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Abstract
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In this article, we study the divide and conquer method for cubic-rate estimators
under the massive data framework. We develop a general theory for establishing
the asymptotic distribution of the aggregated M-estimators using a weighted average
with weights depending on the subgroup sample sizes. Under certain condition on
the growing rate of the number of subgroups, the resulting aggregated estimators
are shown to have faster convergence rate and asymptotic normal distribution, which
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1 Introduction

In a world of explosively large data, effective estimation procedures are needed to deal

with the computational challenge arisen from analysis of massive data. The divide and

conquer method is a commonly used approach for handling massive data, which divides

data into several groups and aggregate all subgroup estimators by a simple average to

lessen the computational burden. A number of problems have been studied for the divide

and conquer method, including variable selection (Chen and Xie, 2014), nonparametric

regression (Zhang et al., 2013; Zhao et al., 2016) and bootstrap inference (Kleiner et al.,

2014), to mention a few. Most papers establish that the aggregated estimators achieve

the oracle result, in the sense that they possess the same nonasymptotic error bounds or

limiting distributions as the pooled estimators, which are obtained by fitting all the data

in a single model. This implies that the divide and conquer scheme can not only maintain

efficiency, but also obtain a feasible solution for analyzing massive data.

In addition to the computational advantages for handling massive data, the divide and

conquer method, somewhat surprisingly, can lead to aggregated estimators with improved

efficiency over pooled estimators with slower than the usual n1/2 convergence rate. A recent

independent work of Banerjee et al. (2016) studied the divide and conquer principle in the

monotone regression setting where the estimator converges at n1/3 rate. In particular, they

showed the aggregated estimator obtained by averaging all subgroup estimators converges

much faster than the pooled estimator based on all observations and is asymptotically

normal. This phenomenon is expected to hold under many other cube-root estimation

problems. For example, Chernoff (1964) studied a cubic-rate estimator for estimating the

mode. It was shown therein that the estimator converges in distribution to the argmax of a

Brownian motion minus a quadratic drift. Kim and Pollard (1990) systematically studied a

class of cubic-rate M-estimators and established their limiting distributions as the argmax

of a general Gaussian process minus a quadratic form. These results were extended to a

more general class of M-estimators using modern empirical process results (van der Vaart

and Wellner, 1996; Kosorok, 2008). In this paper, we study a class of M-estimators with

cubic-rate and develop a general inference framework for the aggregated estimators obtained
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by the divide and conquer method. Our theory states that the aggregated estimators can

achieve a faster convergence rate than the pooled estimators and have asymptotic normal

distributions when the number of groups diverges at a proper rate as the sample size of

each group grows. This enables a simple way for estimating the covariance matrix of the

aggregated estimators.

When establishing the asymptotic properties of the aggregated estimators, a major tech-

nical challenge is to quantify the accumulated bias. Different from estimators with standard

n1/2 convergence rate, M-estimators with n1/3 convergence rate generally do not have a nice

linearization representation and the magnitude of the associated biases is difficult to quan-

tify. One way to obtain the magnitude of the bias is by establishing a coupling inequality

for the cubic-rate estimator. For example, Banerjee et al. (2016) derived a nonasymptotic

bound for the biases of the isotonic estimator in a monotone regression model and its in-

verse, based on the coupling inequality of the isotonic estimator (see Lemma 8.10 in that

paper, and also Equation (29) in Durot (2002)). Groeneboom et al. (1999) provided a

coupling inequality for the inverse process of the Grenander estimator. Their results can

be used to establish the bias of the Grenander estimator. While such strategy is useful

for studying the bias of some one-dimensional cubic-rate estimators, it is not suitable for

multi-dimensional estimators. On one hand, these coupling inequalities are all based on

Komos-Major-Tusnady (KMT) approximation (Komlós et al., 1975) and its extensions (cf.

Csörgő et al., 1985; Sakhanenko, 2006) that only apply to the empirical distribution or the

quantile process. There are extensions of the KMT approximation for more general empir-

ical process (cf. Rio, 1994; Koltchinskii, 1994). However, the rate of the approximation will

depend on the dimension of the parameter and decays fast as the dimension increases. On

the other hand, proofs of these coupling inequalities all rely on the properties of the argmax

of a Brownian motion process with a parabolic drift (cf. Proposition 1 in Durot (2002) and

the discussions therein), and are not applicable to cubic-rate estimators that converge to

the argmax of a more general Gaussian process minus a quadratic term. Here, we propose

a novel approach to derive an upper bound for the bias, without establishing the coupling

inequalities. To the best of our knowledge, this is the first time that a nonasymptotic error

bound for the bias of a general cubic-rate estimator is provided.
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A key innovation in our analysis is to introduce a linear perturbation in the empirical

objective function. In that way, we transform the problem of quantifying the bias into

comparison of the expected supremum of the empirical objective function and that of its

limiting Gaussian process. To bound the difference of these expected suprema, we adopt

similar techniques that have been recently studied by Chernozhukov et al. (2013) and

Chernozhukov et al. (2014). Specifically, they compared a function of the maximum for

sum of mean-zero Gaussian random vectors with that of multivariate mean-zero random

vectors with the same covariance function, and provided an associated coupling inequality.

We improve their arguments by providing more accurate approximation results (Lemma

A.3) for the identity function of maximums as needed in our applications.

Another major contribution of this paper is to provide a tail inequality for cubic-rate M-

estimators (Theorem 5.1). This helps us to construct a truncated estimator with bounded

second moment, which is essential to apply Lyapunov’s central limit theorem for establish-

ing the normality of the aggregated estimator. Under some additional tail assumptions on

the underlying empirical process, our results can be viewed as a generalization of empirical

process theories that establish consistency and n1/3 convergence rate for the M-estimators.

Based on the results, we show that the asymptotic variance of the aggregated estimator

can be consistently estimated by the sample variance of individual M-estimators in each

group, which largely simplifies the inference procedure for M-estimators.

The rest of the paper is organized as follows. We describe the divide and conquer method

for M-estimators and state the major central limit theorem (Theorem 2.1) in Section 2.

Three examples for the location estimator, maximum score estimator and value search

estimator are presented in Section 3 to illustrate the application of Theorem 2.1. In Section

4, we demonstrate the empirical performance of the aggregated estimators using both

simulation studies and an application to the Yahoo! Front Page Today Module user click

log dataset. Section 5 studies a tail inequality that are needed to prove Theorem 2.1,

followed by a Discussion Section. All the technical proofs are provided in the Appendix.
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2 Method

The divide and conquer scheme for M-estimators is described as follows. In the first step,

the data are randomly divided into several groups. For the jth group, consider the following

M-estimator

θ̂(j) = argmax
θ∈Θ

P(j)
nj
m(·, θ) ≡ argmax

θ∈Θ

1

nj

nj∑
i=1

m(X
(j)
i , θ), j = 1, . . . , S,

where (X
(j)
1 , . . . , X

(j)
nj ) denote the data for the jth group, nj is the number of observations

in the jth group, S is the number of groups, m(·, ·) is the objective function and θ is a

d-dimensional vector of parameters that belong to a compact parameter space Θ. In the

second step, the aggregated estimator θ̂0 is obtained as a weighted average of all subgroup

estimators,

θ̂0 =
S∑
j=1

ωj θ̂
(j) =

∑S
j=1 n

2/3
j θ̂(j)∑S

j=1 n
2/3
j

. (1)

Remark 2.1 The weights ωj’s are chosen such that θ̂0 achieves the smallest asymptotic co-

variance matrix among the class of linearly aggregated estimators {θω =
∑

j ωj θ̂
(j)|
∑

j ωj =

1, ωj ≥ 0,∀j = 1, . . . , S} (see Section F in the supplementary appendix for detailed illus-

trations). When n1 = n2 = · · · = nS, θ̂0 reduces to a simple average of all θ̂(j)’s.

We assume that all the X
(j)
i ’s are independent and identically distributed across i and

j. Here, we only consider M-estimation with non-smooth functions m(·, θ) of θ, and the

resulting M-estimators θ̂(j)’s have a convergence rate of Op(n
−1/3
j ). Such cubic-rate M-

estimators have been widely studied in the literature, for example, the location estimator

and maximum score estimator as demonstrated in the next section. Define N =
∑

j nj and

n = N/S. The main goal of this paper is to establish the convergence rate and asymptotic

normality of θ̂0 under suitable conditions for S and nj’s.

Before introducing our main results, we first provide an intuitive explanation here why

the divide and conquer method can improve the efficiency in cubic-rate M-estimation prob-

lems. Assume for now, n1 = n2 = · · · = nS = n and S is fixed. Following Kim and Pollard
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(1990), we can show that

n1/3(θ̂(j) − θ0)
d→ h0,

N1/3(θ̃0 − θ0)
d→ h0,

where θ̃0 is the pooled estimator, i.e, θ̃0 = argmaxθ∈Θ
∑

i,j m(X
(j)
i , θ), θ0 is the unique

maximizer of E{m(·, θ)} and h0 = argmaxh Z(h) with

Z(h) = G(h)− 1

2
hTV h. (2)

Here G is a mean-zero Gaussian process and V = ∂2E{m(·, θ)}/∂θθT |θ=θ0 is a positive

definite matrix.

Assume ||N1/3(θ̃0−θ0)||22 and ||n1/3(θ̂(j)−θ0)||22 are uniformly integrable. Then, we have

N2/3E(θ̃0 − θ0)(θ̃0 − θ0)
T → cov(h0), as N → ∞ (3)

n2/3E(θ̂(j) − θ0)(θ̂
(j) − θ0)

T → cov(h0), as N → ∞.

Under equal allocation, θ̂(j)’s are independent and identical. We have

N2/3E{(θ̂0 − θ0)(θ̂0 − θ0)
T}

= N2/3 1

S2

S∑
j=1

E{(θ̂(j) − θ0)(θ̂
(j) − θ0)

T}+N2/3 1

S2

∑
j ̸=k

E{(θ̂(j) − θ0)E(θ̂
(k) − θ0)

T}

=
n2/3

S1/3
E{(θ̂(1) − θ0)(θ̂

(1) − θ0)
T}+ bnb

T
nS

2/3(S − 1)/S → S−1/3cov(h0), (4)

where bn = n1/3E(θ̂(j) − θ0) = o(1) is the bias of n1/3θ̂(j). Comparing (3) with (4), we can

see that the aggregated estimator is more efficient than the pooled estimator in the fixed

S scenario.

Now let S grow with N . As long as S satisfies S = O(1/(||bn||22)), we have

bnb
T
nS

2/3(S − 1)/S → O(S−1/3),

and hence N2/3E{(θ̂0 − θ0)(θ̂0 − θ0)
T} = O(S−1/3). In view of (3), this implies that the

aggregated estimator can have a faster convergence rate than the pooled estimator.
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2.1 Main results

We assume the dimension d is fixed, while the number of groups S → ∞ as N → ∞. Let

|| · ||2 denote the Euclidean norm for vectors or induced matrix L2 norm for matrices. We

first introduce some conditions.

(A1.) There exists a small neighborhood Nδ = {θ : ||θ − θ0||2 ≤ δ} in which Em{(·, θ)}

is twice continuously differentiable with the Hessian matrix −V (θ), where V (θ) is positive

definite in Nδ. Moreover, assume E{m(·, θ0)} > supθ∈Nc
δ
E{m(·, θ)}.

(A2.) For any θ1, θ2 ∈ Nδ, we have E{|m(·, θ1)−m(·, θ2)|2} ≤ K||θ1 − θ2||2 for a constant

K that is independent of θ1 and θ2.

(A3.) There exists some positive constant ω such that |m(x, θ)| ≤ ω for all x and θ.

(A4.) The envelope function MR(·) ≡ supθ {|m(·, θ)| : ||θ − θ0||2 ≤ R} satisfies EM2
R =

O(R) when R ≤ δ.

(A5.) The set of functions {m(·, θ)|θ ∈ Θ} has Vapnik-Chervonenkis (VC) index 1 ≤ v <

∞.

(A6.) For any θ ∈ Nδ, ||V (θ)− V ||2 = O(||θ − θ0||2), where V = V (θ0).

(A7.) Let L(·) denote the variance process of G(·) satisfying L(h) > 0 whenever h ̸= 0. (i)

The function L(·) is symmetric and continuous, and has the rescaling property: L(kh) =

kL(h) for k > 0. (ii) For any h1, h2 ∈ Rd satisfying ||h1||2 ≤ n1/3δ and ||h2||2 ≤ n1/3δ, we

have∣∣∣L(h1 − h2)− n1/3E
{
m(·, θ0 + n−1/3h1)−m(·, θ0 + n−1/3h2)

}2∣∣∣ = O

(
(||h1||+ ||h2||)2

n1/3

)
.

(A8.) Let cj = nj/n. Assume there exists some constant c̄ > 1 such that 1/c̄ ≤ cj ≤ c̄ for

all j.

Theorem 2.1 Under Conditions (A1)-(A8), if S = o(n1/6/ log5/6 n) and S → ∞ as n →

∞, we have √
c
2/3
1 + · · ·+ c

2/3
S n1/3(θ̂0 − θ0)

d→ N(0, A), (5)

for some positive definite matrix A.
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Remark 2.2 Under Condition A8, Theorem 2.1 suggests that θ̂0 converges at a rate of

Op(S
−1/2n−1/3). In contrast, the original M-estimator obtained based on pooled data has a

convergence rate of Op(S
−1/3n−1/3). This implies that we can gain efficiency by adopting

the split and conquer scheme for cubic-rate M-estimators. Such result is interesting as most

aggregated estimators in the divide and conquer literature share the same convergence rates

as the original estimators based on pooled data.

Remark 2.3 The constraints on S suggest that the number of group cannot diverge too

fast. A main reason as we showed in the proof of Theorem 2.1 is that if S grows too fast,

the asymptotic normality of θ̂0 will fail due to accumulation of bias in the aggregation of

subgroup estimators. Given a data of size N , we can take S ≈ N l, n = N/S ≈ N1−l with

l < 1/7 to fulfill this requirement. It turns out that this requirement on S can be relaxed

under some special cases. In particular, when d = 1, i.e, θ0 is a scalar, we show in the

supplementary appendix that the aggregated estimator is asymptotically normal as long as

S ≤ N l with l < 4/13. Details can be found in Section A.5 of the supplementary appendix.

Remark 2.4 Conditions A1 - A5 and A7 (i) are similar to those in Kim and Pollard

(1990) and are used to establish the cubic-rate convergence of the M-estimator in each

group. Conditions A6 and A7 (ii) are used to establish the normality of the aggregated

estimator. In particular, Condition A7 (ii) implies that the Gaussian process G(·) has

stationary increments, i.e. E[{G(h1) − G(h2)}2] = L(h1 − h2) for any h1, h2 ∈ Rd, which

is used to control the bias of the aggregated estimator. Condition A8 automatically holds

when n1 = · · · = nS.

In the rest of this section, we give a sketch for the proof of Theorem 2.1. The details

of the proof are given in Section 5 and Section A in the supplementary appendix. Let

ĥ(j) = n
1/3
j (θ̂(j) − θ0). By definition, it is equivalent to show

1√
c
2/3
1 + · · ·+ c

2/3
S

S∑
j=1

c
1/3
j ĥ(j) d→ N(0, A). (6)

When S diverges, intuitively, (6) follows by a direct application of central limit theorem

for triangular arrays (cf. Theorem 11.1.1, Athreya and Lahiri, 2006). However, a few chal-

lenges remain. First, the estimator ĥ(j) may not possess finite second moment. Analogous
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to Kolmogorov’s 3-series theorem (cf. Theorem 8.3.5, Athreya and Lahiri, 2006), we handle

this by first defining h̃(j), which is a truncated version of ĥ(j) with ||h̃(j)||2 ≤ δnj
for some

δnj
> 0, such that

∑
j ĥ

(j) and
∑

j h̃
(j) are tail equivalent, i.e.

lim
k

Pr

∩
n≥k


S(n)∑
j=1

c
1/3
j ĥ(j) =

S(n)∑
j=1

c
1/3
j h̃(j)


 = 1.

Using Borel-Cantelli lemma, it suffices to show

∑
n

Pr

S(n)∑
j=1

c
1/3
j ĥ(j) ̸=

S(n)∑
j=1

c
1/3
j h̃(j)

 < ∞. (7)

Now it remains to show

1√∑
j c

2/3
j

S∑
j=1

c
1/3
j h̃(j) =

1√∑
j c

2/3
j

S∑
j=1

{
h̃(j) − E(h̃(j))

}
+

1√∑
j c

2/3
j

∑
j

Ec
1/3
j h̃(j) d→ N(0, A).

The second challenge is to control the accumulated bias in the aggregated estimator, i.e.

showing

1√∑
j c

2/3
j

∑
j

c
1/3
j E(h̃(j)) → 0,

or

√
S sup

j
|E(h̃(j))| → 0, (8)

by Assumption A8. Finally, it remains to show that the second and third moments of h̃(j)

satisfies

sup
j

|E(aT h̃(j))2 − aTAa| → 0, (9)

sup
j

E||h̃(j)||32 < ∞, (10)

for any a ∈ Rd. When (7), (8), (9) and (10) are established, Theorem 2.1 follows by

Lyapunov’s central limit theorem (cf. Corollary 11.1.4 Athreya and Lahiri, 2006). Section

5 is devoted to verifying (7), (9) and (10), while Section A in the supplementary appendix

is devoted to proving (8).
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3 Applications

In this section, we illustrate our main theorem (Theorem 2.1) with three applications

including simple one-dimensional location estimator (Example 3.1) and more complicated

multi-dimensional estimators with some constraints, such as maximum score estimator

(Example 3.2) and value-search estimator (Example 3.3).

3.1 Location estimator

Let X
(j)
i (i = 1, . . . , n; j = 1, . . . , S) be i.i.d. random variables on the real line, with a

continuous density p. In each subgroup j, consider the location estimator

θ̂(j) = argmax
θ∈R

1

n

n∑
i=1

I(θ − 1 ≤ Xi ≤ θ + 1).

It was shown in Example 3.2.13 of van der Vaart and Wellner (1996) and Example

6.1 of Kim and Pollard (1990) that each θ̂(j) has a cubic-rate convergence. We assume

that Pr(X ∈ [θ − 1, θ + 1]) has a unique maximizer at θ0. When the derivative of p

exists and is continuous, p′(θ0 − 1) − p′(θ0 + 1) > 0 implies that the second derivative

of Pr(X ∈ [θ − 1, θ + 1]) is negative for all θ within some small neighbor Nδ around θ0.

Therefore, Condition (A2) holds, since

E|I(θ1 − 1 ≤ X ≤ θ1 + 1)− I(θ2 − 1 ≤ X ≤ θ2 + 1)|2

= Pr(θ1 − 1 ≤ X ≤ θ2 − 1) + Pr(θ1 + 1 ≤ X ≤ θ2 + 1)

≤ sup
θ∈Nδ

{p′(θ − 1) + p′(θ + 1)}|θ1 − θ2|,

for θ1 ≤ θ2 and |θ1−θ2| < 0.5. Moreover, if we further assume that p has continuous second

derivative in the neighborhood Nδ, Condition (A6) is satisfied.

The class of functions {|I(θ− 1 ≤ X ≤ θ+1)| : θ ∈ Θ} is bounded by 1 and belongs to

VC class. In addition, we have

sup
|θ−θ0|<ϵ

|I(θ − 1 ≤ X ≤ θ + 1)− I(θ0 − 1 ≤ X ≤ θ0 + 1)|

≤ I(θ0 − 1− ϵ ≤ X ≤ θ0 − 1 + ϵ) + I(θ0 + 1− ϵ ≤ X ≤ θ0 + 1 + ϵ),
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for small ϵ. The L2(P ) norm of the function on the second line is O(
√
ϵ). Hence, Conditions

(A4) and (A5) hold.

Next, we claim that Condition (A7) holds for function L(h) ≡ 2p(θ0 + 1)|h|, or equiva-

lently {p(θ0 − 1) + p(θ0 + 1)}|h|, since p(θ0 − 1) = p(θ0 + 1). Obviously, L(·) is symmetric

and satisfies the rescaling property. For any h1, h2 such that max(|h1|, |h2|) ≤ n1/3δ, we

define θ1 = θ0 + n−1/3h1 ∈ Nδ and θ2 = θ0 + n−1/3h2 ∈ Nδ. Let [a, b] denote the indicator

function I(a ≤ X ≤ b). Assume h1 ≤ h2. We have

n1/3E |[θ1 − 1, θ1 + 1]− [θ2 − 1, θ2 + 1]|2 = n1/3E[θ1 − 1, θ2 − 1] + n1/3E[θ1 + 1, θ2 + 1]

= n1/3

∫ θ2−1

θ1−1

p(θ)dθ + n1/3

∫ θ2+1

θ1+1

p(θ)dθ = {p(θ0 + 1) + p(θ0 − 1)}(h2 − h1) +R,

where the remainder term R is bounded by

sup
θ1≤θ≤θ2

(|p(θ − 1)− p(θ0 − 1)|+ |p(θ + 1)− p(θ0 + 1)|) (h2 − h1)

≤ sup
θ∈Nδ

4n−1/3|p′(θ)|(h2 − h1)max(|h1|, |h2|) ≤ sup
θ∈Nδ

4n−1/3|p′(θ)|(|h1|+ |h2|)2,

using a first order Taylor expansion. The case when h1 > h2 can be similarly discussed.

Therefore, Condition (A7) holds. Theorem 2.1 then follows.

3.2 Maximum score estimator

Consider the regression model Y
(j)
i = X

(j)
i

T
β0 + e

(j)
i , , j = 1, · · · , S, where X

(j)
i is a d-

dimensional vector of covariates and e
(j)
i is the random error. Assume that (X

(j)
i , e

(j)
i )’s are

i.i.d. copies of (X, e). The maximum score estimator is defined as

β̂(j) = arg max
||β||2=1

n∑
i=1

{I(Y (j)
i ≥ 0, X

(j)
i

T
β ≥ 0) + I(Y

(j)
i < 0, X

(j)
i

T
β < 0)},

where the constraint ||β||2 = 1 is to guarantee the uniqueness of the maximizer.

Assume ||β0|| = 1, otherwise we can define β⋆ = β0/||β0||2 and establish the asymptotic

distribution of β̂0 − β⋆ instead. It was shown in Example 6.4 of Kim and Pollard (1990)

that β̂(j) has a cubic-rate convergence, when (i) median(e|X) = 0; (ii) X has a bounded,

continuously differentiable density p; and (iii) the angular component of X has a bounded
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continuous density with respect to the surface measure on Sd−1, which corresponds to the

unit sphere in Rd.

Theorem 2.1 is not directly applicable to this example since Assumption (A1) is violated.

The Hessian matrix

V = −∂2E{I(Y (j)
i ≥ 0, X

(j)
i

T
β ≥ 0) + I(Y

(j)
i < 0, X

(j)
i

T
β < 0)}

∂ββT
|β0

is not positive definite. One possible solution is to use the arguments from the constrained

M-estimator literature (e.g. Geyer, 1994) to approximate the set ||β||2 = 1 by a hyper-

plane (β − β0)
Tβ = 0, and obtain a version of Theorem 2.1 for the constrained cubic-rate

M-estimators. We adopt an alternative approach here, and consider a simple reparameter-

ization to make Theorem 2.1 applicable.

By Gram-Schmidt orthogonalization, we can obtain an orthogonal matrix [β0, U0] with

U0 being a Rd×(d−1) matrix subject to the constraint UT
0 β0 = 0. Define

β(θ) =
√

1− ||θ||22β0 + U0θ, (11)

for all θ ∈ Rd−1 and ||θ||2 ≤ 1. Take Θ to be the unit ball Bd−1
2 in Rd−1. Define

θ̂(j) = argmax
θ∈Θ

n∑
i=1

[I(Y
(j)
i ≥ 0, X

(j)
i

T
β(θ) ≥ 0) + I(Y

(j)
i < 0, X

(j)
i

T
β(θ) < 0)].

Note that under the assumption median(e|X) = 0, we have θ0 = 0.

Let m(y, x, β) = I(y ≥ 0, xTβ ≥ 0) + I(y < 0, xTβ < 0). Define

κ(x) = E{I(e+XTβ0 ≥ 0)− I(e+XTβ0 < 0)|X = x}.

It is shown in Kim and Pollard (1990) that

∂E{m(·, ·, β)}
∂β

= ||β||−2
2 βTβ0(I + ||β||−2

2 ββT )

∫
xT β0=0

κ(Tβx)p(Tβx)dσ, (12)

where

Tβ = (I − ||β||−2
2 ββT )(I − β0β

T
0 ) + ||β||−1

2 ββT0 ,

and σ is the surface measure on the line xTβ0 = 0.
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Note that ∂β(θ)/∂θ has finite derivatives for all orders as long as ||θ||2 < 1. Assume

that κ and p have twice continuous derivatives. This together with (12) implies that

E{m(·, ·, β(θ))} has third continuous derivative as a function of θ in a small neighborhood

Nδ (δ < 1) around 0. This verifies (A6). Moreover, for any θ1, θ2 ∈ Nδ with ||θ1− θ2||2 ≤ ϵ,

we have

||β(θ1)− β(θ2)||22 = ||θ1 − θ2||22 +
(√

1− ||θ1||22 −
√
1− ||θ2||22

)2

= ||θ1 − θ2||22 +
(1− ||θ1||22 − 1 + ||θ2||22)

2(√
1− ||θ1||22 +

√
1− ||θ2||22

)2 ≤ 2||θ1 − θ2||22
1− δ2

. (13)

Kim and Pollard (1990) showed that E{|m(·, ·, β1)−m(·, ·, β2)|} = O(||β1 − β2||2) near β0.

This together with (13) implies

E{|m(·, ·, β(θ1))−m(·, ·, β(θ2))|2} ≤ 2E{|m(·, ·, β(θ1))−m(·, ·, β(θ2))|} = O(||θ1 − θ2||2).

Therefore, (A2) is satisfied and (A3) trivially holds since |m| ≤ 1.

It was also shown in Kim and Pollard (1990) that the envelope Mϵ of the class of

functions {m(·, ·, β)−m(·, ·, β0) : ||β−β0||2 ≤ ϵ} satisfies EM2
ϵ = O(ϵ). Using (13), we can

show that the envelope M̃ϵ of the class of functions {m(·, ·, β(θ)) −m(·, ·, β0) : ||θ||2 ≤ ϵ}

also satisfies EM̃2
ϵ = O(ϵ). Thus, (A4) is satisfied. Moreover, since the class of functions

m(·, ·, β) over all β belongs to the VC class, so does the class of function m(·, ·, β(θ)). This

verifies (A5).

Finally, we establish (A7). For any θ1, θ2 ∈ Nδ, define h1 = n1/3θ1 and h2 = n1/3θ2. We

have

n1/3E
{∣∣m(Y,X, β(h1/n

1/3))−m(Y,X, β(h2/n
1/3))

∣∣2}
= n1/3E

{∣∣I(XTβ(h1/n
1/3) ≥ 0)− I(XTβ(h2/n

1/3) ≥ 0)
∣∣ I(Y ≥ 0)

}
+ n1/3E

{∣∣I(XTβ(h1/n
1/3) < 0)− I(XTβ(h2/n

1/3) < 0)
∣∣ I(Y < 0)

}
= n1/3E

{∣∣I(XTβ(h1/n
1/3) ≥ 0)− I(XTβ(h2/n

1/3) ≥ 0)
∣∣} . (14)

We write X as rβ0 + z with z orthogonal to β0. Equation (14) can be written as

n1/3E


∣∣∣∣∣∣I
r

√
1−

∣∣∣∣∣∣∣∣ h1

n1/3

∣∣∣∣∣∣∣∣2
2

+ zTU
h1

n1/3
≥ 0

− I

r

√
1−

∣∣∣∣∣∣∣∣ h2

n1/3

∣∣∣∣∣∣∣∣2
2

+ zTU
h2

n1/3
≥ 0

∣∣∣∣∣∣
 .(15)
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Define ω = n1/3r. Equation (15) can be expressed as∫ ∫
I(−zTUh1(1− n−2/3||h1||22)−1/2 > ω ≥ −zTUh2(1− n−2/3||h2||22)−1/2)p

( ω

n1/3
, z
)
dωdz.

Assume that p(r, z) is differentiable with respect to r and |∂p(r, z)/∂r| ≤ q(z) for some

function q. Then, (15) is equal to∫
|zTU{h1(1− n−2/3||h1||22)−1/2 − h2(1− n−2/3||h2||22)−1/2}|p(0, z)dz +R1

=

∫
|zTU(h1 − h2)|p(0, z)dz +R1 +R2,

where the remainders |R1| and |R2| are bounded by

|R1| ≤
∫

n−1/3{(zTUh1)
2 + (zTUh2)

2}q(z)dz = O(n−1/3{||h1||22 + ||h2||22}),

and

|R2| ≤ |(1− n−2/3||h1||22)−1/2 − 1|
∫

|zTUh1|p(0, z)dz

+ |(1− n−2/3||h2||22)−1/2 − 1|
∫

|zTUh2|p(0, z)dz

≤ n−1/3(||h1||2 + ||h2||)
∫
(|zTUh1|+ |zTUh2|)p(0, z)dz = O(n−1/3{||h1||22 + ||h2||22}),

under suitable moment assumptions on functions p(0, z) and q(z). This verifies (A7).

An application of Theorem 2.1 implies

1√
S

S∑
j=1

n1/3θ̂(j)
d→ N(0, A),

for some positive definite matrix A ∈ R(d−1)×(d−1). Hence

1√
S

S∑
j=1

n1/3Uθ̂(j)
d→ N(0, UAUT ). (16)

By the definition of θ̂(j) and β̂(j), we have∣∣∣∣∣ 1√
S

S∑
j=1

n1/3(β̂(j) − β0 − Uθ̂(j))

∣∣∣∣∣ ≤
∣∣∣∣∣ 1√

S

S∑
j=1

n1/3|
√

1− ||θ̂(j)||22 − 1|

∣∣∣∣∣
≤

∣∣∣∣∣∣ 1√
S

S∑
j=1

n1/3 |1− ||θ̂(j)||22 − 1|

|
√

1− ||θ̂(j)||22 + 1|

∣∣∣∣∣∣ ≤ n1/3

√
S

∑
j

||θ̂(j)||22.

14



With probability at least 1−S/n → 1, the last expression is equal toO(
√
Sn1/3n−2/3 log2/3 n) =

o(1), which is implied by the tail inequality for θ̂(j) established in Theorem 5.1. Combining

this together with (16), we have

1√
S

S∑
j=1

n1/3(β̂(j) − β0)
d→ N(0, UAUT ).

3.3 Value search estimator

The value search estimator was introduced by Zhang et al. (2012) for estimating the optimal

treatment regime. The data can be summarized as i.i.d. triples {O(j)
i = (X

(j)
i , A

(j)
i , Y

(j)
i ), i =

1, . . . , n; j = 1, . . . , S}, where X
(j)
i ∈ Rd denote patient’s baseline covariates, A

(j)
i is the

treatment received by the patient taking the value 0 or 1, and Y
(j)
i is the response, the

larger the better by convention. Consider the following model

Y
(j)
i = µ(X

(j)
i ) + A

(j)
i C(X

(j)
i ) + e

(j)
i , (17)

where µ(·) is the baseline mean function, C(·) is the contrast function, and e
(j)
i is the

random error with E{e(j)i |A(j)
i , X

(j)
i } = 0. The optimal treatment regime is defined in

the potential outcome framework. Specifically, let Y
(j)⋆
i (0) and Y

(j)⋆
i (1) be the potential

outcomes that would be observed if the patient received treatment 0 or 1, accordingly. For

a treatment regime d that maps X
(j)
i to {0, 1}, define the potential outcome

Y
(j)⋆
i (d) = d(X

(j)
i )Y

(j)⋆
i (1) + {1− d(X

(j)
i )}Y (j)⋆

i (0).

The optimal regime dopt is defined as the rule that maximizes the expected potential out-

come, i.e, the value function, E{Y (j)⋆
i (d)}. Under the stable unit treatment value assump-

tion (SUTVA) and no unmeasured confounders assumption (Splawa-Neyman, 1990), the

optimal treatment regime under model (17) is given by dopt(x) = I{C(x) > 0}.

The true contrast function C(·) can be complex. As suggested by Zhang et al. (2012),

in practice we can find the restricted optimal regimen within a class of decision rules,

such as linear treatment decision rules d(x, β) = I(β1 + x1β2 + · · · + xdβd+1 > 0) indexed

by β ∈ Rd+1, where the subscript k denotes the kth element in the vector. Let β⋆ =

argmaxβ V (β), where V (β) = E{Y (j)⋆
i (d(X

(j)
i , β))}. To make β⋆ identifiable, we assume

15



β⋆1 = −1. Define θ⋆ = (β⋆2 , · · · , β⋆d+1)
T . The restricted optimal treatment regime is given by

d̃opt(x, θ⋆) = I(xT θ⋆ > 1) and the value function is defined by V (θ) = E{Y (j)⋆
i (d̃(X

(j)
i , θ))}

with d̃(x, θ) = I(xT θ > 1). Zhang et al. (2012) proposed an inverse propensity score

weighted estimator of the value function V (θ) and the associated value search estimator by

maximizing the estimated value function. Specifically, for each group j, the value search

estimator is defined as

θ̂(j) = argmax
θ∈Θ

1

n

n∑
i=1

d̃(X
(j)
i , θ)A

(j)
i + {1− d̃(X

(j)
i , θ)}(1− A

(j)
i )

π
(j)
i A

(j)
i + (1− π

(j)
i )(1− A

(j)
i )

Y
(j)
i , (18)

where π
(j)
i = Pr(A

(j)
i = 1|X(j)

i ) is the propensity score and known in a randomized study.

Here, for illustration purpose, we assume that π
(j)
i ’s are known.

Define m(O
(j)
i , θ) = ξ

(j)
i d̃(X

(j)
i , θ), where

ξ
(j)
i =

A
(j)
i

π
(j)
i

C(X
(j)
i ) +

A
(j)
i − π

(j)
i

π
(j)
i (1− π

(j)
i )

{
µ(X

(j)
i ) + e

(j)
i

}
=

(
A

(j)
i

π
(j)
i

− 1− A
(j)
i

1− π
(j)
i

)
Y

(j)
i .

With some algebra, we can show that θ̂(j) also maximizes P(j)
n m(·, θ), where P(j)

n is the

empirical measure for data in group j. Unlike the previous two examples, here the function

m is not bounded. To fulfill (A3), we need ||ξ(j)i ||ψ1 < ∞. This holds when 0 < γ1 <

π
(j)
i < γ2 < 1 for some constants γ1 and γ2, ||C(X

(j)
i )||ψ1 < ∞, ||µ(X(j)

i )||ψ1 < ∞ and

||e(j)i ||ψ1 < ∞.

To show (A1) and (A6), we evaluate the integral

Γ(θ) = E{ξd̃(X, θ)} = E{C(X)d̃(X, θ)} =

∫
xT θ>1

C(x)p(x)dx, (19)

where p(x) is the density function of X
(j)
i . Consider the transformation

Tθ = (I − ||θ||−2
2 θθT ) + ||θ||−2

2 θ(θ⋆)T ,

which maps the region {xT θ⋆ > 1} onto {xT θ > 1}, and {xT θ⋆ = 1} onto {xT θ = 1}. We

exclude the trivial case with θ⋆ = 0. The above definition is meaningful when θ is taken

over a small neighborhood Nδ of θ
⋆. We assume that functions p and C are continuously

differentiable. Note that

∂Tθx

∂θ
= −{θTx− (θ⋆)Tx}

||θ||22
I − θxT

||θ||22
+

2θθT (xT θ − xT θ⋆)

||θ||42
.
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Using some differential geometry arguments similarly as in Section 5 of Kim and Pollard

(1990), we can show that the integral (19) can be represented as

Γ(θ) =

∫
xT θ⋆>1

[
− 1

||θ||22
θT

∂C(x)p(x)

∂x
x+

{θTx− (θ⋆)Tx}
||θ||42

θT
∂C(x)

∂x
θ − θTx− (θ⋆)Tx

||θ||22
∂C(x)p(x)

∂x

]
dx,

which is thrice differentiable under certain conditions on C(x), p(x) and their derivatives.

To show (A7), we assume that the conditional density p(x|y) of X given Y = 1−XT θ⋆

exists and is continuously differentiable with respect to y. Similarly assume that the density

q(y) of Y exists and is continuously differentiable. Let g(X) = E(ξ2|X). For any h1, h2 ∈

Rd, we have

n1/3E
{
ξ2
∣∣I(XT θ⋆ + n−1/3XTh1 > 1)− I(XT θ⋆ + n−1/3XTh2 > 1)

∣∣2}
= n1/3

∫
g(x)

∣∣I(n−1/3xTh1 > y)− I(n−1/3xTh2 > y)
∣∣ p(x|y)q(y)dxdy.

Let y = n−1/3z. The last expression in the above equation can be written as∫
g(x)

∣∣I(xTh1 > z)− I(xTh2 > z)
∣∣ p(x|0)q(0)dxdz +R

=

∫
g(x)|xT (h1 − h2)|p(x|0)q(0)dx+R,

with the remainder term

R =

∫
g(x)

∣∣I(xTh1 > z)− I(xTh2 > z)
∣∣ {p(x|n−1/3z)q(n−1/3z)− p(x|0)q(0)}dxdz,

which is O(n−1/3(||h1||22 + ||h2||22)) under certain conditions on q(x) and p(x|·). Conditions

(A2) and (A4) can be similarly verified. Since the class of functions {g(x)I(xT θ > 1) : θ ∈

Rd} has finite VC index, Condition (A5) also holds. Theorem 2.1 then follows.

4 Numerical studies

In this section, we examine the numerical performance of the aggregated M-estimator for

the three examples studied in the previous section and compare it with the M-estimator

based on pooled data, denoted as the pooled estimator.
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4.1 Location estimator

The data Xj (j = 1, . . . , N) were independently generated from the standard normal dis-

tribution. The true parameter θ0 that maximizes E{I(θ − 1 ≤ Xj ≤ θ + 1)} was set to be

0. Let θ̃0 and θ̂0 denote the pooled estimator and the aggregated estimator, respectively.

To obtain θ̂0, we randomly divided the data into S blocks with equal size n = N/S.

We took N = 2i for i = 14, 16, 18, 20, and choose S = 2j such that 0.2 ≤ j/i < 0.625

when N = 2i. For each combination of N and S, we estimated the standard error of θ̂0 by

ŜE(θ̂0) =
1√
S

{
1

S − 1

S∑
l=1

(
θ̂(l) − θ̂0

)2}1/2

,

where θ̂(l) denotes the M-estimator for the lth group. For each scenario, we conducted

1000 simulation replications and plot the coverage probabilities of 95% predictive intervals

in Figure 1. We also report the bias and sample standard deviation (denoted as SD)

of estimators θ̃0 and θ̂0, and mean of estimated standard errors and coverage probability

(denoted as CP) of Wald-type 95% confidence interval for θ̂0 in Table 1 of the supplementary

appendix, for some of the scenarios where N = 2i for i = 14, 16, 18, 20, and S = 2j for

j = 4,5,6,7. Unlike θ̂0, θ̃0 doesn’t converge to a tractable limiting distribution and it doesn’t

have a convenient variance estimator. Hence, in Table 1, we didn’t provide the standard

errors and confidence intervals for θ̃0.

From Figure 1, it is clear that for this specific application, the coverage probabilities

are approximately 95% when S ≤ S∗ where S∗ ≈ N0.55. In this example, the cubic rate

estimator is one dimensional and according to Theorem A.1 and the discussion in Section

A.5.1 in the supplementary appendix, the aggregated estimator is asymptotically normal

when S = O(N l) for 0 < l < 4/13. This is consistent with our numerical findings. Based

on the results in Table 1, it can be seen that the aggregated estimator θ̂0 has much smaller

standard deviation than the pooled estimator θ̃0, indicating the efficiency gain by the

divide and conquer scheme as shown in our theory. In addition, the bias of θ̂0 generally

becomes bigger and the standard deviation of θ̂0 generally becomes smaller when S and N

increase, and the normal approximation becomes more accurate when S increases. This

demonstrates the bias-variance trade off for aggregated estimators. With properly chosen
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S, the estimated standard error of θ̂0 is close to its standard deviation and the coverage

probability is close to the nominal level.

Figure 1: Coverage probability of 95% predictive interval with different choices of N and S, for
the location estimator
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4.2 Maximum score estimator

Consider the model Yi = 1.5Xi1 − 1.5Xi2 + 0.5ei, i = 1, · · · , N , where Xi1, Xi2 and ei were

generated independently from the standard normal. Hence, θ0 = (θ1, θ2)
T = (1.5,−1.5)T .

Let θ̃0 = (θ̃1, θ̃2)
T denote the pooled estimator and θ̂0 = (θ̂1, θ̂2)

T the aggregated estimator.

We set N = 220, 222 and S = 2j such that 0.18 ≤ j/i ≤ 0.42 when N = 2i. The coverage

probabilities of 95% confidence intervals for θ̂1 and θ̂2 are plotted in Figure 2 based on 1000

replications. They are close to the nominal level when S ≤ S∗ where S∗ ≈ N0.32. This

example can also be regarded as a one-dimensional cubic rate estimation problem since θ̂1

and θ̂2 satisfy the constraint: θ̂21 + θ̂22 = 1. Therefore, similar to the discussions in Section

A.5.2, we can show θ̂1 and θ̂2 are asymptotically normal when S = O(N l) for 0 < l < 4/13.

This upper bound is close to S∗ since 4/13 ≈ 0.308. Other results are given in Table 2

of the supplementary appendix. The findings are very similar to those for the location

estimator in the previous example.
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Figure 2: Coverage probability of 95% predictive interval with different choices of N and S, for
the maximum score estimator
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4.3 Value search estimator

Consider the model Yi = 1 + Ai(2Xi − 1) + ei, i = 1, · · · , N , where Xi ∼ N(0, 1), ei ∼

N(0, 0.25), and Pr(Aj = 1) = 0.5. Under this model assumption, the optimal treatment

rule takes the form,

dopt(x) = I(2x > 1),

and hence β⋆ = 2.

We take N = 224, 225, 226 and 227. When N = 224 and 225, we choose S = 2j for

j = 4, 5, 6, 7. When N = 226 and 227, we choose S = 2j for j = 5, 6, 7, 8. This gives a

total of 16 scenarios. We plot the coverage probabilities of 95% predictive intervals for θ̂0

in Figure 3, with these combinations of S and N . When S ≤ S∗ ≈ N0.27, the coverage

probabilities are close to 95%. This is also a one-dimensional problem. Note that in

this application, the rate 0.27 in the practical upper bound is slightly smaller than the

theoretical upper bound 4/13 ≈ 0.308. However, it is noted that the theoretical upper

bound is up to a scaling constant. When N becomes larger, the ratio logS∗/ logN should

be close to or larger than 0.308. Details about the bias and the sample standard deviations
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of the aggregated estimator are given in Table 3 of the supplementary appendix.

Figure 3: Coverage probability of 95% predictive interval with different choices of N and S, for
the value search estimator
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4.4 Yahoo! Today Module user click log dataset

Online content recommendation services have received extensive attention both in the ma-

chine learning and statistics literature. These online services strive to make recommen-

dations of advertisements or news articles to individual users by making use of both the

content and user information. In this subsection, we apply the proposed method to a Yahoo!

Today Module user click log dataset, which contains 45,811,883 user visits to the Today

Module, during the first ten days in May 2009. Given such a large number of observations,

it is extremely difficult to analyze the entire data on a single computer. This makes the

divide and conquer method as an emerging need to deal with such large datasets.

For the ith visit, the dataset contains a binary response variable Yi, an ID of the

recommended article and a 6 dimensional feature vector of the user. Due to sensitivity

and privacy concerns, feature definitions and article names were not included in the data.

Here, Yi = 1 means the user clicked the recommended article and Yi = 0 means the user

didn’t click. The last element in the feature vector is always 1, and the first five sums
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to 1. Therefore, we took the first three and the fifth elements in the feature vector to

form the covariates Xi. For illustration, we only consider a subset of data that contains

visits on May 1st where the recommended article ID is either 109510 or 109520. There

were a total of 50 candidate articles on May 1st. We chose these two articles since they

were being recommended most on that day. This gives us a total of 405888 visits. On

the reduced dataset, define Ai = 1 if the recommended article is 109510 and Ai = 0

otherwise. In this example, the online recommendation problem can be formulated as

follows. Denoted by D a given set of functions that maps the covariate space to the space

of article ID’s. Our aim is to find the optimal recommendation strategy to maximize user’s

click through rate. We consider estimating the optimal recommendation rule among the

set of linear decision functions D = {I(xT θ > 1) : ∀θ ∈ R4}. Hence, estimating the optimal

recommendation strategy is similar to the problem of estimating the optimal treatment

regime as described in Section 3.3. Specifically, we divide the data randomly into S pieces:

{(X(j)
i , A

(j)
i , Y

(j)
i ) : i = 1, . . . , nj}j=1,...,S and obtain

θ̂(j) = argmax
θ∈R4

1

nj

nj∑
i=1

{(
A

(j)
i

π̂
(j)
i

I(θTX
(j)
i > 1) +

1− A
(j)
i

1− π̂
(j)
i

I(βTX
(j)
i ≤ 1)

)
Y

(j)
i (20)

+

(
A

(j)
i

π̂
(j)
i

I(θTX
(j)
i > 1) +

1− A
(j)
i

1− π̂
(j)
i

I(θTX
(j)
i ≤ 1)− 1

)
{ĥ(j)

0i I(θ
TX

(j)
i ≤ 1) + ĥ

(j)
1i I(θ

TX
(j)
i > 1)}

}
,

as the subgroup estimator, where π̂
(j)
i , ĥ

(j)
0i , ĥ

(j)
1i are estimators of Pr(A

(j)
i = 1|X(j)

i ),

Pr(Y
(j)
i = 1|A(j)

i = 0, X
(j)
i ) and Pr(Y

(j)
i = 1|A(j)

i = 1, X
(j)
i ) respectively. The estima-

tors π̂
(j)
i , ĥ

(j)
0i , ĥ

(j)
1i are obtained by logistic regressions. We chose nj such that maxj nj −

minj nj ≤ 1. The estimated optimal recommendation strategy is given as I(xT θ̂0 > 1)

where θ̂0 =
∑

j θ̂
(j)/S.

Remark 4.1 Compared to the value search estimator defined in (18), here we obtain the

subgroup estimator by maximizing an augmented version of the inverse propensity score

weighted estimator. The resulting estimator also converges at a rate of n−1/3 but is more

efficient than the original one in (18).

Due to data confidentiality agreement, we are not able to use the raw data. Here, we

generate pseudo responses Ỹ
(j)
i givenX

(j)
i and A

(j)
i from the Yahoo data, and use the dataset
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{(X(j)
i , A

(j)
i , Ỹ

(j)
i ) : i = 1, . . . , nj, j = 1, . . . , S} in our application. The generated variables

Ỹ
(j)
i ’s are similar to the original responses Y

(j)
i ’s. For example, we have

∑
i,j Y

(j)
i /

∑
j ni ≈

4.71% while
∑

i,j Ỹ
(j)
i /

∑
j ni ≈ 4.73%. Besides, under our data generating process, the

population limit of θ̂(j) in (20) can be explicitly calculated as θ0 = (θ0,1, θ0,2, θ0,3, θ0,4)
T =

(2.534, 2.881, 2.796, 3.200)T for any j. Hence, θ0 is also the population limit of θ̂0 when S

does not diverge too fast. Detailed descriptions of generating Ỹ
(j)
i ’s are given in Section I

of the supplementary appendix.

We choose S = 2j for j = 4, 5, . . . , 10. Under a given S, denoted by θ̂
(S)
0 = (θ̂

(S)
0,1 , θ̂

(S)
0,2 , θ̂

(S)
0,3 , θ̂

(S)
0,4 )

T

the corresponding aggregated estimator. For each S, we use sample variance to estimate

the variance of the aggregated estimator. Based on these estimates, we plot the estimators

β̂
(S)
0,i and the Wald-type 95% confidence intervals of θ0,i in Figure 4, for i = 1, . . . , 4 with

different choices of S.

Figure 4: 95% confidence intervals of θ0,1, θ0,2, θ0,3 and θ0,4 from top to bottom and from left
to right, against log(S)/ log(2). Dash lines are the corresponding θ0,i’s.
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It is clear from Figure 4 that the variance of θ̂
(S)
0 decreases as S increases, since the

width of confidence intervals decreases as S increases. Moreover, when S is extremely large,

some of the parameters are not covered in the 95% confidence intervals. For example, from
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the top left plot in Figure 4, θ0,1 is not covered in the confidence intervals of θ̂
(S)
0,1 when

S = 29 and 210. Such phenomenon is due to the large bias of θ̂
(S)
0 . These empirical results

demonstrate the bias-variance trade off for the aggregated estimator, and are consistent

with our theoretical findings.

5 Tail inequality for ĥ(j)

In this section, we establish tail inequalities for θ̂(j) and ĥ(j), which are used to construct

h̃(j), a truncated version of ĥ(j) with tail equivalence.

Theorem 5.1 Under Conditions (A1)-(A5), for sufficiently large nj, there exists some

constant C0, such that

Pr(θ̂(j) /∈ Nδ) ≤ 2 exp(−C0nj). (21)

Moreover, for sufficiently large nj, there exist some constants C1, C2 > 0 and N0 ≥ 2, such

that

Pr(||ĥ(j)||2 ≥ x|θ̂(j) ∈ Nδ) ≤ C2 exp(−C1x
3), (22)

for any N0 ≤ x ≤ n
1/3
j δ.

Remark 5.1 (21) and (22) can be viewed as generalization of the consistency and rate

of convergence results established for cube root estimators (cf. Corollary 4.2 in Kim and

Pollard, 1990). The tail probability of ||ĥ(j)||2 is obtained based on the subexponential tail

Assumption (A3) for m(·, θ).

We represent ĥ(j) as

ĥ(j) = arg max
h∈Hnj

Mnj ,j(h) ≡ arg max
h∈Hnj

{
n
1/6
j G(j)

nj
(m

(j)
h ) + n

2/3
j E(m

(j)
h )
}
,

where Hnj
= {h ∈ Rd : n

−1/3
j h + θ0 ∈ Θ}, G(j)

nj = nj
1/2(P(j)

nj − E) and m
(j)
h (·) = m(·, θ0 +

n
−1/3
j h)−m(·, θ0). Similarly define

h̃(j) = arg max
h∈Hnj∩Hδn

Mnj ,j(h) = arg max
h∈Hnj∩Hδn

{
n
1/6
j G(j)

n (m
(j)
h ) + n

2/3
j E(m

(j)
h )
}
,
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where Hδn = {h : ||h||2 ≤ δn}. By its definition, we have ||h̃(j)||2 ≤ δn. The following

Corollaries are immediate applications of Theorem 5.1.

Corollary 5.1 Assume δn ≤ n
1/3
j δ. Under Conditions (A1)-(A5), for sufficiently large nj,

there exist some constants N0 ≥ 2, C4 and C5, such that

Pr(||h̃(j)||2 > x) ≤ C5 exp(−C4x
3), ∀x ≥ N0. (23)

The proof is straightforward by noting that for any x ≤ n
1/3
j δ,

Pr(||h̃(j)||2 > x) ≤ Pr(||h̃(j)||2 > x|θ̂(j) ∈ Nδ)Pr(θ̂
(j) ∈ Nδ) + Pr(θ̂(j) /∈ Nδ)

≤ C2 exp(−C1x
3) + 2 exp(−C0nj) ≤ C5 exp(−C4x

3).

Remark 5.2 Corollary 5.1 suggests that h̃(j) has finite moments of all orders. For any

a ∈ Rd and positive integer k, this implies that the sequence of random variables |aT h̃(j)|k

are uniformly integrable. This result is useful in establishing the convergence for moments

of h̃(j) (see Corollary 5.3).

Corollary 5.2 Under Conditions (A1)-(A5) and (A8), taking δn = max(31/3, 31/3/C
1/3
1 ) log1/3 nj

where C1 is defined in Theorem 5.1, then h̃(j) and ĥ(j) are tail equivalent. If S = o(n3),

then
∑S

j=1 h̃
(j) and

∑S
j=1 ĥ

(j) are also tail equivalent.

Tail equivalence of h̃(j) and ĥ(j) follows by

Pr
(
h̃(j) ̸= ĥ(j)

)
= Pr

(
||ĥ(j)||2 > δn

)
≤ C2

n3
j

+ 2 exp(−C0nj) ≤
C2c̄

3

n3
+ 2 exp

(
−C0n

c̄

)
,(24)

where the first inequality is implied by Theorem 5.1 and the last inequality is due to

Condition (A8). The second assertion follows by an application of Bonferroni’s inequality.

Corollary 5.2 proves (7). From now on, we take δnj
= max(31/3, 31/3/C

1/3
1 ) log1/3 nj. By

(24), Slutsky’s Theorem implies h̃(j) d→ h0. Applying Skorohod’s representation Theorem

(cf. Section 9.4 in Athreya and Lahiri, 2006), we have that there exist random vectors

h̃(j)⋆ d
= h̃(j) and h⋆0

d
= h0 such that h̃(j)⋆ → h⋆0, almost surely. This together with the

uniform integrability of ||h̃(j)||k2 gives the following Corollary.
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Corollary 5.3 Under Conditions (A1)-(A5), for any a ∈ Rd and integer k ≥ 1, we have

E{(aT h̃(j))k} → E{(aTh0)
k} as nj → ∞.

Remark 5.3 Due to the i.i.d assumption of X
(j)
i , E{(aT h̃(j))k} is a function of nj only.

Under Condition (A8), Corollary (5.3) implies

sup
j

|E{(aT h̃(j))k} − E{(aTh0)
k}| → 0, as n → ∞.

Taking k = 2, it proves (9). Taking k = 3, it proves (10). Moreover, Corollary 5.3 suggests

a simple scheme for estimating the covariance matrix A ≡ cov(h0) given in (5). For any

vector a, by law of large numbers, we obtain

1

S

S∑
j=1

(aT h̃(j))2 − 1

S

S∑
j=1

E(aT h̃(j))2
a.s.→ 0.

This together with tail equivalence between h̃(j) and ĥ(j), and (9) implies that
∑

j(a
T ĥ(j))2/S

converges to aTAa.

6 Discussion

In this paper, we provide a general inference framework for aggregated M-estimators with

cubic rates obtained by the divide and conquer method. Our results demonstrate that the

aggregated estimators have faster convergence rate than the original M-estimators based

on pooled data and achieve the asymptotic normality when the number of groups S does

not grow too fast with respect to n, the average sample size of each group.

6.1 Rate of the bias

For a general cubic-rate estimator with sample size n, we showed its bias can be bounded by

O((n/ log n)−5/12). In comparison, Banerjee et al. (2016) obtained a sharper bound in the

specific setting of monotone regression and showed that the bias of the isotonic estimator

can be bounded by O(n−7/15+ζ) for any ζ > 0 and the bias of its inverse bounded by

o(n−1/2) (see Theorem 4.3 and 4.4 in that paper). As commented before, this is because we
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work on a more general setting and their techniques cannot be easily generalized to other

cubic-rate M-estimation problems.

However, it is possible to sharpen the bound for some special cases. In particular, when

the parameter is one-dimensional, we show in Theorem A.1 (see also Corollary A.1) in the

supplementary appendix that the bias of the estimator can be bounded by O(n−5/9 log9/14 n)

based on the KMT approximation. Note that this bound is even sharper than those in

Theorem 4.3 and 4.4 in Banerjee et al. (2016). This is because we assume a stronger

assumption on the Lipschitz continuity of the Hessian matrix (see Assumption A6 and

Equation (4.3) in Banerjee et al., 2016). Under Assumption A8, Theorem A.1 implies the

asymptotic normality holds for the aggregated estimator as long as the number of machines

satisfies S = O(N l) for some l < 4/13, where N is the total number of observations. Again

this upper bound on S may still be conservative, however it improves a lot compared to

Theorem 2.1. We further apply our theorem to the location estimator (see Section A.5.1)

and the one-dimensional value search estimator (see Section A.5.2) for illustration.

For the bias of a general cubic-rate M-estimator, our proof relies on the Gaussian ap-

proximation of the suprema of empirical processes (cf. Chernozhukov et al., 2013, 2014)

and the Sudakov-Fernique type error bound (Chatterjee, 2005). The proofs for these theo-

rems are based on smooth approximation of the supremum function. It remains unknown

whether the rates of these error bounds are optimal and whether they can be improved

using other techniques. This is an interesting problem that needs further investigation.

6.2 The super-efficiency phenomenon

In the context of isotonic regression, Banerjee et al. (2016) showed that the faster conver-

gence rate of the aggregated estimator of the inverse function for a fixed model comes at a

price, that is, the maximal risk over a class of models in a neighborhood of the given model

remains bounded for the pooled estimator but diverges to infinity for the aggregated esti-

mator (see Theorem 6.1 in Banerjee et al., 2016). This is referred to as the super-efficiency

phenomenon, which is seen in nonparametric function estimation as well (cf. Brown et al.,

1997).

We believe such super-efficiency phenomenon holds for many other cubic-rate M-estimation
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problems as well. In the supplementary appendix, we mathematically formalize the notion

of the super-efficiency phenomenon for general M-estimation problems, and establish such

phenomenon for the location estimator (see Section B.1) and the value search estimator

(see Section B.2). The super-efficiency phenomenon is essentially due to that the maximal

bias over a large class of models for the aggregated estimator will diverge to infinity. We

suspect this is because the condition on the Lipschitz continuity of the Hessian matrix

(Assumption A6) cannot hold uniformly for all models in such a class. We discuss this in

details in the supplementary appendix.

6.3 Other issues

In the current setup, we assume all X
(j)
i ’s are independently and identically distributed. It

will be interesting to generalize Theorem 2.1 to the setting where X
(j)
i ’s are independent,

but not identically distributed. However, the meaning of the aggregated estimator may

become unclear in some applications, such as the value search estimator, and the derivation

of the asymptotic properties of the resulting aggregated estimator becomes much more

involved. This needs further investigation.
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