When they 

have, no evidence of training-related benefits for GCA or particular cognitive skills has 

been documented [e.g., 23, 77]. 
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Box 4. Neural Patterns and Cognitive Skills 

As seen, neural plasticity has been proposed to be one of the links between cognitive-

training programs and cognitive enhancement. This idea is supported by the fact that 

performance in tests of intelligence is associated with particular functional (e.g., brain 

activation during a complex task) and structural (e.g., volume of grey matter) neural 

patterns [113]. Experts often exhibit structural and functional neural patterns specific to 

their field. This is the case of musicians, chess players, and mnemonists, just to mention a 

few examples [114, 115]. However, correlational and cross-sectional evidence does not tell 

us anything about the direction of causality. It is not possible to establish whether these 

neural patterns are due to training or existed before. So, what do experimental studies show 

us? 

Interestingly, training-induced functional and sometimes structural changes have been 

observed after music-based interventions [116, 117], WM training [118, 119], and video-

game training [120]. Regarding chess, particular structural and functional neural patterns 

have been observed in experts [121-123]. (To the best of our knowledge, no experimental 

study has examined the effect of chess training on structural/functional patterns.) 

With the exception of working-memory-related tasks, where experts use long-term memory 

brain regions typically not used by novices [124], the occurrence of particular neural 

correlates in both experts and participants undergoing cognitive-training regimens is quite 

consistent. Yet, the impact of cognitive-training programs on GCA and cognitive skills is, 

as seen, substantially null. These results suggest a decoupling of observed neural changes 

from domain-general cognitive skills. It is likely that the neural changes observed after 

cognitive-training interventions reflect the improved ability to perform the trained tasks and, 

sometimes, similar tasks. 

A possibility is that training-induced domain-specific neural patterns underlie those 

mechanisms necessary to store, retrieve, and manipulate domain-specific information to 

carry out complex cognitive tasks. For example, extended training in chess and music may 

result in localized neural changes [e.g., 114, 115] that sustain domain-specific tasks such as 
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retrieving chess and music configurations of pieces and notes from long-term memory and 

use this information to find the correct move or play a Mozart Sonata. By contrast, GCA 

and domain-general cognitive skills are probably expressed by more holistic neural 

processes, such as the dynamic reorganization of brain networks [102]. 
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Outstanding questions Box 

Is generalized transfer a function of intelligence? Are more intelligent people more able to 

see the abstract structure of a task and thus be able to use it to solve other tasks? If this is 

the case, the putative cases of transfer from one domain to another are more the reflection 

of pre-existing cognitive differences than the effect of practicing a given task on cognitive 

skills. 

Has the field of cognitive training be naïve in thinking that cognitive enhancement can be 

obtained from practice in one domain only? Possibly, training in several domains is 

necessary for extracting common abstract structures. If this is the case, increasing 

intelligence requires acquiring a minimum level of expertise in several domains, which is 

obviously more time consuming and more challenging motivationally than practicing only 

one domain. 

Does cognitive training have positive effects with specific populations such as patients with 

brain-damage, Alzheimer’s and other dementias? The idea is that, although it exerts no 

positive effects with healthy populations, cognitive training may benefit some particular 

populations whose cognitive function has been impaired.  

Is it possible to improve cognition with drugs? General cognitive ability is associated with 

specific genotypes. It has been proposed that drug treatments may be employed to modify 

gene expression to promote cognitive enhancement. 

Cognitive training does not enhance overall cognitive ability or core cognitive mechanisms. 

However, is it possible that engaging in cognitively demanding activities slows down 

cognitive decline in the elderly? This claim refers to the so-called “use it or lose it” 

hypothesis.  
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Trends Box 

 

• General cognitive ability (GCA) has been consistently found to correlate with 
performance in cognitive tasks and complex activities such as playing music, board 
games, and video games. 

• In the last two decades, researchers have thus extensively investigated the effects of 
engaging in cognitive-training programs and intellectually demanding activities on 
GCA. The results have been mixed. 

• Several independent researchers have noticed that the between-study variability can 
be accounted for by the quality of the experimental design and statistical artifacts. 
Those studies including large samples and active control groups often report no 
training-related effects. 

• These findings show that practicing cognitive-training programs or intellectually 
demanding activities do not enhance GCA or any cognitive skill. At best, such 
interventions boost one’s performance in tasks similar to the trained task. 

 


