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Personalized medicine is a medical procedure that receives consid-
erable scientific and commercial attention. The goal of personalized
medicine is to assign the optimal treatment regime for each individual
patient, according to his/her personal prognostic information. When
there are a large number of pretreatment variables, it is crucial to
identify those important variables that are necessary for treatment
decision making. In this paper, we study two information criteria:
the concordance and value information criteria, for variable selec-
tion in optimal treatment decision making. We consider both fixed-
p and high dimensional settings, and show our information criteria
are consistent in model/tuning parameter selection. We further ap-
ply our information criteria to four estimation approaches, including
robust learning, concordance-assisted learning, penalized A-learning,
and sparse concordance-assisted learning, and demonstrate the em-
pirical performance of our methods by simulations.

1. Introduction. Personalized medicine is a medical procedure that
receives considerable scientific and commercial attention. The goal of per-
sonalized medicine is to assign the optimal treatment regime for each in-
dividual patient, according to his/her personal information, such as a pa-
tient’s genetic content, clinical response and demographic characteristics,
etc. A treatment regime is a decision rule that assigns treatments to patients
based on their observed covariates. Among the set of all possible treatment
regimes, the one that optimize patients’ expected outcomes of interest is re-
ferred to as the optimal treatment regime. Classical methods for estimating
optimal treatment regime include Q-learning (Watkins and Dayan, 1992;
Chakraborty, Murphy and Strecher, 2010) and A-learning (Robins, Hernan
and Brumback, 2000; Murphy, 2003). Recently, many authors proposed to
estimate the optimal treatment regime by directly maximizing the estimated
expected outcome, i.e, the value function. References include Zhang et al.
(2012, 2013); Zhao et al. (2012, 2015). In addition, Fan et al. (2017) intro-
duced a type of concordance function for prescribing treatment and proposed
a concordance-assisted learning for estimating the optimal treatment regime.

When there are many pretreatment variables, how to organize and use
these variables for treatment decision making becomes a big challenge. This
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makes it clinically important to implement the variable selection technique
in personalized medicine. There are a large amount of works considering
variable selection in linear and generalized linear models (GLMs) in the lit-
erature (see discussions in Fan and Lv, 2010). Parameters in the model can
be consistently estimated even in the ultrahigh dimension where the num-
ber of covariates p grows exponentially fast with respect to the sample size
n. However, the literature on estimating the optimal treatment regime in
high dimension is scarce, especially when p is much larger than n. For a
single stage study, Qian and Murphy (2011) proposed to construct the op-
timal treatment regime by estimating the conditional mean of the response
given treatment of predictors with l1 penalty function. Lu, Zhang and Zeng
(2013) proposed a convenient loss-based framework for variable selection.
Liang et al. (2017) proposed a sparse concordance-assisted learning algo-
rithm. For multiple treatment decision points, Shi et al. (2018) proposed a
high-dimensional A-learning method which estimates the optimal treatment
regime by solving penalized A-learning estimating equations. All these reg-
ularization methods require appropriate choices of the tuning parameters.

Akaike information criterion (AIC, Akaike, 1973) and Bayes information
criterion (BIC, Schwarz, 1978) are widely applied to linear models and gen-
eralized linear models. In the ultrahigh dimension, Fan and Tang (2013)
proposed a generalized information criterion (GIC) and showed its model
selection consistency. These information criteria are all constructed based
on the likelihood function. However, the optimal treatment regime is usu-
ally estimated by some semi-parametric or non-parametric methods. These
methods are typically not likelihood-based. An alternative approach is to
consider information criterion constructed by an empirical objective func-
tion, such as the information criterion proposed by Zhang et al. (2016) for
support vector machines (SVMICH). However, how to derive meaningful and
suitable information criteria for selecting important covariates for optimal
treatment decision remains challenging. Shi et al. (2018) used a BIC-type
criterion to select tuning parameters for their estimation methods. However,
there is no theoretical guarantees for the BIC procedure.

In this paper, we consider model selection and tuning parameter selection
for estimating the optimal treatment regime. Specifically, we propose value
information criterion (VIC) and concordance information criterion (CIC)
for model selection. VIC and CIC are constructed based on the empirical
estimators for the value (Zhang et al., 2012) and the concordance function
(Fan et al., 2017) respectively. The concordance function stands for the
average difference of the benefit in receiving a treatment for two patients,
if one is more likely to be assigned to this treatment compared to another
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under a given regime.
There are several technical challenges for establishing the asymptotic

properties of the proposed information criteria. Different from AIC, BIC,
GIC and SVMICH that rely heavily on the smoothness of the log-likelihood
function and Lipschitz continuity of the loss function, the empirical value
and concordance functions involve indicator functions that are neither con-
tinuous nor concave. In addition, the derivation of the asymptotic proper-
ties of the proposed information criteria is further complicated due to the
curse of dimensionality. For example, the estimated concordance function
is a U -process of order two. In the fixed-p scenario, applying the maximal
inequality for degenerate U -process (cf. Nolan and Pollard, 1987; Sherman,
1994), it can be uniformly approximated by a smooth function with the
approximation error O(1/n). Such results no longer hold when p≫ n.

The contributions of this paper are summarized as follows. First, a more
general class of models is considered. More specifically, in this paper, we
assume a monotonic linear index model for the contrast function. In contrast,
previous work on variable selection for optimal treatment regime mainly
assume a linear interaction for the contrast (cf. Lu, Zhang and Zeng, 2013;
Shi et al., 2018). Other information criteria such as AIC, BIC and GIC focus
on linear models or GLMs where the link function needs to be specified.

Second, we not only establish the consistency of our proposed information
criteria, but also provide upper bounds for the probabilities that VIC or CIC
chooses an underfitted model and an overfitted model. To the best of our
knowledge, such type of nonasymptotic bounds are rarely established for
other information criteria previously. Proofs of our major theorems (The-
orem 3.3 and 3.4) rely on some newly developed empirical process and U -
process techniques, which are important in their own rights. First, we pro-
vide a Bernstein-type concentration inequality (Theorem 7.1) for unbounded
degenerate U -process. Our theorem generalizes existing results and relaxes
classical assumptions that require the underlying class of functions to be
bounded (Arcones, 1995; Clémençon, Lugosi and Vayatis, 2008; Li, Ren and
Li, 2014). In addition, we develop the tail inequalities and uniform con-
sistencies of empirical maximizers of the estimated value and concordance
functions (Lemma 7.1) that are useful to show selection consistencies of VIC
and CIC. This is a very challenging task due to the non-smoothness of the
objective function and curse of dimensionality.

Third, our proposed information criteria are generally applicable and are
not specifically tailored to certain estimating procedures. For any estimation
procedure, as long as the true model can be recovered and the estimator sat-
isfies certain convergence rates, we show that VIC and CIC are consistent,
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in both fixed-p and ultrahigh dimension cases. Specifically, we apply our in-
formation criteria to four estimation approaches, including robust learning
(Zhang et al., 2012), concordance-assisted learning (Fan et al., 2017), penal-
ized A-learning (Shi et al., 2018) and sparse concordance-assisted learning
(Liang et al., 2017), and demonstrate that our information criteria are able
to achieve consistent model/tunning parameter selection in these examples.

We briefly summarize our key findings here. Comparatively speaking, CIC
is more reliable than VIC in model selection, although both criteria are con-
sistent. In our numerical experiments, CIC achieves smaller false negative
and false positive when compared with VIC. In our theoretical results, con-
ditions to ensure model selection consistency for VIC are more restrictive
than those for CIC. Moreover, the probability that CIC chooses a wrong
model decays much faster than that of VIC, under certain cases. This is
because the estimated concordance function in CIC is a U -process of order
two, and is more “smooth” than the estimated value function in VIC, which
is an empirical process that involves summation of indicator functions.

The rest of the article is organized as follows. We introduce VIC and CIC
in Section 2. Consistencies of these criteria in selecting variables for optimal
treatment decision are presented in Section 3. In Section 4, we introduce
doubly-robust versions of VIC and CIC and investigate their properties. In
Section 5, we apply our information criteria to four approaches for esti-
mating the optimal treatment regime. Simulation studies are conducted in
Section 6. Some technical results are provided in Section 7, with the detailed
derivations provided in Section 9 and a Supplementary Appendix. Finally,
we conclude our paper by a discussion section.

2. Concordance and value-based information criteria.

2.1. Model setup and notation. We only consider a single stage study
with two treatments to illustrate the idea. Let Y0 be a patient’s response of
interest, A0 ∈ {0, 1} denote the treatment a patient receives, and X0 ∈ Rp
denote the patient’s baseline covariates. By convention, a larger value of Y0
indicates a better clinical outcome. The number of covariates p is allowed to
increase with n and can be potentially much larger than n.

The optimal treatment regime is defined in the potential outcome frame-
work. Denoted by Y ∗

0 (0) and Y
∗
0 (1) the potential outcomes which represent

the response that a patient would get if treated by treatment 0 and 1, re-
spectively. A treatment regime d is a function that maps the covariate space
to {0, 1}. For such a function d, define the potential outcome

Y ∗
0 {d(X0)} = Y ∗

0 (0){1− d(X0)}+ Y ∗
0 (1)d(X0).
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Let D denote the set of all possible treatment regimes. The optimal treat-
ment regime (OTR) dopt is the maximizer of the expected potential outcome
E[Y ∗

0 {d(X0)}] among the set D, i.e,

dopt ∈ argmax
d∈D

E[Y ∗
0 {d(X0)}].

The OTR may not be unique. Denote by Dopt the set of all OTRs. Let
τ(x) = E{Y ∗

0 (1)− Y ∗
0 (0)|X0 = x}. Under the following two assumptions:

(A1.) SUTVA: Y0 = A0Y
∗
0 (1) + (1−A0)Y

∗
0 (0),

(A2.) No unmeasured confounders: Y ∗
0 (0), Y

∗
0 (1) ⊥⊥ A0|X0,

we can show that

dopt,0(x) ≡ I{τ(x) > 0} ∈ Dopt,(2.1)

where I(·) denotes the indicator function.
We assume τ(x) = Q(xTβ0) for some β0 ∈ Rp and some monotonically

increasing function Q. Function Q can either be specified as linear or remain
completely unspecified. Assume there exists some unique c0 ∈ R such that
Q(c0) = 0. It follows from (2.1) that dopt(x) = I(xTβ0 + c0 > 0). Hence,
finding the optimal treatment regime is equivalent to estimating the high
dimensional parameter θ0 = (c0, β

T
0 )

T . Assume β0 is sparse. Let Mβ0 =
supp(β0) be the support of β0 consisting of indices of all nonzero elements.
The aim of this paper is to identify the set Mβ0 .

2.2. Value and concordance function. For a given treatment regime d,
the expected potential outcome V (d) = E[Y ∗

0 {d(X0)}] is referred to as the
value function of d. Recall that dopt is the maximizer of V (d).

Assume data can be summarized as {Oi = (Yi, Ai, Xi), i = 1, . . . , n},
which are i.i.d. copies of O0 = (Y0, A0, X0). In the high-dimensional case,
the distribution of O0 is allowed to vary with n and it is more proper to write

O0 = O
(n)
0 = (Y

(n)
0 , A

(n)
0 , X

(n)
0 ). However, we will omit the superscript n for

notational convenience. Let π0(x) = Pr(A0 = 1|X0 = x) be the propensity
score. In a randomized study, π0,i = π0(Xi) is known for each patient. To
estimate V (d), Zhang et al. (2012) proposed an inverse propensity-score
weighted estimator (IPWE),

V̂ (d) =
1

n

n∑
i=1

Aid(Xi) + (1−Ai){1− d(Xi)}
Aiπ0,i + (1−Ai)(1− π0,i)

Yi.
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In this paper, we focus on the class of linear decision rules. For any
θ = (c, βT )T , we write V (d), V̂ (d) as V (θ), V̂ (θ) if d takes the form d(x) =
I(xTβ + c > 0). Hence, it follows from (2.1) that

θ0 ∈ argmax
θ∈Rp+1

V (θ).

Fan et al. (2017) proposed to obtain β0 by maximizing the estimated
concordance function. For any linear treatment regime I(xTβ + c > 0), the
concordance function C(β) is defined as

C(β) = E[{Y ∗
i (1)− Y ∗

i (0)} − {Y ∗
j (1)− Y ∗

j (0)}]I(XT
i β > XT

j β),

for two subjects i ̸= j. The rationale behind their method is that if Y ∗
i (1)−

Y ∗
i (0) > Y ∗

j (1)−Y ∗
j (0), the optimal treatment regime should be more likely

to assign treatment 1 to subject i compared with subject j. In our setting
where τ(x) = Q(xTβ0), we have by Condition (A1) and (A2) that

C(β) = E{Q(XT
i β0)−Q(XT

j β0)}I(XT
i β > XT

j β).

It follows that

C(β0)− C(β) = E{Q(XT
i β0)−Q(XT

j β0)}{I(XT
i β0 > XT

j β0)− I(XT
i β > XT

j β)}.

WhenXT
i β0 > XT

j β0, it follows from the monotonicity ofQ thatQ(XT
i β0) >

Q(XT
j β0). Therefore, we have for any β ∈ Rp,

{Q(XT
i β0)−Q(XT

j β0)}{I(XT
i β0 > XT

j β0)− I(XT
i β > XT

j β)}I(XT
i β0 > XT

j β0) ≥ 0.

One can similarly show

{Q(XT
i β0)−Q(XT

j β0)}{I(XT
i β0 > XT

j β0)− I(XT
i β > XT

j β)}I(XT
i β0 ≤ XT

j β0) ≥ 0.

It follows that C(β0) ≥ C(β), for any β ∈ Rp. Hence, we have

β0 ∈ argmax
β∈Rp

C(β).

When the propensity score is known, the estimated concordance function
is given by

Ĉ(d) =
1

n(n− 1)

∑
i ̸=j

{
Yi(Ai − π0,i)

π0,i(1− π0,i)
− Yj(Aj − π0,j)

π0,j(1− π0,j)

}
I{d(Xi) > d(Xj)}.
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Analogous to the likelihood-based information criteria, we define the follow-
ing value information criterion (VIC)

VICκn(θ) = nV̂ (θ)− κn∥β∥0,(2.2)

and concordance information criterion (CIC)

CICκn(β) = nĈ(β)− κn∥β∥0,(2.3)

for some sequence κn, where ∥β∥0 denotes the number of nonzero elements
in the p-dimensional vector β. To ease the presentation, we suppress the
dependence of VIC and CIC on κn whenever there’s no confusion. In the
next section, we show selection consistencies of VIC and CIC.

3. Model selection consistency.

3.1. VIC and CIC in fixed-p case. For any q-dimensional vector ν ∈ Rq
and any sets J ∈ {1, . . . , q}, we denote by νJ the subvector of ν formed
by elements in J . When J is a single-element set, i.e, J = {j0} for some
1 ≤ j0 ≤ q, we write νJ as νj0 . Let Ω = {M : M ⊆ {1, . . . , p}} be the
set of all possible candidate models. In the fixed-p scenario, total number of
elements in Ω is also fixed. For each M ∈ Ω, let (ĉM, β̄TM)T ∈ R|M|+1 be the

estimator based on covariates XM
0 . Denote by β̂M the vector in Rp that has

the same coordinates as β̄M on M and zero components on the complement
Mc of M.

For any triple o = (x, a, y), define function

g(o, β) =
1

2
E

{
{A0 − π0(X0)}Y0

π0(X0){1− π0(X0)}
− {a− π0(x)}y
π0(x){1− π0(x)}

}
I(XT

0 β > xTβ)

+
1

2
E

{
{a− π0(x)}y

π0(x){1− π0(x)}
− {A0 − π0(X0)}Y0
π0(X0){1− π0(X0)}

}
I(xTβ > XT

0 β).(3.1)

Write ∆m for the mth partial derivative operator with respect to β, and
define

∂ig(o, β) =
∂g(o, β)

∂βi
, and ∂ijg(o, β) =

∂2g(o, β)

∂βi∂βj
.

Let δ be some positive constant such that δ < minj∈Mβ0
|βj0|. For any ε > 0,

define the ε-neighborhood of θ0,

Ñε = {θ ∈ Rp+1 : ∥θ0 − θ∥2 ≤ ε},
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and S̃(θ0) = {θ ∈ Rp+1 : ∥θ∥2 = ∥θ0∥2}. Similarly define

Nε = {β ∈ Rp+1 : ∥β0 − β∥2 ≤ ε},

and S(β0) = {β ∈ Rp : ∥β∥2 = ∥β0∥2}. We first introduce some assumptions.

(A3.) There exist some constants c1, c2 that satisfy 0 < c1 ≤ infx π0(x) ≤
supx π0(x) ≤ c2 < 1.

(A4.) β̂Mβ0
= β0 +Op(R

(1)
n ), ĉMβ0

= c0 +Op(R
(2)
n ) for some sequences R

(1)
n

and R
(2)
n that satisfy n−1/2 ≤ R

(1)
n , R

(2)
n ≪ 1.

(A5.) (i) V (θ0) > V (0) and V (θ0) > supθ∈Ñc
ε0

∩S̃(θ0) V (θ) for some constants

0 < ε0 ≤ δ.
(ii) The following holds for any sufficiently small ε > 0,

E sup
∥θ−θ0∥2≤ε
θ=(c,βT )T

|I(XT
0 β > −c)− I(XT

0 β0 > −c0)| = O(ε).

(iii) There exist some constants c̄1, c̄2 > 0 such that

c̄1∥θ0 − θ∥22 ≤ V (θ0)− V (θ) ≤ c̄2∥θ0 − θ∥22, for all θ ∈ Ñε0 ∩ S̃(θ0).

(A6.) (i) C(β0) > C(0) and C(β0) > supβ∈Nc
ε0

∩S(β0)C(β) for some constants

0 < ε0 ≤ δ.
(ii) There exist some constants c̄1, c̄2 > 0 such that

c̄1∥β0 − β∥22 ≤ C(β0)− C(β) ≤ c̄2∥β0 − β∥22, for all β ∈ Nε0 ∩ S(β0).

(iii) Function g(o, β) is twice continuously differentiable for all β ∈ Nε0 .
(iv) There is an integrable function K(o) such that for all o and β ∈ Nε0 ,

∥∆2g(o, β)−∆2g(o, β0)∥2 ≤ K(o)∥β − β0∥2.

(v) E|∂ig(O0, β0)|2 <∞, E|∂ijg(O0, β0)| <∞.

Assumption (A4) requires that β̂Mβ0
converges to β0. The sequences R

(1)
n

and R
(2)
n depend on the estimating procedure and are known to us. When

β̂M is estimated by solving Q-learning or A-learning estimating equations

for any M, we can show R
(1)
n = n−1/2. This requires Q-function to be cor-

rectly specified. When Q-function remains unspecified, we can apply robust
learning or concordance assisted-learning to estimate β0. The convergence

rates R
(1)
n for these two estimators are n−1/3 and n−1/2, respectively.
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Assumptions (A5)(i) and (A6)(i) require functions V and C have unique
maximizers on the L2 sphere. These conditions guarantee that with probabil-
ity tending to 1, VIC and CIC will not pick underfitted models for κn = o(n).
Assumption (A5)(ii) holds when the angular component ofX0 has a bounded
and continuous density with respect to the surface measure on the unit
sphere (see Section 6.4 in Kim and Pollard, 1990). When the derivative
dQ(x−c0)

dx |x=0 ̸= 0, it implies the margin assumption Pr(0 < |τ(X0)| < t) =
O(tα) (see Qian and Murphy, 2011; Luedtke and van der Laan, 2016) holds
with α = 1 (see Section B.1 in the supplementary article).

Assumption (A5)(iii) is satisfied if V is twice continuously differentiable
and possess a unique maximizer on S(β0). This condition holds when X0 has
a continuous density q which has a compact support. The explicit form of
the first and second-order derivatives of V can be derived by some standard
arguments in classical differential geometry (see Section 5 and 6.4 in Kim
and Pollard, 1990). Assumptions (A6)(iii),(iv),(v) are standard to estab-
lish the limiting distribution of concordance and maximum rank correlation
estimators (cf. Sherman, 1993; Fan et al., 2017). In Section B.2 of the sup-
plementary article, we give detailed discussion on Assumption (A6)(iii).

Under the scenario of treatment effect homogeneity, i.e, θ0 = 0, V (θ) and
C(β) are constants as functions of θ and β. (A5)(i) and (A6)(i) are violated
under this scenario. As a result, VIC and CIC are not consistent.

Denote by M̂V and M̂C the models chosen by VIC and CIC, respectively,

M̂V = argmax
M∈Ω

VIC(θ̂M), M̂C = argmax
M∈Ω

CIC(β̂M),

where θ̂M = (ĉM, β̂TM)T . Define Rn = max(R
(1)
n , R

(2)
n ). The following theo-

rem states the model selection consistencies of these criteria.

Theorem 3.1. Suppose supx E(Y
2
0 |X0 = x) ≤ C̄ for some constant C̄ >

0. Set κn = cnmax(nR2
n,
√
nRn, n

1/3) for some cn → ∞, if κn = o(n), under
Assumptions (A1)-(A5), we have

Pr(M̂V = Mβ0) → 1.

Set κn = n(R
(1)
n )2 log(n), if κn = o(n), under Assumptions (A1)-(A4) and

(A6), we have

Pr(M̂C = Mβ0) → 1.

Remark 3.2. The choice of κn depends on R
(1)
n and R

(2)
n . Suppose Rn =

n−1/2. Then we have κn = log(n) for CIC and κn = cnn
1/3 for VIC. Unlike
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BIC, when setting κn = log(n), VIC fails to select the correct model if
Rn = n−1/2. The penalty term cnn

1/3 accounts for the non-smoothness of
the indicator function in V̂ . On the contrary, CIC directly follows the spirit
of BIC. The estimated concordance function Ĉ is a U -statistic of order two.
Due to Hoeffding’s decomposition theorem and the maximal inequality for
degenerate U -process (Sherman, 1994), we have

Ĉ(β) =
2

n

n∑
i=1

g(Oi, β)− C(β) +Op

(
1

n

)
,(3.2)

uniformly for all β.

We now sketch a few lines to see why VIC can fail when κn = log(n) and
Rn = n−1/2. Recall that V is maximized at θ0. Under Assumptions (A4)
and (A5)(iii), we have that,

nV (θ̂Mβ0
) = nV (θ0) +O

(
n∥θ̂Mβ0

− θ0∥22
)
= nV (θ0) +O(1).(3.3)

For any overfitted model M that satisfies Mβ0 ⊆ M, let θ̃M be the

maximizer of V̂ with the constraint θ̃M
c

M = 0. Notice that V̂ is a non-
smooth function of θ. Under the given conditions, each θ̃M exhibits cube
root asymptotics, and we have

θ̃M = θ0 +Op(n
−1/3).(3.4)

Consider the stochastic process V̂ (·) − V (·) − V̂ (θ0) + V (θ0) indexed by θ.
Under Assumption (A5)(ii), using some standard arguments in the empirical
process theory (cf. van der Vaart and Wellner, 1996), we can show

sup
∥θ−θ0∥2≤ϵ

|V̂ (θ)− V (θ)− V̂ (θ0) + V (θ0)| = Op(n
−1/2ϵ1/2),(3.5)

for some sufficiently small ϵ > 0. This together with (3.4) yields that

n
[
V̂ (θ̃M)− V (θ̃M)− {V̂ (θ0)− V (θ0)}

]
= Op(n

1/3).

Notice that V (θ̃M) ≤ V (θ0). It follows that

n
{
V̂ (θ̃M)− V̂ (θ0)

}
= Op(n

1/3),

for any M that satisfies Mβ0 ⊆ M. Similarly, we can show n{V̂ (θ̃Mβ0
) −

V̂ (θ0)} = Op(n
1/3). Hence,

max
M:Mβ0

⊆M
n
{
V̂ (θ̃M)− V̂ (θ̂Mβ0

)
}
= Op(n

1/3).
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Since V̂ (θ̂M) ≤ V̂ (θ̃M), we have

max
M:Mβ0

⊆M
n
{
V̂ (θ̂M)− V̂ (θ̂Mβ0

)
}
≤ Rn,(3.6)

for some random variable Rn that satisfies Rn = Op(n
1/3).

On the other hand,

max
M:Mβ0

⊆M
VIC(θ̂M)−VIC(θ̂Mβ0

)

= max
M:Mβ0

⊆M
n
{
V̂ (θ̂M)− V̂ (θ̂Mβ0

)
}
− κn(|M| − |Mβ0 |).(3.7)

The difference |M|− |Mβ0 | is always positive. When κn = log(n), it follows
from (3.6) that the sign of (3.7) can be positive in the limit. Equation (3.7)
also implies VIC is not able to pick overfitted models if κn = cnn

1/3 for some
diverging sequence cn.

3.2. VIC and CIC in the ultrahigh dimension. The problem becomes
far more challenging in the ultrahigh dimension when p is allowed to grow
exponentially fast with respect to n. Assume log(p) = O(na0) for some
0 < a0 < 1. For notational convenience, in this paper, we assume the nonzero

indices Mβ0 and β
Mβ0
0 are fixed. In the ultrahigh dimension, it is compu-

tationally infeasible to estimate θM for all M ∈ Ω. Instead, we use some
penalization methods to simultaneously select and estimate θ0, with some
tuning parameter λ.

For each λ ∈ [λmin, λmax] where λmin and λmax are allowed to vary with

n, denote M̂(λ) as the nonzero entries selected by our estimating procedure
and θ̂M̂(λ)

= (ĉM̂(λ)
, β̂T

M̂(λ)
)T ∈ Rp+1 the corresponding estimator. We define

M̂V = argmax
|M̂(λ)|≤sn

λ∈[λmin,λmax]

VIC(θ̂M̂(λ)
) and M̂C = argmax

|M̂(λ)|≤sn
λ∈[λmin,λmax]

CIC(β̂M̂(λ)
).

The sequence sn is allowed to vary with n in the order sn = O(nl0) for some
0 ≤ l0 < 1. To show the model selection consistency, we need Conditions
(A4’)-(A6’). (A5’) and (A6’) are high-dimensional versions of (A5) and (A6),
and are provided in Section A of the supplementary article to save space.

(A4’.) There exists some λ0 ∈ [λmin, λmax] such that with probability tending

to 1, we have M̂(λ0) = Mβ and

∥β̂M̂(λ0)
− β0∥2 = O(R(1)

n ), ∥ĉM̂(λ0)
− c0∥2 = O(R(2)

n )
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for some sequence R
(1)
n , R

(2)
n that R

(j)
n → 0 and R

(j)
n ≥ n−1/2 for j = 1, 2.

The tuning parameter λ0 is allowed to vary with n.

Assumption (A4’) requires the true model to be recovered by the regu-
larization methods and assumes the convergence rate of parameters for the
true model. In the following, we establish consistencies of our information
criteria. We use c̄ to denote some generic constant. Let ∥Y ∥ψp be the Orlicz
norm of any random variable Y ,

∥Y ∥ψp

∆
= inf

C>0

{
Eexp

(
|Y |p

Cp

)
≤ 2

}
.

Theorem 3.3. Let Rn = max(R
(1)
n , R

(2)
n ). Assume s2n log(p) log(n) =

o(n), (A1)-(A3) and (A4’), (A5’) hold, ∥Y0∥ψ1 = O(1), and supx E(Y
2
0 |X0 =

x) ≤ C̄ for some constant C̄ > 0. If κn satisfies κn = o(n), and

κn ≫ nR2
n +

√
nRn + n1/3 log2/3(p),(3.8)

then VIC is consistent. In addition, conditional on the events ∥β̂M̂(λ0)
−

β0∥2 = O(R
(1)
n ) and ∥ĉM̂(λ0)

− c0∥2 = O(R
(2)
n ), we have

Pr(M̂V ̸= Mβ0) ≤ exp

(
− c̄κ2n
nRn

)
+ exp (−c̄ log(p)) .(3.9)

Theorem 3.4. Assume s2n log(p) log(n) = o(n), (A1)-(A3) and (A4’),
(A6’) hold, ∥Y0∥ψ1 = O(1) and supx E(Y

2
0 |X0 = x) ≤ C̄ for some constant

C̄ > 0. If κn satisfies κn = o(n), and

κn ≫ n(R(1)
n )2 + log(p) log(n),(3.10)

then CIC is consistent. In addition, conditional on the event ∥β̂M̂(λ0)
−

β0∥2 = O(R
(1)
n ), we have

Pr(M̂C ̸= Mβ0) ≤ exp

(
− c̄κ2n

n(R
(1)
n )2

)
+ exp (−c̄ log(p)) .(3.11)

Remark 3.5. Equations (3.9) and (3.11) provide nonasymptotic bounds on
the probabilities that VIC and CIC do not select the correct model. Under
the assumptions in (3.8) and (3.10), these upper bounds go to 0. Consisten-
cies of these two criteria thus follow. The second term exp(−c̄ log(p)) on the
RHS of (3.9) and (3.11) bounds the probability that VIC or CIC selects an
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underfitted model. The first term on the RHS bounds the probability that
VIC or CIC picks an overfitted model. When κn ≪

√
nRn log(p), the RHS

in (3.9) is dominated by

exp

(
− c̄κ2n
nRn

)
,

which is much larger than those in the RHS of (3.11). This suggests that
CIC is more likely to choose the correct model compared with VIC.

Remark 3.6. Conditions on κn in Theorem 3.3 are more restrictive than
those in Theorem 3.4. This means that the consistency of VIC is more
sensitive to the choice of κn. Denote kV and kC as the RHS of (3.8) and

(3.10), respectively. Since Rn ≥ R
(1)
n and n≫ log(p), it is immediate to see

that kC = O(kV ). In addition, when Rn = O(
√

log(p)/n), we have kV ≫ kC .
This is in line with results given in the fixed-p scenario (see Theorem 3.1),
where VIC can fail for Rn = n−1/2 if κn = log(n).

Proofs of Theorem 3.3 and 3.4 are more involved than those of the fixed-p
scenario. Define

Ω+ =
{
λ ∈ [λmin, λmax] : Mβ0 ( M̂(λ), |M̂(λ)| ≤ sn

}
.

The major technical challenge lies in bounding

Pr

(
VIC(θ̂M̂(λ0)

) ≤ sup
λ∈Ω+

VIC(θ̂M̂(λ)
)

)
,

and

Pr

(
CIC(β̂M̂(λ0)

) ≤ sup
λ∈Ω+

CIC(β̂M̂(λ)
)

)
,

where λ0 is the tuning parameter defined in (A4’). Unlike the fixed-p sce-
nario, inequalities (3.2) and (3.5) no longer hold in the ultrahigh dimension.

4. Doubly-robust information criteria. In an observational study,
the propensity score is unknown and needs to be estimated from data. Usu-
ally, a parametric model π(x, α) is assumed for the propensity score. To
calculate our doubly-robust information criteria, we also fit a parametric
model h(x, η) for the baseline function h0(x) = E(Y0|A0 = 0, X0 = x). We
assume estimators α̂ and η̂ converge to some α∗ ∈ Rq1 and η∗ ∈ Rq2 . When
the models are correct, α∗ and η∗ correspond to the true parameters in the
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model, i.e, π0(x) = π(x, α∗), h0(x) = h(x, η∗). Otherwise, these parameters
stand for some population-level least false parameters. Let θ = (c, βT )T .
Define

V DR(θ) = E

{
A0I(XT

0 β > −c)
π(X0, α∗)

+
(1−A0)I(XT

0 β ≤ −c)
1− π(X0, α∗)

}
Y0

− E

{
A0I(XT

0 β > −c)
π(X0, α∗)

+
(1−A0)I(XT

0 β ≤ −c)
1− π(X0, α∗)

− 1

}
h(X0, η

∗),

and

CDR(β) = E

{
{Ai − π(Xi, α

∗)}{Yi − h(Xi, η
∗)}Aj

π(Xi, α∗){1− π(Xi, α∗)}π(Xj , α∗)

− {Aj − π(Xj , α
∗)}{Yj − h(Xj , η

∗)}Ai
π(Xj , α∗){1− π(Xj , α∗)}π(Xi, α∗)

}
I(XT

i β > XT
j β).

Under Assumptions (A1) and (A2), when either the propensity score
model or the baseline model is correct, we can show

V DR(θ) = E

{
h(X0) +

π(X0)

π(X0, α∗)
Q(XT

0 β0)I(XT
0 β > −c)

}
,

CDR(β) = E

{
π(Xi)π(Xj)

π(Xi, α∗)π(Xj , α∗)
{Q(XT

i β0)−Q(XT
j β0)}I(XT

i β > XT
j β)

}
.

Therefore, when the propensity score model is correct, we have V DR = V
and CDR = C. This result generally does not hold when the propensity score
model is not correct. However, θ0(β0) still maximizes V DR(CDR) as long as
either of the models is correct. This suggests V DR and CDR can be used to
construct information criteria. Define

VICDR(θ) = nV̂ DR(θ)− κn∥β∥0, CICDR(β) = nV̂ DR(β)− κn∥β∥0,

where V̂ DR and ĈDR are empirical estimators for V DR and CDR, namely,

V̂ DR(θ) =
1

n

∑
i

{
AiI(XT

i β > −c)
π(Xi, α̂)

+
(1−Ai)I(XT

i β ≤ −c)
1− π(Xi, α̂)

}
Yi

−
{
AiI(XT

i β > −c)
π(Xi, α̂)

+
(1−Ai)I(XT

i β ≤ −c)
1− π(Xi, α̂)

− 1

}
h(Xi, η̂),

ĈDR(β) =
1

n

∑
i̸=j

{
{Ai − π(Xi, α̂)}{Yi − h(Xi, η̂)}Aj
π(Xi, α̂){1− π(Xi, α̂)}π(Xj , α̂)

− {Aj − π(Xj , α̂)}{Yj − h(Xj , η̂)}Ai
π(Xj , α̂){1− π(Xj , α̂)}π(Xi, α̂)

}
I(XT

i β > XT
j β).
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In Section 10 of the supplementary article, we derive the consistencies
of VICDR and CICDR under the fixed-p scenario. When p is comparable
or much larger than n, we can fit the baseline or propensity score models
via penalized regression with folded-concave penalty functions (Fan and Lv,
2011). In practice, we recommend a linear regression model for the base-
line model and a logistic regression model for the propensity score model
with SCAD penalty function (Fan and Li, 2001). Under certain conditions
on these estimators, consistencies of VICDR and CICDR can be similarly
proven. We omit the technical details to save space.

5. Applications. In this section, we apply our information criteria to
four applications estimating the optimal treatment regime, including robust
learning, concordance-assisted learning (CAL), penalized A-learning (PAL)
and sparse concordance-assisted learning (SCAL). The first two consider a
fixed-p setting while the last two can be applied in a diverging-p setting.
For each application, we introduce its estimating procedure and discuss the
choice of κn in our information criteria.

5.1. Robust learning.

5.1.1. Estimating procedure. Zhang et al. (2012) proposed a robust method
for estimating the optimal treatment regime within the class of linear deci-
sion rules . For a given candidate model M, when the propensity score is
known, the estimator θ̂M = (ĉM, β̂TM)T is obtained by solving

argmax
θ=(c,βT )T

V̂ (θ) subject to βM
c
= 0.

In an observational study, they first fit some parametric models π(x, α),
h(x, η), Φ(x, ζ) for π0(x), h0(x) and E(Y0|A0 = 1, X0 = x), to obtain esti-
mators α̂, η̂ and ζ̂. Then, they proposed to compute θ̂M by maximize the
following augmented inverse propensity score weighted estimator,

argmax
θ=(c,βT )T

1

n

n∑
i=1

[{
Ai
π̂i
Yi −

(
Ai
π̂i

− 1

)
ĥi

}
I(XT

i β > −c)(5.1)

+

{
1−Ai
1− π̂i

Yi −
(
1−Ai
1− π̂i

− 1

)
Φ̂i

}
I(XT

i β ≤ −c)
]

subject to βM
c
= 0.

where π̂i, ĥi and Φ̂i are plug-in estimators π(Xi, α̂), h(Xi, η̂) and Φ(Xi, ζ̂),
respectively.
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5.1.2. Choice of κn. Using some standard arguments in the cube root
asymptotics (cf. Example 6.4, Kim and Pollard, 1990), we can show θ̂Mβ0

=

θ0 + Op(n
−1/3). Since the dimension of covariates p is fixed, in order to

implement variable selection, we can apply robust learning (by solving (5.1))
to all 2p models and choose the one that maximizes VICDR or CICDR. Hence,
we have Rn = n−1/3 in this application. Therefore, it follows from Theorem
10.1 that CICDR and VICDR are both consistent when κn = cnn

1/3 for
cn → ∞. Instead of choosing a single κn, one can alternatively select a
set {κn,j}j that satisfy κn,j ≫ n1/3 and κn,j = o(n) for each j, and apply
cross-validation to determining which κn,j to use. More details about the
cross-validation procedure are given in Section J.

5.2. Concordance-assisted learning.

5.2.1. Estimating procedure. Fan et al. (2017) proposed Concordance-
Assisted Learning to estimate β0 by maximizing the estimated concordance
function. Specifically, for a given candidate model M, β̂M is computed by
solving

argmax
β

Ĉ(β) (or ĈDR(β)) subject to βM
c
= 0.

Assume the estimator β̂M is obtained, they proposed to compute ĉM by
maximizing the estimated value function among the class of regimes I(c +
xT β̂M > 0), indexed by c.

5.2.2. Choice of κn. To implement variable selection, we can apply CAL
to all 2p models. Similar to Theorem 1, 2, and 5 in Fan et al. (2017), we
can show β̂Mβ0

= β0+Op(n
−1/2) and ĉMβ0

= c0+Op(n
−1/3), under certain

regularity conditions. Therefore, we have

R(1)
n = n−1/2 and R(2)

n = n−1/3.

By Theorem 10.1, CICDR is consistent when κn = log(n), and VICDR is
consistent if n1/3 ≪ κn ≪ n. In practice, we recommend to set κn =
n1/3 log(log(n)). In our simulation studies, we find out that VICDR works
well under such choices of κn.

5.3. Penalized A-learning.
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5.3.1. Estimating procedure. When the contrast function is linear, i.e,
τ(x) = xTβ0+ c0, Shi et al. (2018) proposed a penalized A-learning method
for estimating the optimal treatment regime. Specifically, they proposed to
first estimate π0(x) and h0(x) by penalized regression. Denoted by π̂i and
ĥi the estimated propensity score and baseline function for the ith patient.
For a given tuning parameter λ, they estimated θ0 by

(c̄M(λ), β̄
T
M(λ))

T = argmin
(c,βT )T∈Λ

∥β∥1,(5.2)

where

Λ =

{
c ∈ R, β ∈ Rp :

∥∥∥∥∥ 1n∑
i

Xi(Ai − π̂i){Yi − ĥi −Ai(X
T
i β + c)}

∥∥∥∥∥
∞

≤ λ

}
.

The estimating procedure is similar in rationale to the Dantzig selector
(Candès and Tao, 2007) in a linear regression setting. Let M̂(λ) be the
support of β̄M(λ). We can compute β̂M̂(λ)

, ĉM̂(λ)
by solving the following

A-learning estimating equations:∑
i

(Ai − π̂i)(Yi − ĥi −AiX
T
i β̂M̂(λ)

−AiĉM̂(λ)
) = 0,

∑
i

X
M̂(λ)
i (Ai − π̂i)(Yi − ĥi −AiX

T
i β̂M̂(λ)

−AiĉM̂(λ)
) = 0,

with β̂
M̂(λ)c

M̂(λ)
= 0.

5.3.2. Choice of κn. Gai, Zhu and Lin (2013) proved the model selection
consistency of the Dantzig selector for linear regression, under the irrep-
resentable condition. Using their arguments, β̄M(λ0) can achieve selection
consistency with some tuning parameter λ0, and we can show Assumption
(A4’) holds with Rn = n−1/2.

It follows from Theorem 3.3 that VIC is consistent when κn = cnn
1/3 log2/3(p)

for some cn → ∞. By Theorem 3.4, CIC is consistent when κn = c′n log(p) log10(n)
for some c′n → ∞. Similarly, we can show VICDR and CICDR are con-
sistent under these choices of κn. In practice, we recommend to choose
c′n = log(log10(n)), and cn = log(log(n)). We demonstrate the performance
of these information criteria via simulations.

5.4. Sparse concordance-assisted learning.
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5.4.1. Estimating procedure. Liang et al. (2017) proposed a sparse concordance-
assisted learning algorithm that extends CAL to the setting allowing p to
be much larger than n. The concordance function ĈDR involves indicators,
making it computationally difficult to optimize. Instead of directly maxi-
mizing ĈDR, they considered a convex surrogate objective function with L1

penalty term on the coefficients to facilitate the computation and ensure
sparsity of the estimator.

Using SCAL, for any tuning parameter λ, we can estimate β0 by

β̄M̂(λ)
= argmax

β

 2

n(n− 1)

∑
ωi,j>ωj,i

(ωj,i − ωi,j)
{
1− βT (Xi −Xj)

}
+
− λ∥β∥1

 ,

where

ωi,j =
{Ai − π(Xi, α̂)}{Yi − h(Xi, η̂)}Aj
π(Xi, α̂){1− π(Xi, α̂)}π(Xj , α̂)

,

where α̂ and η̂ denote some penalized regression estimators in the propensity
score and baseline model. Let M̂(λ) be the support of β̄M̂(λ)

. We can calcu-

late β̂M by maximizing ĈDR(β) subject to the constraint that βM̂(λ)c = 0,
and obtain ĉM by maximizing V̂ DR among the class of treatment regimes
I(β̂TMx > −c).

5.4.2. Choice of κn. Assume there exists some λ0 such that β̄M̂(λ0)
is

selection consistent, then Assumption (A4’) holds with R
(1)
n = n−1/2, R

(2)
n =

n−1/3. By Theorem 3.3 and Theorem 3.4, we can show VIC is consistent
when κn = cnn

1/3 log2/3 p for some cn → ∞, and CIC is consistent when
κn = c′n log(p) log10(n) for some c′n → ∞. Similarly, we can show VICDR

and CICDR are consistent under these choices of κn.

6. Simulations. In this section, we conduct simulation studies to ex-
amine the numerical performance of our proposed information criteria. In
Section 6.1, we consider a fixed-p scenario where the optimal treatment
regime is estimated via CAL. In Section 6.2, we design a high-dimensional
setting and estimate the optimal treatment regime by PAL. Additional sim-
ulations results can be found in Section I of the supplementary article.

6.1. Concordance-assisted learning. Data are generated from the follow-
ing model

Yi = h0(X
1
i , X

3
i ) +AiQ(X1

i +X2
i ) + εi,
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where Ai
i.i.d∼ Bernoulli(0.5), Xi

i.i.d∼ Np(0, Ip), εi
i.i.d∼ N(0, 0.52), where

Np(µ,Σ) stands for the p-dimensional multivariate normal distribution with
mean µ, covariance matrix Σ and Ip denotes the p× p identity matrix.

Table 1: Simulation settings in Section 6.1

S1 S2 S3 S4

h0(x, y) 1 + x− y 1 + x− y 1 + xy 1 + xy
Q(x) x exp(x)− 1 x exp(x)− 1

Table 2: Simulation results (%, standard deviations in parenthesis)

S1 S2

n 100 200 100 200

CICDR

TP 100.00(0.00) 100.00(0.00) 100.00(0.00) 100.00(0.00)
FN 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
FP 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
ER 7.58(0.53) 5.71(0.38) 7.54(0.51) 5.42(0.39)
VR 98.95(0.15) 99.38(0.08) 99.49(0.06) 99.73(0.03)

VICDR

TP 77.00(4.23) 99.00(1.00) 71.00(4.56) 97.00(1.71)
FN 11.5(2.11) 0.50(0.50) 14.50(2.28) 1.50(0.86)
FP 0.17(0.17) 0.00(0.00) 0.00(0.00) 0.00(0.00)
ER 11.49(0.92) 5.78(0.42) 12.84(1.02) 5.93(0.54)
VR 96.65(0.48) 99.33(0.12) 97.94(0.27) 99.56(0.11)

S3 S4

n 100 200 100 200

CICDR

TP 69.00(4.65) 78.00(4.16) 82.00(3.86) 93.00(2.56)
FN 4.00(1.36) 0.50(0.50) 0.00(0.00) 0.00(0.00)
FP 6.50(1.16) 4.17(0.87) 3.5(0.83) 1.33(0.51)
ER 14.90(0.89) 9.87(0.53) 13.04(0.87) 9.12(0.71)
VR 95.50(0.51) 98.09(0.2) 98.41(0.18) 99.22(0.11)

VICDR

TP 42.00(4.96) 70.00(4.61) 43.00(4.98) 71.00(4.56)
FN 23.50(2.61) 8.50(1.89) 32.00(3.37) 12.50(2.18)
FP 6.17(1.02) 3.17(0.77) 5.50(0.95) 1.33(0.51)
ER 19.69(1.1) 11.85(0.81) 22.49(1.44) 13.2(1.06)
VR 91.88(0.74) 96.78(0.41) 93.93(0.79) 98.12(0.24)

We design four settings by considering two choices of h0 and two choices
of Q. The functional forms of h0 and Q in each setting are listed in Table
1. It can be verified that in all four settings, the optimal treatment regime
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takes the form:

dopt(x) = I(x1 + x2 > 0).

We set p = 8, and consider two choices of the sample size, n = 100 and
n = 200, respectively. This gives a total of 8 scenarios. For each scenario, we
report the false positives (FP) rate (the percentage of unimportant variables
that are selected),

FP =
1

L

L∑
l=1

|Mc
β0

∩ M̂(l)|
|Mc

β0
|

,

the false negatives (FN) rate (the percentage of important variables that are
missed),

FN =
1

L

L∑
l=1

|Mβ0 ∩ (M̂(l))c|
|Mβ0 |

,

the percentage of selecting the true models (TP),

TP =
1

L

L∑
l=1

I(Mβ0 = M̂(l)),

the average error rate (ER) and average ratio of value (VR) of the estimated
optimal treatment regime,

ER =
1

L

L∑
l=1

E|d̂(l)(X0)− dopt(X0)|, VR =
1

L

L∑
l=1

EY ∗
0 (d̂

(l))

EY ∗
0 (d

opt)
,(6.1)

where d̂(l)(x) = I(ĉM̂(l) + xT β̂M̂(l) > 0), M̂(l) is the set of important vari-
ables selected by our information criteria in the l-th simulation and L is
the total number of simulations. In our implementation, we set L = 100
and approximate the expectations in (6.1) by the use of 1000 Monte Carlo
samples.

We use CAL to estimate the parameters. Specifically, we first fit a logistic
regression model with SCAD penalty function for the propensity score, and
a linear model with SCAD penalty for the baseline function. Next, we ob-
tain β̂M by maximizing ĈDR for all 28 = 256 models. The threshold ĉM is
obtained by maximizing the estimated value function V̂ DR among the class
of regimes I(c + xT β̂M > 0). We use the genetic algorithm implemented in
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the R package rgenoud (Mebane Jr et al., 2011) to compute the maximiz-
ers of the value and concordance functions. The package rgenoud combines
evolutionary search algorithms with derivative-based methods to solve diffi-
cult optimization problems. In our experiments, we find the maximizers are
very close to the true parameters. However, there is no guarantee that the
searching algorithms will find the global maximizer in general, due to non-
convexity of the optimization problem. We use CICDR and VICDR for model
selection. The model complexity penalty κn is chosen according to the dis-
cussion in Section 5.2. The propensity score model is always correct, hence
our information criteria are consistent. We use 100 simulations replications.
Results were given in Table 2.

We make the following observations. First, CICDR perform much better
than VICDR in all scenarios. For example, in Setting 1 and 2, CICDR al-
ways chooses the correct model while TP’s of VICDR are below 80% when
n = 100. In Setting 3 and 4, TP’s of CICDR are still much higher than those
of VICDR. In addition, in all scenarios, CICDR achieves a smaller ER and a
higher VR compared to VICDR. Moreover, the model selection results im-
prove when sample size increases. This illustrates the selection consistencies
of our information criteria.

6.2. Penalized A-learning. Consider the high dimensional setting where
p is set to be 1000. We generate the response from the following model:

Yi = h0(X
1
i , X

3
i ) +Ai(X

1
i +X2

i ) + εi,

where Xi
i.i.d∼ Np(0, Ip), Ai

i.i.d∼ Bernoulli(π0(Xi)), εi
i.i.d∼ N(0, 0.52). The

contrast function takes the linear form, τ(x) = x1 + x2 and the optimal
treatment regime is

dopt(x) = I(x1 + x2 > 0).

Table 3: Simulation settings in Section 6.2

S1 S2 S3 S4

h0(x, y) 1 + x− y 1 + xy 1 + x− y 1 + xy
π0(x) 0.5 0.5 Φ(xp−1 − xp) Φ(xp−1 − xp)

Φ(·) stands for the cumulative distribution function of a standard normal variable.

We design four settings by considering two choices of the baseline function,
and two choices of the propensity score function. Table 3 gives the propensity
and baseline function in each setting. We fit a penalized linear regression



22

model for the baseline and a penalized logistic regression model for the
propensity score, and choose SCAD as the penalty function. Hence, both
the propensity score and baseline models are correctly specified in Setting
1. One of them is misspecified in Settings 2 and 3. In Setting 4, both models
are misspecified. In implementation, instead of directly optimizing (5.2), we
solve its dual problem:

θ̄ = min
(c,βT )

∥∥∥∥∥∑
i

X̃i(Ai − π̂i)(Yi − ĥi −Aic−AiX
T
i β)

∥∥∥∥∥
∞

,

subject to ∥β∥1 ≤ λ.

Table 4: Simulation results for Setting 1 and 2 (%, standard deviations
in parenthesis)

S1 S2

n 200 300 200 300

CICDR

TP 100.00(0.00) 100.00(0.00) 77.00(4.23) 90.00(3.02)
FN 0.00(0.00) 0.00(0.00) 7.00(1.88) 0.50(0.50)
FP 0.00(0.00) 0.00(0.00) 0.03(0.01) 0.01(0.00)
ER 1.18(0.08) 1.17(0.09) 8.34(1.09) 4.08(0.43)
VR 99.96(0.00) 99.97(0.00) 97.02(0.66) 99.39(0.15)

BIC

TP 95.00(2.19) 94.00(2.39) 69.00(4.65) 89.00(3.14)
FN 0.00(0.00) 0.00(0.00) 4.50(1.60) 0.00(0.00)
FP 0.01(0.00) 0.01(0.00) 0.03(0.01) 0.02(0.00)
ER 1.44(0.12) 1.34(0.13) 7.98(0.85) 4.00(0.41)
VR 99.94(0.01) 99.94(0.02) 97.77(0.47) 99.44(0.11)

VICDR
3

TP 100.00(0.00) 100.00(0.00) 61.00(4.90) 86.00(3.49)
FN 0.00(0.00) 0.00(0.00) 13.50(2.34) 2.00(0.98)
FP 0.00(0.00) 0.00(0.00) 0.02(0.01) 0.01(0.00)
ER 1.16(0.08) 1.08(0.08) 10.64(1.08) 4.67(0.56)
VR 99.97(0.00) 99.97(0.00) 96.13(0.61) 99.12(0.21)

VICDR
4

TP 100.00(0.00) 100.00(0.00) 56.00(4.99) 80.00(4.02)
FN 0.00(0.00) 0.00(0.00) 11.00(2.20) 2.00(0.98)
FP 0.00(0.00) 0.00(0.00) 0.05(0.01) 0.02(0.00)
ER 1.08(0.08) 1.11(0.09) 11.05(1.13) 5.09(0.54)
VR 99.97(0.00) 99.97(0.00) 95.98(0.66) 99.02(0.21)

VICDR
5

TP 99.00(1.00) 100.00(0.00) 54.00(5.01) 72.00(4.51)
FN 0.00(0.00) 0.00(0.00) 9.00(2.06) 2.00(0.98)
FP 0.00(0.00) 0.00(0.00) 0.07(0.01) 0.03(0.01)
ER 1.18(0.09) 1.1(0.08) 11.20(1.14) 5.80(0.59)
VR 99.96(0.01) 99.97(0.00) 95.92(0.72) 98.81(0.22)
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We compute β̄ for a series of log-spaced values exp(−3) = λ0, λ1, . . . , λ100 =
exp(2), and obtain θ by refitting the A-learning estimating equation. Tuning
parameters are selected by CICDR and VICDR. In CICDR, we set

κn = log(p) log10(n) log(log10(n)),

as discussed in Section 5.3. In VICDR, we set

κn = n1/3 log2/3(p) log(log(n))/κ,

where κ is a constant from a set {3, 4, 5}. For each κ, we denote the corre-
sponding information criterion as VICDRκ .

Table 5: Simulation results for Setting 3 and 4 (%, standard deviations
in parenthesis)

S3 S4

n 200 300 200 300

CICDR

TP 91.00(2.88) 99.00(1.00) 48.00(5.02) 66.00(4.76)
FN 3.00(1.19) 0.00(0.00) 27.00(3.21) 14.00(2.47)
FP 0.00(0.00) 0.00(0.00) 0.03(0.01) 0.03(0.01)
ER 3.15(0.61) 1.42(0.11) 16.50(1.50) 10.90(1.27)
VR 99.23(0.28) 99.95(0.01) 92.09(1.03) 95.63(0.75)

BIC

TP 55.00(5) 61.00(4.9) 32.00(4.69) 40.00(4.92)
FN 0.00(0.00) 0.00(0.00) 18(3.06) 8.00(2.10)
FP 0.08(0.01) 0.11(0.02) 0.14(0.02) 0.15(0.02)
ER 4.23(0.33) 3.69(0.35) 17.4(1.35) 13.99(1.2)
VR 99.48(0.06) 99.57(0.06) 92.27(0.95) 94.52(0.74)

VICDR
3

TP 82.00(3.86) 98.00(1.41) 39.00(4.90) 59.00(4.94)
FN 7.00(1.74) 0.00(0.00) 29.50(3.26) 17.50(2.60)
FP 0.01(0.00) 0.00(0.00) 0.05(0.01) 0.03(0.01)
ER 5.16(0.85) 1.38(0.12) 18.02(1.46) 12.39(1.29)
VR 98.4(0.38) 99.94(0.01) 91.4(1.01) 94.79(0.77)

VICDR
4

TP 89.00(3.14) 98.00(1.41) 43.00(4.98) 59.00(4.94)
FN 2.50(1.10) 0.00(0.00) 26.00(3.29) 14.50(2.49)
FP 0.01(0.00) 0.00(0.00) 0.06(0.01) 0.05(0.01)
ER 2.97(0.54) 1.42(0.13) 17.41(1.53) 12.2(1.28)
VR 99.35(0.24) 99.94(0.01) 91.61(1.06) 94.88(0.78)

VICDR
5

TP 90.00(3.02) 97.00(1.71) 43.00(4.98) 54.00(5.01)
FN 2.00(0.98) 0.00(0.00) 23.00(3.21) 13.50(2.45)
FP 0.01(0.00) 0.00(0.00) 0.07(0.01) 0.07(0.01)
ER 2.85(0.52) 1.43(0.13) 16.95(1.48) 12.52(1.28)
VR 99.4(0.25) 99.94(0.01) 91.98(1.02) 94.73(0.78)
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We further compare our information criteria with the BIC-type criterion
(Shi et al., 2018), which is used for tuning parameter selection for the PAL
method. For any θ = (c, βT )T , define

BIC(θ) = n log(RSS(θ)/n) + ∥β∥0{log(n) + log(p+ 1)},

where

RSS(θ) =

n∑
i=1

(Ai − π̂i)
2(Yi − ĥi −Aic−AiX

T
i β)

2,

It remains unknown whether this information criterion is consistent.
Tables 4 and 5 report the results with sample size n = 200/300 and 100

simulation replications. CICDR outperform VICDR and BIC in all settings,
in terms of TP. For example, in Setting 2 with n = 200, CICDR correctly
recover 77% of the models, while TP’s for other criteria are smaller than
70%. In addition, except for Setting 2, VICDR outperforms BIC in all other
settings. Take Setting 3 with n = 300 as an example, TP’s for VICDR3 ,
VICDR4 , VICDR5 are all very close to 1 while BIC only correctly recovers
61% of the models. False positives of BIC are much higher compared to our
information criteria in Setting 3. Moreover, all the information criteria work
extremely well in Setting 1 where both the propensity score and baseline
models are correctly specified, and perform much worse in Setting 4 where
both models are misspecified. Except for BIC and VICDR5 , all other criteria
always select the true model in Setting 1. In Setting 4 with n = 200, however,
TP’s of all criteria are below 50%.

7. Some technical results. In this section, we summarize some ma-
jor technical results used in the proof of our theorems. They are generally
applicable and self-important. In Section 7.1, we present a tail inequality for
unbounded degenerate U -process that is useful to show model selection con-
sistency of CIC and CICDR. In Section 7.2, we show uniform consistencies of
empirical maximizers of V̂ and Ĉ, which enable us to bound the probability
that VIC or CIC selects an overfitted model in the ultrahigh dimension.

7.1. Tail inequality for unbounded degenerate U -process. In this sub-
section, we provide a tail inequality for the supremum of order two U -
process with finite ψ1 Orlicz norm. We first introduce some notations. Let
X1, . . . , Xn be i.i.d random variables taking values on X , F a countable class
of measurable and symmetric functions from X × X to R.
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Theorem 7.1. Assume f satisfies Ef(Xi, x) = Ef(x,Xi) = 0, f(x, x) =
0 for any x, and ωn = ∥maxi̸=j F (Xi, Xj)∥ψ1 < ∞, where the function F
satisfies F (x, y) ≥ supf |f(x, y)| for any x, y. Define the following degenerate
U -process,

Z = sup
f∈F

|
∑
i,j

f(Xi, Xj)|.

Let ε1, . . . , εn be i.i.d Rademacher random variables independent of {X1, . . . , Xn},
and introduce the random variables:

Zε = sup
f∈F

∣∣∣∣∣∣
∑
i,j

εiεjf(Xi, Xj)I(F (Xi, Xj) ≤ 8ωn)

∣∣∣∣∣∣ ,
Uε = sup

f∈F
sup

α:∥α∥2≤1

∑
i,j

εiαjf(Xi, Xj)I(F (Xi, Xj) ≤ 8ωn),

Mε = sup
f∈F

, sup
k=1,...,n

∣∣∣∣∣∑
i

εif(Xi, Xk)I(F (Xi, Xk) ≤ 8ωn)

∣∣∣∣∣ .
Then there exists some constants C > 0 such that for all n and t > 0,

Pr (Z > CEZε + t)(7.1)

≤ 3 exp

(
−min

(
t2

(EUε)2
,

t

EMε
,
t

nωn
,

(
t

ωn
√
n

)2/3

,

√
t

ωn

))
.

Remark 7.2. For bounded degenerate U -process, i.e, F ≤ F0 for some
constant F0, Clémençon, Lugosi and Vayatis (2008) showed LHS of (7.1)
can be bounded by

exp

(
−min

(
t2

(EUε)2
,

t

EMε
,
t

nF0
,

(
t

F0
√
n

)2/3

,

√
t

F0

))
.(7.2)

For unbounded U -process whose envelope function has finite ψ1 Orlicz norm,
it is natural to replace the uniform bound F0 in (7.2) by ωn. Upper bounds
for the Rademacher complexities EZε, EMε and EUε can be obtained as in
Clémençon, Lugosi and Vayatis (2008).

7.2. Uniform consistency of empirical maximizers. Recall that

Ω+ =
{
λ ∈ [λmin, λmax] : Mβ0 ( M̂(λ), |M̂(λ)| ≤ sn

}
.
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For any λ ∈ Ω+, define

θ̃M̂(λ)
= argmax

θ=(c,βT )T∈S̃(θ0)
βM̂(λ)c=0

V̂ (θ), β̃M̂(λ)
= argmax

β∈S(β0)
βM̂(λ)c=0

Ĉ(β).

By the definitions of CIC and VIC, the probabilities that VIC and CIC
choose an overfitted model are upper bounded by

Pr

(
VIC(θ̂M̂(λ0)

) ≤ sup
λ∈Ω+

{
nV̂ (θ̂M̂(λ)

)− κn∥β̂M̂(λ)
∥0
})

,(7.3)

Pr

(
CIC(β̂M̂(λ0)

) ≤ sup
λ∈Ω+

{
nĈ(β̂M̂(λ)

)− κn∥β̂M̂(λ)
∥0
})

.(7.4)

Notice that V̂ (θ̃M̂(λ)
) ≥ V̂ (θ̂M̂(λ)

), Ĉ(β̃M̂(λ)
) ≥ Ĉ(β̂M̂(λ)

). Therefore, (7.3)

and (7.4) are upper bounded by

Pr

(
VIC(θ̂M̂(λ0)

) ≤ sup
λ∈Ω+

{
nV̂ (θ̃M̂(λ)

)− κn∥β̂M̂(λ)
∥0
})

,(7.5)

Pr

(
CIC(β̂M̂(λ0)

) ≤ sup
λ∈Ω+

{
nĈ(β̃M̂(λ)

)− κn∥β̂M̂(λ)
∥0
})

,(7.6)

respectively. To bound (7.5) and (7.6), we need uniform convergence rates
of θ̃M̂(λ)

and β̃M̂(λ)
over all λ ∈ Ω+, summarized as follows.

Lemma 7.1. Under the conditions in Theorem 3.3, there exists some
constant t0 > 0 such that for all t ≥ t0,

Pr

 ∩
λ∈Ω+

{
∥θ̃M̂(λ)

− θ0∥2 ≥ tn−1/3|M̂(λ)|1/3 log1/3 p
}(7.7)

≤ exp
(
−c̄t3 log(p)

)
+ exp

(
− c̄t

2n2/3 log1/3 p

log(n)

)
+ exp

(
− c̄n

log(n)

)
.

Under the conditions in Theorem 3.4, there exists some constant t0 > 0 such
that for all t ≥ t0,

Pr

 ∩
λ∈Ω+

{
∥β̃M̂(λ)

− β0∥2 ≥ tn−1/2|M̂(λ)|1/2 log1/2 p log1/2(n)
}(7.8)

≤ exp
(
−c̄t2 log(p)

)
+ exp

(
−c̄t
√
n log(p)

)
+ exp

(
− c̄n

log(n)

)
.
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Remark 7.3. In the fixed-p scenario, θ̃M converges at a rate of Op(n
−1/3).

In comparison, the uniform convergence rate in (7.7) is slower by a factor of

|M̂(λ)|1/3 log1/3 p. This is the price we pay to search over the entire over-
fitted model space. By assumption, we have log(p) = O(na0), sn = O(nl0),

supλ∈Ω+
|M̂(λ)| ≤ sn. When a0 + l0 < 1, we have

n−1/2|M̂(λ)|1/2 log1/2 p log1/2(n) ≪ n−1/3|M̂(λ)|1/3 log1/3 p, for all λ ∈ Ω+.

Therefore, it follows from (7.7) and (7.8) that supλ∈Ω+ ∥β̃M̂(λ)
− β0∥2 con-

verges faster than supλ∈Ω+
∥θ̂M̂(λ)

− θ0∥2.

8. Discussion. In this paper, we propose the concordance and value
information criteria (CIC and VIC) to select important variables that are
involved in the optimal treatment regime. We consider both fixed-p and high
dimensional settings, and show that VIC and CIC are able to correctly iden-
tify those important variables in both scenarios when the contrast is a mono-
tonic function of a linear combination of baseline covariates. In addition, we
show CIC is more reliable than VIC both theoretically and empirically.

8.1. Extensions to multiple stages. The proposed concordance and value
information criteria can be extended to multi-stage settings, where models
are selected via backward induction. These results are provided in Section
11 of the supplementary article. We find out that if the contrast function
on each stage is a monotonic function of a linear combination of available
covariates and previous treatments up to that stage, our information criteria
are consistent. Otherwise, estimators selected by our information criteria will
converge to some least false parameters and it is likely that CIC and VIC
choose different models. In addition, conditions on κn are strengthened in
backward induction, due to the variability in the estimation of the contrast
function of previous stages.

8.2. Model misspecification. In Section 12 of the supplementary article,
we further investigate the performance of the proposed information criteria
when the contrast function does not take the monotonic linear index form.
Theorem 12.1 shows the model CIC and VIC choose will converge to the sup-
port of some least false parameters. We further conduct simulation studies
in Section 12.2. We find CIC achieves better model selection results when
compared to VIC in finite samples. In addition, all the numerical results
improve when sample size increases, validating our theoretical findings.
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8.3. Nonregularity. Our method requires assuming the uniqueness of the
optimal treatment. In the nonregular cases where Pr(τ(X0) = 0) > 0, Con-
ditions (A5)(ii), (A5’)(ii), (A6)(iii) and (A6’)(iii) are likely to be violated.
More detailed discussions can be found in Section B.1.2 and Section B.2.3 of
the supplementary article. Thus, selection consistencies of our proposed in-
formation criteria are not guaranteed. We further investigate the numerical
performance of our proposed information criteria in the nonregular cases.
Results are provided in Section I.1 of the supplementary article. We find CIC
still works better when compared to VIC. However, increasing the sample
size does not improve the performance of CIC. This suggests that our infor-
mation criteria might not be consistent in this case.

9. Proof of Theorem 3.3. Here, we only present the proof of Theorem
3.3. Proofs of other theorems and lemmas are given in the supplementary
article. Let Ω− be the underfitted model space,

Ω− =
{
λ ∈ [λmin, λmax] : Mβ0 ̸⊂ M̂(λ), |M̂(λ)| ≤ sn

}
.

Assumption (A4’) states that

Pr
({∥∥∥θ̂M̂(λ0)

− θ0

∥∥∥
2
= O(Rn)

}∩{
M̂(λ0) = Mβ0

})
→ 1.(9.1)

Under the events defined in (9.1), to prove Theorem 3.3, we provide tail
inequalities for

Pr

(
VIC(θ̂M̂(λ0)

) ≤ sup
λ∈Ω−

VIC(θ̂M̂(λ)
)

)
.(9.2)

Then, we bound

Pr

(
VIC(θ̂M̂(λ0)

) ≤ sup
λ∈Ω+

{nV̂ (θ̃M̂(λ)
)− κn∥β̂M̂(λ)

∥0}

)
.(9.3)

9.1. Underfitted model space. Since V (θ0) > V (0), we have θ0 ̸= 0. For
any θ = (c, βT )T ̸= 0 and x, we have

I(βTx > −c) = I

(
βT

∥θ∥2
∥θ0∥2x > − c

∥θ∥2
∥θ0∥2

)
.

This implies we have

V (θ) = V (∥θ0∥2θ/∥θ∥2),(9.4)
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for any θ ̸= 0. The vector ∥θ0∥2θ/∥θ∥2 lies on the L2 surface S̃(θ0).
For any λ ∈ Ω−, we have βj0 ̸= 0 and β̂j

M̂(λ)
= 0 for some j. By the

definition of δ, this implies∥∥∥∥∥∥θ0 −
∥θ0∥2θ̂M̂(λ)

∥θ̂M̂(λ)
∥2

∥∥∥∥∥∥
2

≥ |βj0| > δ,

or θ̂M̂(λ)
/∈ Ñδ, if θ̂M̂(λ)

̸= 0. Since δ ≤ ε0, it follows from Assumption

(A5’)(i) that there exists some constant ξ > 0 such that

V (θ0) > V

∥θ0∥2θ̂M̂(λ)

∥θ̂M̂(λ)
∥2

+ 3ξ

It follows from (9.4) that

V (θ0) > V (θ̂M̂(λ)
) + 3ξ.(9.5)

By assumption (A5’)(i), we have V (θ0) > V (0). Without loss of generality,
assume 3ξ < V (θ0) − V (0). Then (9.5) holds for any λ ∈ Ω−. Assumptions
(A5’)(iii) and the event defined in (9.1) imply that

V (θ̂M̂(λ0)
) ≥ V (θ0)−O(R2

n).(9.6)

It follows from (9.5) and (9.6) that

V (θ̂M̂(λ0)
) ≥ sup

λ∈Ω−

V (θ̂M̂(λ)
) + 3ξ −O(R2

n).

Since the sequence Rn → 0, for sufficiently large n, we have ξ ≥ O(R2
n).

Hence,

V (θ̂M̂(λ0)
)− sup

λ∈Ω−

V (θ̂M̂(λ)
) ≥ 2ξ,(9.7)

for sufficiently large n. Since the number of nonzero elements in β̂M̂(λ0)
is

fixed, we have

κn(∥β̂M̂(λ0)
∥0 − ∥β̂M̂(λ)

∥0) ≤ O(κn), for all λ ∈ Ω−.

Together with (9.7) and the condition κn = o(n), we obtain that for suffi-
ciently large n and all λ ∈ Ω−,{

V (θ̂M̂(λ0)
)− V (θ̂M̂(λ)

)
}
− κn

n
(∥θ̂M̂(λ0)

∥0 − ∥θ̂M̂(λ)
∥0) ≥ ξ.(9.8)
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By (9.8) and the definition of VIC, the event defined in (9.2) happens if

sup
λ∈Ω−

∣∣∣{V̂ (θ̂M̂(λ0)
)− V (θ̂M̂(λ0)

)− V̂ (θ̂M̂(λ)
) + V (θ̂M̂(λ)

)
}∣∣∣ ≥ ξ,

or

sup
∥β∥0≤sn,c∈R

∣∣∣V̂ (θ)− V (θ)
∣∣∣ ≥ ξ

2
,

Therefore, we can bound (9.2) by

Pr

(
sup

c∈R,∥β∥0≤sn

∣∣∣V̂ (θ)− V (θ)
∣∣∣ ≥ ξ

2

)
.(9.9)

We now provide an upper bound for (9.9). Define BM = {β ∈ Rp : βMc
=

0}. We define Ω∗ = {M ∈ Ω : |M| = sn}. It follows from Bonferroni’s
inequality that (9.9) is bounded by∑

M∈Ω∗

Pr

(
sup

c∈R,β∈BM

∣∣∣V̂ (θ)− V (θ)
∣∣∣ ≥ ξ

2

)
.(9.10)

For any triple o = (y, a, x), define

ψVθ (o) =

(
a

π0(x)
− 1− a

1− π0(x)

)
yI(xTβ > −c) + 1− a

1− π0(x)
y.

For each fixed M, the class of functions VM = {ψVθ : c ∈ R, β ∈ BM} has
finite VC index sn + 3 (see Lemma 2.6.15 and 2.6.18 in van der Vaart and
Wellner, 1996). Therefore, we have

J(1,V) ≡ sup
Q

∫ 1

0

√
1 + logN(ε∥VM∥Q,2,VM, L2(Q))dε(9.11)

≤
∫ 1

0

√
1 + (sn + 3) log(K/ε)dε = O(

√
sn),

for some constant K, where VM stands for an envelope function of VM, and
the supremum is taken over all discrete measures Q with ∥VM∥Q,2 > 0. The
definition of the entropy number N(·, ·, ·) can be found in van der Vaart and
Wellner (1996). The above bound is uniform for all M ∈ Ω∗.

For any M, VM(Oi) is bounded by

sup
θ=(c,βT )T

∣∣∣∣AiI(XT
i β > −c) + (1−Ai)I(XT

i β ≤ −c)
Aiπ0,i + (1−Ai)(1− π0,i)

Yi

∣∣∣∣(9.12)

≤ sup
c,β

∣∣∣∣AiI(XT
i β > −c) + (1−Ai)I(XT

i β ≤ −c)
Aiπ0,i + (1−Ai)(1− π0,i)

Yi

∣∣∣∣ ≤ 1

(1− c2)c1
|Yi|,
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by Assumption (A3). In addition, it follows from Lemma H.1 and Cauchy-
Schwarz inequality that

(E|Yi|)2 ≤ E|Yi|2 ≤ 2∥Yi∥2ψ1
= O(1).(9.13)

Therefore, we have EV 2
M(O1) = O(1) where the big-O notation is uniform

in M.
It follows from (9.11) and Theorem 2.14.1 in van der Vaart and Wellner

(1996) that

E sup
c∈R

β∈BM

∣∣∣V̂ (θ)− V (θ)
∣∣∣ ≤ O(1)

√
sn
n

√
nEV 2

M(O1).(9.14)

Here, O(1) denotes a universal constant that is independent of M.
This together with (9.12) and (9.13) implies

sup
M∈Ω∗

E

(
sup

c∈R,β∈BM

∣∣∣V̂ (θ)− V (θ)
∣∣∣) = O

(√
sn
n

)
.(9.15)

For sufficiently large n, RHS of (9.15) goes to 0. It follows from (9.15)
that (9.10) is bounded by

∑
M∈Ω∗

Pr

(
sup

c∈R,β∈BM

∣∣∣V̂ (θ)− V (θ)
∣∣∣− (1 + η)E sup

c∈R,β∈BM

∣∣∣V̂ (θ)− V (θ)
∣∣∣ ≥ ξ

4

)
,

for some fixed η > 0.
For any β and c, it follows from (9.12) that supM∈Ω∗ ∥VM(Oi)∥ψ1 = O(1).

Similarly we have supM∈Ω∗ EV 2
M(Oi) = O(1). Take η = 0.5, it follows from

Lemma H.4 that the above probability can be bounded by

|Ω∗|{exp (−c̄n) + 3 exp(−c̄n/ log(n))},(9.16)

for some constant c̄ > 0. Observe that |Ω∗| = O(psn). It follows from the
condition n≫ sn log(p) log(n) that (9.16) is bounded by

exp (−c̄n+ k1sn log(p)) + 3 exp(−c̄n/ log(n) + k1sn log(p))

≤ 4 exp(−c̄n/ log(n)) ≤ exp{−k2n/(2 log(n))} ≤ exp(−k2 log(p)),

for some constants k1, k2 > 0 and sufficiently large n. This provides the tail
inequality that VIC chooses an underfitted model.
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9.2. Overfitted model space. It follows from Lemma 7.1 that

(9.17)

Pr

 ∩
λ∈Ω+

{
∥θ̃M̂(λ)

− θ0∥2 ≤ t0n
−1/3|M̂(λ)|1/3 log1/3(p)

}
≥ 1− exp

(
−c̄t30 log(p)

)
− exp

(
− c̄t

2
0n

2/3 log1/3 p

log(n)

)
− exp

(
− c̄n

log(n)

)
,

≥ 1− 3 exp(−c̄t30 log(p)) ≥ 1− exp(log 3− c̄t30 log(p)) ≥ 1− exp(−c̄∗ log(p)),

for some c̄, c̄∗ > 0, where the second inequality is due to the condition
log(p) = O(na0) for some 0 < a0 < 1, which further implies n2/3 log1/3 p ≫
log(n) log(p) and n≫ log(p) log(n).

On the event defined in (9.1), it follows from Assumption (A6’)(iii) that

|V (θ0)− V (θ̂M̂(λ0)
)| = O(R2

n).

This together with supλ∈Ω+
V (θ̃M̂(λ)

) ≤ V (θ0) implies that

V (θ̂M̂(λ0)
) ≥ sup

λ∈Ω+

V (θ̃M̂(λ)
)−O(R2

n).(9.18)

Denoted by sβ the number of nonzero elements in β0. For any λ ∈ Ω+,

we have ∥β̂M̂(λ)
∥0 > sβ. Therefore, for any λ ∈ Ω+, we obtain

κn

|M̂(λ)|

(
∥β̂M̂(λ)

∥0 − ∥β̂M̂(λ0)
∥0
)
= κn

(
1−

sβ

|M̂(λ)|

)
≥ κn
sβ + 1

.(9.19)

Since sβ is fixed, under the condition κn ≫ nR2
n, it follows from (9.18) and

(9.19) that for any λ ∈ Ω+ and sufficiently large n,

1

|M̂(λ)|

{
nV (θ̂M̂(λ0)

)− nV (θ̃M̂(λ)
)− κn

(
∥β̂M̂(λ0)

∥0 − ∥β̂M̂(λ)
∥0
)}

≥ κn
2(sβ + 1)

.

Hence, the event defined in (9.3) happens if

sup
λ∈Ω+

n

|M̂(λ)|

∣∣∣{V̂ (θ̃M̂(λ)
)− V (θ̃M̂(λ)

)− V̂ (θ̂M̂(λ0)
) + V (θ̂M̂(λ0)

)
}∣∣∣ ≥ κn

2(sβ + 1)
,

or

sup
λ∈Ω+

n

|M̂(λ)|

∣∣∣m̂V (θ̃M̂(λ)
)−mV (θ̃M̂(λ)

)
∣∣∣ ≥ κn

4(sβ + 1)
,
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and

sup
λ∈Ω+

n

|M̂(λ)|

∣∣∣m̂V (θ̂M̂(λ0)
)−mV (θ̂M̂(λ0)

)
∣∣∣ ≥ κn

4(sβ + 1)
,(9.20)

where m̂V (θ) = V̂ (θ)−V̂ (θ0) and mV (θ) = V (θ)−V (θ0). Since |M̂(λ)| ≥ 1 ,
for any λ ∈ Ω+, LHS of (9.20) is smaller than n|m̂V (θ̂M̂(λ0)

)−mV (θ̂M̂(λ0)
)|.

In the following, we show that conditional on the event defined in the LHS
of (9.17),

Pr

(
sup
λ∈Ω+

n

|M̂(λ)|

∣∣∣m̂V (θ̃M̂(λ)
)−mV (θ̃M̂(λ)

)
∣∣∣ ≥ κn

4(sβ + 1)

)
(9.21)

≤ exp (−k3 log(p)) ,

for some constant k3 > 0. Similarly, we can show

Pr

(
n
∣∣∣m̂V (θ̂M̂(λ0)

)−mV (θ̂M̂(λ0)
)
∣∣∣ ≥ κn

4(sβ + 1)

)
≤ exp

(
−k4κ

2
n

nRn

)
,

for some constant k4 > 0. This together with (9.21) and (9.17) yields (3.9).
Let RVM = t0n

−1/3|M|1/3 log1/3 p, and Ω∗
+ = {M ∈ Ω : Mβ0 ( M, |M| ≤

sn}, LHS of (9.21) is bounded by∑
M∈Ω∗

+

Pr
(

sup
θ=(c,βT )T

c∈R,β∈BM
∥θ−θ0∥2≤RV

M

n

|M|
|m̂V (θ)−mV (θ)| ≥

κn
4(sβ + 1)

)
,(9.22)

using Bonferroni’s inequality. Observe that

m̂V (θ)−mV (θ) =
1

n

∑
i

{ψVθ (Oi)− EψVθ (Oi)}.

Let ΘV
M = {θ = (c, βT )T : β ∈ BM, c ∈ R, ∥θ−θ0∥2 ≤ RVM}. By Assumption

(A3), the class of functions {|ψVθ (o)| : θ ∈ ΘV
M} is bounded by

ΨV
M(o) = c̄

(
sup
θ∈ΘV

M

|y|{|I(xTβ > −c)− I(xTβ0 > −c0)|}

)
,

for some c̄ > 0. Therefore, we have supM ∥ΨV
M(Oi)∥ψ1 = O(1). In addition,
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it follows from Cauchy-Schwarz inequality that E|ΨV
M(Oi)|2 is bounded by

2c̄2EY 2
i

∣∣∣∣∣ supθ∈ΘV
M

|I(XT
i β > −c)− I(XT

i β0 > −c0)|

∣∣∣∣∣
2

(9.23)

≤ 2c̄2E

(
E(Y 2

i |Xi)

∣∣∣∣∣ supθ∈ΘV
M

|I(XT
i β > −c)− I(XT

i β0 > −c0)|

∣∣∣∣∣
)

≤ 2c̄2C̄E

∣∣∣∣∣ supθ∈ΘV
M

|I(XT
i β > −c)− I(XT

i β0 > −c0)|

∣∣∣∣∣ = O(RVM),

where the second inequality is due to the condition that supx{EY 2
0 |X0 =

x} ≤ C̄, and the second equality is due to Assumption (A5’)(ii). The big-O
term on the right-hand-side is uniform in M ∈ Ω∗

+. Similar to (9.11) and
(9.14), it follows from (9.23) that

E

(
sup
θ∈ΘV

M

|m̂V (θ)−mV (θ)|

)
≤ O(1)

√
|M|RVM√

n
,

and hence

1

|M|
E

(
sup
θ∈ΘV

M

|m̂V (θ)−mV (θ)|

)
≤ O(1)n−2/3 log1/6 p.(9.24)

Since κn ≫ n1/3 log2/3 p, we have κn ≫ n1/3 log1/6 p. For sufficiently large
n, (9.22) is bounded by

∑
M∈Ω∗

+

Pr

(
sup
θ∈ΘV

M

n

|M|
|m̂V (θ)−mV (θ)|(9.25)

− 3

2
E sup
θ∈ΘV

M

n

|M|
|m̂V (θ)−mV (θ)| ≥

κn
8(sβ + 1)

)
.

It follows from (9.23) and Lemma H.4 that (9.25) is bounded by

∑
M∈Ω∗

+

{
exp

(
− c̄κ

2
n|M|2

nRVM

)
+ 3 exp

(
− c̄κn|M|

log(n)

)}
,(9.26)

for some constants c̄ > 0.
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Define Ω∗
s = {M ∈ Ω∗

+ : |M| = s}, it is immediate to see that Ω∗
+ ⊆

∪sns=1Ω
∗
s. Hence, (9.26) is bounded by

sn∑
s=1

|Ω∗
s|

{
exp

(
− c̄κ2ns

5/3

n2/3 log1/3 p

)
+ 3 exp

(
− c̄κns

log(n)

)}
.(9.27)

For each s, the number of elements in |Ω∗
s| is bounded by O(ps). By as-

sumption, we have κn ≫ n1/3 log2/3 p and hence κn ≫ log(p) log(n). This
implies

κ2ns
5/3

n2/3 log1/3 p
≫ s log(p) and

κns

log(n)
≫ s log(p).

Hence, for sufficiently large n, (9.27) is bounded by

|sn|min
s≥1

{
exp

(
− c̄κ2ns

5/3

2n2/3 log1/3 p

)
+ 3 exp

(
− c̄κns

2 log(n)

)}
(9.28)

= O(n)

{
exp

(
− c̄κ2n

2n2/3 log1/3 p

)
+ 3 exp

(
− c̄κn
2 log(n)

)}
≤ exp

(
− c̄κ2n

3n2/3 log1/3 p

)
+ 3 exp

(
− c̄κn
3 log(n)

)
≤ 1

2
exp

(
− c̄κ2n

4n2/3 log1/3 p

)
+

1

2
exp

(
− c̄κn
4 log(n)

)
≤ exp(−c̄ log(p)),

where the last inequality is due to κn ≫ n1/3 log2/3(p) and κn ≫ log(p) log(n).
This proves (9.21). The proof is hence completed.
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