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Abstract

This paper tests the idea that financial intermediaries who act as arbitrageurs in the
asset market help determine the equilibrium risk of financial assets. They do this by
turning “alphas” into “betas”; assets with large abnormal returns attract more arbi-
trage and covary correspondingly more with systematic shocks to arbitrage capital. I
show that this channel explains the cross-sectional variation in the funding liquidity
and the arbitrageur wealth portfolio betas of equity anomaly portfolios. My results
highlight that intermediaries who act as arbitrageurs not only price cross-sections of
assets given risks, but also actively shape these risks through the act of arbitrage.
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1 Introduction

What determines the equilibrium risk of financial assets? This is a fundamental question in fi-

nance, as risk determines expected returns or, equivalently, the discount rates applied to future

cash flows to arrive at the asset’s present value.

This paper tests the implications of intermediary asset pricing for the cross-section of risk.

Intermediary asset pricing models suggest that financial intermediaries that act as rational arbi-

trageurs—such as banks and hedge funds—play a crucial role in both pricing assets and deter-

mining asset risk.1 Empirical evidence supports the pricing implication that betas with respect

to factors that capture systematic capital shocks to arbitrageurs are valid measures of risk and

explain the cross-section of returns (Adrian, Etula, and Muir, 2014; He, Kelly, and Manela, 2017;

Avdjiev et al., 2019). However, the literature has not tested whether, as theory suggests, part of

this risk arises endogenously as the act of arbitrage exposes assets to arbitrage capital factors.

My contribution is to test the endogenous risk prediction of intermediary asset pricing mod-

els in the cross-section of equity anomaly portfolios. Specifically, I test the prediction’s cross-

sectional implication that arbitrageurs turn “alphas” into “betas”; that is, assets with a larger

abnormal return in the eye of arbitrageurs attract more arbitrage and covary endogenously more

with arbitrage capital factors. Theory suggests that these betas generated by the act of arbitrage,

henceforth called “arbitrage-driven betas,” feature additional testable restrictions, which I also

test. My main finding is that the cross-sectional variation in equity anomaly exposures to aggre-

gate funding-liquidity shocks and to aggregate arbitrageur wealth portfolio shocks is mostly due

to arbitrage-driven betas.

My test uses 40 equity anomaly portfolios, which have been actively traded by arbitrageurs

such as hedge funds at least since the early 1990s and therefore provide a laboratory for studying

arbitrage-driven betas. These anomaly portfolios are the “long” and “short” decile portfolios of 20

anomaly characteristics such as “value” and “momentum.” I use two measures of arbitrage capital

shocks: the funding-liquidity factor of Adrian, Etula, and Muir (2014) and an arbitrageur wealth

1See, for example, Gromb and Vayanos (2002, 2018), Brunnermeier and Pedersen (2009), He and Krishnmaurthy
(2012, 2013), Brunnermeier and Sannikov (2014), Kozak, Nagel, and Santosh (2018), and Kondor and Vayanos
(2019). Since the implications of the literature I test rely on the intermediaries being rational arbitrageurs rather than
relying on frictions in intermediation, I hereafter refer to the intermediaries as arbitrageurs.

1



1a. Funding βs Unrelated 1b. Pre-93 CAPM α Predicts 1c. Arbitrage Position Explains
to CAPM α (Pre-93) Post-93 Funding β (Post-93) Post-93 Funding β (Post-93)
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Figure 1: Explaining the Cross-Section of Funding-Liquidity Betas
The first figure shows that the funding-liquidity betas of anomaly portfolios in the pre-1993 period (1974–1993)
cluster around zero, irrespective of their CAPM alphas. The next two figures show that the funding-liquidity betas
of anomaly portfolios in the post-1993 period (1994–2016) are explained by their pre-arbitrage alphas (pre-1993
CAPM alphas) and post-1993 arbitrage position (inferred from abnormal short positions). Long-side and short-side
portfolios are denoted in gray and black, respectively.

portfolio factor defined as the long-short returns to stocks in the extreme deciles of the estimated

arbitrage positions. I estimate arbitrage positions using abnormal short positions, defined as the

residual of the cross-sectional regression of short positions on dummy variables for size, liquidity,

and convertible bonds outstanding. I look for evidence of arbitrage-driven risk primarily in the

post-1993 period (1994–2016), characterized by more arbitrage on anomalies (Schwert, 2003;

Chordia, Roll, and Subrahmanyam, 2008, 2011; Chordia, Subrahmanyam, and Tong, 2014). I

use CAPM alpha in the pre-1993 period (1974–1993) to measure the pre-arbitrage abnormal

return from the perspective of arbitrageurs (Agarwal, Green, and Ren, 2018). In all my tests,

I use bootstrap standard errors that account for both cross-portfolio covariances and generated

regressors.

I find strong evidence that the funding-liquidity (“funding”) betas of anomaly portfolios are

generated by the act of arbitrage on those portfolios. In the pre-1993 period, during which there

was less arbitrage, funding betas clustered around zero, irrespective of the portfolios’ CAPM

alphas (see Fig. 1a). However, in the post-1993 period, during which there was more arbitrage, the

portfolios attain either positive or negative funding betas, depending on whether their pre-1993

alphas were positive or negative (see Fig. 1b), consistent with the alphas-into-betas prediction.

Furthermore, actual arbitrage positions explain the magnitude and the direction of the post-1993

funding betas and the large R2 suggests that most of the cross-sectional variation in funding-

liquidity exposure is an endogenous outcome of arbitrage (see Fig. 1c). I find similar patterns
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2a. Wealth βs Unrelated 2b. Pre-93 CAPM α Predicts 2c. Arbitrage Position Explains
to CAPM α (Pre-93) Post-93 Wealth β (Post-93) Post-93 Wealth β (Post-93)
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Figure 2: Explaining the Cross-section of Arbitrageur Wealth Portfolio Betas
The first figure shows that the arbitrageur wealth portfolio betas of anomaly portfolios in the pre-1993 period
(1974–1993) cluster around zero, irrespective of their CAPM alphas. The next two figures show that the wealth
portfolio betas of anomaly portfolios in the post-1993 period (1994–2016) are explained by their pre-arbitrage alphas
(pre-1993 CAPM alpha) and post-1993 arbitrage position (inferred from abnormal short positions). Long-side and
short-side anomaly portfolios are denoted in gray and black, respectively.

using panel regressions that allow the funding betas to vary more freely over time: funding beta

increases with arbitrage position, with the academic publication of the anomaly, and with the post-

1993 dummy. In contrast, fundamental characteristics, such as size and book-to-market ratio, do

not contribute significantly to the variation in funding betas.

Funding betas of anomaly portfolios display additional patterns expected from arbitrage-driven

betas. They strengthen or weaken in periods in which arbitrageurs are likely to be constrained or

unconstrained, respectively, consistent with the predictions of Brunnermeier and Pedersen (2009)

and Kondor and Vayanos (2019) among others. Furthermore, in the cross-section of anomaly

portfolios, the time-series return predictability increases in the funding beta in the post-1993

period but not in the pre-1993 period. In the context of the return decomposition of Campbell and

Shiller (1988) and Campbell (1991), this finding suggests that post-1993 funding betas measure

discount-rate shocks generated by the act of arbitrage rather than by fundamental cash flows that

happen to covary with funding-liquidity shocks.

Next, I ask if similar patterns arise in betas with respect to the arbitrageur wealth portfolio,

an alternative measure of risk from arbitrageurs’ point of view. I find that arbitrageur wealth

portfolio betas do feature similar patterns, whether or not I control for the mechanical relation

between an anomaly portfolio’s percentage share in the arbitrageur wealth portfolio and its beta

with respect to the wealth portfolio (see Fig. 2). Both arbitrage position and pre-1993 CAPM
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alpha explain more than 60% of the cross-sectional variation in exposure to arbitrageur wealth

portfolio shocks in the post-1993 period. Panel regressions and auxiliary tests also confirm that

the wealth portfolio betas of anomaly portfolios are arbitrage-driven.

The strong support for arbitrage-driven risk given by funding-liquidity and arbitrageur wealth

portfolio betas prompts me to consider whether finding a strong cross-sectional relation between

arbitrage variables and factor betas of anomaly portfolios is a low-hurdle test. I therefore calculate

the likelihood that betas with respect to a random factor portfolio produce results as strong as

mine. I find that only about 1 out of 500 random factors (0.2%) generate results as strong as

those of funding-liquidity betas and arbitrageur wealth portfolio betas, suggesting that the odds

of drawing two factors that by chance both happen to generate my strong results are extremely

low.

I conduct a battery of robustness checks. First, using alternative years in the early 1990s as

the sample cutoff generates results similar to those I obtain based on the 1993 cutoff. Second,

controlling for pre-1993 return volatility or market liquidity does not materially affect my results,

implying that my alphas-into-betas result is not a spurious result driven by pre-1993 CAPM alpha

proxying for volatility or market liquidity. Third, I use the crash in arbitrage capital during the

“quant” crisis of August 2007 to study the determinants of exposure to arbitrage capital shocks

without relying on a factor model. I find that both pre-1993 CAPM alpha and post-1993 arbitrage

positions strongly explain the cross-section of returns during the crisis, bolstering the evidence

that these variables determine equilibrium exposure to arbitrage capital shocks.

Taken together, my results suggest that financial intermediaries that act as arbitrageurs con-

tribute to the cross-section of risk. Although event study evidence suggests that the act of arbi-

trage exposes assets to arbitrage capital shocks (e.g., Mitchell and Pulvino, 2012; Du, Tepper, and

Verdelhan, 2018), my results show that the act of arbitrage affects arbitrage capital betas more

generally over a long sample period. By endogenizing the cross-sectional variation in arbitrage

capital betas, my findings explain how assets become risky for arbitrageurs before arbitrageurs

use these risks to determine the cross-section of expected returns. Hence, intermediary-based

asset pricing is a framework that gives a complete account of not only which risks are priced in

the cross-section, but also how risks are determined in the first place.
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For the broader asset pricing literature, my results suggest that mispricing can persist in the

form of distorted betas. As many arbitrageurs attempt to exploit abnormal return opportunities,

they generate arbitrage-driven risk in the assets. This can allow the initial mispricing in the form

of abnormal returns to persist in the form of risk premia associated with the arbitrage-driven betas.

In this case, abnormal returns could be low in equilibrium but assets could be fundamentally

mispriced due to distorted betas, which means that abnormal return can be a poor proxy for the

fundamental mispricing of securities (Cohen, Polk, and Vuolteenaho, 2009). My finding on asset

risk measured by factor betas is related to the evidence that the act of arbitrage affects the second

and third moments of asset returns (e.g., Barberis, Shleifer, and Wurgler, 2005; Brunnermeier,

Nagel, and Pedersen, 2008; Anton and Polk, 2014; Greenwood and Thesmar, 2011; Lou and

Polk, 2013; Ben-David, Franzoni, and Moussawi, 2018).

My findings explain why, despite arbitrage, asset pricing anomalies persist:2 precisely because

arbitrageurs require compensation for the endogenous risk that they generate. McLean and Pontiff

(2016) and Dong et al. (2018) find that correlations among anomaly portfolios change around aca-

demic publication, which the authors attribute to arbitrage trades. My results imply that changes

in systematic funding-liquidity and arbitrageur wealth portfolio exposure are important drivers of

this correlation change. Drechsler and Drechsler (2016) find that anomaly arbitrageurs face risk

concentrated in negative-alpha stocks and require a return premium for bearing this risk. I find

that the role of arbitrageurs extends beyond recognizing such risk; they also propagate it to other

assets they trade. Relatedly, Liao (2019) shows that the act of arbitrage on one anomaly (such as

credit spread differential) can affect an anomaly in a different market (such as covered interest

parity deviation).

Finally, my findings are broadly consistent with the core message of the “adaptive market

hypothesis” (Lo, 2004) that the expected returns and risks of trading strategies change over time

as a new class of arbitrageurs, such as hedge funds, interacts with existing investors.3 Evidence

for this hypothesis has heretofore been qualitative; my analysis provides quantitative evidence.

2McLean and Pontiff (2016) document a 32% decline in the returns of 97 anomalies after their publication.
Chordia, Subrahmanyam, and Tong (2014) also find that anomaly returns have not completely disappeared.

3The expression “alphas becoming betas” was first used to describe this hypothesis.
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2 Methodology and Data

2.1 Theoretical background

I provide a simple theoretical framework from which arise the predictions I test in the data. The

framework draws heavily on the continuous-time model of Kondor and Vayanos (2019), but in-

terested readers can find the same predictions in a three-period setting in the online appendix to

this paper.4

Consider a continuous-time economy in which uncertainty is captured by the N -dimensional

Brownian motion Bt and the risk-free rate is fixed at r > 0. There are N risky assets in zero net

supply with cash flows

dDt = Ddt+ dBt, (1)

where D is a constant N × 1 vector. Hence, asset i ∈ {1, ..., N} has a unit fundamental cash-

flow exposure to the Brownian motion i.5 There are two types of investors, households and

arbitrageurs. Households receive a random endowment of uTdDt at t + dt for some N × 1

constant vector u and are mean-variance optimizers of instantaneous changes in wealth at t+ dt,

where A > 0 is their coefficient of absolute risk aversion.

Arbitrageurs do not face endowment shocks, so they perceive u as distortions in asset demands

that generate abnormal return opportunities. Arbitrageurs maximize power utility over consump-

tion,

E0

[∫ ∞
0

e−ρt
c1−γt

1− γ
dt

]
, (2)

where ct is instantaneous consumption, ρ > γ is the discount rate, and γ ≥ 0 is the coefficient of

relative risk aversion.6 The capital of arbitrageurs kt evolves according to

dkt = rktdt+ xTt dRt − ctdt, (3)

where xt is the arbitrageur’s position in risky assets and dRt denotes risky asset returns in excess

4Available at https://sites.google.com/site/thummimcho.
5All results hold analogously when dDt = Ddt + σT dBt with σT 6= IN , but the independence assumption

simplifies notation.
6ρ > γ prevents arbitrageurs from accumulating infinite wealth over time.
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of the risk-free rate.7

What does this setup imply about asset returns when the market is occupied solely by house-

holds? This proxies for a sample period in which arbitrageurs are small or for whatever reason

have not engaged in arbitrage trades on assets.

Proposition 1. In the absence of arbitrageurs, expected excess returns on assets follow

Et [dRt]

dt
= Au. (4)

Proof. See Kondor and Vayanos (2019) for the proofs of this and the next propositions.

Intuitively, without arbitrageurs, assets with greater exposure to endowment shocks generate

higher expected returns and equilibrium risk is determined solely by fundamental cash flows.

On the other hand, when arbitrageurs enter the market, the act of arbitrage leads asset returns

to covary endogenously with arbitrage capital.

Proposition 2. In the presence of arbitrageurs, arbitrage positions xt, endogenous return covari-

ances with arbitrage capital, and expected excess returns of assets are given by

xt = x̃ (kt) u, (5)

Covt (dRt, dkt)

dt
∝ u, (6)

Et [dRt]

dt
= µ (kt) u, (7)

where x̃ (kt) > 0 and µ (kt) > 0 are increasing and decreasing in kt, respectively.

Intuitively, arbitrageurs in equilibrium play a larger price-correcting role in assets with larger de-

mand distortions and greater abnormal returns (Eq. (5)). This, however, also means that such

assets are endogenously more sensitive to variation in the price-correcting role coming from ar-

bitrage capital shocks (Eq. (6)). Arbitrageurs take this endogenous covariance into account when

they determine the expected returns on assets (Eq. (7)).

7Although shocks to kt come from shocks to the wealth portfolio of arbitrageurs, they can be interpreted more
broadly as coming from all systematic arbitrage capital shocks, including aggregate funding-liquidity shocks.
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Hence, an asset with a larger demand distortion u attracts a greater arbitrage position and

develops a correspondingly larger endogenous covariance with arbitrage capital. Although u may

not be observable, it is revealed by abnormal returns in the absence of arbitrageurs (Au in Eq. (4))

or by equilibrium arbitrage position in the presence of arbitrageurs (x̃ (kt) u in Eq. (5)). Hence,

holding all else fixed, abnormal return in the absence of arbitrageurs predicts endogenous risk

exposure to arbitrage capital shocks; that is, “alphas” turn into “betas.” When approximated as a

linear relation, this implies a cross-sectional regression

βi,k = b0 + b1α
pre
i + ui, (8)

where βi,k ∝ Covt(dRt,dkt)
dt

is the beta exposure to kt at t + dt and αprei ≡ Au is “pre-arbitrage”

abnormal return. Alternatively, equilibrium arbitrage position explains the contemporaneous en-

dogenous risk exposure to kt, motivating a regression

βi,k = b̃0 + b̃1xi + ũi, (9)

where xi is the average arbitrage position on asset i over the period in which the beta is measured.

These are the main cross-sectional restrictions I test in the data.

Endogenous covariance with arbitrage capital displays three additional patterns I test in the

data. First, the endogenous covariance is hump-shaped with respect to arbitrage capital kt. It

is small when kt is close to zero, since arbitrageurs only have a small impact on prices. But it

is also small when kt is close to infinity since then, the assets are priced almost exclusively by

arbitrageurs, whose absolute risk aversion remains close to zero for small changes in kt.8 Hence,

endogenous covariance with arbitrage capital tends to arise when arbitrageurs hold non-negligible

capital but are constrained and disappear when arbitrageurs are unconstrained. Second, in the

context of the return decomposition of Campbell and Shiller (1988) and Campbell (1991), this

covariance arises from the expected returns (discount rates) of assets covarying with kt. Hence,

holding all else constant, assets with a larger endogenous covariance with arbitrage capital have

more volatile expected returns and feature greater time-series predictability in returns. Third,

endogenous covariance with arbitrage capital can be observed in a crash in arbitrage capital. In a

8This prediction also arises in Brunnermeier and Pedersen (2009).

8



large enough crash, the magnitude of the return response is greater in assets with a larger demand

distortion u since the arbitrageur plays a larger price-correcting role in the asset.

2.2 Data and measurement

My test assets are 40 “anomaly” portfolios formed by taking the long and short portfolios (top

and bottom deciles) from a univariate sorting of stocks on 20 anomaly characteristics (see the list

in Table 1). These 20 characteristics, constructed based on data from the Center for Research in

Security Prices and Compustat, represent a standard set of low-turnover anomaly characteristics.9

One can arrive at this set by taking the 32 characteristics surveyed by Novy-Marx and Velikov

(2016) and excluding the 5 redundant (e.g., “high-frequency combo”) and 7 highest-turnover

(e.g., short-term reversal) characteristics. I exclude high-turnover anomalies since arbitrage-

driven betas should not arise in anomalies with a short mispricing horizon (Kondor and Vayanos,

2019). I use long and short portfolios as separate test assets, rather than forming long-short port-

folios, for two reasons: (a) actual arbitrageurs typically do not form a long-short portfolio based

on single anomaly characteristic but consider multiple anomaly characteristics of stocks; (b) it

ensures a large cross-sectional variation in the right-hand variable (e.g., arbitrage position and

pre-arbitrage alpha), which increases the power of the test. I determine characteristic deciles

based on NYSE stocks. I compute monthly-rebalanced value-weighted portfolio returns based on

domestic common stocks listed on the three major exchanges (NYSE, AMEX, and NASDAQ).

For analyses requiring quarterly portfolios, I use rolled-over one-month returns to obtain quarterly

returns. My sample period is from 1974 to 2016.10

I study two kinds of systematic shocks to arbitrage capital. The first is the aggregate funding-

liquidity factor of Adrian, Etula, and Muir (2014), calculated as shocks to the book leverage of

security broker-dealers as a factor capturing aggregate funding-liquidity shocks.11 Since anomaly

9The online appendix to this paper provides more information on the construction of anomaly characteristics.
10Like Novy-Marx and Velikov (2016), I do not use data from before the early 1970s because of the poor quality

of quarterly accounting data.
11Specifically, the factor is the change in the log of aggregate leverage of the entire broker-dealer sector obtained

from the Federal Reserve Board’s flow-of-funds data. The book leverage is adjusted for seasonality before taking the
growth rate. Adrian et al. refer to the factor as a “leverage” factor, but I refer to it as a funding-liquidity factor since
it is meant to capture aggregate funding-liquidity shocks à la Brunnermeier and Pedersen (2009). (A related paper
by Asl and Etula (2012) calls it a funding factor.) I extend the quarterly funding factor to 2016q4 and standardize it
over my sample period 1974q1–2016q4. See Adrian et al. (2014) and the online appendix to this paper for detailed
instructions on constructing the series.
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arbitrageurs such as quantitative long/short equity hedge funds rely on leverage and hence funding

liquidity, they are likely to be exposed to the aggregate funding-liquidity factor (Brunnermeier

and Pedersen, 2009; Aragon and Strahan, 2012; and Mitchell and Pulvino, 2012). This seems

especially plausible since security broker-dealers provide funding to hedge funds as their prime

brokers. The second is shocks to the aggregate arbitrage portfolio proxied by a value-weighted

portfolio that goes long on the top decile and short on the bottom decile of stocks sorted on

my measure of arbitrage position explained below.12 To prevent microcaps from dominating the

decile portfolios, the decile cutoffs are determined by the distribution of arbitrage positions on

NYSE stocks. I estimate exposure to these shocks as the beta with respect to the shocks in a

portfolio-specific time-series regression that controls for market exposure. The funding-liquidity

factor and arbitrageur wealth portfolio returns have a small positive correlation of 0.075 over the

sample period, implying that they capture different components of arbitrage capital shocks.

I measure arbitrage positions on portfolios using abnormal short positions on underlying

stocks, following Ben-David, Frazoni, and Moussawi (2012), Boehmer, Jones, and Zhang (2013),

Hanson and Sunderam (2014), and Hwang, Liu, and Xu (2018) among others.13 Since most short

positions are held by hedge funds (approximately 85%, according to Goldman Sachs, 2008), an

abnormally high (low) short position on an anomaly signals a net short (long) position taken by

the arbitrageurs. Each month, I estimate abnormal short position on each stock as the residual

from a cross-sectional regression of short interest ratio (shares shorted divided by shares outstand-

ing) from Compustat on ten dummy variables for size deciles, ten dummy variables for liquidity

deciles (determined by Amihud’s (2002) measure over the prior 12 months), and two dummy

variables for convertible bonds outstanding (one for having any convertible bonds outstanding

and the other for it being greater than 10% of the market capitalization of common equity).14 I

control for convertible bonds outstanding to net out the effect of convertible bond arbitrage. I

12I thank the anonymous referee for the idea of using my arbitrage position measure to reconstruct the arbitrageur
wealth portfolio.

13Although Chen, Da, and Huang (2018) show that equity positions of hedge funds can also be inferred from
institutional holdings (13F) data, it is difficult to infer positions of quantitative long/short equity hedge funds that
trade anomalies since 13F filings are available only at the holding-company level. Using the data on long hedge fund
positions kindly provided by Chen et al., I find that aggregate hedge fund long positions inferred from the 13F do not
have a statistically significant relation to past alphas, implying that these are unlikely to represent the long positions
of anomaly arbitrageurs.

14I use short interests reported in mid-month and shares outstanding on the same day (if available) or the previous
trading day. The exact method used to obtain abnormal short positions, however, does not affect my results.
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also remove stocks involved in mergers and acquisitions as defined in Jiang, Li, and Mei (2018)

to net out the effect of merger arbitrage (risk arbitrage). Then, I compute arbitrage position on a

portfolio as the negative (−1 × 100 to express it as a percentage) of the value-weighted average

of abnormal short positions on underlying stocks.

Following Schwert (2003), I use the post-1993 period (1994–2016) as the period in which

the anomaly portfolios are actively traded by arbitrageurs such as the quantitative equity hedge

funds. The growth of arbitrage on anomalies around 1993, also observed in Chordia, Roll, and

Subrahmanyam (2008, 2011), Stein (2009), and Chordia, Subrahmanyam, and Tong (2014), is

likely due to a combination of factors including the growth in the hedge fund industry, publica-

tion of seminal works on cross-sectional anomalies (e.g., Fama and French, 1993; Jegadeesh and

Titman, 1993), and improved market liquidity. I do not intend to differentiate among these chan-

nels but interpret my post-1993 results as driven by a combination of these factors. Fig. 3 shows

that arbitrage positions on anomaly portfolios indeed did grow rapidly around 1993. Although

not reported in the paper, I also find that average position on anomaly portfolios tends to fall in

times of negative funding-liquidity shocks in the post-1993 period but not in the pre-1993 period.

The theoretical framework in Subsection 2.1 shows that besides arbitrage position, abnormal

return in the absence of arbitrageurs is another predictor of endogenous exposure to arbitrage

capital shocks. Building on the evidence that hedge fund flow chases CAPM alpha (Agarwal,

Green, and Ren, 2018), I use CAPM alpha in the pre-1993 period (1974–1993) to proxy for

abnormal return in the absence of arbitrageurs.15 Table B1 shows that pre-1993 CAPM alpha

strongly predicts arbitrage activity in the post-1993 period (see the coefficient on αpre×Post-

1993), suggesting that demand distortion in an anomaly portfolio revealed by pre-1993 CAPM

determines the amount of post-1993 arbitrage activity on the portfolio.16 The table also highlights

the potential role of academic publication, which I include as a regressor in my panel analysis.

15Using a two-factor alpha that removes the possible risk premium associated with the arbitrage-related fac-
tor (funding liquidity or arbitrage portfolio) or alternative multifactor alphas generates similar results. For failure
probability anomaly, I use CAPM alpha over 1981–1993 to account for the anomaly’s sensitivity to sample period,
emphasized in Dichev (1998).

16My finding on the 1993 cutoff is somewhat at odds with the finding that no return decay is observed in the
anomalies following 1993 (McLean and Pontiff, 2016). The main reason for this difference is that short interest
measures the arbitrage activity of a group of sophisticated arbitrageurs, whereas return decay reflects investment by
all types of investors. Another contributing factor is that I use the year in which the anomaly was first published, not
when it was first well publicized. For example, the academic publication of the value anomaly is Rosenberg, Reid,
and Lanstein (1985) in my data, but it is Fama and French (1992) in McLean and Pontiff.
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Besides the act of arbitrage, fundamental cash flows may also contribute to equilibrium risk

exposure.17 To account for cash-flow exposure to risk, I use pre-1993 factor beta or fundamental

characteristics of the anomaly portfolio (size, book-to-market ratio, profitability, and investment

characteristics) as additional controls. A portfolio’s characteristic is defined as the value-weighted

average characteristic decile of the underlying stocks, where the deciles are determined by the

distribution of NYSE stocks.18

2.3 Standard errors

Throughout the paper, I compute standard errors based on a bootstrap procedure that takes into

account both cross-portfolio covariances and generated regressors. I use bootstrapping instead

of generalized method of moments (GMM) since to my knowledge, existing GMM approaches

cannot be used in my case, in which different variables are estimated using data with different

frequencies. However, for the main regressions in Table 6 (Columns (1) and (4)), which only

use data with monthly frequency, I find that GMM standard errors are smaller than my bootstrap

standard errors, implying that my bootstrap t-statistics are conservative. The t-statistics based on

GMM are 3.05 and 3.60 for Columns (1) and (4) of Table 6, and those based on my bootstrap

standard errors are 2.73 and 3.13, respectively.19 My analysis on randomly generated factors

in Table 8 also suggests that my bootstrap t-statistics are conservative; the one-sided p-values

implied by my t-statistics in Columns (1) and (4) of Table 6 (0.32% and 0.09%) are higher than

those implied by the random factors (0.20% and 0.05%). See Appendix A for further details on

my bootstrap procedure.

3 Funding-liquidity Exposure

Anomaly portfolios display a large cross-sectional variation in funding-liquidity exposure in the

post-1993 period (Fig. 1). In this section, I provide evidence that this variation arises endoge-

nously through the act of arbitrage.

17In the framework presented in Subsection 2.1, this is reflected in the equilibrium asset return, dRt =
µ (kt)udt + (g (kt)u+ 1) dBt for some stochastic terms µ (kt) and g (kt), which implies that asset return has
an endogenous exposure to risk g (kt)u dBt in addition to fundamental cash-flow exposure dBt. See Kondor and
Vayanos (2019) for further details.

18See the online appendix for more information about how I construct these characteristics for each stock.
19The MATLAB code for GMM standard errors is available upon request.
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3.1 Cross-section of funding betas

The starting evidence is a strong contemporaneous cross-sectional relation between arbitrage po-

sition and funding-liquidity beta (Eq. (9) in Subsection 2.1). Columns (1)–(3) of Table 2 show that

anomaly portfolios with greater arbitrage positions tend to have higher funding betas in the post-

1993 period. In terms of magnitude, a 1-percentage-point (“%p”) rise in the fraction of shares

outstanding held by arbitrageurs (which is what the arbitrage position captures) increases the

portfolio’s funding beta by 1.6–1.8, which corresponds to portfolio return responding 1.6–1.8%p

more to a one-standard-deviation shock in aggregate funding liquidity.20 This is consistent with

the prediction that portfolios in which arbitrage capital plays a larger price-correcting role re-

spond more to the variation in arbitrage capital due to funding-liquidity shocks. Arbitrage posi-

tion alone explains more than 70% of the cross-sectional variation in post-1993 funding betas and

neither pre-1993 funding beta nor fundamental characteristics contribute to the cross-sectional fit.

This suggests that the cross-sectional variation in funding-liquidity exposure is mostly arbitrage-

driven.

However, using arbitrage position as the right-hand variable raises a reverse-causality concern:

arbitrageurs may take larger positions on stocks with larger funding betas to earn an extra risk pre-

mium associated with funding liquidity (Jurek and Stafford, 2015).21 A remedy is to use pre-1993

CAPM alpha as a right-hand variable, since it measures the demand distortion in the anomaly

portfolio that ultimately determines the equilibrium arbitrage position and since an alpha—when

correctly measured—captures the part of expected return unrelated to factor exposure.22 Esti-

mating the relation in Eq. (8) in Subsection 2.1, Columns (4)–(6) show that pre-arbitrage alpha

strongly explains the cross-section of funding betas. A 1%p increase in pre-1993 CAPM alpha

raises post-1993 funding-liquidity beta by 0.19–0.21 and pre-1993 CAPM alpha alone explains

67% of the cross-sectional variation post-1993 funding-liquidity exposure of anomaly portfolios.

This, together with the result based on the arbitrage position, implies that (pre-1993 CAPM) alpha

turned into (post-1993 funding-liquidity) beta through the act of arbitrage.

20The funding-liquidity factor I use has been standardized to have a standard deviation of 1.
21Relatedly, Song (2017) finds that mutual funds with lower skills increase factor exposure.
22One could argue that pre-1993 CAPM alpha includes a risk premium for funding-liquidity exposure, in which

case pre-1993 CAPM alpha would predict post-1993 funding beta almost mechanically. However, using the pre-1993
two-factor alpha that controls for the possible risk premium associated with funding liquidity generates very similar
results.
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In the pre-1993 period, arbitrage position does not explain the cross-section of funding betas,

consistent with my interpretation of the pre-1993 period as the period when anomaly arbitrageurs

were small (Columns (9)–(11)). Instead, fundamental characteristics of anomaly portfolios ex-

plain around 70% of the cross-sectional variation in their funding-liquidity exposure. The large

magnitude associated with value rank suggests that portfolios with a large value characteristic

(high book-to-market ratio) tend to have large funding-liquidity exposure in the pre-1993 pe-

riod, possibly because these are distressed stocks whose cash flows depend importantly on the

availability of short-term funding in the financial sector. However, the effect of each individual

characteristic is not statistically significant.

3.2 Panel of funding betas

An alternative to the purely cross-sectional approach is to study a panel (portfolios×time) of fund-

ing betas. To do this, I use time-varying betas estimated from a moving window of ±14 quarters

(7 years) around each quarter as the left-hand variable. As a right-hand variable, I use arbitrage

position, pre-1993 CAPM alpha interacted with a post-1993 dummy, and pre-1993 CAPM al-

pha interacted with a post-publication dummy. As additional controls, I include (a) anomaly

fixed effects to control for unobserved heterogeneity across the portfolios that may be correlated

with funding betas, (b) all variables used to create interaction terms (except those subsumed by

anomaly fixed effect), (c) time-varying fundamental characteristics to control for changes in the

characteristics that may affect the betas, and (d) quadratic time trends to control for average trends

in the betas.

Table 3 shows results consistent with the cross-sectional result. A time-series increase in the

arbitrage position leads to an increase in the funding beta (Columns (1)–(2)). The coefficient is

around half of that implied by the cross-sectional regressions, which suggest that not taking the

time-series average leads to attenuation due to the measurement error in the estimated arbitrage

position. Funding beta more specifically changes around post-1993 with the direction and mag-

nitude implied by the pre-1993 CAPM alpha, and the estimated effect of 0.18 is close to 0.19

estimated in the cross section (Columns (3)–(4)). Hence, the panel approach also suggests that

alphas turned into betas through the act of arbitrage.

Albeit with slightly lower t-statistics, pre-1993 CAPM alpha also affects funding betas around
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the academic publication of the anomalies (Columns (5)–(6)). However, it is difficult to disen-

tangle the effect of pre-1993 CAPM alpha around 1993 into that coming from the increase in

arbitrage capacity due to the growth of hedge fund capital in the 1990s and improved market liq-

uidity and that coming from the identification new anomalies since the early 1990s (Column (7)).

This is consistent with my interpretation of the post-1993 effect as coming from a combination

of those events. The two-stage least squares regressions in Columns (9)–(11) study the effect

of arbitrage position changes driven by pre-1993 CAPM alphas around 1993 and by academic

publication. The large estimated coefficient suggests that the time series of arbitrage position is

indeed a noisy measure of actual arbitrage position and that the two-stage approach identifies the

effect of estimated arbitrage position changes that are more purely driven by actual arbitrage.

It is interesting to relate my panel regression result to the finding that academic publication

increases the anomaly’s correlation with other published anomalies (McLean and Pontiff, 2016;

Dong et al., 2018). My result shows that the increased correlation arises partly from an increased

exposure to the funding factor and that the post-publication increase in the beta (correlation) has

a cross-sectional pattern predicted by intermediary-based asset pricing models; the increase is

larger for an anomaly with a larger pre-arbitrage alpha.

3.3 Funding betas during constrained versus unconstrained periods

What is an alternative explanation for my findings on funding-liquidity betas? Suppose that the

funding-liquidity factor actually proxies for the arbitrageur wealth portfolio rather than aggregate

funding-liquidity shocks. In this case, even if arbitrageurs were too small to affect the covari-

ances of anomaly returns, a portfolio with a larger arbitrage position or pre-arbitrage alpha may

mechanically have a higher beta with the factor since the portfolio would likely be a larger part

of the arbitrageur wealth portfolio.

A prediction that can help refute this alternative explanation is that arbitrage-driven betas arise

primarily when arbitrageurs are constrained. If funding betas were arbitrage-driven betas, they

would arise primarily when arbitrageurs are constrained such that shocks to their capital that relax

or tighten their constraint generate variation in arbitrage positions in the anomaly portfolios. In

contrast, if funding betas were mechanical wealth portfolio betas, they would strengthen when

arbitrageurs are unconstrained and can hold more anomalies in their portfolios.
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To test this prediction, I define constrained and unconstrained periods in two ways. First, I

follow Nagel (2012) to proxy constrained (unconstrained) times for institutional arbitrageurs as

quarters in which the moving average of the VIX is above (below) the sample median.23 Second,

since abnormal returns are likely to be competed away in times when arbitrageurs are uncon-

strained, I use years in which the anomaly portfolios’ alphas re-emerge (disappear) as the con-

strained (unconstrained) times. Specifically, I use years in which CAPM alphas estimated from

daily data have a cross-sectionalR2 with pre-1993 CAPM alphas above the median.24 Fig. 4 plots

the constrained and unconstrained post-1993 quarters (or years) defined by the two methods. De-

spite some differences, they both identify the dot-com crash of 2000–2002 and the financial crisis

of 2008–2009 as the periods in which arbitrageurs were constrained.

Table 4 strongly favors the arbitrage interpretation over the wealth-portfolio interpretation

of my previous results. Funding betas during constrained times are large and cross-sectionally

explained by both arbitrage position and pre-arbitrage alpha, but they tend to disappear during

unconstrained times. Furthermore, although both correlation and volatility can affect beta, my

finding is driven by changes in the correlation with the funding factor during constrained times;

anomaly return correlations with the funding factor display patterns observed in funding betas

(Fig. 5).

3.4 Funding betas as discount-rate betas: Cross-section of time-series return
predictability

Finally, anomaly portfolios with high funding betas feature greater discount rate variations, con-

sistent with the portfolios’ funding betas arising from discount rate shocks that arbitrageurs gen-

erate. To show this, I study cross-sectional differences in the time-series predictability of returns.

By definition, greater discount rate variation means greater variation in expected returns, so hold-

ing all else constant, portfolios with high funding betas should feature greater time-series return

predictability. Intuitively, if funding betas arise from the act of arbitrage, high funding-beta port-

folios should experience greater booms and busts induced by arbitrage capital and exhibit greater

23I use the exponential-weighted moving average with a smoothing factor of 0.3. However, since quarterly VIX
tends to be persistent, using the original quarterly VIX series delivers similar results.

24Theoretically, the correct alpha to use here should additionally control for the risk premium associated with
arbitrage-driven beta. Yearly alphas that additionally account for exposure to the mimicking portfolio of the funding
factor does not change leads to similar classification of constrained times, so I prefer using yearly CAPM alphas for
simplicity.
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return predictability in the time series.25

I test this in a two-stage approach. The first stage is a portfolio-specific time-series predictive

regression in which I predict future 12-, 18-, or 24-month cumulative excess returns using its past

3- or 5-year cumulative excess return as the predictor (DeBondt and Thaler, 1985; Moskowitz,

Ooi, and Pedersen, 2012):26

rei,t→t+s = θ0 + θ1r
e
i,t−L→t + εi,t→t+s (s ∈ {12m, 18m, 24m} , L ∈{3y, 5y} ) . (10)

Past 3- or 5-year returns can proxy for valuation ratios such as the book-to-market ratio, often used

in return predictability studies, when accounting data are unavailable or subject to seasonality

issues, as is the case for my predictive regressions with monthly data (Fama and French, 1996;

Gerakos and Linnainmaa, 2012; Asness, Moskowitz, and Pedersen, 2013). Intuitively, past return

predicts future return since high (low) past return means that arbitrageurs have driven up (down)

the prices of stocks in the anomaly portfolio at the expense of a lower (higher) expected return

going forward. I run my portfolio-specific predictive regression using overlapping monthly data

and obtain the R2 as the measure of how predictable the time series of future portfolio return is.

The second stage is a cross-sectional regression in which I explain the first-stage R2 using

the absolute value of the funding beta, the arbitrage position, or the pre-1993 CAPM alpha of

the anomaly portfolio.27 Essentially, this approach allows me to relate funding beta and other

measures of arbitrage to the fraction of return volatility coming from discount-rate shocks, which

the first-stage R2 captures.

I use my two-stage approach for the post-1993 period, where I expect to find predictability

lining up with the absolute value of the funding beta and its determinants, and for the pre-1993

25An alternative way to check that a factor beta is a discount-rate beta is to decompose stock returns into discount-
rate vs. cash-flow shocks using VAR, as in Campbell and Vuolteenaho (2004) and Campbell, Polk, and Vuolteenaho
(2009) (CPV). However, as explained in CPV, this approach works most naturally for decomposing yearly returns
and is not suitable for my paper, with its relatively short sample period.

26The return horizon over which discount-rate changes induced by arbitrage are realized is unclear, so I tried
return horizons of 1 year to 3 years in the first stage. I find that my second-stage cross-sectional results are robust to
using future 30-month return predictive regression and then lose statistical significance from future 36-month return
prediction. The past and future returns I use as the left-hand and right-hand variables in the first-stage regression
are based on the same stocks that belong to the anomaly portfolio at the time of portfolio formation. Using past and
future returns on rebalanced portfolios would be an incorrect approach.

27I take an absolute value since predictability increases in the magnitude of the discount-rate beta, regardless of
its sign.
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period, which should not feature the same pattern unless return predictability, for whatever reason,

is intrinsically correlated with the portfolio’s funding beta.

Fig. 6 summarizes my finding. Return predictability increases in the absolute value of the

anomaly’s funding beta in the post-1993 period but not in the pre-1993 period, consistent with

post-1993 funding betas being discount-rate betas arising from arbitrage trades. Table 5 shows

that this cross-sectional pattern holds with respect to the absolute value of the arbitrage position

and pre-1993 alpha as well (Columns (1)–(3)). That is, a portfolio with a larger abnormal re-

turn attracts a larger arbitrage position and suffers a greater booms and busts due to variation in

aggregate arbitrage capital.

The economic magnitude is large. In the baseline specification, an increase of 1 in the absolute

value of the funding beta increases the first-stageR2 of the predictability regression by 0.05–0.06,

depending on the return horizon. The R2 of the second-stage cross-sectional regression reported

in the brackets shows that the arbitrage variables explain as much as 58% of the cross-sectional

variation in return predictability. The pre-1993 period does not display a cross-sectional relation

between predictability and funding beta, suggesting that the large discount-rate variation in high-

funding-beta portfolios is unique to the post-1993 period, with its increased arbitrage activity.

These results are consistent with post-1993 funding betas being discount-rate exposures—rather

than cash-flow exposures—to funding liquidity, as the theory predicts. Furthermore, by showing

that the time-series return predictabilities of anomaly portfolios are an equilibrium outcome of

arbitrage trades, my results add to the growing literature on time-series predictability of anomaly

returns. My finding is consistent with Lou and Polk (2013), Frazzini and Pedersen (2014), and

Huang, Lou, and Polk (2018), who find that the act of arbitrage generates predictable time-

series patterns in momentum and low-beta stocks. My finding also suggests that the strong time-

series predictability of anomaly returns documented in Haddad, Kozak, and Santosh (2018) may

be unique to the post-1993 sample period with greater arbitrage-driven discount-rate shocks to

anomalies.
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4 Exposure to Arbitrageur Wealth Portfolio Shocks

In addition to funding-liquidity exposure, the act of arbitrage can also expose assets to shocks

coming from other stocks in the arbitrageur wealth portfolio. Indeed, I show that the anomaly

portfolios’ betas with respect to my proxy for the arbitrageur wealth portfolio display patterns we

expect for arbitrage-driven exposure.

4.1 Graphical evidence

Fig. 2 in Section 1 plots the cross-section of wealth portfolio betas in the pre-1993 and post-1993

periods. In the pre-1993 period with little arbitrage on anomalies, exposures to the arbitrageur

wealth portfolio clustered around zero and had no relation to their abnormal return proxied by

CAPM alpha. When arbitrage on anomalies grows in the post-1993 period, however, both ar-

bitrage position and pre-1993 CAPM alpha explain more than 60 percent of the cross-sectional

variation in how much the portfolio return covaries with arbitrageur wealth portfolio shocks. That

is, a portfolio with a greater pre-1993 CAPM alpha and greater arbitrage position suffers more

when aggregate arbitrageur wealth goes down.

The cross-sectional patterns in the post-1993 period may, however, have an alternative inter-

pretation. These patterns can arise mechanically if a portfolio with a large arbitrage position

(i.e., a larger fraction of its market capitalization is held by arbitrageurs) also represents a larger

share of the arbitrageur wealth portfolio. Although this interpretation does not explain why these

cross-sectional patterns do not arise in the pre-1993 period, a more formal investigation seems

helpful.

4.2 Cross-section of wealth portfolio betas

To show more formally that the post-1993 cross-sectional patterns in Fig. 2 do not arise me-

chanically but rather because of arbitrage, I add the portfolio’s market capitalization share in the

arbitrageur wealth portfolio (“share of wealth portfolio”) as an additional explanatory variable in

regressions explaining the cross-section of wealth portfolio betas. If my results were mechanical,

the portfolio’s share in the arbitrageur wealth should subsume the explanatory power of arbitrage

position or pre-1993 CAPM alpha.
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Table 6 shows that both arbitrage position and pre-1993 CAPM alpha robustly explain the

cross-sectional variation in wealth portfolio betas, regardless of controlling for the portfolio’s

share in the arbitrageur wealth portfolio. The economic magnitude is large; a 1-percentage-point

increase in arbitrage position (in pre-1993 CAPM alpha) is associated with an increase in the

wealth portfolio beta by 0.26 to 0.35 (by 0.03 to 0.04).

While the share of arbitrageur wealth portfolio is positively related to wealth portfolio betas,

its effect is statistically insignificant. In the pre-1993 period, wealth portfolio betas have little

relation to arbitrage position or pre-1993 CAPM alpha, consistent with post-1993 wealth portfolio

betas emerging as a consequence of the post-1993 growth in arbitrage capital.

4.3 Additional evidence

Panel A of Table 7 presents similar findings in the panel of wealth portfolio betas. An increase in

the arbitrage position over time increases the anomaly’s wealth portfolio betas. Wealth portfolio

beta also increases around 1993 in proportion to the portfolio’s pre-1993 CAPM alpha but, again,

the 1993 dummy and academic publication contribute almost equally to the effect of pre-1993

alpha on wealth portfolio betas such that their relative importance cannot be easily disentangled.

The share of wealth portfolio has an estimated coefficient similar to that in the cross-sectional

approach but is now statistically significant.

Panel B shows that wealth portfolio betas of anomaly portfolios tend to be larger when ar-

bitrageurs are constrained, although the reduction in betas during unconstrained times depends

on the measure I use to proxy for constrained versus unconstrained times. Panel C shows that

the time-series return predictabilities in the post-1993 period tend to line up with the absolute

value of the wealth portfolio betas, as they do with funding betas, consistent with post-1993

wealth portfolio betas being discount-rate betas. These patterns do not hold in the pre-1993 pe-

riod. Overall, these additional analyses show that arbitrageur wealth portfolio betas also display

patterns expected from betas that arise endogenously through arbitrage.

Taken together, the evidence presented in this section shows that a portfolio with a larger ab-

normal return attracts more arbitrage and attains a larger exposure to arbitrageur wealth portfolio

shocks, consistent with the predictions of intermediary-based models.
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5 Robustness

Here, I provide several robustness checks to the results in the previous two sections.

5.1 Placebo factors

How likely is it that a spurious factor generates my results? To answer this, I generate 10,000

monthly placebo factors by sorting stocks on a randomly generated number at the end of each

month and computing value-weighted returns on a long-short portfolio of stocks that fall into

extreme deciles.28 I also generate 10,000 quarterly placebo factors by rolling over monthly returns

on monthly placebo factors.

I study the ability of placebo factors to generate the cross-sectional results in Columns (1)

and (4) of Tables 2 and 6. That is, I study how well arbitrage position and pre-1993 CAPM

alpha explain the cross-section of post-1993 anomaly portfolio betas with respect to a quarterly

or monthly placebo factor. For each cross-sectional regression, I compute bootstrap standard

errors based on the empirical distribution of 1,000 draws as I do in my original analysis. I repeat

this for 10,000 placebo factors to study the distribution of t-statistics and R2 of the regressions.

Panel A of Table 8 shows that it is unlikely for a random factor to generate the strong results

I obtain with the funding-liquidity and the arbitrageur wealth portfolio factors. The odds of a

random quarterly factor generating a t-statistic higher than what I obtain from funding-liquidity

betas (2.31; see Column (1) of Table 2) is 0.87%, slightly lower than 1.05% implied by a t-statistic

of 2.31.29 The adjusted R2 of 72% is even harder to achieve (0.47%), such that the chance of a

random factor outperforming the funding factor in terms of both the t-statistic and the adjustedR2

is 0.27%. My cross-sectional regression explaining post-1993 funding-liquidity betas using pre-

1993 CAPM alpha (Column (4) of Table 2) is more difficult to replicate with quarterly placebo

factors (0.20%).

My monthly cross-sectional regression results are equally difficult to obtain using a random

factor. The odds of a random monthly factor generating a t-statistic higher than 2.73 in the cross-

sectional arbitrage position to beta regression is 0.20%, slightly lower than 0.32% implied by a

28I use NYSE stocks to determine the decile cutoffs.
29This is the one-sided p-value for t = 2.31.
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t-statistic of 2.73. The adjusted R2 of 65% is somewhat easier to achieve (3.59%), but the chance

of obtaining this fit while having a t-statistic higher than 2.73 is again 0.20%. The cross-sectional

alphas-into-betas result (Column (4) of Table 6) is even harder to achieve (0.00%).

To appreciate these results, it is important to remember that my measures of arbitrage capital

shocks are suggested by the literature (funding-liquidity factor) or by the estimated arbitrage

positions (the arbitrageur wealth portfolio) and therefore are not “cherry picked.” Hence, the

joint probability that I fortuitously obtained the strong results based on funding-liquidity betas

and arbitrageur wealth portfolio betas must be extremely low.

5.2 The 1993 cutoff and other robustness checks

My findings are robust to alternative choices I could have made in my empirical analysis. My

cross-sectional analyses use the year 1993 to proxy for pre- versus post-arbitrage periods for

anomalies, but my results are robust to using 1991, 1992, 1994, and 1995 as the end of the pre-

arbitrage period. To illustrate, I repeat the main cross-sectional regressions in Tables 2 and 6

using these alternative cutoffs (Panels B and C of Table 8). Across all cutoffs, the coefficients are

large and statistically significant. In fact, depending on the regression, I obtain results stronger

than those based on the 1993 cutoff.

The online appendix shows that my cross-sectional results are also robust to controlling for

additional market characteristics of the anomaly portfolios, such as idiosyncratic volatility and

market liquidity. This suggests that my results are not a spurious result driven by both the measure

of arbitrage activity (arbitrage position or pre-1993 alpha) and post-1993 funding or arbitrage

portfolio beta being positively correlated with volatility or market liquidity.

5.3 A test without a factor: Evidence from the quant crisis of 2007

Prior tests based on the funding-liquidity and arbitrageur wealth portfolio factors require that

these factors correctly represent shocks to the capital of anomaly arbitrageurs. Here, I provide

further evidence on the cross-sectional relation between arbitrage position (or pre-1993 alpha) and

exposure to arbitrage-capital shocks without taking a stand on the arbitrage capital factor. The

idea is to focus on a single severe arbitrage-capital shock. Since the cross-sectional variation in

returns during such an event would be mostly driven by differences in beta exposure to arbitrage
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capital, I can test if the cross-section of returns during the event line up with the theoretical

determinants of arbitrage-driven betas. To do this, I use the crash of quantitative long/short equity

hedge fund capital in August 2007, which I describe briefly before proceeding to my tests.

Over the three-day period of August 7–9, 2007, seemingly distinct equity portfolios commonly

underperformed. Fig. 7a shows that anomaly portfolios that arbitrageurs typically go long on

commonly posted losses (in 17 out of 20 cases) and portfolios that arbitrageurs typically go short

on commonly posted gains (in 19 out of 20 cases). Hedge funds that take long-short positions

on these anomalies also suffered severe losses. Fig. 7b shows that these arbitrageurs suffered

a cumulative loss of almost 6% over August 7–9, then the return rebounded over the following

three days (August 10–14). Remarkably, the crash and the recovery were exclusive to equity

anomalies; other arbitrage strategies remained unaffected.

The primary explanation for this unusual covariance event in the anomalies is a systematic drop

in arbitrage capital. It is speculated that following a portfolio underperformance since early July

2007, one or more arbitrageurs rapidly unwound their arbitrage position on anomalies, possibly

due to margin calls (Khandani and Lo 2007, 2011; Pedersen, 2009; Stein, 2009). This led to

losses by other arbitrageurs that in turn triggered more margin calls until anomaly arbitrageurs

commonly suffered capital losses.

Treating the three-day crash period of the crisis as the period in which the level of arbitrage

capital dropped severely, I ask whether returns on different portfolios during the crash can be

explained cross-sectionally by the differences in their arbitrage position or pre-arbitrage alpha,

analogous to my analysis on betas. Furthermore, since this drop in the asset price is a discount-

rate (valuation) shock rather than cash-flow shock, I also ask whether the return during the three-

day recovery period can also be explained cross-sectionally.

Fig. 8 summarizes my findings. Cumulative returns on anomaly portfolios during the cri-

sis are cross-sectionally and strongly explained by their post-1993 arbitrage position and pre-

1993 CAPM alpha. This is consistent with the key mechanism that generates a cross-section of

arbitrage-driven betas: an asset with a more positive (negative) pre-arbitrage alpha and hence

positive (negative) arbitrage position drops (gains) more in response to a sharp decline in arbi-

trage capital. An opposite pattern holds during recovery, consistent with anomaly portfolios’

23



quant-crisis returns being discount-rate movements.30 Table B2 shows that this result is robust to

inferring arbitrage position from the month before the crash (July 2007) and to using cumulative

abnormal returns instead of raw returns.

5.4 Closing remarks

I close with three additional points about my results. First, the interpretation of my results does

not depend heavily on whether equity anomalies actually represent hidden risk, mispricing, or

measurement error. What matters is that institutional arbitrageurs such as hedge funds trade

anomalies, regardless of the debate. In fact, even if anomaly returns represent rational compensa-

tion for risk, arbitrage-driven betas would arise through risk sharing (Kondor and Vayanos, 2019).

Intuitively, anomalies with larger arbitrageur positions rely more heavily on the risk-sharing role

of arbitrageurs and hence become more sensitive to arbitrage capital. Also, even if some anoma-

lies were measurement errors, a high past alpha that occurs by chance can still attract arbitrage

capital and give rise to an arbitrage-driven beta. In this case, however, the arbitrage-driven beta

would eventually disappear after arbitrageurs realized that the anomaly was a measurement error

and stopped trading it.

Second, one may suggest that once arbitrage has driven down the anomaly alphas, arbitrage-

driven betas should no longer arise. This is not the case. If the original source of the demand

distortion remains, alphas can remain low only in the presence of arbitrage trades that generate

the arbitrage-driven betas. In other words, in the presence of systematic shocks to arbitrage

capital, low alphas and nonzero arbitrage-driven betas should coexist in equilibrium.

Third, my results do not necessarily imply that intermediaries who act as arbitrageurs make

financial assets riskier. For example, it could be that equity anomalies arise because of undiver-

sifiable risks that households face but arbitrageurs do not and that when arbitrageurs enter the

market, they reduce the equilibrium risk of assets by providing risk sharing. In this case, the

act of arbitrage reduces the risk of the assets for households and increases their risk for the ar-

bitrageurs until risk premia associated with these two measures of risk are equalized. However,

my results do imply that once arbitrageurs turn alphas into betas, fundamental mispricing defined

30The cross-sectional pattern of long anomalies earning positive returns and short anomalies earning negative
returns during the recovery is clearer in abnormal returns than in raw returns.
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as the deviation of price from fundamental value can persist in the form of arbitrage-driven risk

rather than abnormal returns.

6 Conclusion

This paper shows that financial intermediaries who act as arbitrageurs in the asset market play a

crucial role in determining the equilibrium risk of assets, consistent with the implications of asset

pricing models that emphasize the role of intermediary-arbitrageurs. I show this in the context

of equity anomaly portfolios, using funding-liquidity and arbitrageur wealth portfolio shocks to

measure risk from the perspective of arbitrageurs.

My findings in the equity market suggest that arbitrageurs may play similar risk-determination

roles in other asset classes. Understanding the sources of equilibrium risk exposure to arbitrage

capital shocks in other asset markets would nicely complement the growing evidence that these

risk exposures are priced in the cross-section of assets and provide a more complete account of

the role of financial intermediaries in the asset market.
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Tables and Figures

Table 1: List of 40 Anomaly Portfolios

This table describes the 40 anomaly portfolios used in the paper. αpre
CAPM is CAPM alpha over 1974m1–1993m12. Boldface

denotes estimated alphas greater than 1.96 times the heteroskedasticity-robust standard error in absolute value. Mktcap Share is
the portfolio’s total market capitalization over total market capitalization of all domestic common US stocks listed on the NYSE,
AMEX, and NASDAQ, averaged over 1974m1–2016m12.

Long (top decile) Short (bottom decile) Academic publication

Type No Label αpreCAPM Mktcap share No Label αpreCAPM Mktcap share Year Sample

Beta arbitrage 1 beta(L) 3.9 0.09 21 beta(S) -5.3 0.09 1973 1926-1968
Return on market equity 2 rome(L) 9.6 0.05 22 rome(S) -8.6 0.03 1977 1956-1971
Ohlson’s O-score 3 ohlson(L) -0.4 0.29 23 ohlson(S) -4.8 0.01 1980 1970-1976
Size 4 size(L) 2.8 0.02 24 size(S) -1.1 0.58 1981 1926-1975
Long-run reversals 5 rev60m(L) 3.7 0.03 25 rev60m(S) -3.3 0.13 1985 1926-1982
Value 6 value(L) 6.8 0.04 26 value(S) -4.4 0.20 1985 1980-1990
Momentum 7 mom12m(L) 6.0 0.10 27 mom12m(S) -12.1 0.04 1990 1964-1987
Net issuance 8 netissue(L) 4.6 0.11 28 netissue(S) -3.8 0.08 1995 1980-1990
Net issuance monthly 9 netissue_m(L) 4.4 0.11 29 netissue_m(S) -1.7 0.09 1995 1980-1990
Accruals 10 acc(L) 1.0 0.06 30 acc(S) -4.6 0.05 1996 1962-1991
Return on assets 11 roa(L) -0.0 0.17 31 roa(S) -7.4 0.03 1996 1979-1993
Return on book equity 12 roe(L) 1.1 0.14 32 roe(S) -6.7 0.04 1996 1979-1993
Failure probability 13 failprob(L) 0.5 0.16 33 failprob(S) -11.6 0.02 1998 1981-1996
Piotroski’s f-score 14 piotroski(L) 0.6 0.21 34 piotroski(S) -3.2 0.09 2000 1976-1997
Investment 15 invest(L) 4.7 0.03 35 invest(S) -4.6 0.07 2004 1973-1996
Idiosyncratic volatility 16 idiovol(L) 1.4 0.25 36 idiovol(S) -11.7 0.04 2006 1986-2000
Asset growth 17 atgrowth(L) 3.3 0.03 37 atgrowth(S) -4.2 0.10 2008 1968-2003
Asset turnover 18 ato(L) 3.4 0.05 38 ato(S) 0.9 0.09 2008 1984-2002
Gross margins 19 gm(L) -1.8 0.20 39 gm(S) 0.5 0.04 2008 1984-2002
Gross profitability 20 profit(L) 0.4 0.10 40 profit(S) -0.8 0.07 2010 1976-2005

30



Table 2: Explaining the Cross-section of Funding-liquidity Betas

Baseline: βpost93
funding,i = b0 + b1 Arbitrage positionpost93i + ui

This table shows that the post-1993 funding-liquidity betas of 40 anomaly portfolios can be cross-sectionally ex-
plained by arbitrage position or pre-1993 CAPM alpha, whereas pre-1993 funding-liquidity betas do not display
such patterns. Unless otherwise noted, the right-hand variables are calculated for the same sample period as the
left-hand variable. Funding-liquidity betas are betas with respect to the funding-liquidity factor of Adrian, Etula,
and Muir (2014), estimated in a two-factor model that includes the market factor. Arbitrage position is inferred from
abnormal short position on underlying stocks. Characteristic ranks are value-weighted decile ranks of the under-
lying stocks’ characteristics. Pre-1993 and post-1993 periods are 1974–1993 and 1994–2016, respectively. In the
parentheses are t-statistics based on bootstrap standard errors that account for cross-portfolio covariances as well as
generated regressors. Boldface denotes coefficient estimates with the absolute value of t-statistics greater than 1.96.

βpost93funding βpre93funding

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Arbitrage position 1.55 1.57 1.80 0.68
(2.31) (2.33) (2.06) (0.28)

αpre93CAPM 0.19 0.20 0.21 -0.03
(2.62) (2.54) (2.27) (-0.48)

βpre93funding 0.24 -0.09 0.16
(1.07) (-0.28) (0.39)

Size rank 0.10 -0.14 -0.41 -0.03 0.05 0.02
(0.35) (-0.52) (-1.17) (-0.11) (0.29) (0.10)

Value rank 0.11 -0.16 0.37 0.45 0.54 0.48
(0.48) (-0.48) (1.50) (1.57) (1.71) (1.82)

Profitability rank -0.04 -0.14 0.19 0.07 0.13 0.09
(-0.24) (-0.65) (0.83) (0.37) (0.60) (0.46)

Investment rank -0.06 -0.10 0.16 -0.07 -0.11 -0.09
(-0.36) (-0.55) (0.99) (-0.51) (-0.93) (-0.75)

Constant -0.14 -0.16 -0.31 -0.34 -0.33 2.04 -0.56 -2.71 -2.71 -3.48 -2.89
(-0.74) (-0.80) (-0.16) (-1.13) (-1.13) (0.69) (-1.56) (-0.99) (-1.13) (-1.27) (-1.30)

Observations 40 40 40 40 40 40 40 40 40 40 40
R2
adj 0.72 0.75 0.75 0.67 0.66 0.71 -0.01 0.28 0.71 0.72 0.71

31



Table 3: Explaining the Panel of Funding-liquidity Betas

Baseline: βfunding,i,t = b0 + b1Arbitrage positioni,t + b′3Xi,t + b4t+ b5t
2 + ui + εi,t

(X ≡ time-varying characteristics)

This table uses a panel regression to show that arbitrage position and pre-arbitrage alpha explain the panel of funding-
liquidity betas of anomaly portfolios (40 portfolios × 1974q1–2016q4). For each anomaly portfolio, quarterly
funding-liquidity betas are estimated in a moving window of ±14 quarters (7 years) surrounding each quarter. Pre-
1993 CAPM alpha interacted with post-1993 and post-publication dummies are used as proxies or instruments for
arbitrage position. Arbitrage position is inferred from abnormal short position on underlying stocks. A post-1993
dummy, a post-publication dummy, quadratic time trends (t and t2), and a constant are included in the regression
(whenever appropriate) but not reported in the table. In the parentheses are t-statistics based on bootstrap standard
errors that account for cross-portfolio covariances, generated regressors, and serial correlations. Boldface denotes
coefficient estimates with the absolute value of t-statistics greater than 1.96.

OLS 2SLS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Arbitrage position 0.70 0.71 3.16 3.08 3.40
(2.09) (2.11) (1.99) (1.83) (1.84)

αpre93CAPM × Post-1993 0.18 0.18 0.11
(2.02) (2.10) (1.51)

αpre93CAPM × Post-publication 0.21 0.22 0.13
(1.92) (2.08) (1.46)

Size rank -0.03 -0.12 -0.18 -0.15 -0.12 0.27 0.26 0.30
(-0.20) (-0.79) (-1.07) (-0.98) (-0.73) (0.87) (0.79) (0.87)

Value rank 0.17 0.18 0.15 0.20 0.14 0.28 0.28 0.29
(0.88) (0.99) (0.82) (1.07) (0.68) (1.54) (1.49) (1.59)

Profitability rank 0.22 0.20 0.21 0.21 0.21 0.23 0.23 0.23
(1.32) (1.23) (1.32) (1.33) (1.27) (1.29) (1.26) (1.29)

Investment rank 0.22 0.22 0.27 0.24 0.23 0.20 0.20 0.19
(1.52) (1.35) (1.81) (1.49) (1.54) (1.05) (1.03) (1.00)

Anomaly FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760
R2
adj 0.13 0.16 0.20 0.23 0.18 0.22 0.26 0.09 . . .

Instrumental variables
αpre × Post-1993
αpre × Post-Pub
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Table 4: Funding-liquidity Betas Arise during Constrained Times

Baseline: βpost93, constrained
funding,i = b0 + b1 Arbitrage positionpost93i + b2β

pre93
funding,i + ui

This table shows that post-1993 funding-liquidity betas of anomalies strengthen in periods in which arbitrageurs are
likely to be constrained and weaken when they are likely to be unconstrained, consistent with the predictions of
intermediary-based asset pricing models. I define constrained (unconstrained) times for institutional arbitrageurs as
(a) quarters in which the moving average of the VIX is above (below) the sample median (“VIX”) and (b) years in
which the CAPM alphas estimated from daily data have a cross-sectional R2 with pre-1993 CAPM alphas above
the median for the post-1993 period (“Alphas”). Arbitrage position is inferred from abnormal short position on
underlying stocks. In the parentheses are t-statistics based on bootstrap standard errors that account for cross-
portfolio covariances and generated regressors. Boldface denotes coefficient estimates with the absolute value of
t-statistics greater than 1.96.

Constrained-time βpost93funding Unconstrained-time βpost93funding

(1) (2) (3) (4) (5) (6) (7) (8)

Arbitrage positionpost93 2.20 2.43 0.25 0.29
(2.44) (2.79) (0.20) (0.25)

αpre93CAPM 0.29 0.30 0.03 0.05
(3.00) (3.27) (0.23) (0.38)

βpre93funding 0.34 -0.14 0.21 -0.29 0.20 0.15 0.27 0.19
(1.56) (-0.53) (0.92) (-1.05) (0.67) (0.40) (0.98) (0.56)

Constant -0.12 -0.35 -0.25 -0.52 -0.15 -0.18 -0.02 -0.04
(-0.09) (-0.25) (-0.20) (-0.39) (-0.09) (-0.10) (-0.01) (-0.02)

Constrained indicator VIX Alphas VIX Alphas
Observations 40 40 40 40 40 40 40 40
R2
adj 0.71 0.69 0.79 0.67 0.14 0.12 0.20 0.25
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Table 5: Funding-liquidity Betas as Discount-rate Betas: Evidence from Return Predictabil-
ity

1st stage time-series regression: rei,t→t+s = θ0 + θ1r
e
i,t−L→t + εi,t→t+s, R2

1st stage,i ≡
∑

t(r̂
e
i,t→t+s−rei,+s)

2∑
t(rei,t→t+s−rei,+s)

2

2nd stage cross-sectional regression (baseline): R2
1st stage,i = b0 + b1 |βfunding,i|+ ui

This table shows that anomaly portfolios with a larger absolute value of funding beta feature greater return pre-
dictability than other portfolios in the post-1993 period, consistent with post-1993 funding betas being discount-rate
betas arising from the act of arbitrage. Such a pattern does not arise in the pre-1993 period. The regression has 2
stages. The first stage is a portfolio-specific time-series return predictive regression in which I regress the future
12-month, 18-month, or 24-month cumulative excess return ret→t+s on past 3-year or 5-year cumulative excess re-
turn ret−L→t. From the first stage, I obtain the coefficient of determination R2

1st stage as the measure of time-series
predictability of returns. The second stage is a univariate cross-sectional regression in which I regressR2

1st stage on the
absolute value of funding-liquidity beta, arbitrage position, or pre-1993 CAPM alpha that predicts the volatility of
arbitrage-driven discount-rate shocks in the anomaly portfolio. Arbitrage position is inferred from abnormal short po-
sition on underlying stocks. Since there are 6 specifications of the first-stage time-series regression and 3 right-hand
variables in the second-stage cross-sectional regression, each sample period has 18 univariate cross-sectional regres-
sions in total. In the parentheses are t-statistics based on bootstrap standard errors that account for cross-portfolio
covariances and generated regressors. In the brackets are the coefficient of determination (R2) of the second-stage
cross-sectional regression. Boldface denotes coefficient estimates with the absolute value of t-statistics greater than
1.96.

1st-stage prediction horizon s: +12m return +18m return +24m return

1st-stage predictor: -3yr return -5yr return -3yr return -5yr return -3yr return -5yr return

Right-hand variable (1) (2) (3) (4) (5) (6)

Panel A: Left-hand variable is the R2 from 1st-stage predictive regressions in the post-1993 period

|βpost93funding | 0.06 0.05 0.06 0.06 0.06 0.06
(2.22) (2.19) (2.31) (2.27) (2.27) (2.23)
[0.55] [0.55] [0.52] [0.54] [0.48] [0.51]

|Arbitrage positionpost93| 0.12 0.11 0.13 0.12 0.12 0.12
(2.33) (2.27) (2.60) (2.48) (2.47) (2.37)
[0.58] [0.56] [0.54] [0.53] [0.51] [0.51]

|αpre93| 0.02 0.02 0.02 0.02 0.02 0.02
(2.22) (2.26) (2.30) (2.32) (2.14) (2.18)
[0.47] [0.49] [0.41] [0.44] [0.39] [0.42]

Panel B: Left-hand variable is the R2 from 1st-stage predictive regressions in the pre-1993 period

|βpre93funding | 0.03 0.04 0.04 0.04 0.05 0.05
(0.87) (1.03) (1.09) (1.16) (1.31) (1.40)
[0.04] [0.06] [0.05] [0.06] [0.08] [0.10]

|Arbitrage positionpre93| -0.05 -0.04 -0.05 -0.04 -0.01 0.00
(-0.30) (-0.21) (-0.28) (-0.20) (-0.08) (0.02)
[0.01] [0.00] [0.00] [0.00] [0.00] [0.00]

|αpre93| 0.00 0.00 0.00 0.00 0.01 0.01
(0.29) (0.51) (0.46) (0.66) (0.79) (1.00)
[0.01] [0.02] [0.01] [0.02] [0.04] [0.06]
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Table 6: Explaining the Cross-section of Arbitrageur Wealth Portfolio Betas

Baseline: βpost93
wealth,i = b0 + b1 Arbitrage positionpost93i + ui

This table shows that the post-1993 arbitrageur wealth portfolio betas of 40 anomaly portfolios can be cross-
sectionally explained by arbitrage position or pre-1993 CAPM alpha. Unless otherwise noted, the right-hand vari-
ables are calculated for the same sample period as the left-hand variable. Wealth portfolio betas are betas with the
arbitrageur wealth portfolio implied by estimated arbitrage positions and are estimated in a two-factor model that
includes the market factor. Arbitrage position is inferred from abnormal short position on underlying stocks. Share
of wealth portfolio is the portfolio’s market capitalization share in the arbitrageur wealth portfolio. Characteristic
ranks are the value-weighted decile rank of the underlying stocks’ characteristics. Pre-1993 and post-1993 periods
are 1974–1993 and 1994–2016, respectively. In the parentheses are t-statistics based on bootstrap standard errors
that account for cross-portfolio covariances as well as generated regressors. Boldface denotes coefficient estimates
with the absolute value of t-statistics greater than 1.96.

βpost93wealth βpre93wealth

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Arbitrage position 0.26 0.26 0.35 -0.01
(2.73) (2.61) (2.16) (-0.04)

αpre93CAPM 0.03 0.03 0.04 -0.01
(3.13) (2.80) (2.91) (-0.98)

Share of wealth portfolio 0.46 0.37 0.36 0.48 1.79 1.34 0.33 0.37 0.32
(0.75) (0.52) (0.55) (0.68) (1.84) (1.67) (0.60) (0.72) (0.61)

βpre93wealth 0.08 -0.24 -0.42
(0.41) (-0.86) (-1.32)

Size rank 0.04 -0.00 -0.06 -0.03 -0.02 -0.03
(0.61) (-0.02) (-0.90) (-0.66) (-1.13) (-1.54)

Value rank -0.01 -0.06 0.03 0.03 0.05 0.03
(-0.22) (-1.19) (0.69) (1.02) (1.30) (1.03)

Profitability rank -0.01 -0.04 0.02 -0.03 -0.02 -0.03
(-0.61) (-1.12) (0.65) (-1.43) (-0.75) (-1.44)

Investment rank -0.03 -0.04 0.00 -0.01 -0.02 -0.01
(-1.05) (-1.31) (0.14) (-0.82) (-1.39) (-1.11)

Constant -0.00 0.02 0.15 -0.03 -0.01 0.65 0.02 -0.11 -0.11 -0.25 -0.11
(-0.07) (0.41) (0.47) (-0.83) (-0.26) (1.46) (0.50) (-0.23) (-0.49) (-0.98) (-0.51)

Observations 40 40 40 40 40 40 40 40 40 40 40
R2
adj 0.65 0.66 0.70 0.62 0.64 0.69 0.18 0.19 0.78 0.80 0.78
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Table 7: Additional Tests on Wealth Portfolio Betas

This table repeats the tests in Tables 3, 4, and 5 on betas with respect to the arbitrageur wealth portfolio. In the
parentheses are t-statistics based on bootstrap standard errors that account for cross-portfolio covariances as well as
generated regressors. In Panel B, the numbers in the brackets are the coefficient of determination (R2) of the second-
stage cross-sectional regression. Boldface denotes coefficient estimates with the absolute value of t-statistics greater
than 1.96.

Panel A: Explaining the panel of arbitrageur wealth portfolio betas

OLS 2SLS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Arbitrage position 0.13 0.13 0.58 0.56 0.62
(3.58) (3.28) (2.95) (2.51) (2.73)

αpre93CAPM × Post-1993 0.03 0.03 0.02
(2.47) (2.50) (1.82)

αpre93CAPM × Post-publication 0.04 0.04 0.02
(2.66) (2.71) (1.81)

Share of wealth portfolio 0.15 0.37 0.37 0.36 0.44 -0.87 -0.82 -0.96
(1.81) (3.46) (3.41) (3.30) (3.65) (-2.05) (-1.75) (-1.98)

Anomaly FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Control for characteristics Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 17280 17280 17280 17280 17280 17280 17280 17280 17280 17280 17280
R2
adj 0.15 0.17 0.18 0.21 0.18 0.20 0.23 0.09 . . .

Instrumental variables
αpre × Post-1993
αpre × Post-Pub

Panel B: Wealth portfolio betas tend to arise during constrained times

Constrained-time βpost93wealth Unconstrained-time βpost93wealth

(1) (2) (3) (4) (5) (6) (7) (8)

Arbitrage position 0.24 0.35 0.25 0.06
(2.07) (2.59) (2.26) (0.62)

αpre93CAPM 0.03 0.04 0.03 0.01
(2.33) (2.82) (2.50) (0.54)

Share of wealth portfolio 0.73 0.79 0.62 0.05 1.21 0.69 1.57 1.74
(0.57) (0.63) (0.40) (0.03) (0.94) (0.45) (0.97) (1.09)

βpre93wealth 0.16 -0.15 -0.08 -0.50 0.01 -0.29 0.33 0.24
(0.65) (-0.48) (-0.27) (-1.38) (0.06) (-0.95) (1.26) (0.84)

Constant 0.01 -0.00 0.02 -0.02 -0.00 -0.04 0.01 0.01
(0.37) (-0.10) (0.39) (-0.39) (-0.00) (-0.64) (0.26) (0.17)

Constrained indicator VIX Alphas VIX Alphas
Observations 40 40 40 40 40 40 40 40
R2
adj 0.58 0.58 0.63 0.62 0.63 0.59 0.22 0.20

Panel C: Wealth portfolio betas as discount-rate betas: Evidence from return predictability

LHS: R2 from 1st-stage predictive regressions, RHS: |βwealth|
1st-stage predicted variable: +12m return +18m return +24m return

1st-stage predictor variable: -3yr return -5yr return -3yr return -5yr return -3yr return -5yr return

Sample Period (1) (2) (3) (4) (5) (6)

Post-1993 0.32 0.32 0.34 0.33 0.32 0.32
(2.10) (2.08) (2.25) (2.22) (2.11) (2.10)
[0.52] [0.51] [0.47] [0.49] [0.43] [0.46]

Pre-1993 -0.12 -0.09 0.03 0.04 0.17 0.17
(-0.77) (-0.61) (0.22) (0.24) (1.11) (1.10)
[0.01] [0.01] [0.00] [0.00] [0.02] [0.02]

36



Table 8: Robustness
Panel A reports the likelihood that betas with respect to a randomly generated factor portfolio exhibit the patterns I
find for funding-liquidity and wealth portfolio betas. I use 10,000 randomly generated placebo factors to caculate
the likelihood. Panels B and C repeat the test in Columns (1) and (4) of Tables 2 and 6 using alternative cutoff
years in the early 1990s. In the parentheses are t-statistics based on bootstrap standard errors that account for cross-
portfolio covariances as well as generated regressors. Boldface denotes coefficient estimates with the absolute value
of t-statistics greater than 1.96.

Panel A: What is probability that a random placebo factor generates my results?

t-statistic R2 t-stat & R2 Jointly

Arbitrage position to funding-liquidity betas: 0.87% 0.47% 0.27%

Pre-93 CAPM alpha to funding-liquidity betas: 0.47% 0.60% 0.20%

Arbitrage position to wealth portfolio betas: 0.20% 3.59% 0.20%

Pre-93 CAPM alpha to wealth portfolio betas: 0.05% 0.75% 0.00%

Panel B: Using alternatives cutoffs to explain post-cutoff funding-liquidity betas

1991 1992 1994 1995

Arbitrage positionpost 1.38 1.36 1.91 1.80
(2.24) (2.19) (2.62) (2.60)

αpreCAPM 0.16 0.17 0.24 0.24
(2.39) (2.49) (2.75) (2.72)

βprefunding 0.34 0.14 0.34 0.13 0.27 -0.18 0.28 -0.17
(1.71) (0.52) (1.82) (0.44) (0.99) (-0.44) (1.03) (-0.44)

Constant -0.15 -0.30 -0.15 -0.29 -0.19 -0.40 -0.18 -0.35
(-0.85) (-1.16) (-0.77) (-1.07) (-0.82) (-1.15) (-0.79) (-1.06)

Observations 40 40 40 40 40 40 40 40
R2
adj 0.77 0.73 0.74 0.71 0.79 0.66 0.78 0.69

Panel C: Using alternatives cutoffs to explain post-cutoff arbitrageur wealth portfolio betas

1991 1992 1994 1995

Arbitrage positionpost 0.28 0.27 0.26 0.26
(2.76) (2.67) (2.57) (2.60)

αpreCAPM 0.03 0.03 0.03 0.03
(2.95) (2.83) (2.72) (2.73)

Share of wealth portfolio 0.41 0.37 0.40 0.34 0.44 0.37 0.40 0.36
(0.71) (0.57) (0.66) (0.52) (0.70) (0.56) (0.65) (0.59)

βprewealth 0.06 -0.17 0.10 -0.17 0.09 -0.22 0.10 -0.22
(0.30) (-0.69) (0.50) (-0.65) (0.43) (-0.77) (0.46) (-0.78)

Constant 0.01 -0.02 0.01 -0.01 0.01 -0.01 0.01 -0.01
(0.23) (-0.38) (0.27) (-0.32) (0.37) (-0.25) (0.33) (-0.17)

Observations 40 40 40 40 40 40 40 40
R2
adj 0.68 0.69 0.66 0.65 0.66 0.62 0.67 0.64
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Figure 3: Estimated Arbitrage Positions
The figure plots the equal-weighted (cross-sectional) average of arbitrage positions in long-side and short-side
anomaly portfolios over 1974m1–2016m12. Arbitrage position is inferred from abnormal short positions (see Sub-
section 2.2).

Figure 4a. Constrained Quarters Implied by VIX Figure 4b. Constrained Years Implied by Alpha
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Figure 4: Proxies for Constrained vs. Unconstrained Periods
The first figure reports constrained (unconstrained) post-1993 quarters defined as quarters in which an exponentially
weighted moving average of the VIX (smoothing factor: 0.3) is above (below) the sample median. The second figure
reports constrained (unconstrained) years defined as years in which the CAPM alphas estimated from daily data are
cross-sectionally explained by pre-1993 alphas with a highR2 (above median among all year-specific cross-sectional
R2s).
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Figure 5a. Constrained Post-1993 Figure 5b. Unconstrained Post-1993
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Figure 5: Funding-liquidity Exposure Arises during Constrained Times
The figures show that in the post-1993 period, return correlations with the funding-liquidity factor line up strongly
with arbitrage position during constrained periods (left) but not during unconstrained periods (right). The result
is similar if I use pre-1993 CAPM alpha as the x-axis. To compute the correlations, I first compute unexplained
return as the realized return in excess of the risk-free rate and multivariate (2-factor) market beta times the excess
market return. I then take the time-series correlation between the unexplained returns and the funding factor. I use
constrained quarters implied by the VIX.

Figure 6a. Post-1993 Period Figure 6b. Pre-1993 Period
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Figure 6: Cross-section of Time-series Predictability of Returns: Post-1993 vs. Pre-1993
The figures show that the return predictabilities of anomaly portfolios line up with the absolute value of their funding
betas in the post-1993 period (left) but not strongly in the pre-1993 period (right). Return predictability is measured
by the R2 of the portfolio-specific time-series regression that explains future 1-year cumulative excess returns using
the past 3-year cumulative excess returns.
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Figure 7a. Quant-Crash Returns on Anomaly Figure 7b. Hedge Fund Portfolio Return
Portfolios
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Figure 7: Description of the Quant Crisis of August 2007
The first figure plots the cumulative 3-day returns of long-side (first 20) and short-side (next 20) anomaly portfolios
during the quant “crash” of August 7–9, 2007. The second figure plots the cumulative daily returns on equity
market-neutral hedge funds during the entire quant crisis period, which includes both the crash (8/7–9) and recovery
(8/10–14) periods. The hedge fund return data are from Hedge Fund Research.
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Figure 8a. Arbitrage Position Explains Figure 8b. Pre-1993 CAPM α Predicts
Quant-crash Return Quant-crash Return
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Figure 8c. Arbitrage Position Explains Figure 8d. Pre-1993 CAPM α Predicts
Quant-recovery Return Quant-recovery Return
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Figure 8: Explaining the Cross-section of Returns during Quant Crash and Recovery
The figures show that post-1993 arbitrage position and pre-1993 CAPM alpha explain the cross-section of anomaly
portfolio returns during the quant crash (August 7–9, 2007; top two figures) and recovery (August 10–14; bottom
two figures).
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A Bootstrap Procedure

To understand my bootstrap procedure, consider a statistic

b̂ (X;G) = b̂ (X1, ..., XN , F ;G) = b̂




x11
...

x1T

 , ...,


xN1

...

xNT

 ,


f1
...

fT

 ;G

 ,

where X denotes the full panel data used in my analysis, Xi = (xi1...xiT )
′ denotes a time series

of observations for portfolio i and time periods t = 1, ..., T , xit = (rit, arb positionit, ...) is a

column of observations pertaining to portfolio i at time t, and F is the time-series realizations

of aggregate factors. G denotes parameters that govern the joint distribution of the sample of

data X = (X1, ..., XN , F ). It contains information about the cross-sectional covariances among

(X1, ..., XN , F ) and about the time-series variation within Xi or F . To provide more context, b̂

could be the OLS estimator for the slope coefficient on arbitrage position in the following cross-

sectional regression (Column (1) of Table 2):

βpost93funding,i = b0 + b1 Arbitrage positionpost93i + ui.

In the population, V ar
(
b̂
)

is driven by both cross-sectional and time-series variations in the

draw of (X1, ..., XN , F ). That is, when each sample Xs = (Xs
1 , ..., X

s
N , F

s) is drawn from the

population, (a) a set of N portfolios is chosen from a population of anomaly portfolios and (b)

time-series data for the chosen portfolios and factors are drawn from a population of time-series

data. This way, each sample Xs preserves the distributional characteristics summarized by G.

And for each sample Xs, we would compute the value of the statistic b̂s ≡ b̂ (Xs). V ar
(
b̂
)

is

then given by the variance of b̂1, ..., b̂∞ corresponding to an infinite draw of samples.

My nonparametric bootstrap approach simulates the procedure described in the previous para-

graph but uses an empirical distribution G∗ rather than the true population distribution G (Efron,

1979). To do this, I construct each bootstrap sample X∗
b by (a) randomly drawing a new set

of 40 portfolios from the existing set of 40 anomaly portfolios with replacement and (b) ran-

domly drawing time-series observations (with replacement) from existing time-series data on
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anomaly portfolios and factors. This way, each bootstrap sample X∗
b preserves the distribu-

tional characteristics G that generated the original sample and the collection of bootstrap samples

G∗ =
{
X∗

1, ...,X
∗
1,000

}
serves as the empirical distribution from which V ar

(
b̂
)

is estimated.

For each bootstrap sample X∗
b , I compute b̂ (X∗

b). My bootstrap estimator for V ar
(
b̂
)

, denoted

ˆV ar
(
b̂
)bootstrap

, is then estimated as the variance of b̂ (X∗
1) , ..., b̂

(
X∗

1,000

)
.

To summarize, my bootstrap procedure has four steps:

1. For each bootstrap b, randomly draw with replacement the set of anomaly portfolios I∗b :

e.g.,

I = (1, 2, 3, 4, 5, ..., 40)→ I∗b = (17, 4, 1, 1, 33, ..., 28)

2. Also randomly draw with replacement the time-series data for portfolios and factors while
maintaining the cross-sectional dependence by drawing the entire row from each time pe-
riod: e.g.,

X =





x1,1

.

.

.

x1,33

.

.

.

x1,T


,



x2,1

.

.

.

x2,33

.

.

.

x2,T


, ...,



xN,1

.

.

.

xN,33

.

.

.

xN,T


,



f1

.

.

.

f33

.

.

.

fT




→ X

∗
b =





x17,33

x17,9

.

.

.

.

.

.

.

.

.


,



x4,33

x4,9

.

.

.

.

.

.

.

.

.


, ...,



x28,33

x28,9

.

.

.

.

.

.

.

.

.


,



f33

f9

.

.

.

.

.

.

.

.

.





The time series data are constructed by drawing the first 80 rows (240 rows for monthly

data) from the pre-1993 period and the next 92 rows (276 rows for monthly data) from the

post-1993 period.

3. Repeat steps 1 and 2 to construct 1,000 bootstrap samples X∗
1,...,X

∗
1,000. These samples

represent the empirical distribution G∗ =
{
X∗

1, ...,X
∗
1,000

}
.

4. Bootstrap variance of the estimator b̂ is given by the empirical distribution of the estimator

obtained from each bootstrap sample:

ˆV ar
(
b̂
)bootstrap

= V ar
(
b̂ (X∗

1) , ..., b̂
(
X∗

1,000

))
The square root of the bootstrap variance is the bootstrap standard error.

For regressions involving both quarterly and monthly data, I first obtain the random draw of
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quarters to construct quarterly bootstrap data and then construct monthly bootstrap data based on

monthly observations pertaining to the quarters used in the quarterly bootstrap. For panel regres-

sions, I draw moving blocks of 4 quarters with replacement from each subsample of 10 years

to retain time-series dependencies in the variables (Künsch, 1989) and to account for the possi-

ble publication effect in addition to the post-1993 effect.31 For quant crisis regressions, I cannot

generate bootstrap samples using in-sample data since the quant crisis is a single observation.

Instead, I use 2 months surrounding the quant crisis (7/6/2007–9/14/2007) to draw 3-day returns

with replacement. Alternative approaches such as using previous 1-month returns or previous

1-year returns generate stronger or similarly strong results.

In addition to standard errors, the bootstrap also provides an estimate of the downward bias

in the coefficient due to generated regressors. Adjusting for these biases tend to increase the

estimated coefficients and t-statistics by around 10%, but to be conservative, I report parameter

estimates and t-statistics that do not adjust for the bias.

31Since my sample has 43 years, the last subsample of 2004–2016 has 13 years. However, the exact way I apply
the moving block bootstrap does not materially affect the standard errors in my panel regressions.
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B Additional Tables

Table B1: Determinants of Arbitrage Position

Baseline: Arbitrage positioni,t = b0 + b1α
pre
i × 1 (t > 1993q4) + b21 (t > 1993q4) + b3t+ b4t

2 + ui + εi,t

This table shows that pre-1993 alpha predicts post-1993 and post-publication arbitrage position in a panel regression (40 portfolios× 1974q1–2016q4). The dependent
variable measures arbitrage position on portfolio i in quarter t inferred from abnormal short positions on underlying stocks (Section 2.2). The post-1993 dummy is
0 for the pre-1993 period (1974q1–1993q4) and 1 for the post-1993 period (1994q1–2016q4). A portfolio’s “pre-arbitrage” alpha, denoted αpre, is measured by its
pre-1993 alpha with respect to the factor model specified in the column heads. For failure probability, αpre is computed from 1981 onward to account for the portfolio’s
sensitivity to sample period, emphasized in Dichev (1998). Post-publication, Post-sample, Post-1993, and Post-1993×Post-publication (whenever appropriate) as well
as quadratic time trends (t and t2) and a constant are included in the regression but not reported in the table. In the parentheses are t-statistics based on bootstrap
standard errors that account for cross-portfolio covariances, generated regressors, and serial correlations. Boldface denotes coefficient estimates with the absolute value
of t-statistics greater than 1.96.

αpre = CAPM alpha αpre = FF3 alpha αpre = FF5 alpha Long vs. short

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

αpre × Post-1993 0.076 0.058 0.051 0.052 0.058 0.055 0.045 0.066 0.061 0.051
(3.92) (3.12) (1.97) (2.52) (3.15) (2.14) (2.18) (3.56) (2.36) (2.47)

αpre × Post-publication 0.076 0.032 0.019 0.027 0.034 0.029 0.012 0.044 0.036 0.022
(3.61) (1.78) (0.98) (1.11) (1.89) (1.52) (0.49) (2.47) (1.88) (0.90)

αpre × Post-sample 0.025 0.010 0.016
(0.94) (0.36) (0.60)

αpre × Post-1993× Post-pub 0.010 0.034 0.036
(0.27) (0.96) (1.00)

Long× Post-1993 0.643 0.534 0.507
(3.71) (2.97) (2.21)

Long× Post-publication 0.597 0.195 0.152
(3.28) (1.16) (0.92)

Long× Post-sample 0.082
(0.35)

Anomaly FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,880 6,880 6,880 6,880 6,880 6,880 6,880 6,880 6,880 6,880 6,880 6,880 6,880 6,880 6,880
R2
adj 0.20 0.16 0.21 0.21 0.21 0.27 0.27 0.28 0.27 0.27 0.28 0.16 0.13 0.16 0.17
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Table B2: Explaining the Cross-section of Quant-crisis Returns

Baseline: rquant crashi = b0 + b1Arbitrage positionpost93i + ui

This table shows that the exposure of anomaly portfolios to arbitrage capital shocks measured by cumulative returns
during the quant crash (August 7–9, 2007) is cross-sectionally explained by arbitrage position and pre-1993 CAPM
alpha. Cumulative returns during the recovery from the crash (August 10–14, 2007) display an opposite pattern, sug-
gesting that the portfolio returns during the crash were discount-rate shocks. Cumulative abnormal return is defined
as the excess return net of market exposure (market excess return times the beta estimated over the 2 months sur-
rounding the quant crisis, July 7–August 6 and August 15–September 14, using 3-day returns). Post-1993 arbitrage
position is computed over the entire post-1993 period. In the parentheses are t-statistics based on bootstrap standard
errors that account for cross-portfolio covariances and generated regressors. Boldface denotes coefficient estimates
with the absolute value of t-statistics greater than 1.96.

Quant-crash return Quant-crash abnormal return Quant-recovery return Quant-recovery abnormal return

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Arbitrage positionpost93 -1.87 -1.99 1.29 0.94
(-3.32) (-3.69) (2.13) (1.62)

Arbitrage positionJuly2007 -1.28 -1.39 0.92 0.62
(-3.03) (-3.30) (2.03) (1.37)

α_CAPMpre93 -0.27 -0.28 0.18 0.16
(-4.33) (-4.87) (2.90) (2.62)

Constant -0.28 -0.27 -0.08 0.34 0.34 0.56 -1.82 -1.81 -1.95 0.01 -0.01 -0.07
(-1.15) (-1.02) (-0.28) (1.37) (1.21) (1.92) (-1.00) (-0.99) (-1.06) (0.00) (-0.00) (-0.04)

Observations 40 40 40 40 40 40 40 40 40 40 40 40
R_adj2 0.50 0.35 0.62 0.54 0.40 0.64 0.54 0.41 0.67 0.34 0.22 0.58
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