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Precision medicine is a medical paradigm that focuses on finding
the most effective treatment decision based on individual patient in-
formation. For many complex diseases, such as cancer, treatment de-
cisions need to be tailored over time according to patients’ responses
to previous treatments. Such an adaptive strategy is referred as a
dynamic treatment regime. A major challenge in deriving an optimal
dynamic treatment regime arises when an extraordinary large num-
ber of prognostic factors, such as patient’s genetic information, de-
mographic characteristics, medical history and clinical measurements
over time are available, but not all of them are necessary for making
treatment decision. This makes variable selection an emerging need
in precision medicine.

In this paper, we propose a penalized multi-stage A-learning for
deriving the optimal dynamic treatment regime when the number of
covariates is of the non-polynomial (NP) order of the sample size. To
preserve the double robustness property of the A-learning method,
we adopt the Dantzig selector which directly penalizes the A-leaning
estimating equations. Oracle inequalities of the proposed estimators
for the parameters in the optimal dynamic treatment regime and
error bounds on the difference between the value functions of the
estimated optimal dynamic treatment regime and the true optimal
dynamic treatment regime are established. Empirical performance of
the proposed approach is evaluated by simulations and illustrated
with an application to data from the STAR*D study.

1. Introduction. Precision medicine is a medical paradigm that fo-
cuses on finding the most effective treatment decision based on individual
patient information. For many chronic diseases, such as cancer, cardiovascu-
lar disease and diabetes, treatment decisions need to be tailored over time
according to patients’ responses to previous treatments. Such an adaptive
treatment strategy is referred as an dynamic treatment regime. Formally
speaking, a dynamic treatment regime is a sequence of decision rules, dic-
tating how the treatment will be tailored through time to individual’s status.
The optimal dynamic treatment regime is defined as the one that yields the
most favorable outcome on average.

Keywords and phrases: A-learning, Dantzig selector, NP-dimensionality, Model mis-
specification, Optimal dynamic treatment regime, Oracle inequality
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Various methods have been proposed to estimate the optimal dynamic
treatment regime, including Q-learning (Watkins and Dayan, 1992; Chakraborty,
Murphy and Strecher, 2010) and A-learning (Robins, Hernan and Brumback,
2000; Murphy, 2003). Both Q-learning and A-learning rely on a backward
induction algorithm to find the optimal dynamic treatment regime, how-
ever, Q-learning models the conditional mean of the outcome given predic-
tors and treatment while A-learning directly models the contrast function
that is sufficient for treatment decision. In particular, A-learning has the so-
called doubly robust property, i.e. when either the baseline mean function
or the propensity score model is correctly specified, the resulting A-learning
estimating equation for the contrast function is consistent.

With the fast development of new technology, it becomes possible to
gather an extradinary large number of prognostic factors for each individual,
such as patient’s genetic information, demographic characteristics, medical
history and clinical measurements over time. For such big data, it is im-
portant to make effective use of information that is relevant to make op-
timal individualized treatment decisions, which makes variable selection as
an emerging need for implementing precision medicine. In addition, variable
selection is an essential tool in making inference for problems in which the
number of covariates is comparable or much larger than the sample size.
There have been extensive developments of penalized regression methods
for variable selection in prediction, for example, LASSO (Tibshirani, 1996),
SCAD (Fan and Li, 2001) and the Dantzig selector (Candès and Tao, 2007),
to name a few. In contrast to most penalized regression methods, which
adds a penalty term to an objective function, the Dantzig selector focuses
directly on estimating equations.

Although there is a large amount of work on developing variable selec-
tion methods for prediction, variable selection tools for deriving optimal
individualized treatment regimes have been less studied, especially when
the number of predictors is much larger than the sample size. Qian and
Murphy (2011) proposed to estimate the conditional mean response using
a L1-penalized regression and studied the error bound of the value func-
tion for the estimated treatment regime. When the number of covariates is
fixed, introduced a new penalized least squared regression framework and
established the oracle property of the estimator, which is robust against
the misspecification of the conditional mean function. extended this result
to the setting allowing NP-dimensionality of covariates. However, all these
works only consider studies with a single treatment decision. When moving
to multiple-stage studies, the asymptotic properties of the estimated opti-
mal dynamic treatment regime are much harder to derive since it needs to
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handle model misspecification of the contrast functions in the presence of
NP-dimensionality of covariates. Moreover, these methods are not doubly
robust.

In this paper, we propose a penalized A-learning method for deriving
the optimal dynamic treatment regime when the number of covariates is of
NP-order of the sample size. To preserve the doubly robust property of the
A-learning method, we adopt the Dantzig selector (Candès and Tao, 2007)
which directly penalizes the A-leaning estimating equations. The technical
challenges and advances of the proposed estimators are described as follows.

First, to prove the theoretical properties of the Dantzig estimator in lin-
ear regression setting, the uniform uncertainty principle (UUP, Candès and
Tao, 2007) or restricted eigenvalue condition (RE, Bickel, Ritov and Tsy-
bakov, 2009) is required on the Gram matrix XTX, where X stands for the
design matrix. The UUP condition essentially requires that every principle
submatrix with the number of rows or columns less than some specified s
behaves like an orthonormal system. The RE condition is the weakest and
hence the most general condition in the literature to ensure the theoreti-
cal properties of Lasso and Dantzig estimators. A close connection between
these two conditions are discussed in Bickel, Ritov and Tsybakov (2009).
In a random design case, Candès and Tao (2007) studied the UUP condi-
tion for Gaussian, Bernoulli and Fourier ensembles. Mendelson, Pajor and
Tomczak-Jaegermann (2007, 2008) obtained a similar result for a more gen-
eral class of design matrices, the isotropic subgaussian matrices, based on
some empirical process results. These results were further extended by Zhou
(2009), where the UUP and RE conditions are developed for subgaussian
ensembles with a correlated covariance structure. In the proposed penal-
ized A-learning method, however, such conditions are required on matrices
involving estimates, such as

XTdiag(A ◦ (1− π̂))X,(1.1)

where A = (A1, . . . , An)T denotes the vector of treatments received by n
subjects, π̂ = (π̂1, . . . , π̂n) denotes the corresponding estimated propensity
scores and ◦ denotes the componentwise product operator. The presence of π̂
in (1.1) adds extraordinary difficulties in establishing theoretical properties
of such a random matrix. We establish the UUP and RE conditions under a
proper convergence rate of π̂, which provides a new theoretical framework for
studying random matrices that involve estimates of unknown parameters.

Second, in the proposed penalized A-learning method, we need to esti-
mate the baseline mean function and the propensity score model with NP-
dimensionality of covariates. We adopt the penalized regressions with the
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folded-concave penalties, for example, a linear regression for the baseline
mean function and a logistic regression for the propensity score model, with
the SCAD penalties. Several difficulties need to be addressed for deriving
the theoretical properties of the resulting penalized estimators. First, to our
knowledge, penalized regressions with folded-concave penalties have seldom
been studied in a random design setting. A major difficulty of adapting the
existing results for the fixed design case to the random design case is to
control the maximum eigenvalues of some random matrices,

max
j
λmax

[
XMT

diag(|Xj |)XM
]
,

where λmax[K] denotes the maximum eigenvalue of a matrix K, M is a
given subset of [1, · · · , p], Xj denotes the jth column of a matrix X, and
XM the submatrix formed by columns in M . Such a problem is not stan-

dard since matrix XMT
diag(|Xj |)XM does not possess subexponential tail.

We derive some concentration inequalities for such random matrices and for
summations of subexponential and subgaussian random variables. Based on
these results, we establish the weak oracle (Lv and Fan, 2009) properties, i.e,
sign consistency and L∞ convergence rate of the estimators under subgaus-
sian ensembles, which is one of our major technical contributions. Moreover,
the posited models for the baseline mean function or the propensity score
may be misspecified. Therefore, the derivation of the asymptotic properties
needs to take into account model misspecification with NP-dimensionality
of covariates, which is challenging.

Third, a challenge for extending the results for a single treatment decision
to sequential treatment decisions is that the contrast functions are likely to
be misspecified in the backward induction algorithm, such as A-learning.
This together with the NP-dimensionality of covariates make it extremely
hard to study theoretical properties of the value function under the esti-
mated optimal dynamic treatment regime. We overcome this difficulty by
first defining population-level least favorable parameters in the misspecified
contrast functions. Moreover, we derive the error bounds for the correspond-
ing estimates under the model misspecification, which in turn leads to an
error bound for the difference between the value functions of the estimated
optimal dynamic treatment regime and the underlying true optimal dynamic
treatment regime.

The remainder of the paper is organized as follows. We introduce the
proposed penalized A-learning method in Section 2. Some implementation
issues are addressed in Section 3, followed by simulation results in Section
4. We apply our method to a data from the STAR*D study in Section 5.
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Section 6 studies the error bounds of the penalized A-learning estimator and
the difference between the value functions of the estimated optimal regime
and the true optimal regime, at the second stage. Section 7 characterizes such
results for the estimates at the first stage. Section 8 presents the weak oracle
properties of the penalized estimators in the propensity score and baseline
mean models under a random design setting. Section 9 discusses the UUP
and RE condition in the context of A-learning. All technical conditions,
lemmas and proofs are given in the Appendix.

2. Penalized A-Learning. For simplicity of presentation, we only con-
sider a two-stage study where binary treatment decisions are made at time
points t1 and t2. The data of a subject can be summarized as

O = (S(1), A(1), S(2), A(2), Y ),(2.1)

where S(1) denotes the covariates collected prior to t1, A(1) ∈ {0, 1} is the
treatment received at time t1, S(2) denotes intermediate covariates collected
between time points t1 and t2, A(2) ∈ {0, 1} is the treatment received at time
t2, and Y is the final outcome of interest. It is assumed that a larger value
of Y stands for a better clinical outcome. Denote Y ?(a1, a2) the potential
response of patient if he/she were given a1 as the first treatment and a2

as the second. If a patient follows a given regime (d1, d2), we can write the
potential outcome

Y ?(d1, d2) =
∑

a1∈{0,1},a2∈{0,1}

Y (a1, a2)I(d1 = a1, d2 = a2),

where I(·) denotes the indicator function. Our goal is to find a dynamic
treatment regime to maximize the mean potential outcome. Throughout
the paper, we make the commonly used assumptions for studying dynamic
treatment regimes: stable unit treatment value assumption and sequential
randomization assumption (Murphy, 2003).

The observed data from n subjects can be summarized as

Oi = (S
(1)
i , A

(1)
i , S

(2)
i , A

(2)
i , Yi), i = 1, . . . , n,

which are assumed to be independently and identically distributed copies of
O. We assume the following semiparametric regression model for Y :

Yi = h(2)(Xi) +A
(2)
i C(2)(Xi) + ei,(2.2)

where Xi = ((S
(1)
i )T , A

(1)
i , (S

(2)
i )T )T is the vector of covariates for the ith

patient, h(2)(·) is an unspecified baseline mean function, C(2)(·) the contrast
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function, and ei is an independent error with mean 0. The design matrix is
denoted as X = (X1, . . . , Xn)T .

Define

Vi = max
A

(2)
i

E(Yi|S(1)
i , A

(1)
i , S

(2)
i , A

(2)
i ) = h(2)(Xi) + C(2)(Xi)I(C(2)(Xi) > 0).

At the first stage, we consider the following conditional mean model for V (2):

E
(
Vi|S(1)

i , A
(1)
i

)
= h(1)(S

(1)
i ) +A

(1)
i C(1)(S

(1)
i ),(2.3)

where h(1)(·) and C(1)(·) are functions of the baseline covariates. To simplify

the notation, we use a shorthand Si for S
(1)
i and let S = (S1, . . . , Sn)T , the

design matrix at the baseline.
It can be shown that the optimal dynamic treatment regime is given by

dopt = (dopt1 , dopt2 ), where

dopt1 (Si) = I{C(1)(Si) > 0} and dopt2 (Xi) = I{C(2)(Xi) > 0}.(2.4)

To estimate dopt1 and dopt2 , we posit the following models for C(1)(·), C(2)(·),
h(1)(·), h(2)(·), π(1)(·), and π(2)(·):

π(1)(s, α1) = exp(sTα1)/{1 + exp(sTα1)},(2.5)

π(2)(x, α2) = exp(xTα2)/{1 + exp(xTα2)},(2.6)

h(1)(s) = sT θ1, h
(2)(x) = xT θ2, C

(1)(s) = sTβ1, C
(2)(x) = xTβ2,(2.7)

and

π(1)(s) = Pr(A
(1)
i = 1|Si = s) and π(2)(x) = Pr(A

(2)
i = 1|Xi = x).

Models in (2.5)-(2.7) can be misspecified, however, we require that ei-
ther h(j) or π(j) is correct for j = 1, 2. For simplicity, we require C(2) to
be correctly specified. The general case when C(2) is misspecified can be
similarly discussed. We use backward induction to estimate the optimal dy-
namic treatment regime. At the second decision point, we first estimate the
parameters in the posited propensity score and baseline mean models using
penalized regressions. Specifically, define

α̂2 = arg min
α2∈Rp

1

n

n∑
i=1

[log{1 + exp(XT
i α2)} −A(2)

i XT
i α2] +

p∑
j=1

λ
(2)
1n ρ

(2)
1 (|αj2|, λ

(2)
1n ),
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and

θ̂2 = arg min
θ2∈Rp

1

n

n∑
i=1

(1−A(2)
i )(Yi −XT

i θ2)2 +

p∑
j=1

λ
(2)
2n ρ

(2)
2 (|θj2|, λ

(2)
2n ),

where α2 = (α1
2, · · · , α

p
2)T , θ2 = (θ1

2, · · · , θ
p
2)T , ρ

(2)
1 and ρ

(2)
2 belong to the

class of folded-concave penalty functions (Lv and Fan, 2009), such as SCAD

(Fan and Li, 2001), and λ
(2)
1n , λ

(2)
2n the associated regularization parameters.

Next, we estimate β2 in (2.2) using the Dantzig selector based on A-
learning estimating function (Murphy, 2003), defined by

β̂2 = arg min
β2∈Λ(2)

||β2||1,(2.8)

where

Λ(2) =

{
β2 ∈ Rp : || 1

n
XTdiag(A(2) − π̂(2)){Y −Xθ̂2 −A(2) ◦ (Xβ2)}||∞ ≤ λ(2)

3n

}
,

Y = (Y1, . . . , Yn)T , A(2) = (A
(2)
1 , . . . , A(2)

n )T π̂(2) = (π(2)(X1, α̂2), . . . , π(2)(Xn, α̂2))T ,

and λ
(2)
3n the regularization parameter.

To estimate the regime at the first decision point, we define the pseudo-
outcome V̂i using the advantage function (Murphy, 2003) by

V̂i = Yi +XT
i β̂2{I(XT

i β̂2 > 0)−A(2)
i }.(2.9)

Similarly, define

α̂1 = arg min
α1∈Rq

1

n

n∑
i=1

[log{1 + exp(STi α1)} −A(1)
i STi α1] +

q∑
j=1

ρ
(1)
1 (|αj1|, λ

(1)
1n ),

and

θ̂1 = arg min
θ1∈Rq

1

n

n∑
i=1

(1−A(1)
i )(V̂i − STi θ1)2 +

q∑
j=1

ρ
(1)
2 (|θj1|, λ

(1)
2n ),

where α1 = (α1
1, · · · , α

q
1)T , θ1 = (θ1

1, · · · , θ
q
1)T , and ρ

(1)
1 and ρ

(1)
2 are folded-

concave penalty functions. Then, we estimate β1 in (2.3) by

β̂1 = arg min
β1∈Λ(1)

||β1||1,(2.10)
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where

Λ(1) =

{
β1 ∈ Rq : || 1

n
STdiag(A(1) − π̂(1)){V̂ − Sθ̂1 −A(1) ◦ (Sβ1)}||∞ ≤ λ(1)

3n

}
,

V̂ = (V̂1, . . . , V̂n)T , A(1) = (A
(1)
1 , . . . , A(1)

n )T and π̂(1) = (π(1)(S1, α̂1), . . . , π(1)(Sn, α̂1))T .

The estimated optimal dynamic treatment regime is given by

d̂1(Si) = I(β̂T1 Si > 0) and d̂2(Xi) = I(β̂T2 Xi > 0).(2.11)

3. Some Implementation Issues. When the tuning parameters in
optimization problems (2.8) and (2.10) are fixed, the Dantzig selector can
be solved by a standard linear programming algorithm. One issue for im-
plementing Dantzig selector is the choice of the tuning parameters. We use
a BIC criterion for selecting tuning parameters. For Dantzig selector (2.8),

λ
(2)
3n is chosen as the minimizer of

(3.1) BIC(λ) = n log(RSS(λ)/n) + d(λ){log(n) + log(p+ 1)},

where RSS(λ) =
∑n

i=1

[
{A(2)

i − π(2)(Xi, α̂2)}(Y (2)
i −XT

i θ̂2 −A(2)
i XT

i β̂2)
]2

,

and d(λ) is the number of nonzero components in β̂2. A similar BIC criterion
was proposed by Chen and Chen (2008). We use a similar criterion for

choosing λ
(1)
3n .

It was observed that the Dantzig estimators may underestimate the true
values of parameters due to the shrinkage estimation (Candès and Tao,
2007). Therefore, we use a two-step procedure for practical implementa-
tion, which is referred as Gauss-Dantzig selector in Candès and Tao (2007).
Specifically, in the first step, we apply the proposed penalized A-learning to
select important variables for making an optimal decision, i.e. those variables
with non-zero estimated coefficients. Then, in the second step, their corre-
sponding coefficients are re-calculated by solving the unpenalized A-learning
estimating equations with important variables only.

4. Simulation Studies.

4.1. Settings. To evaluate the numerical performance of the proposed
penalized A-learning method, we consider simulation studies with two treat-
ment decision points, based on the following model:

(4.1) Y = A(1)A(2) +A(2)(βT2 S
(1) + S(2) + β0) +A(1)(βT1 S

(1)) + ε,
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where A(j), j = 1, 2, is the treatment given at the jth stage, S(j), j = 1, 2,
denote the covariate information collected before the jth treatment is given,
and Y is the final response of interest. The random error ε follows a nor-
mal distribution with mean 0 and variance 0.25. Here, covariates S(1) =

(S
(1)
1 , ..., S

(1)
q )T follow a multivariate normal distribution with mean 0 and

variance Iq. In addition, the intermediate covariate S(2) is a scalar and gener-

ated as S(2) = S
(1)
1 +A(1)+A(1)S

(1)
1 +e, where e follows a normal distribution

with mean 0 and variance 0.25.
We set β0 = 0. Based on model (4.1), the optimal treatment regime at

stage 2 is I(A(1) + βT2 S
(1) + S(2) > 0). Following this optimal treatment

regime at stage 2, the Q-function at stage 1 is given by

Q1(S(1), A(1)) = E
{

(A(1) + βT2 S
(1) + S(2))+

∣∣S(1), A(1)
}

+A(1)(βT1 S
(1))

=
β2√
8π

exp
(
−2µ2

)
+ µ{1− Φ(−2µ)}+A(1)(βT1 S

(1)),

where µ = A(1) + βT2 S
(1) + S

(1)
1 + A(1) + A(1)S

(1)
1 and a+ = (|a| + a)/2.

Therefore, the contrast function C(S(1)) = Q1(S(1), 1) − Q1(S(1), 0) and
thus the optimal treatment regime at stage 1 is I{C(S(1)) > 0}.

To evaluate the double robustness of the proposed method, we consider a
variety of scenarios with correctly specified and misspecified baseline mean
and/or propensity score models. At stage 2, a linear model with covari-
ates S(1), S(2) and A(1) is fitted for the baseline mean function, while the
true baseline mean function is h(2)(X) = A(1)(βT1 S

(1)). We choose β1 =
0q, for which the baseline mean function is correctly specified, and β1 =
(04, 1,−1, 0q−6)T , for which the baseline mean function is misspecified. At
stage 1, a linear model with covariates S(1) is fitted for the baseline mean
function, which is always misspecified. Logistic models are used for esti-
mating the propensity scores, which are correctly specified for the constant
model but misspecified for the probit model. The following four settings are
considered:

Setting 1: β1 = 0q, P (A(2) = 1) = 0.5;
Setting 2: β1 = (04, 1,−1, 0q−6)T , P (A(2) = 1) = 0.5;
Setting 3: β1 = 0q, P (A(2) = 1) = Pr(N(0, 1) ≤ STγ);
Setting 4: β1 = (04, 1,−1, 0q−6)T , P (A(2) = 1) = Pr(N(0, 1) ≤ STγ),

where S = ((S(1))T , S(2))T and N(0, 1) a standard normal random variable.
For other parameters, we choose P (A1 = 1) = 0.5, β2 = (0, 0, 1,−1, 0q−4)T ,
σ1 = σ2 = 0.5, d = (d0, d1, d2, d3)T = (0, 1, 1, 1)T , and γ = (0q−2, 1,−1, 1)T .
Table 1 summarizes the information of model misspecification for the base-
line mean and propensity score models and associated important variables
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Table 1
Simulation Settings

Stage Baseline Propensity Score Important Variables

Setting 1
Stage 2 right right (S(2), A1, S

(1)
3 , S

(1)
4 )

Stage 1 wrong right (S
(1)
1 , S

(1)
3 , S

(1)
4 )

Setting 2
Stage 2 wrong right (S(2), A1, S

(1)
3 , S

(1)
4 )

Stage 1 wrong right (S
(1)
1 , S

(1)
3 , S

(1)
4 , S

(1)
5 , S

(1)
6 )

Setting 3
Stage 2 right wrong (S(2), A1, S

(1)
3 , S

(1)
4 )

Stage 1 wrong right (S
(1)
1 , S

(1)
3 , S

(1)
4 )

Setting 4
Stage 2 wrong wrong (S(2), A1, S

(1)
3 , S

(1)
4 )

Stage 1 wrong right (S
(1)
1 , S

(1)
3 , S

(1)
4 , S

(1)
5 , S

(1)
6 )

under different settings. In next section, we show simulation results of the
four settings with q = 1000 and sample size n = 150/300 over 500 replica-
tions.

4.2. Competing methods. We further compare our method with outcome
weighted learning (OWL, Zhao et al., 2012), which is a robust method
which estimates individualized treatment rule by directly maximizing the
estimated value function. Zhao et al. (2015) further introduced backward
outcome weighted learning (BOWL) and simultaneous outcome weighted
learning (SOWL) to extend their methods to multiple stage studies. Here,
we consider a double robust version of BOWL (DR-BOWL) for comparison.
For a single stage study, the developed DR-BOWL method is similar to the
residual weighted learning method (Zhou et al., 2015).

Specifically, we first estimate the propensity score π̂(2) = (π̂
(2)
1 , . . . , π̂

(2)
n )T

and baseline h(2) = XT θ̂(2) = (h
(2)
1 , . . . , h

(2)
n )T as in Section 2. We consider

the linear decision rule I(xTβ20 > 0) and estimate β20 by minimizing the
following loss function:

β̃2 = arg min
β2

1

n

∑
i

(Yi − h(2)
i ){1− (2A

(2)
i − 1)XT

i β2}+
A

(2)
i π̂

(2)
i + (1−A(2)

i )(1− π̂(2)
i )

+ λ
(2)
3n ||β2||1.

The penalty term in original OWL is λ
(2)
3n ||β2||22. We replace it with the L1

norm here to simultaneously select variables. Then we construct the pseudo
outcome V̂i using augmented inverse propensity score estimator (AIPWE
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Zhang et al., 2012),

V̂i =
A

(2)
i d̃2(Xi) + (1−A(2)

i ){1− d̃2(Xi)}
A

(2)
i π̂

(2)
i + (1−A(2)

i )(1− π̂(2)
i )

Yi −(
A

(2)
i d̃2(Xi) + (1−A(2)

i ){1− d̃2(Xi)}
A

(2)
i π̂

(2)
i + (1−A(2)

i )(1− π̂(2)
i )

− 1

)
[ĥ

(2)
i {1− d̃2(Xi)}+ Φ̂

(2)
i d̃2(Xi)]

where d̃2(Xi) = I(XT
i β̃2 > 0), and Φ̂

(2)
i is an estimate of Φ

(2)
i = Mean(Y |A =

1, X = Xi). Here, we fit a linear model for Mean(Y |A = 1, X) and use

nonconcave penalized regression with SCAD penalty to obtain Φ̂
(2)
i . Denoted

by π̂(1) = (π̂
(1)
1 , . . . , π̂

(1)
n )T and h(1) = ST θ̂(1) = (h

(1)
1 , . . . , h

(1)
n )T estimated

propensity score and baseline at the first stage, we consider linear treatment
regime of the form I(sTβ?1 > 0) and estimate β?1 by

β̃1 = arg min
β1

1

n

∑
i

(V̂i − h(1)
i ){1− (2A

(1)
i − 1)STi β1}+

A
(1)
i π̂

(1)
i + (1−A(1)

i )(1− π̂(1)
i )

+ λ
(1)
3n ||β1||1.

Tuning parameters λ
(2)
3n and λ

(1)
3n are obtained by minimizing a value-based

BIC criterion.

4.3. Results. Table 2 summarizes variable selection results for optimal
treatment decisions and the empirical performance of the estimated optimal
treatment regime compared with the true optimal regime, using our pe-
nalized A-learning method (denoted as PAL) and DR-BOWL, respectively.
Specifically, it reports the false negative (FN) rate (the percentage of impor-
tant variables that are missed) and false positives (FP) rate (the percentage
of unimportant variables that are selected), the ratio of value functions (de-
noted by VR) calculated using the value function of the estimated optimal
treatment regime divided by that of the true optimal regime, and the er-
ror rates (ER) of the estimated optimal treatment regimes for treatment
decision making, in both stages. Here, the ER at stage 2 is calculated as
the mean of n−1

∑
i=1 |I(β̂T2 Xi > 0) − I(βT2,0Xi > 0)| and at stage 1 as the

mean of n−1
∑

i=1 |I(β̂T1 Si > 0) − I(C(Si) > 0)|. The value function of a
given treatment regime is calculated using Monte Carlo simulations based
on 10,000 replications. The VR at stage 2 (devoted by VR*) is to compare
the estimated optimal treatment regime at stage 2 and a randomly assigned
treatment at stage 1 as in simulated data with the true optimal dynamic
treatment regime for both stages. The VR at stage 1 is to compare the es-
timated optimal dynamic treatment regime with the true optimal dynamic
treatment regime for both stages.
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12 C. SHI, A. FAN, R. SONG AND W. LU

The DR-BOWL methods fail in all settings. Take Setting 1, n = 300 as
an example, FN = 78.1% for the second stage where the baseline, propensity
score and contrast functions are all correctly specified. It missed approxi-
mately 3/4 of the important variables. Besides, VR = 50.2, indicating the
poor performance of the estimated treatment rules.

On the other hand, the overall performance of our penalized A-learning
method is good. We make the following observations. First, the FN rates
are much higher than the FP rates. This suggests that the Dantzig selector
tends to have conservative variable selection results, which is commonly seen
in the literature. Second, the variable selection results and the error rates of
the estimated optimal treatment regime at stage 2 are generally much better
than those at stage 1, which is expected since the optimal linear treatment
decision rule is correctly specified at stage 2 but not at stage 1. At stage 2,
for n = 150, over 55% important variables are not selected for all 4 settings.
Thirdly, our method requires correct specification of either the propensity
score or the baseline model, especially when the sample size is small. This
is implied by comparing results in Setting 4 with other three settings. For
example, when n = 150, the false negative at second stage reaches 55.7%,
which is much higher than those FN’s in other three settings. Besides, our
estimator is very efficient in Setting 1 where both models are correctly spec-
ified. Even when n = 150, the ratio of the value functions reaches 98.7%,
and all error rates are abound 6-7%. These results are even comparable
with those under Setting 2 and 3 when n = 300. Lastly, the estimation and
variable selection performance of the estimated optimal dynamic treatment
regimes improves as the sample size increases. In particular, in Setting 1-3
when n = 300, the VR’s are all above 97.9% and ER’s are all below 8%,
which implies that the estimated optimal treatment regimes nearly maximize
the value functions.

4.4. Nonregularity. As suggested by one of the referee, we further ex-
amine our methods under settings with different degrees of nonregularity.
Specifically, we consider the setting where all covariates in S(1) are indepen-
dent Rademacher random variables. We set S(2) to be another Rademacher
random variable independent of S(1) and A(1).

Denoted by A(1)∗ = 2A(1) − 1, the response Y is generated as follows,

Y = 2A(2)
(
A(1)∗ + δ1S

(1)
1 + S(2) − δ2

)
+A(1)(βTS(1)) + ε,(4.2)

where ε ∼ N(0, 0.25).
For each stage, we fit linear models for the baseline and contrast function,

and a logistic regression model for the propensity score. The parameter β
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Table 2
Variable Selection Simulation Results (%).

Stage 2 Stage 1
n method FN FP VR* ER FN FP VR ER

Setting 1
150 PAL 12.6 0.1 64.7 6.1 63.8 0.1 98.3 7.0

DR-BOWL 85.7 0.1 39.0 34.7 99.5 0.1 39.1 48.3
300 PAL 1.1 0.1 65.4 2.6 41.9 0.1 99.7 6.2

DR-BOWL 78.1 0.1 49.2 27.5 98.0 0.2 50.2 48.3

Setting 2
150 PAL 25.9 0.1 57.8 10.4 56.2 0.2 90.8 15.7

DR-BOWL 86.3 0.1 35.1 35.6 99.0 0.2 35.9 47.2
300 PAL 11.0 0.1 59.6 6.2 32.5 <0.05 97.9 8.0

DR-BOWL 79.8 0.1 42.4 29.9 97.2 0.2 44.6 47.1

Setting 3
150 PAL 33.7 0.3 59.9 13.5 64.5 0.1 93.0 9.1

DR-BOWL 18.8 1.3 60.2 7.5 72.3 0.5 92.4 24.4
300 PAL 12.3 0.3 64.2 7.2 52.7 <0.05 98.3 6.9

DR-BOWL 74.9 0.2 55.3 23.2 97.8 <0.01 56.4 48.4

Setting 4
150 PAL 55.7 0.2 48.2 22.4 62.2 0.1 79.4 17.7

DR-BOWL 75.0 0.1 51.0 23.4 99.0 <0.01 51.7 47.2
300 PAL 26.4 0.3 56.2 13.2 36.4 <0.05 94.3 8.4

DR-BOWL 74.9 0.2 50.9 23.1 97.4 <0.01 52.8 47.0

FN: proportion of related variables with zero coefficients
FP: proportion of unrelated variables with nonzero coefficients
VR: value ratio between estimated and true treatment regimes
ER: error rate of estimated treatment regimes

in (4.2) determines the baseline function on the second stage. Similar to the
regular case discussed in Section 4.1 in the revision, we also consider four
Settings here:

Setting 1: β = 0q, P (A(2) = 1) = 0.5;
Setting 2: β = (04, 1,−1, 0q−6)T , P (A(2) = 1) = 0.5;
Setting 3: β = 0q, P (A(2) = 1) = Pr(N(0, 1) ≤ STγ);
Setting 4: β = (04, 1,−1, 0q−6)T , P (A(2) = 1) = Pr(N(0, 1) ≤ STγ),

where S = ((S(1))T , S(2))T and γ = (0q−2, 1,−1, 1)T .
Parameters δ1 and δ2 in (4.2) controls the degree of nonregularity on the

second stage. We consider three choices of δ1 and δ2. Set δ1 = 1, δ2 = 1, we
obtain

Pr(C(2)(X) = 0) = Pr(A(1)∗ + S
(1)
1 + S(2) = 1) = 0.375.

imsart-aos ver. 2014/10/16 file: "accepted version".tex date: October 30, 2017
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Table 3
Simulation for Nonregular Settings

Stage Baseline Propensity Score Important Variables

Setting 1
Stage 2 right right (S(2), A1, S

(1)
1 )

Stage 1 right right (S
(1)
1 )

Setting 2
Stage 2 wrong right (S(2), A1, S

(1)
1 )

Stage 1 right right (S
(1)
1 , S

(1)
5 , S

(1)
6 )

Setting 3
Stage 2 right wrong (S(2), A1, S

(1)
1 )

Stage 1 right right (S
(1)
1 )

Setting 4
Stage 2 wrong wrong (S(2), A1, S

(1)
1 )

Stage 1 right right (S
(1)
1 , S

(1)
5 , S

(1)
6 )

Set δ1 = 1.1, δ2 = 1.1, we have

Pr(C(2)(X) = 0) = Pr(A(1)∗ + S(2) = 1, S(1) = 1) = 0.25.

Set δ1 = 1, δ2 = 1.1, we have

Pr(C(2)(X) = 0) = 0.

With some calculation, we can show the Q-function on the first stage
takes the following form:

Q(S(1), A(1)) = A(1)(βTS(1) + f1S
(1)
1 + f2).

Hence, the contrast function is correctly specified on the first stage. When
δ1 = 1, δ2 = 1 or δ1 = 1.1, δ2 = 1.1, we have f1 = f2 = 1. When δ1 = 1,
δ2 = 1.1, we have f1 = f2 = 0.95. Information about model specification
and important variables in the contrast function are given in Table 3.

We also consider two choices of sample size, n = 150 and n = 300, re-
spectively. This gives us a total of 24 scenarios. For each scenario, we report
FN, FP, VR and ER as Section 4.3. ER for the first and second stage are
calculated as{

1

n

n∑
i=1

|I(β̂T1 Si > 0)− I(C(Si) > 0)|I(C(Si) 6= 0)

}
/

{
1

n

n∑
i=1

I(C(Si) 6= 0)

}
and{

1

n

n∑
i=1

|I(β̂T2 Xi > 0)− I(βT2,0Xi > 0)|I(βT2,0Xi 6= 0)

}
/

{
1

n

n∑
i=1

I(βT2,0Xi 6= 0)

}
.
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Compared to definitions in Section 4.3, error rates here are calculated
with respect to those patients with nonzero contrast functions. Such defini-
tions are more meaningful since both two treatments are optimal for these
patients. We simulate over 200 replications. Results are reported in Table 4.

Table 4
Variable Selection Simulation Results for Non-regular Settings (%).

Stage 2 Stage 1
n Nonregularity FN FP VR* ER FN FP VR ER

Setting 1
150 δ1 = 1, δ2 = 1 0 < 0.01 53.6 0 4.0 0.3 93.9 5.0

δ1 = 1.1, δ2 = 1.1 0 < 0.01 53.5 0.1 0.5 0.3 95.1 3.2
δ1 = 1, δ2 = 1.1 0 0.01 52.9 5.0 1.0 0.3 93.8 4.2

300 δ1 = 1, δ2 = 1 0 < 0.01 53.3 0 0 0.4 97.3 0.9
δ1 = 1.1, δ2 = 1.1 0 < 0.01 53.9 0 0 0.3 97.9 0.9
δ1 = 1, δ2 = 1.1 0 < 0.01 52.8 2.0 0 0.3 97.0 0.9

Setting 2
150 δ1 = 1, δ2 = 1 0 < 0.05 46.1 0 14.7 0.3 90.7 5.6

δ1 = 1.1, δ2 = 1.1 0 < 0.05 45.9 2.0 14 0.3 89.5 5.7
δ1 = 1, δ2 = 1.1 0 < 0.05 44.4 11.6 9.7 0.3 89.7 11.5

300 δ1 = 1, δ2 = 1 0 < 0.01 45.8 0 0 0.2 97.1 0.4
δ1 = 1.1, δ2 = 1.1 0 < 0.01 45.6 0.5 0 0.2 96.4 0.4
δ1 = 1, δ2 = 1.1 0 0.01 45.1 6.8 0 0.2 98.1 7.4

Setting 3
150 δ1 = 1, δ2 = 1 5.7 0.6 45.0 2.9 19.0 0.2 85.6 4.1

δ1 = 1.1, δ2 = 1.1 8.2 0.5 45.1 6.6 17.0 0.2 87.3 3.4
δ1 = 1, δ2 = 1.1 6.3 0.6 44.6 14.6 18.5 0.2 85.8 4.1

300 δ1 = 1, δ2 = 1 0 0.1 53.1 0 0 0.3 97.1 1.0
δ1 = 1.1, δ2 = 1.1 0 0.1 53.8 1.4 0 0.3 98.0 0.6
δ1 = 1, δ2 = 1.1 0 0.1 52.9 8.4 0 0.3 97.9 0.8

Setting 4
150 δ1 = 1, δ2 = 1 20.7 0.5 25.4 8.6 52 0.2 66.6 14.0

δ1 = 1.1, δ2 = 1.1 20.8 0.5 25.3 12.4 54.2 0.2 62.5 14.9
δ1 = 1, δ2 = 1.1 21.5 0.6 23.7 22.6 51.7 0.2 61.7 22.1

300 δ1 = 1, δ2 = 1 0.3 0.2 44.9 0.2 3.3 0.2 95.8 0.7
δ1 = 1.1, δ2 = 1.1 0 0.2 44.8 3.9 0.2 0.2 97.5 0.4
δ1 = 1, δ2 = 1.1 0 0.2 43.8 13.2 0.3 0.2 97.1 8.3

Within each setting, most results are similar across different choices of δ1

and δ2. This suggests the nonregularity issues don’t have a big impact on
the variable selection results. Apart from results in Setting 4, false negatives
and false positives are all very small. When the sample size increases to 300,
false negatives for most scenarios are exactly equal to 0 while false positives
for all settings are below 0.4%, demonstrating perfect variables selections
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16 C. SHI, A. FAN, R. SONG AND W. LU

performance of our methods. In Settings 1-3, most error rates are below 7%
while the ratios of value function are all above 85%, indicating our estimated
optimal treatment regimes are very close to the truth in these scenarios.

5. Application to STAR*D Study. We applied the proposed method
to a dataset from the Sequenced Treatment Alternatives to Relieve Depres-
sion (STAR*D) study, which was conducted to compare different treatments
for patients with major depressive disorder (MDD). There were 4041 par-
ticipants (age 18-75) with nonpsychotic MDD enrolled in this study. At
first level, all participants were treated with citalopram (CIT) up to 14
weeks. Subsequently, 3 more levels of treatments were provided for partic-
ipants without a satisfactory response to CIT. At each level, participants
were randomly assigned to treatment options acceptable to them. At Level
2, participants were eligible for seven treatment options: sertraline (SER),
venlafaxine (VEN), bupropion (BUP), cognitive therapy (CT), and aug-
menting CIT with bupropion (CIT+BUP), buspirone (CIT+BUS) or cog-
nitive therapy (CIT+CT). Participants without a satisfactory response to
CT were proceeded to Level 2A for additional medication treatments. All
participants who did not respond satisfactorily at Level 2 or 2A were eligible
for four treatments at Level 3: medication switch to mirtazapine (MIRT) or
nortriptyline (NTP), and medication augmentation with either lithium (Li)
or thyroid hormone (THY). Participants without satisfactory response to
Level 3 were re-randomized at Level 4 to either tranylcypromine (TCP) or a
combination of mirtazapine and venlafaxine (MIRT+VEN). See Fava et al.
(2003) and Rush et al. (2004) for more details of the STAR*D study. One
goal of the study is to determine which treatment strategies, in what order
or sequence, provide the optimal treatment effect.

As an illustration, we focused on a subset of participants who were given
treatment BUP or SER at Level 2 and did not receive satisfactory responses,
and then were randomized to treatment MIRT or NTP at Level 3. For this
study, we considered 381 covariates collected at baseline and intermediate
levels as possible relevant predictors. For treatment regime at Level 3, all the
381 covariates as well as the assigned treatment at Level 2 were considered
as possible predictors for making optimal treatment decision. For treatment
regime at Level 2, 305 covariates that were collected before giving treat-
ment at Level 2 were considered for making optimal treatment decision.
Negative 16-item Quick Inventory of Depressive Symptomatology-Clinician-
Rated (QIDS-C16) was used as the final response, which is a measurement
of symptomatic status of depression. There are 73 participants who had
complete records in the subset of data we are interested in. Among these
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participants, 36 were treated with BUP and 37 were treated with SER at
Level 2, and 33 were treated with NTP and 40 were treated with MIRT at
Level 3.

The selection and estimation results are summarized as follows. At Level
3, our method selected two covariates: “age” in baseline demographics (AGE),
and the suicide risk of the patient (SUICD). The estimated optimal treat-
ment regime is I(1.459 − 0.091 × AGE + 0.158 × SUICD ≥ 0), where 1
represents treatment NTP and 0 represents treatment MIRT. This optimal
treatment regime assigns 27 participants to NTP and the rest 46 partici-
pants to MIRT. At Level 2, our method also selected two covariates: age
and QIDS-C percent improvement” in clinic visit clinical record form at
Level 1 (QCIMP). The estimated optimal treatment regime is I(−8.600 +
0.145 × AGE + 0.125 × QCIMP ≥ 0), where 1 stands for treatment BUP
and 0 stands for treatment SER. This optimal treatment regime assigns 37
participants to BUP and the rest 36 participants to SER.

To further examine the estimated optimal dynamic treatment regime,
we compare the estimated value function of our estimated optimal treat-
ment regime with values under those four non-dynamic treatment regimes,
BUP+NTP, BUP+MIRT, SER+NTP and SER+MIRT. For a given dy-
namic treatment regime d = (d(1), d(2)), we evaluate its average value func-
tion using AIPWE (Zhang et al., 2013),

1

n

n∑
i=1

d
(1)
Ai

π̂
(1)
Ai

(
d

(2)
Ai

π̂
(2)
Ai

Yi −
d

(2)
Ai
− π̂(2)

Ai

π̂
(2)
Ai

{d(2)
i (ĥ

(2)
i +XT

i β̂2) + (1− d(2)
i )ĥ

(2)
i }

)

− 1

n

n∑
i=1

d
(1)
Ai
− π̂(1)

Ai

π̂
(1)
Ai

{d(1)
i (ĥ

(1)
i + STi β̂1) + (1− d(1)

i )ĥ
(1)
i },

where d
(2)
Ai

= A
(2)
i d

(2)
i + (1 − A

(2)
i ), d

(1)
Ai

= A
(1)
i d

(1)
i + (1 − A

(1)
i )(1 − d

(1)
i ),

π̂
(2)
Ai

= A
(2)
i π̂

(2)
i + (1−A(2)

i )(1− π̂(2)
i ), π̂

(1)
Ai

= A
(1)
i π̂

(1)
i + (1−A(1)

i )(1− π̂(1)
i ),

d
(2)
i and d

(1)
i the assigned treatment for the ith patient, according to d(2)

and d(1). Based on this formula, we report the estimated value functions of
the four non-dynamic treatment regimes in Table 5.

Estimating the value of the optimal treatment regime is well-known to be
a non-regular problem when there’s nonzero probability that the contrast
function (either at the second or the first stage) is equal to zero. To evaluate
the value function under our estimated optimal treatment regime, we con-
sider the online estimator proposed by Luedtke and van der Laan (2016).
Specifically, for i = ln + 1, ln + 2, . . . , n, we obtain the estimated optimal
dynamic treatment regime d̂opt(i) = (d̂opt(i)(1), d̂opt(i)(2)) and its associated
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parameters β̂
(i)
2 , β̂

(i)
1 , propensity score function π̂(i)(2), π̂(i)(1), baseline func-

tion ĥ(i)(2), ĥ(i)(1) based on data from patients 1 to i − 1, using penalized
A-learning. Then we evaluate the value of d̂opt(i) = (d̂opt(i)(1), d̂opt(i)(2)) on
the ith patient using (AIPWE, Zhang et al., 2013)

V̂i(i) =
d̂
opt(i)(1)
Ai

π̂
(i)(1)
Ai

(
d̂
opt(i)(2)
Ai

π̂
(i)(2)
Ai

Yi −
d̂
opt(i)(2)
Ai

− π̂(i)(2)
Ai

π̂
(i)(2)
Ai

{d̂opt(i)(2)
i (ĥ

(i)(2)
i

+ XT
i β̂

(i)
2 ) + (1− d(2)

i )ĥ
(i)(2)
i }

)
−
d̂
opt(i)(1)
Ai

− π̂(i)(1)
Ai

π̂
(i)(1)
Ai

{d̂opt(i)(1)
i (ĥ

(i)(1)
i

+ STi β̂
(i)
1 ) + (1− dopt(i)(1)

i )ĥ
(i)(1)
i }.

The variance of V̂i(i) conditional on data from patients 1 to i − 1 is
evaluated by

σ̃2
i =

1

i− 1

i−1∑
j=1

V̂ 2
i (j)−

 1

i− 1

i−1∑
j=1

V̂i(j)

2

,

where V̂i(j) is the estimated value of d̂opt(i) on the jth patient.
The final estimator is given by

V̂ =

∑n
j=ln+1 σ̃

−1
j V̂j(j)∑n

j=ln+1 σ̃
−1
j

,

with the estimated standard error

σ̂ =

√
n− ln∑n

j=ln+1 σ̃
−1
j

.

Since the sample size of our dataset is small, we choose ln ≈ 2n/3, i.e, ln =
49. The estimated value V̂ is equal to−9.02 with an estimated standard error
σ̂ = 1.66. From Table 5, we can see the value under our estimated treatment
regime is much larger than those under four nondynamic treatment regime.

6. Oracle inequalities for β̂2 and the value function of the esti-
mated regime at the second stage. We first introduce some notation.
For an arbitrary matrix Φ ∈ RM×M and an arbitrary vector φ ∈ RM ,
the superscript Φj is used to denote the jth column of Φ, φj the jth el-
ement of φ, while the subscript Φi denotes the ith row of Φ. For subsets
J, J ′ ⊂ {1, . . . ,M}, let |J | be the cardinality of J , Jc be the complement
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Table 5
Estimated Values of Different Treatment Regimes

Treatment Regime Estimated Value

estimated optimal regime -9.02
BUP + NTP -12.86
BUP + MIRT -12.57
SER + NTP -12.57
SER + MIRT -12.28

of J . We denote by φJ the vector in R|J | that has the same coordinates as
φ on J , and ΦJ the submatrix formed by columns in J , ΦJ ′

J the submatrix
formed by rows in J and columns in J ′. The support of φ is defined by
supp(φ) = {j ∈ {1, . . . ,M} : φj 6= 0}. Let ||φ||p be the Lp norm of φ, ||Φ||p
be the operator norm corresponding to the p-norm vector. If Φ is positive
semidefinite, define

ρsmin(Φ) = min
||y||2=1
|supp(y)|≤s

||Φ1/2y||2 and ρsmax(Φ) = max
||y||2=1
|supp(y)|≤s

||Φ1/2y||2.

Let ||Y ||ψp be the Orlicz norm for any random variable Y , defined as

||Y ||ψp
∆
= inf

u

{
u > 0 : E exp

(
|Y |
u

)m
≤ 2

}
,

for some p ≥ 1. For any two positive sequences {an} and {bn}, an � bn
means limn bn/an = 0. Throughout this paper, we use c0 and c̄ to denote
some universal constants, whose values may change from place to place.

6.1. Oracle inequality for β̂2. Recall C(2)(x) = xTβ2, according to our
assumption. Let β2,0 denote the true values of β2. Define sβ2 = |Mβ2 | =
O(nl6) for some 0 ≤ l6 < 1, the nonsparsity size of β2,0, Mβ2 the support of
β2,0. We allow the number of covariates p to grow exponentially fast with
respect to the sample size n, i.e, log p = O(na2) for some 0 < a2 < 1. To
deal with such NP-dimensionality, following Zhou (2009), we assume

X = UΣ1/2, Σjj = 1, ∀j = 1, . . . , p,(6.1)

where U = (UT1 , · · · , UTn )T and U1, . . . , Un are i.i.d. copies of a p-dimensional
isotropic random vector U0. More specifically, we require that for any vector
a ∈ Rp,

E(aTU0)2 = aTa and ||aTU0||ψ2 ≤ ω||a||2,(6.2)

for some isotropic constants ω.
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Remark 6.1. The definition of the isotropic random vector was firstly
introduced by Milman and Pajor (2003). Independent normal and indepen-
dent Rademacher random variables are two most important examples of
isotropic random vectors. More generally, coordinates of the isotropic ran-
dom vector do not need to be independent. They can be distributed uniformly
on various convex and symmetric bodies, for example, an appropriate mul-
tiple of the unit ball in Rp equipped with the LK-norm for any 1 ≤ K ≤ ∞.
For these distributions, we denote ωK as their isotropic constants. It is fur-
ther shown in (Milman and Pajor, 1989) that ωK are uniformly bounded
for K ≥ 1. However, it remains unknown whether the isotropic property
holds for all uniform distributions on arbitrary symmetric convex bodies with
Lebesgue measure 1. .

Remark 6.2. The isotropic formulation requires covariates in U0 to be
uncorrelated, and hence does not allow for correlated Bernoullis. However,
according to our definition X = UΣ1/2, different covariates in the design
matrix X can be correlated when Σij 6= 0. Such formulations allows us to
impose conditions on the tail of U0 and the covariance matrix Σ separately.

Since the A-learning estimating equation involves the plug-in estimators
α̂2 and θ̂2, we need some conditions on these two estimators to establish
oracle inequalities for β̂2. More precisely, we assume that α̂2 and θ̂2 converge
to some α?2 and θ?2, respectively. When the propensity score model π(2) and
the baseline model h(2) are correctly specified, α?2 and θ?2 represent the true
coefficients in these two models. When the models are misspecified, α?2 and
θ?2 correspond to the population-level least favorable parameters. Denote
Mα2 and Mθ2 the support of α?2 and θ?2, respectively. Let sα2 = |Mα2 | and
sθ2 = |Mθ2 |, the number of nonzero elements. We assume sα2 = O(nl4) and
sθ2 = O(nl5) for some 0 ≤ l4, l5 < 1/2.

Condition 1. Assume that there exist some positive constants γα2 and γθ2 ,
such that with probability at least 1− c̄/(n+ p),

α̂
Mc
α2

2 = 0, ||α̂Mα2
2 − α?2

Mα2 ||∞ = O(n−γα2 log n),(6.3)

θ̂
Mc
θ2

2 = 0, ||θ̂Mθ2
2 − θ?2

Mθ2 ||∞ = O(n−γθ2 log n).(6.4)

Moreover, assume dα2 � n−γα2 log n and dθ2 � n−γθ2 log n, where dα2 =
minj |α?2j |/2 and dθ2 = minj |θ?2j |/2.

Remark 6.3. Condition 1 assumes the weak oracle properties of α̂2 and
θ̂2, i.e., selection consistency and consistency under L∞ norm. The weak
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oracle properties of α̂2 and θ̂2 are established in Theorems 8.1 and 8.2 of
Section 8, respectively.

Define

C(2) = E{Xiπ
(2)∗
i (1− π(2)∗

i )XT
i }, D(2) = E{XiX

T
i (1−A(2)

i )},

and π
(2)∗
i ≡ π(2)(Xi, α

?
2).

Condition 2. Assume that matrices D(2), C(2) and Σ satisfy

λmax(Σ
Mα2
Mα2

) = O(1), λmax(Σ
Mθ2
Mθ2

) = O(1),

lim inf
n

λmin(D
(2)Mθ2
Mθ2

) > 0, lim inf
n

λmin(C
(2)Mα2
Mα2

) > 0.

Define Ω(2)(α2) = E[XiX
T
i A

(2)
i {1−π(2)(Xi, α2)}] and Ω

(2)
n = n−1

∑
iXiX

T
i A

(2)
i (1−

π̂
(2)
i ) with π̂

(2)
i = π(2)(Xi, α̂2). For any positive semidefinite matrix Ψ ∈

Rp×p, integer s and positive number c, define function K(s, c,Ψ) as follows,

K(s, c,Ψ) = min
J⊂{1,...,p}
|J |≤s

min
y 6=0

||yJc ||1≤c||yJ ||1

||Ψ1/2y||2
||yJ ||2

> 0.

The following condition ensures that the RE condition holds for the matrix

Ω
(2)
n .

Condition 3. Assume that for any 0 < θs < 1 and sufficiently large n, we
have

K(sβ2 , 1,Ω
(2)
n ) > (1− θs) inf

α2∈Hα2
K(sβ2 , 1,Ω

(2)(α2)) > 0,(6.5)

where Hα2 denotes the set of vectors α2 that satisfies the weak oracle prop-
erty (6.3).

Remark 6.4. It is tedious to verify (6.5) due to the plug-in estimator

π̂
(2)
i . The key to prove such a result is that the estimator α̂2 in π̂

(2)
i should be

sparse. That is the reason we use penalized regression with a folded-concave
penalty to obtain α̂2, since it can ensure selection consistency of the estima-
tor. We provide a general result characterizing the UUP and RE conditions

for the random matrix Ω
(2)
n in Lemmas 9.1 and 9.2 of Section 9.
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To establish the oracle inequality for β̂2, we first provide an upper bound
for

|| 1
n
XTdiag(A(2) − π̂(2))(Y −Xθ̂2 −A(2) ◦Xβ2,0)||∞,

which is given in the following Lemma.

Lemma 6.1. Assume that Condition 1 and 2 hold, ||h(2)(Xi)−XT
i θ

?
2||ψ1 <

∞, ||ei||ψ2 <∞, a2+l4 < 1, and that either π(2) or h(2) is correctly specified.
Then, for sufficiently large n, there exists some constants c(2), such that with
probability at least 1− c̄/(n+ p),

|| 1
n
XT diag(A(2) − π̂(2))(Y −Xθ̂2 −A(2) ◦Xβ2,0)||∞ ≤ c(2)(E1 + E2 + E3 + E4),

where

E1 =
√

log p/n, E2 = sα2n
−2γα2 log2 n+ sθ2n

−2γθ2 log2 n,

E3 = σ3{
√
sα2 log n/n+

√
sα2λ

(2)
1n ρ

(1)
2 (dnα2)},

E4 = σ4{
√
sθ2 log n/n+

√
sθ2λ

(2)
2n ρ

(2)
2 (dnθ2)},

σ2
3 = E{h(2)(Xi)−XT

i θ
?
2}2, and σ2

4 = E{π(2)(Xi)− π(2)∗
i }2.

Remark 6.5. Recall that log p = O(na2), sα2 = O(nl4) for some 0 ≥
a2, l4 < 1. The condition a2 + l4 < 1 implies n� sα2 log p.

Remark 6.6. Here, E1 describes how the curse of dimensionality takes
effect, E2 is due to estimation errors of α̂(2) and θ̂(2), E3 and E4 are due to
model misspecification. Since we assume that at least one of h(2) and π(2) is
correctly specified, either E3 or E4 is zero.

Theorem 6.1. Assume that conditions in Lemma 6.1 and Condition 3
hold, and λ

(2)
3n ≥ c(2)(E1 + E2 + E3 + E4) where the constant c(2) is defined

in Lemma 6.1. Then, for some fixed 0 < θs < 1 and sufficiently large n, the
following two inequalities hold with probability at least 1− c̄/(n+p) for some
constant c̄ > 0:

||β̂2 − β2,0||2 ≤
12λ

(2)
3n
√
sβ2

(1− θs)2 inf
α2∈Hα2

K2(sβ2 , 1,Ω
(2)(α2))

,(6.6)

||β̂2 − β2,0||1 ≤
8λ

(2)
3n sβ2

(1− θs)2 inf
α2∈Hα2

K2(sβ2 , 1,Ω
(2)(α2))

.(6.7)
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Moreover, we have ||β̂
Mc
β2

2 ||1 ≤ ||β̂
Mβ2
2 − βMβ2

2,0 ||1.

From (6.6), it is immediate to see that ||β̂2 − β2,0||2
P→ 0 as long as

√
sβ2(E1 + E2 + E3 + E4)

inf
α2∈Hα2

K2(sβ2 , 1,Ω
(2)(α2))

→ 0,(6.8)

which implies the doubly robust property of β̂2. We provide a sufficient
condition for (6.8) in the following Corollary.

Corollary 6.1 (Double robustness of β̂2). Assume that conditions in
Theorem 6.1 and the following conditions hold:

l6 < min(4γθ2 − 2l5, 4γα2 − 2l4),(6.9)

λ
(2)
2n ρ

(2)
2 (dnθ2) = O(n−1/2) and λ

(2)
1n ρ

(2)
1 (dnα2) = O(n−1/2).(6.10)

lim inf inf
α2∈Hα2

K(sβ2 , 1,Ω
(2)(α2)) > 0.(6.11)

If either the baseline h(2) or the propensity score model π(2) is correctly

specified, then ||β̂2 − β2,0||2
P→ 0.

Remark 6.7. Condition (6.9) imposes a constraint between the sparsity
of population parameters and the convergence rates of α̂2 and θ̂2. When
sβ2 = O(1), it requires α̂2 and θ̂2 to be consistent under L2 norm. Condition

(6.10) automatically holds for SCAD penalty function when dnθ2 � λ
(2)
2n and

dnα2 � λ
(2)
1n .

6.2. Oracle inequality for the value function of the estimated regime at
the second stage. Now we establish the error bound for the difference be-
tween the mean responses (i.e. the value functions) of the estimated optimal
regime at the second stage d̂2(X0) = I(XT

0 β̂2 > 0) and the true optimal
one dopt2 (X0) = I(XT

0 β2,0 > 0) for an individual with covariate X0. Here,
X0 is also assumed to have the form Σ1/2U with Σ and U defined in (6.1),
independent of Xi, i = 1, . . . , n. In addition, the regime at the first stage is

chosen the same as the actually received treatment A
(1)
0 at the first stage.

Under the assumptions of SUTVA and no unmeasured confounders, the
difference of the corresponding value functions is given by

E{Y ?
0 (A

(1)
0 , dopt2 )} − E{Y ?

0 (A
(1)
0 , d̂2)}(6.12)

= E[XT
0 β2,0{I(XT

0 β2,0 > 0)− I(XT
0 β̂2 > 0)}].
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Since (6.12) is nonnegative, it suffices to provide an upper bound. Here, we
impose the following condition.

Condition 4. The probability density function g(2)(·) of XT
0 β2,0 exists and

is bounded.

Condition 4 is a mild condition on the true optimal decision function,
which holds in most cases when at least one of the important covariates (the
corresponding component of β2,0 is nonzero) is continuous.

Theorem 6.2. Assume that conditions in Theorem 6.1 and Condition 4
hold. Assume E(XT

0 β2,0)2 = O(1). Then, for fixed 0 < θs < 1 and sufficiently
large n,

E[XT
0 β2,0{I(XT

0 β2,0 > 0)− I(XT
0 β̂2 > 0)}]

≤ c̄ω

n
+

c0ω
2ρ
sβ2
max(Σ)

(
λ

(2)
3n

)2
sβ2 log2 n

(1− θs)4 inf
α2∈Hα2

K4(s, 1,Ω(2)(α2))
.

Remark 6.8. Error bound for the difference of the value functions fol-
lows from the error bound on β̂2 and Condition 4. Since the first term in
the upper bound is small, the difference of the value functions is mainly
characterized by the second term, which is of the order O(ρ

sβ2
max(Σ)||β̂2 −

β2,0||22 log2 n).

7. Error bounds for β̂1 and the value function of the estimated
dynamic treatment regime.

7.1. Misspecified contrast function. In the context of A-learning, a major
challenge arising in multi-stage studies is that the contrast functions are
likely to be misspecified in backward induction. In order to study the finite
sample bounds of β̂1, we need to first define least favorable parameters under
the misspecification of the contrast function.

Recall that C(1)(Si) is the true contrast function for the ith patient, which
can be a very complex function of Si due to the backward induction. For
notational convenience, we use a shorthand C(s) for C(1)(s). We posit a
linear model STi β1 for C(·), which is often misspecified. When either the
propensity score model π(1) or the baseline mean function h(1) is correctly
specified, the associated least favorable parameters β?1 is defined as follows:

β?1 = arg min
β1∈Λ∗

||β1||1,(7.1)
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where

Λ∗ =
{
β1 ∈ Rq : ||E[SiA

(1)
i (1− π(1)∗

i ){C(Si)− STi β1}]||∞ ≤ κ0

}
,

π
(1)∗
i = π(1)(Si, α

?
1) and κ0 is a nonnegative constant. Define

κ∗0 = ||E[SiA
(1)
i (1− π(1)∗

i ){C(Si)− STi β?1}]||∞.

By simple algebra, we can show κ∗0 ≤ min{κ0, O(σ0)}, where σ2
0 = E[{C(Si)−

STi β
?
1}2], describing the degree of misspecification of the contrast function.

Define sβ1 = |Mβ1 | = O(nl3) for some 0 ≤ l3 < 1/2, where Mβ1 = supp(β?1).

7.2. Error bound for β̂1. Assume that log q = O(na1) for some 0 < a1 <
1 and S1, . . . , Sn are i.i.d. copies of S0 that

S0
d
= Ψ1/2V0,(7.2)

where Ψ ∈ Rq×q is some positive definite matrix with Ψjj = 1 for j =
1, . . . , q, and V0 is a q-dimensional isotropic random vector with some isotropic
constants ζ. As in the second stage, we first give conditions on α̂1 and
θ̂1. Assume that these two estimators converge to some α?1 and θ?1, re-
spectively, under possible model misspecification. Denote Mα1 = supp(α?1),
Mθ1 = supp(θ?1), sα1 = |Mα1 | = O(nl1), and sθ1 = |Mθ1 | = O(nl2) for some
0 ≤ l1, l2 < 1/2.

Condition 5. Assume that there exist some positive constants γα1 and γθ1 ,
with probability at least 1− c̄/(n+ p+ q), the following holds:

α̂
Mc
α1

1 = 0, ||α̂Mα1
1 − α?1

Mα1 ||∞ = O(n−γα1 log n),(7.3)

θ̂
Mc
θ1

1 = 0, ||θ̂Mθ1
1 − θ?1

Mθ1 ||∞ = O(n−γθ1 log n).(7.4)

Moreover, assume dα1 � n−γα1 log n and dθ1 � n−γθ1 log n, where dα1 =
minj |α?1j |/2 and dθ1 = minj |θ?1j |/2.

Condition 6. Assume that D(1), C(1) and Ψ satisfy

λmax(Ψ
Mα1
Mα1

) = O(1), λmax(Ψ
Mθ1
Mθ1

) = O(1),

lim inf
n

λmin(D
(1)Mθ1
Mθ1

) > 0, lim inf
n

λmin(C
(1)Mα1
Mα1

) > 0,

where

D(1) = E{SiSTi (1−A(1)
i )}, C(1) = E{SiSTi π

(1)∗
i (1− π(1)∗

i )},
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and π(1)∗ = π(1)(Si, α
?
1).

Since both the propensity score model and the contrast function at the
first stage can be misspecified, we need the following condition to control
their effect on estimation of β?1 .

Condition 7. Assume that

τ0 ≡ ||FMα1 [C(1)Mα1Mα1
]−1b(1)Mα1 ||∞ <∞,(7.5)

where b(1) = E{Si(A(1)
i − π

(1)∗
i )} and

F = E[SiA
(1)
i π

(1)∗
i (1− π(1)∗

i ){C(Si)− Siβ?1}STi ].

Remark 7.1. It is immediate to see τ0 = 0 when either the contrast
function or the propensity score model is correctly specified.

When going back to the first stage, the error bound of β̂1 is directly
affected by that of β̂2. This is because the estimated response V̂i in the first
stage is obtained based on β̂2 using the advantage function. To simplify
presentation, we introduce the following condition.

Condition 8. Assume that with probability at least 1 − c̄/(n + p), there
exists some constant µ1 > 0 such that√

ρ
sβ2
max(Σ)||β̂2 − β2,0||2 = O(n−µ1 log n),(7.6)

and ||β̂
Mc
β2

2 ||1 ≤ ||β̂
Mβ2
2 − βMβ2

2,0 ||1.

A more explicit form of the error bound for (7.6) is given in Theorem 6.1.
In the next Lemma, we provide an upper bound for the term:

||STdiag(A(1) − π̂(1))(V̂ − Sθ̂1 −A(1) ◦ Sβ?1)||∞/n.(7.7)

Lemma 7.1. Assume that Conditions 5-8 and those in Theorem 6.1
hold, ||C(Si) − STi β?1 ||ψ1 < ∞, ||Vi − E(Vi|Si, A(1)

i )||ψ2 < ∞, a1 + l1 < 1,

n� sβ2 log pρ
sβ2
max(Σ)

2
/ρ

sβ2
min(Σ), and either π(1) or h(1) is correctly specified.

Then, for sufficiently large n, with probability at least 1− c̄/(n+p+q), (7.7)
can be bounded from above by c(1)(E5 +E6 +E7 +E8 +E9 +E10) for some
constant c(1) > 0, where

E5 =
√

log q/n log2 n, E6 = sα1n
−2γα1 log2 n+ sθ1n

−2γθ1 log2 n,

E7 = σ1{
√
sα1 log n/n+

√
sα1λ

(1)
1n ρ

(1)
1 (dnα1)},

E8 = σ2{
√
sθ1 log n/n+

√
sθ1λ

(1)
2n ρ

(1)
2 (dnθ1)},

E9 = σ0{
√
sα1 log n/n+

√
sα1λ

(1)
1n ρ

(1)
1 (dnα1) + τ0 + κ∗0},
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E10 = n−µ1 log n, σ2
0 = E{C(Si) − STi β

?
1}2, σ2

1 = E(h(1) − STi θ
?
1)2, and

σ2
2 = E{π(1)∗

i − π(1)(Si)}2.

Remark 7.2. The terms E5−E8 have similar interpretations as E1−E4

in Lemma 6.1, respectively. The additional term E10 is due to the error bound
of β̂2 in the backward induction, while E9 is due to the misspecification of
the contrast function.

Define Ω(1)(α1) = E[SiS
T
i A

(1)
i {1−π(1)(Si, α1)}] and Ω

(1)
n = n−1

∑
i SiS

T
i A

(1)
i (1−

π̂
(1)
i ) with π̂

(1)
i = π(1)(Xi, α̂1). Similar as in stage 2, we need the following

condition to ensure the RE condition for the matrix Ω
(1)
n .

Condition 9. Assume that for any 0 < θs < 1 and sufficiently large n, we
have

K(sβ1 , 1,Ω
(1)
n ) > (1− θs) inf

α1∈Hα1
K(sβ1 , 1,Ω

(1)(α1)) > 0,(7.8)

where Hα1 denotes the set of vectors α1 that satisfies the weak oracle prop-
erty (7.3).

Theorem 7.1. Assume that Condition 9 and those conditions in Lemma
7.1 hold, and λ

(1)
3n ≥ c(1)

∑10
k=5Ek. The constant c(1) is defined in Lemma

7.1. Then, there exists a constant c8, such that for sufficiently large n and
some fixed 0 < θs < 1, with probability at least 1− c8/(n+ p+ q), the error
bounds for β̂1 are given by

||β̂1 − β?1 ||2 ≤
12λ

(1)
3n
√
sβ1

(1− θs)2 inf
α1∈Hα1

K2(sβ1 , 1,Ω
(1)(α1))

,(7.9)

||β̂1 − β?1 ||1 ≤
8λ

(1)
3n sβ1

(1− θs)2 inf
α1∈Hα1

K2(sβ1 , 1,Ω
(1)(α1))

.(7.10)

7.3. Error bound for the value function of the estimated dynamic treat-
ment regime. Under the SUTVA and sequential randomization assump-
tions, the value function of a given dynamic treatment regime (d1(S0), d2(X0))
is given by

E{Y ?
0 (d1, d2)} = E

[
h(2)(X0) + (βT2,0X0)d2(X0) + C(S0){d1(S0)−A(1)

0 }
]
,

where S0 and X0 denote the baseline covariates and covariates for the second
stage, respectively. Then, the difference of the value functions under the
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estimated optimal dynamic treatment regime (2.4) and the true optimal
regime (dopt1 , dopt2 ) is given by

E{Y ?
0 (dopt1 , dopt2 )} − E{Y ?

0 (d̂1, d̂2)}

= E
[
C(S0){I(C(S0) > 0)− I(ST0 β̂1 > 0)}

]
+ E

[
XT

0 β2,0{I(XT
0 β2,0 > 0)− I(XT

0 β̂2 > 0)}
]
.

Similar to Condition 4, we impose the following condition.

Condition 10. Assume that the probability density function g(1)(·) of ST0 β
?
1

exists and is bounded.

Theorem 7.2. Assume that conditions in Theorem 7.1 and Condition
10 hold. Assume E(XT

0 β2,0)2 = O(1), E(ST0 β
?
1)2 = O(1). Then, for some

fixed 0 < θs < 1 and sufficiently large n,

0 ≤ E{Y ?
0 (dopt1 , dopt2 )} − E{Y ?

0 (d̂1, d̂2)} ≤ c̄(ω + ζ)

n
+ c0σ

4/3
0

+
c0ω

2ρ
sβ2
max(Σ)λ

(2)
3n

2
sβ2 log2 n

(1− θs)4 inf
α2∈Hα2

K4(sβ2 , 1,Ω
(2)(α2))

+
c0ζ

2ρ
sβ1
max(Ψ)λ

(1)
3n

2
sβ1 log2 n

(1− θs)4 inf
α1∈Hα1

K4(sβ1 , 1,Ω
(1)(α1))

.

Remark 7.3. Theorem 7.2 suggests that the upper bound for the differ-
ence of the value functions come from three major components: the misspec-
ification of the contrast function, described by σ2

0, and estimation errors of
β̂2 and β̂1.

8. Weak oracle properties of α̂j’s and θ̂j’s. In order to prove the

error bounds of β̂1, β̂2 and the value functions of the estimated treatment
regimes presented in Sections 6 and 7, we need to establish the weak oracle
properties of α̂j and θ̂j (j = 1, 2) in the posited models for the propensity
score and baseline mean functions. Here, we prove the results based on a
posited logistic regression model for the propensity score and a linear model
for the baseline mean function under a random design setting. However,
these results can be extended to generalized linear models (McCullagh and
Nelder, 1989).

8.1. Weak oracle properties of α̂2 and θ̂2. We assume that α̂2 and θ̂2 con-
verge to some population parameters α?2 and θ?2, respectively. Under Condi-
tions B1 - B6 given in the Supplementary Appendix, we establish the weak
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oracle properties of α̂2 and θ̂2 in the following two Theorems. Recall that
sα2 = |Mα2 | = O(nl4) for some 0 ≤ l4 < 1/2.

Theorem 8.1. Assume that Conditions B.1-B.3 hold, l4 + a2 < 1 and

λmax(Σ
Mα2
Mα2

) = O(1). Then, for sufficiently large n, there exists some con-

stants γα2 > 0, such that with probability at least 1− c̄/(n+ p),

a. α̂
Mαc2
2 = 0.

b. ||α̂Mα2
2 − α?2Mα2 ||∞ = O(n−γα2 log n).

Theorem 8.2. Assume that Conditions B.4-B.6 hold, λmax(Σ
Mθ2
Mθ2

) =

O(1), and ||ei||ψ2 <∞, where ei is defined in (2.2). Then, there exist some
constants γθ2 > 0, such that with probability at least 1− c̄/(n+ p),

a. θ̂
Mc
θ2

2 = 0.

b. ||θ̂Mθ2
2 − θ?2Mθ2 ||∞ = O(n−γθ2 log n).

Remark 8.1. Theorem 1 in Shi, Song and Lu (2015) established weak
oracle results of the penalized estimators for a fixed design setting. This is
mainly for technical convenience. Its proofs can be obtained using similar
arguments as in Fan and Lv (2011). In this paper, we focus on a random
design setting, which is more practical in medical studies. To the best of
our knowledge, the weak oracle properties of penalized estimators have not
been studied in a random design setting with the NP dimensionality. The
major difficulty lies in developing some random matrix theories, such as
controlling the maximum eigenvalue of some random matrices. Such results
are established in Theorem 8.1 and 8.2.

Remark 8.2. The condition l4 + a2 < 1 ensures that for large n

p
max
j=1

λmax[(XMα2 )T diag(|Xj |)XMα2 ] = O(n),(8.1)

with probability approaching 1. A major technical difficulty in deriving (8.1)
is that the matrix (XMα2 )T diag(|Xj |)XMα2 does not have the subexponential
tail (see Definition G.2 in the Supplementary Appendix). When sα2 ≤ n, we
can bound maxj∈Mα2

|Xj
i | from above by

√
2ω log n with probability at least

1−2/n, which ensures the subexponential tail of the truncated matrix. Lemma
B.2 in the Supplementary Appendix proves such a result for a more general
case.
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8.2. Weak oracle properties of α̂1 and θ̂1. The weak oracle properties of
α̂1 can be similarly derived as for α̂2. However, unlike the results for θ̂2,
the weak oracle properties of θ̂1 depend on β̂2 even when the baseline mean
function h(1) is correctly specified. This is because the estimated response

V̂i is obtained based on β̂2. A necessary condition to ensure ||θ̂1− θ?1||∞
P→ 0

is that ||β̂2 − β2,0||2
P→ 0, which is established in Corollary 6.1.

Theorem 8.3. Assume that Condition 8 and Conditions B.7-B.12 in

the Supplementary Appendix hold. Further assume that λmax(Ψ
Mα1
Mα1

) = O(1),

λmax(Ψ
Mθ1
Mθ1

) = O(1), n� sβ2 log p{ρsβ2max(Σ)}2/ρsβ2min(Σ), a1+l1 < 1, ||ei||ψ2 <

∞ and ||Vi − E(Vi|S(1)
i , A

(1)
i )||ψ2 < ∞. Then, for sufficiently large n, there

exist some constants γα1 > 0 and γθ1 > 0, with probability at least 1− c̄/(n+
q + p), such that the estimators α̂1 and θ̂1 must satisfy

a. α̂
Mc
α1

1 = 0, θ̂
Mc
θ1

1 = 0,

b. ||α̂Mα1
1 −α?1Mα1 ||∞ = O(n−γα1 log n), ||θ̂Mθ1

1 −θ?1Mθ1 ||∞ = O(n−γθ1 log n).

9. Uniform uncertainty principle and restricted eigenvalue con-
ditions in A-learning. In this section, we establish the UUP and RE
conditions in the context of A-learning. In our setting, these two conditions

are needed on random matrices Ω
(2)
n and Ω

(1)
n .

For brevity, we only study the UUP and RE conditions for the random

matrix Ω
(2)
n . Those for Ω

(1)
n can be similarly derived. Recall that Mα2 refers

to the support of α?2, Mβ2 = supp(β2,0), and sβ2 = |Mβ2 |. We assume that
the weak oracle properties of α̂2 are achieved such that with probability at
least 1− c̄/(n+ p),

α̂
Mc
α2

2 = 0 and ||α̂2 − α?2||∞ = O(n−γα2 log n),(9.1)

for some γα2 > 0. The following Lemma establishes the UUP condition for

Ω
(2)
n .

Lemma 9.1. Assume the convergence rate of α̂2 satisfies

||α̂2 − α?2||2 = O(
√
sα2n

−γα2 log n) = O(1),

and the sample size satisfies

n�
{ρsβ2max(Σ)}2(sβ2 log p+ s2

α2
)

inf
α2∈Hα2

ρ
sβ2
min(Ω(2)(α2))

.(9.2)
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Then for any 0 < θ < 1, with probability at least 1− c̄/(n+ p),we have

|| 1
n
yTΩ(2)

n y − yTΩ(2)y||2(9.3)

≤

{
θ +

4ω2

n
+
√

2ω2||α̂2 − α?2||2
√
λmax(Σ

Mα2
Mα2

)

}
ρ
sβ2
max(Σ)||y||22,

for any y ∈ Rp and |supp(y)| ≤ sβ2.

Remark 9.1. In our setting, if the following regularity conditions hold

lim inf
α2∈Hα2

ρ
sα2
min(Ω(2)(α2)) > 0 and ρ

sβ2
max(Σ) = O(1),

the requirement on the sample size (9.2) reduces to n� sβ2 log p since s2
α2

=
O(n2l4)� n.

Remark 9.2. The second term on the right-hand side of (9.3) represents

the difference between yT Ω̃
(2)
n y and yTΩ

(2)
n y, where Ω̃

(2)
n is defined as the

expectation of the truncated random matrix

1

n

∑
i

XiX
T
i A

(2)
i {1− π

(2)(Xi, α̂2)}I(||XMα2
i ||∞ ≤

√
2ω log n).(9.4)

This term will vanish as n → ∞. The third term represents the estimation

error of α̂2. When ρ
sβ2
max(Σ) < 2 and

√
λmax(Σ

Mα2
Mα2

)||α̂2 − α?2||2 → 0, (9.3)

proves the UUP condition for Ω
(2)
n .

Remark 9.3. A key assumption in Lemma 9.1 is the sparsity of α?2,
which is needed to bound the infinity norm in the indicator function of (9.4).
This extra requirement comes from the involvement of the estimated propen-

sity scores in Ω
(2)
n , which adds significant difficulties in proving Lemma 9.1.

After some algebra, the RE condition for Ω
(2)
n follows similarly from

Lemma 9.1, which is presented below.

Lemma 9.2. For any integer c0, assume that ||α̂2 − α?2||2 = O(1), and
the sample size satisfies

n�
{ρsβ2max(Σ)}2(sβ2 log p+ s2

α2
)

inf
α2∈Hα2

K2(sβ, c0,Ω
(2)(α2))

.(9.5)
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Then, for any 0 < θ < 1 and sufficiently large n, with probability at least
1− c̄/(n+ p),we have

K(sβ2 , c0,Ω
(2)
n ) > (1− θ) inf

α∈Hα2
K(sβ2 , c0,Ω

(2)(α2)).

Remark 9.4. The sample size requirement (9.5) is stronger than (9.2).
To see this, for any positive semidefinite matrix Ψ, and positive integers s
and c0, we have

K2(s, c0,Ψ) ≤ K2(s, 0,Ψ) = ρsmin(Ψ).

10. Discussion.

10.1. Post selection inference. As pointed by one of the referee, the main
goal of constructing optimal DTRs is to find treatments that are significantly
superior to other treatment options. This requires addressing a post selec-
tion inference issue, i.e, the problem of influencing the estimated optimal
value function (or the difference between the estimated value and the value
function under other treatment options). In the fixed dimension setting, we
can use either the empirical average of the advantage function (Murphy,
2003) or the augmented inverse propensity score type estimates (AIPWE,
Zhang et. al, 2012) to estimate the optimal value function. Both type of
estimators are asymptotically normally distributed. However, the inference
based on the advantage function may not be valid in high dimensions. This
is because when the number of predictors is large, the parameter estimates
in the contrast function may not have oracle property (i.e, model selection
consistency and asymptotic normality).

For a single stage study, assuming a linear interaction form XTβ0 for the
contrast function. Under certain conditions, we can show AIPWE is asymp-
totically normal even for NP-dimensionality if (i) ||β̂ − β0||2 = op(n

−1/4),

(ii) with probability going to 1, ||β̂M
c
β − β

Mc
β

0 ||1 ≤ c0||β̂Mβ − β
Mβ

0 ||1 for
some constant c0, where Mβ is the support of β0. For our penalized A-
learning estimator, Assumption (i) can be achieved assuming certain con-
ditions on the dimension of covariates, sample size and the sparsity of pa-
rameters in the contrast, the baseline and propensity score function. As-
sumption (ii) is typically satisfied for Lasso, Dantzig and folded-concave
type estimators. Similar to Theorem 6.1, we can show our estimator satisfies

||β̂M
c
β−β

Mc
β

0 ||1 ≤ ||β̂Mβ−βMβ

0 ||1 with probability going to 1. The asymptotic
normality of AIPWE therefore follows. Standard error of the value estimator
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can be similarly obtained as in Zhang et. al (2012). Alternatively, we can
use the one step online estimator as in Luedtke and van der Laan (2016).
However, the asymptotic variance will be larger since it does not use all the
data to construct the estimator. In summary, it is important and interesting
to develop statistical inference for the estimated value function under the
obtained optimal treatment regime in high dimensions, but it is beyond the
scope of the current paper.

10.2. Tuning parameter selection. Bayesian information criteria (BIC)
is used to tune the penalty functions. BIC has been widely used in model
selection for selecting the tuning parameter when the goal is prediction. In
high dimensional regressions, Chen and Chen (2008) proposed an extended
BIC for model selection, and showed their BIC is consistent when the num-
ber of predictors grows polynomially in sample size. Fan and Tang (2013)
proposed a similar criterion and showed its consistency when the number
of predictors is in the non-polynomial order of the sample size. When the
goal is to select treatment effect modifiers, Lu et al. (2011) also used a BIC-
type criterion, which showed good empirical performance. This motivated
us to use a similar BIC-type criterion for selecting the tuning parameter
in our method. Our simulations demonstrated that the proposed BIC-type
criterion empirically worked well. We conjecture that following similar ar-
guments in the proof of Theorem 1 of Chen and Chen (2008) and the proof
of Theorem 3 in Fan and Tang (2013), we can show our proposed BIC-type
criterion is also consistent for selecting important variables in the contrast
function. This is another interesting topic that needs further investigation.

10.3. Extensions to multiple stages and general models. In this paper, we
mainly focus on a two-stage study. Extension of results to three-stage studies
are provided in the supplementary article. It raises additional challenges to
establish these results, since the potential model misspecification of contrast
functions in the previous two stages can add up and stronger assumptions
are needed to guarantee consistency of the parameter estimates. Readers
can refer to the supplementary article for details.

For technical convenience, we assume a linear interaction form the con-
trast function on the last stage. More general results when the contrast
function is misspecified can be similarly derived as the three-stage studies
discussed in the supplementary article.
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