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Abstract. Suppose that the outcomes of a roulette table are not entirely random, in the sense that there

exists a successful betting strategy. Is there a successful ‘separable’ strategy, in the sense that it does not

use the winnings from betting on red in order to bet on black, and vice-versa? We study this question from

an algorithmic point of view and observe that every strategy M can be replaced by a separable strategy

which is computable from M and successful on any outcome-sequence where M is successful. We then

consider the case of mixtures and show: (a) there exists an effective mixture of separable strategies which

succeeds on every casino sequence with effective Hausdorff dimension less than 1/2; (b) there exists a

casino sequence of effective Hausdorff dimension 1/2 on which no effective mixture of separable strategies

succeeds. Finally we extend (b) to a more general class of strategies.

George Barmpalias

State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China.

E-mail: barmpalias@gmail.com. Web: http://barmpalias.net

Nan Fang

Institut für Informatik, Ruprecht-Karls-Universität Heidelberg, Germany.

E-mail: nan.fang@informatik.uni-heidelberg.de.Web: http://fangnan.org

Andrew Lewis-Pye

Department of Mathematics, Columbia House, London School of Economics, Houghton St., London,

WC2A 2AE, United Kingdom.

E-mail: A.Lewis7@lse.ac.uk. Web: http://lewis-pye.com.

∗Barmpalias was supported by the 1000 Talents Program for Young Scholars from the Chinese Government No. D1101130,

NSFC grant No. 11750110425 and Grant No. ISCAS-2015-07 from the Institute of Software. Fang Nan was supported by the

China Scholarship Council of the Ministry of Education of China.

http://arxiv.org/abs/1807.04635v2


1 Introduction

A bet in a game of chance is usually determined by two values: the favorable outcome and the wager x one

bets on that outcome. If the outcome turns out to be the one chosen, the player gains profit x; otherwise the

player loses the wager x. Many gambling systems for repeated betting are based on elaborate choices for the

wager x, while leaving the choice of outcome constant. In this work we are interested in such ‘monotonous’

strategies, which we also call single-sided, and their linear combinations (mixtures). Consider the game of

roulette, for example, and the binary outcome of red/black.1 Perhaps the most infamous roulette system

is the martingale,2 where one constantly bets on a fixed color, say red, starts with an initial wager x and

doubles the wager after each loss. At the first winning stage all losses are then recovered and an additional

profit x is achieved. Such systems rely on the fairness of the game, in the form of a law of large numbers

that has to obeyed in the limit (and, of course, require unbounded initial resources in order to guarantee

success with probability 1). In the example of the martingale the relevant law is that, with probability 1,

there must be a round where the outcome is red. Many other systems have been developed that use more

tame series of wagers (compared to the exponential increase of the martingale), and which appeal to various

forms of the law of large numbers.3

When the casino is biased, i.e. the outcomes are not entirely random, we ought to be able to produce more

successful strategies. Suppose that we bet on repeated coin-tosses, and that we are given the information

that the coin has a bias. In this case it is well known that we can define an effective strategy that, independent

of the bias of the coin (i.e. which side the coin is biased on, or even any lower bounds on the bias), is

guaranteed to gain unbounded capital, starting from any non-zero initial capital. This strategy, as we explain

in §2.3, is the mixture of two single-sided strategies, where the first one always bets on heads and the second

one always bets on tails. A slightly modified strategy is successful on every coin-toss sequence X except

for the case that the limit of the relative frequency of heads exists and is 1/2. The same kind of strategy

exists for the case where the relative frequency of heads is 1/2, but beyond some point the number of tails

is never smaller than the number of heads (or vice-versa). These examples show that many typical betting

strategies are separable in the sense that they can be expressed as a the sum of two single-sided strategies.

In the following we refer to any binary sequence which is produced by a (potentially partially) random

process, as a casino sequence. Note that if a separable strategy succeeds along a casino sequence, one of

its single-sided parts has to succeed. The only case where separability is stronger than single-sidedness is

when we consider success with respect to classes of casino sequences.

A casino sequence may have a (more subtle) bias while satisfying several known laws of large numbers,

such as the relative frequency of 0s tending to 1/2. Formally, we can say that a casino sequence X is biased if

there is an ‘effective’ (as in ‘constructive’ or ‘definable’) betting strategy which succeeds on X, i.e. produces

an unbounded capital, starting from a finite initial capital. By adopting stronger or weaker formalizations

of the term ‘effective’ one obtains different strengths of bias, or as we usually say, non-randomness of X.

In general, ‘effective’ means that the strategy is definable in a simple way, such as being programmable in

a Turing machine. Suppose that we know that the casino sequence X has a bias in this more general sense,

i.e. there exists some ‘effective’ betting strategy which succeeds on it. The starting point of the present

1Roulettes have a third outcome 0, which is neither red nor black, and which gives a slight advantage to the house. For

simplicity in our discussion we ignore this additional outcome.
2for the origin of this term, its use as a betting system and its adoption in mathematics, see Mansuy [2005] and Snell [1982].
3Well-known systems of this kind are: the D’Alembert System, the Fibonacci system, the Labouchère system or split martin-

gale, and many others. See, for example, https://www.roulettesystems.com.

2



article is the following question:

Is it possible to succeed on any such warped casino sequence with a single-sided
‘effective’ betting strategy, i.e. one that can only place bets on 0 or only on 1?

(1)

In other words, can any ‘effective’ betting strategy be replaced by a single-sided ‘effective’ betting strategy

without sacrificing success? An equivalent way to ask this question is as follows.

Suppose that we are betting with the restriction that we cannot use our earnings from the
successful bets on 0s in order to bet on 1s, and vice-versa. Can we win on any casino-sequence
X which is ‘biased’ in the sense that there is an (unrestricted) strategy which wins on X?

(2)

We will see that, depending on the way we formalise the term ‘effective’, and especially the term effective
monotonous betting these questions can have a positive or negative (or even unknown) answer.

Our results. A straightforward interpretation of ‘effective’ is computable, in the sense that there is a Turing

machine that decides, given each initial segment of the casino sequence:

(a) how much of the current capital to bet; (b) which outcome to bet on.

These choices, in combination with the revelation of the outcome, determine the capital at the beginning

of the next betting stage. In §3 we show that in this case questions (1) and (2) have a positive answer.

Another formalisation of ‘effective’ which is very standard in computability and algorithmic information

theory (and used in the standard definition of algorithmic randomness) is ‘computably enumerable’. When

applied to betting strategies this gives a notion which is equivalent to infinite mixtures of strategies which

are generated by a single Turing machine, see the introductory part of §2. There are two very different ways

that one can define computably enumerable monotonous strategies:

(i) Uniform way: as the mixture (linear combination) of a computable family of monotonous strategies
with bounded total initial capital;

(ii) Non-uniform way: as a monotonous strategy that can be expressed as the mixture of a computable

family of strategies with bounded total initial capital.

In the uniform case we show that questions (1) and (2) have negative answers. In fact, we show that there

are casino sequences X on which mixtures of computable families of strategies generate infinite capital

exponentially fast, in the sense that4

lim sup
n

M(X ↾n)

αn = ∞ where α ∈ (1,
√

2) and M is the capital after the first n bets on X, (3)

where X ↾n denotes the first n bits of X, but no strategy under (i) succeeds. We also show the converse, i.e.

that if a computably enumerable strategy (i.e. a mixture of computable family of strategies) M exists such

that lim supn M(X ↾n)/αn = ∞ for some α >
√

2, then there exists a single-sided computably enumerable

strategy N which succeeds on X, in the sense that limn N(X ↾n) = ∞. We will see that these results can

also be stated in terms of the effective Hausdorff dimension of the casino sequence. Under the uniform

case we also consider a more general class of strategies, which we call decidably-sided, and which are

not necessarily monotonous, but there is a computable prediction (or choice) function which indicates the

favorable outcome at each state. We then generalise our previous arguments and show that there is a casino

4.
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sequence and a computably enumerable betting strategy M that strongly succeeds on it as before, in the

sense of (3), but such that no decidably-sided computably enumerable strategy succeeds on it.

Monotonous strategies under the non-uniform clase (ii) are intuitively more powerful, as we explain in

§2.2, and our arguments do not appear to be adequate for answering questions (1) and (2) in this case. The

study of the power of strategies in (ii) is quite interesting from the point of view of stochastic processes, as

it relates to key concepts such as martingale decompositions, variation and various forms of boundedness

or integrability. Questions (1) and (2) under (ii) are also directly relevant to a question about the separation

of two randomness notions in algorithmic information theory, asked by Kastermans (see [Downey, 2012]

and [Downey and Hirschfeldt, 2010, §7.9]). As we point out in §5, a positive answer of (1) or (2) for the

case of strategies under (ii) would give a very simple and elegant positive answer to Kasterman’s question.

Outline of the presentation. The concept of a betting strategy in terms of martingale functions is for-

malised in the first part of §2. Monotonous strategies are formalised in §2.1 and effective versions of

mixtures of monotonous strategies are given in §2.2, along with relevant characterizations in terms of com-

putable enumerability. In §2.3 we show that many types of betting are monotonous and in §2.4, after

recalling that Hausdorff dimension is expressible in terms of speed of martingale success, we use these

facts in order to show that there exists a separable strategy which succeeds in all casino sequences of ef-

fective Hausdorff dimension < 1/2. In §3 we first describe a decomposition of computable martingales

into two single-sided (orthogonal) martingales, which provides the positive answer to questions (1) and (2)

stated in the introductory discussion, for the case of computable strategies. We then give a detailed argu-

ment establishing a strong negative answer of the same questions for the special case of a single separable

strategy. This argument is then used in a modular way in §4 in order to obtain a proof of the full result,

with respect to every possible strategy that is expressible as a mixture of a computable family of separable

martingales. Finally in §4.4 we generalize this result to the more general class of decidably-sided strategies.

Concluding remarks and a critical discussion of our results, along with open problems and directions for

future investigations are given in §5.

2 Monotonous betting strategies and their mixtures

Betting strategies are formalized by martingales5 which are used in order to express the capital after each

betting stage and each casino outcome. Formally, a martingale in the space of binary outcomes is a function

M : 2<ω → R≥0 from binary strings to the non-negative real numbers, with the property that for all σ ∈ 2<ω:

2 · M(σ) = M(σ ∗ 0) + M(σ ∗ 1). (4)

If the equality is replaced with ‘≥’ then M is called a supermartingale.6 Probabilistically, such a function

M can be seen as a martingale stochastic process (Ys) relative to the underlying fair coin-tossing stochastic

process (Is), where Is is the outcome of the sth coin-toss which can be 0 or 1 with equal probability 1/2, so

that:

(a) Ys is measurable in (i.e. determined by the outcome of) Ii, i ≤ s;

5This is a mathematical notion and different than the martingale betting system that we discussed in §1. In mathematics,

martingales were introduced by Lévy [1937] and extended by Ville [1939] who also gave them this name. See Doob [1971] for a

classic and brief exposition of martingales in probability.
6Supermartingales can be viewed as ‘leaky martingales’ which may potentially lose some capital at each betting position.
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(b) by (4) the expectation of Ys+1 given Ii, i ≤ s equals Ys.

The definition of a martingale in (4) as a deterministic function relates to its probabilistic interpretation in

the same way that a random variable can be seen as a deterministic function from a probability space to

R. If we view martingales M as deterministic functions satisfying (4), and if we require them to be non-
negative, then they provide a formalisation of a betting strategy on an infinite coin-tossing game, where

M(σ) denotes the capital at position σ. Non-negativity expresses the requirement that the player cannot

borrow money after a bankruptcy, i.e. upon the loss of all the capital, the game ends. Informally a bet

consists of the favorable outcome (0 or 1) and the wager, which is the amount that will be won or lost after

the outcome is revealed. For convenience, we combine both of these parameters into the definition of the

wager, whose sign reveals the favorable outcome:

wM(σ) := M(σ ∗ 1) − M(σ) is the wager at state σ. (5)

Hence if wM(σ) > 0 then the favorable outcome in this bet is 1; if wM(σ) < 0 then the favorable outcome

is 0. If wM(σ) = 0 then no bet is placed at position σ. Wagers are usually called martingale differences in

probability texts. We say that M succeeds on X if

lim sup
n

M(X ↾n) = ∞. (6)

In order to consider realistic strategies it is natural to require that the martingales are definable or have some

effectivity properties, for example that they are computable or enumerable by a Turing machine.

Definition 2.1 (Computably enumerability of martingales). A martingale M : 2<ω → R+ is called l.c.e. if

M(σ) can be approximated by an increasing computable sequence of rationals, uniformly in σ. Moreover

we say that M is strongly l.c.e. if is it left-c.e. and the wagers wM(σ) can be approximated by strictly

monotone computable sequence of rationals, uniformly in σ.7

Computable and left-c.e. martingales can be used as a foundation of algorithmic information theory, see

[Downey and Hirschfeldt, 2010, §13.2], [Li and Vitányi, 1997] or [Bienvenu et al., 2009]. A binary se-

quence to be algorithmically random if no left-c.e. martingale M succeeds on it in the sense of (6).

Martingales and algorithmic randomness. It turns out that any left-c.e. martingale M can be transformed

into a left-c.e. martingale N such that limn N(X ↾n) = ∞ for each X such that (6) holds. The betting

strategies (or unpredictability) approach to algorithmic randomness is equivalent to the other two traditional

approaches, namely the incompressibility approach (through Kolmogorov complexity) and the measure-
theoretic approach (through statistical tests). So a real X is Martin-Löf random (i.e. roughly speaking,

avoids all effective null sets) if and only if there exists some constant c for which ∀n K(X ↾n) > n − c,

where K denotes the prefix-free Kolmogorov complexity of X, if and only if no left-c.e. (super)martingale

succeeds on X. The equivalence of the martingale approach with the other two, established in Schnorr

[1971a], is based on the Kolmogorov inequality (sometimes known as Ville’s inequality as it appears in

Ville [1939]) which will be used in §3, §4 and says that if M is a martingale then:
∑

σ∈S
2−|σ| · M(σ) ≤ M(λ) for each prefix-free set of strings S (7)

where λ denotes the empty string. If S covers the whole space then equality holds, giving a version of the

familiar fairness condition described by the martingale property.

7The reader may verify the following redundancy in the second clause of the definition: if the wagers wM(σ) can be approxi-

mated by an increasing computable sequence of rationals, uniformly in σ and the initial capital M(λ), where λ is the empty string,

is left-c.e. (i.e. has a computable increasing rational approximation) then necessarily M is a left-c.e. martingale.
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2.1 Monotonous strategies as martingales

We formally define strategies that bet in a monotonous fashion, in terms of martingales.

Definition 2.2 (Single-sided strategies). A martingale M is 0-sided if M(σ ∗ 0) ≥ M(σ ∗ 1) for all σ; it is

1-sided if M(σ ∗ 1) ≥ M(σ ∗ 0) for all σ. We say that M is single-sided if it is either 0-sided or 1-sided. We

say that M is strictly single-sided if it is single sided and M(σ ∗ 0) , M(σ ∗ 1) for all σ.

A prediction function f is a function from 2<ω to {0, 1}. We say that i < |σ| is a correct f -guess with respect

to σ if f (σ ↾i) = σ(i); otherwise we say that i is a false f -guess with respect to σ. According to the two

components (a), (b) of a betting strategy discussed in §1, a prediction function can be seen as (b).

Definition 2.3 (Decidably-sided strategies). Given a prediction function f , a martingale M is f -sided if

any bias on the outcomes is decided by f ; formally, if for all σ, i if M(σ ∗ i) > M(σ) then f (σ) = i, and

similarly if M(σ ∗ i) < M(σ) then f (σ) = 1− i. A martingale M is decidably-sided if its favorable outcome

is decidable, in the sense that it is f -sided for a (total) computable prediction function f .

Decidably-sided strategies can be seen as single-sided betting strategies modulo some effective re-naming

of 0s and 1s. Another restricted strategy that we discussed informally in (2) is when the bets on 0s and

the bets on 1s are based on separated capital pools, with any winnings being returned to them, and losses

taken from them, in a disjoint fashion. These strategies are modeled by separable martingales which are

martingales that can be written as the sum of a 0-sided and a 1-sided martingale.

Facts and non-facts about monotonous betting. It is clear that f -sided and separable martingales are

closed under (countable, subject to convergence of initial capitals) addition and multiplication by a constant.

Many of the facts about left-c.e. martingales in the beginning of §2 also hold for the restricted martingales

introduced above, by similar proofs. Assuming that f is computable:

if M is an f -sided martingale then there is an f -sided martingale N with limn N(X ↾n) = ∞
for all X on which M succeeds, in the sense of (6). The same holds even if we replace

‘ f -sided’ with ‘separable’ or ‘decidably-sided’, or qualify M,N as left-c.e. or computable.

The proof is a simple adaptation of the standard argument, the so-called savings trick, (see [Downey and Hirschfeldt,

2010, Proposition 6.3.8]). Since algorithmic randomness can be defined with respect to a class of effective

(super)martingales, each of the restricted martingale notions that we have discussed, left-c.e. or computable,

corresponds to a randomness notion. Separating these notions is often a matter of adapting existing methods

on this topic, such as [Nies, 2009, Chapter 7].

Theorem 2.4 (Partial computable strategies vs single-sided left-c.e. strategies). There exists X such that a
0-sided left-c.e. martingale succeeds on X and no partial computable (super)martingale succeeds on X.

The proof of Theorem 2.4 is a straightforward adaptation of the arguments in [Nies, 2009, §7.4] and is thus

left to the reader as an exercise. Our results in §3 and §4 can also be viewed as separations of random-

ness notions, but their proofs require a novel argument. On the other hand, certain caution is needed as

some basic facts about (super)martingales and their effective versions, no-longer hold in the presence of

monotonousness. It is crucial to observe that the difference of two single-sided martingales is not always
single-sided, even if it is positive and even if they both favor the same outcome. This is the reason why

the two notions (i),(ii) of computably enumerable monotonous strategies discussed in §1 are quite different.

Another issue is that under monotonousness, supermartingales are not interchangeable with martingales.

Classically, every supermartingale is bounded above by a martingale, and this is also true for computable
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and left-c.e. supermartingales (the left-c.e. case is not straightforward; see [Downey and Hirschfeldt, 2010,

§6.3]). Although this fact is also true for single-sided supermartingales in the non-effective and computable

cases, it can be shown to fail for left-c.e. single-sided supermartingales.

2.2 Mixtures of monotonous strategies, enumerability and approximations

By the mixture of a finite or countable family (Mi) of non-negative martingales we mean the sum M =
∑

i Mi. In this terminology, there are two implicit assumptions: (a) the sum is bounded, in the sense that the

total initial capital of the Mi is finite:
∑

i Mi(λ) < ∞; (b) since we typically deal with effective or constructive

strategies, we assume that (Mi) has the same complexity, for example it is uniformly computable. Mixtures

of computable families of martingales allow for more powerful betting strategies since, although (Mi) is

uniformly computable, the values of the capital M =
∑

i Mi can only be approximated by a computable

increasing sequence, uniformly in the argument. Martingales M with the latter approximation property are

left-c.e. according to Definition 2.1 and are conceptually interesting since, although the current capital M(σ)

and wager wM(σ) are measurable, i.e. determined, from the state σ, a constructive (computable) observer

only has access to a approximations of them. Hence even the favorable outcome may not be computable,

while for strongly left-c.e. martingales a computable observer has access to the favorable outcome as well

as a lower bound converging to the absolute value of the current wager.

Mixtures, enumerable strategies and optimality. The mixture of a computable family of martingales is

a left-c.e. martingale. Moreover the mixture of a computable family of f -sided martingales is an f -sided

strongly left-c.e. martingale. In the following, we point out that the converse of these facts is true: every

left-c.e. martingale can be written as the mixture of a computable family of martingales; similarly, every

strongly left-c.e. strictly f -sided left-c.e. martingale can be written as the mixture of a computable family

of strictly f -sided martingales. These facts provide useful approximations for left-c.e. monotonous mar-

tingales, which will be used in §3, §4. The reason that such respresentations are needed in the proofs

that involve diagonalization, is the somewhat surprising lack of universality in the class of left-c.e. mar-

tingales. By [Downey et al., 2004] there exists no effective enumeration of all left-c.e. martingales. This

is usually an inconvenience in arguments which involve diagonalisation against all left-c.e. martingales,

and a reason why it is often convenient to work with supermartingales (recall the discussion in §2.1 that

effective martingales and supermartingales are exchangeable). Since there exists a uniform enumeration of

all left-c.e. supermartingales, there exists a left-c.e. supermartingale M which is optimal, in the sense that

any other left-c.e. supermartingale is O (M), i.e. multiplicatively dominated by M. On the other hand, by

[Downey et al., 2004] there is no optimal left-c.e. martingale M, i.e. such that any other left-c.e. martingale

is O (M). Unfortunately, our arguments are specific to martingales and do not apply to supermartingales.

This, along with the fact discussed in so we need to deal with the fact that, as discussed in §2.1, supermartin-

gales are not exchangeable with martingales under monotonousness, means that we cannot use universality

in our arguments.

Lemma 2.5 (Left-c.e. martingales as effective mixtures). A martingale is left-c.e. if and only if it can be
written as the sum of a uniformly computable sequence of martingales.

Proof. If (Ni) is a uniformly computable sequence of martingales and
∑

i Ni(λ) < ∞ then it is well-known

that σ 7→ ∑i Ni(σ) is a left-c.e. martingale. For the converse, assume that M is a left-c.e. martingale and

let (Ms) be a left-c.e. approximation to it so that Ms+1(σ) > Ms(σ) for all s, σ. We define a family (Ni) of

7



martingales as follows. Inductively assume that Ni, i < k have been defined, they are martingales, and

S k(σ) < M(σ) for all σ, where S k :=
∑

i<k

Ni. (8)

Consider a stage s0 such that Ms0
(λ) >

∑

i<k Ni(λ) and let Nk(λ) = Ms0
(λ)−S k(λ). Then for each σ suppose

inductively that we have defined Nk(σ) in such a way that Nk(σ) + S k(σ) ≤ Mt(σ) for some stage t. Since

M is a martingale, this means that there exists some larger stage s such that:

Ms(σ ∗ 0) + Ms(σ ∗ 1) ≥ 2Nk(σ) + 2S k(σ) = 2Nk(σ) + (S k(σ ∗ 0) + S k(σ ∗ 1)). (9)

Then we let Nk(σ ∗ i), i = {0, 1} be two non-negative rationals such that:

(a) Nk(σ ∗ 0) + Nk(σ ∗ 1) = 2Nk(σ);

(b) Nk(σ ∗ i) + S k(σ ∗ i) ≤ Ms(σ ∗ i) for each i = {0, 1}.

This concludes the inductive definition of Nk and also verifies the property (8) for k + 1 in place of k. Note

that the totality of each Ni is guaranteed by the fact that M is a martingale. It remains to show that

lim
k

S k(σ) = M(σ) for each σ. (10)

By the definition of Ni(λ), it follows that (10) holds for σ = λ. Assuming (10) for σ, we show that it holds

for σ ∗ i, i ∈ {0, 1}. We have

M(σ ∗ 0) + M(σ ∗ 1) − S k(σ ∗ 0) − S k(σ ∗ 1) = 2M(σ) − 2S k(σ) = 2(M(σ) − S k(σ)), (11)

so by (10) we have: limk S k(σ ∗ 0)+ limk S k(σ ∗ 1) = M(σ ∗ 0)+M(σ ∗ 1). By (8) applied to σ ∗ 0 and σ ∗ 1

we get limk S k(σ ∗ i) = M(σ ∗ i) for i ∈ {0, 1}, as required. This concludes the inductive proof of (10). �

Mixtures, monotonous betting and intermediate bets. Recall the two ways (i), (ii) that monotonous bet-

ting can be considered for mixtures of strategies. We will show that for mixtures of computable families of

monotonous strategies, these two formulations are essentially equivalent to the two notions of computable

enumerability of martingales in Definition 2.1. The difference between (i) and (ii) is clear if we view a

mixture S at a state σ as an infinite countable stack of bets that are being placed on the initial segments

of σ. The crucial property of effective single-sided strategies S under (i), is that they are effectively ap-

proximated by single-sided strategies (S i) such that for each n < m, the intermediate bets S m − S n are also
single-sided. Since in general the difference of single-sided strategies may not be single-sided, this property

may not be present under clause (ii). A computable observer can only access a certain approximation to S
at each stage, i.e. a certain finite initial segment of the bets that compose S . At later stages the observer has

access a more accurate approximation: the intermediate bets express the error of the first observation with
respect to the current one. For an analogue of Lemma 2.5 in the case of monotonous left-c.e. martingales

(non-uniform case (ii)) we require strict monotonousness in the sense of Definitions 2.2 and 2.3, i.e. that a

non-empty bet is placed at every state. This requirement is not essential, as Lemma 2.6 shows.

Lemma 2.6. If f is a computable prediction function, then for each left-c.e. f -sided martingale M we can
effectively obtain a left-c.e. strictly f -sided martingale M̂ such that for each X with lim sups M(X ↾s) = ∞
we have lim sups M̂(X ↾s) = ∞. Hence if no strictly f -sided left-c.e. martingale succeeds on a real Y, then
no f -sided left-c.e. martingale succeeds on Y.
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Proof. Let N be the computable martingale which starts with N(λ) = 1 and at each σ, it bets half of N(σ)

on f (σ). Define M̂ = M + N so M̂ is clearly f -sided and succeeds on every real that M does. Since

N(σ) > 0 for all σ it follows that N is strictly f -sided. Then M̂(σ ∗ f (σ)) − M̂(σ ∗ (1 − f (σ))) equals

(M(σ ∗ f (σ)) − M(σ ∗ (1 − f (σ))) + (N(σ ∗ f (σ)) − N(σ ∗ (1 − f (σ)))

which is larger than 0 as required, since M is f -sided and N is strictly f -sided. �

Lemma 2.7 (Monotonous left-c.e. martingales as mixtures). For every computable prediction function f
and every left-c.e. strictly f -sided martingale M, there exists a uniformly computable sequence (Ni) of
martingales such that the partial sums S n =

∑

i<n Ni are f -sided and converge to M.

Proof. The proof is a simple adaptation of the proof of Lemma 2.5, so we may refer to the displayed

equations in that proof, although the parameters have a modified meaning that we determine below. We

give the proof of the case of single-sided martingales, as the case of decidably-sided martingales is entirely

analogous. Without loss of generality, assume that M is a left-c.e. and 0-sided martingale. and let (Ms) be

a left-c.e. approximation to it so that Ms+1(σ) > Ms(σ) for all s, σ. We define a computable family (Ni) of

martingales: inductively assume that Ni, i < k have been defined and are martingales, and

S k :=
∑

i<k

Ni is 0-sided, and for all σ, S k(σ) < M(σ) (12)

Consider a stage s0 such that Ms0
(λ) >

∑

i<k Ni(λ) and let Nk(λ) = Ms0
(λ) − S k(λ). Given σ, suppose

inductively that we have defined Nk(σ) in such a way that Nk(σ)+ S k(σ) ≤ Mt(σ) for some stage t, and for

each ρ ≺ σ we have S k+1(ρ∗0) ≥ S k+1(ρ∗1). Since M is a 0-sided martingale, there exists some s > t such

that (9) and Ms(σ ∗0) > Ms(σ ∗1). Then we let Nk(σ ∗ i), i = {0, 1} be two non-negative rationals such that:

(a) Nk(σ ∗ 0) + Nk(σ ∗ 1) = 2Nk(σ);

(b) Nk(σ ∗ i) + S k(σ ∗ i) ≤ Ms(σ ∗ i) for each i = {0, 1}.

(c) Nk(σ ∗ 1) + S k(σ ∗ 1) ≤ Nk(σ ∗ 0) + S k(σ ∗ 0) for each i = {0, 1}.

This concludes the inductive definition of Nk and also verifies the property (12) for k + 1 in place of k.

Remark on the definition: If Ms(σ ∗ 0) − Ms(σ ∗ 1) < Mt(σ ∗ 0) − Mt(σ ∗ 1), it is possible

that the chosen values satisfy Nk(σ ∗ 1) > Nk(σ ∗ 0), in which case Nk is not 0-sided.
(13)

The totality of each Ni is guaranteed by the fact that M is a strictly 0-sided martingale. It remains to show

(10). From the definition of each Ni(λ), it follows that (10) holds for σ = λ. Assuming (10) for σ, we show

that it holds for σ∗ i, i ∈ {0, 1}. We have (11) as before, so by (10) we have: limk S k(σ∗0)+ limk S k(σ∗1) =

M(σ ∗ 0) + M(σ ∗ 1). By (12) applied to σ ∗ 0 and σ ∗ 1 we get limk S k(σ ∗ i) = M(σ ∗ i) for i ∈ {0, 1}, as

required. This concludes the induction for (10). �

Lemma 2.8 (Monotonous strongly left-c.e. martingales as mixtures). For every computable prediction
function f and every strictly f -sided strongly left-c.e. martingale M, there exists a uniformly computable
sequence (Ni) of f -sided martingales such that the partial sums S n =

∑

i<n Ni converge to M.

Proof. We do the proof for the case when M is strictly 0-sided, as the more general case is entirely similar.

By (13) the application of the construction in Lemma 2.7 to the given M does not ensure that the Ni are

0-sided. In order to achieve this, we note that since M is assumed to be strongly left-c.e. and 0-sided, there
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exists a computable left-c.e. approximation (Ms) to M such that Mt(σ) > Ms(σ) and Ms(σ∗0)−Ms(σ∗1) <

Mt(σ ∗ 0) − Mt(σ ∗ 1) for all s < t and all σ. Using this approximation (Ms) we can apply the construction

in Lemma 2.7 with the extra clause (d): Nk(σ ∗ 1) ≤ Nk(σ ∗ 0) in the induction step for the definition of

Nk(σ ∗ i), i = {0, 1}. This extra clause does not affect the existing argument, hence the constructed (Nk) is

a computable family of martingales such that their mixture converges to M. In addition, clause (d) in the

inductive definition directly guarantees that each Nk are 0-sided. �

The constructions in §3, §4 rely on the existence of certain ‘canonical’ effective approximations.

Definition 2.9 (Canonical approximations of monotonous martingales). Given a computable prediction

function f and a left-c.e. f -sided martingale N, a canonical approximation to N is a computable family

(S i) of f -sided martingales that converge to N such that each S i+1 − S i is also an f -sided martingale.

By Lemma 2.7 every strictly decidably-sided strongly left-c.e. martingale has a canonical approximation.

Given single-sided martingales N, T , we say that (Ms) is a canonical approximation to the separable mar-

tingale M = N + T if Ms = Ns + Ts for canonical approximations (Ns), (Ts) of N, T respectively.

2.3 Monotonous betting on a biased coin

We give two examples of types of biases can be exploited through single-sided or separable strategies,

establishing basic properties of monotonous betting that will be used mainly in §2.4.

Monotonous betting on Villes’ casino sequence. A well-known8 debate in the early days of probability

occurred between the competing approaches of Kolmogorov, which won the debate, and the frequentist-

based approach of von Mises, for the establishment of the foundations of probability. A significant factor

for the loss of support to von Mises’ theory was a certain casino sequence constructed by Ville [1939]9

which is ‘random’ with respect to any given countable collection of choice sequences (a basic tool in von

Mises’ strictly frequentist approach) but is biased according to a well-accepted statistical test: although the

frequency of 0s approaches 1/2, in all initial segments this frequency never drops below 1/2. We point out

that the bias in Villes’ well-known example is exploitable by computable monotonous betting. In order to

see this, let zn, on be the number of 0s and 1s respectively, in the first n bits of Ville’s casino sequence, so

that zn ≥ on for all n. In the case where supn(zn − on) = ∞ our strategy is to start with capital 1, and bet

wager 1 on outcome 0 at each step. In the case where lim supn(zn − on) := k < ∞, given k and a stage t
such that for all n ≥ t we have zn − on ≤ k, we can used the following strategy: given any stage s0 > t, find

some n ≥ s0 such that zn − on = k and at this n bet on 1. In order to avoid the dependence of this strategy on

the parameters k, t, we can consider a mixture including a strategy for each possible pair (k, t), with initial

capital for the s-th strategy equal to 2−s (so that the total initial capital is finite).Note that in the first case

the strategy is 0-sided and in the second case it is 1-sided; moreover in both cases, under the respective

assumption, the strategies are successful on Ville’s casino sequence. The mixture of these two strategies is

a computable separable strategy and is successful on Ville’s sequence.

8Short expositions of the debate in relation to the notion of algorithmic randomness can be found on textbooks on this topic

such as [Li and Vitányi, 1997, §1.9] and [Downey and Hirschfeldt, 2010, §6.2]. Extended discussions of the philosophical under-

pinnings of this debate can be found in van Lambalgen [1987] and the more recent Blando [2015].
9An English translation can be found at http://www.probabilityandfinance.com/misc/ville1939.pdf. Simpler

proofs of Ville’s theorem appear in Lieb et al. [2006] and [Downey and Hirschfeldt, 2010, §6.5]
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Monotonous betting for skewed or non-existent limiting frequency. Given a casino sequence X with

limiting frequency of 0s different than 1/2, there is a single-sided betting strategy that is successful on

X. Moreover there is a separable martingale which succeeds on every such X, irrespective of whether the

frequency is above or below 1/2, or even how much it differs from 1/2. A slightly more general version of

these facts, is the following form of Hoeffding’s inequality which we prove via of betting strategies, and

which will be used in our later arguments..

Lemma 2.10 (Hoeffding for prediction functions). Given q > 1/2, n ∈ ω and a prediction function f , the
number of strings in 2n for which the number of correct f -guesses is more than qn is at most r−n

q · 2n, where
rq > 1 is a function of q. So the number of strings in 2n for which the number of correct f -guesses is in the
interval ((1 − q)n, qn) is at least 2n · (1 − 2r−n

q ).

Proof. Given f , let zσ denote the number of correct f -guesses with respect to σ, and let oσ be the number

of false f -guesses with respect to σ. For each q > 1/2, consider the function d : 2<ω → R+ defined by

d(λ) = 1 and d(σ) = 2|σ| · qzσ · (1 − q)oσ . Note that, if f (σ) = 0 then:

d(σ ∗ 0) + d(σ ∗ 1) = 2|σ|+1 ·
(

qzσ+1 · (1 − q)oσ + qzσ · (1 − q)oσ+1
)

= 2|σ|+1 · qzσ · (1 − q)oσ = 2d(σ).

The same is true in the case that f (σ) = 1, so that d is a martingale, which bets |d(σ∗0)−d(σ)| = (2q−1)d(σ)

on the prediction of f at σ. For each σ let pσ = zσ/|σ|, so that 1− pσ = oσ/|σ|. Suppose that pσ > q. Then

d(σ) =
(

2 · qpσ · (1 − q)1−pσ
)|σ|
>
(

2 · qq · (1 − q)1−q
)|σ|

where the second inequality holds because the function x 7→ 2qx(1 − q)1−x is increasing10 in (0, 1) when

q > 1/2. Again by considering the derivatives, we can see that the function q 7→ qq · (1−q)1−q is decreasing

in (0, 1/2), increasing in (1/2, 1) and it has a global minimum in (0, 1) at q = 1/2, at which point it takes the

value 1/2. So if we let rq := 2qq · (1− q)1−q and recall that q > 1/2 we get rq > 1 and d(σ) ≥ r|σ|q for each σ

with pσ > q. From Kolmogorov’s inequality in then follows that, if tn is the number of strings σ ∈ 2n with

pσ > q, then tn · 2−n < r−n
q . So tn < r−n

q · 2n as required. �

Computable single-sided randomness and frequency. Lemma 2.10 says that for each total prediction

function f , with high probability the number of correct f -guesses along a binary string σ are concentrated

around |σ|/2. In fact, there exists a separable computable martingale which succeeds on every stream X with

the property that the proportion of correct f -guesses along X does not reach limit 1/2. For each q ∈ (1/2, 1)

let Tq(λ) = 1, and define Tq(σ) = 2|σ| · qzσ · (1 − q)oσ where zσ is the number of correct f -guesses with

respect to σ and oσ is the number of false f -guesses with respect to σ. By the proof of Lemma 2.10, Tq(σ)

is a martingale and lim sups Tq(X ↾n) = ∞ for each X such that lim sups zX↾n/n > q. Similarly, Tq(σ) is

a martingale for each q < 1/2, and lim sups Tq(X ↾n) = ∞ for each X such that lim sups zX↾n/n < q. Let

qi = 1/2 + 2−i−1 and pi = 1/2 − 2−i−1 for each i and define:

N(σ) =
∑

i

2−i · Tqi(σ) +
∑

i

2−i · Tpi(σ).

Then N is a computable martingale and by the properties of Tqi , Tpi , it succeeds on every X for which the

proportion of correct f -guesses does not tend to 1/2. In the case that f is the constant zero function Tq is

10The derivative of x 7→ qx(1 − q)1−x is
(

log q − log(1 − q)
)

· (1 − q)1−x · qx.
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0-sided, which implies the following fact, where ‘computably single-sided random’ is a sequence where no

computable single-sided (super)martingale succeeds.

There exist computable families (Ni), (Ti) of single-sided strategies such that
∑

i(Ni + Ti)

has finite initial capital and succeeds on all sequences whose limiting 0-frequency is not

1/2. Hence each computably single-sided random has 0-frequency tending to 1/2.

(14)

By ‘0-frequency’ we mean the (relative) frequency of 0 in the initial segments of the sequence. Hence weak

s-randomness for s ∈ (0, 1) does not imply computable single-sided randomness. However in Proposition

2.11, we will see that the left-c.e. version of single-sided randomness does imply weak 1/2-randomness.

2.4 Speed of success and effective Hausdorff dimension

The martingale approach to algorithmic information theory was introduced by [Schnorr, 1971a,b] who also

showed some interest in the rate of success of (super)martingales M, and in particular the classes

S h(M) =

{

X | lim sup
n

M(X ↾n)

h(n)
= ∞
}

where h : N → N is a computable non-decreasing function. Later [Lutz, 2000, 2003] showed that the

Hausdorff dimension of a class of reals can be characterized by the exponential ‘success rates’ of left-c.e.

supermartingales, and in that light defined the effective Hausdorff dimension dim(X) of a real X as the

infimum of the s ∈ (0, 1) such that X ∈ S h(M) for some left-c.e. supermartingale M, where h(n) = 2(1−s)n.

Then [Mayordomo, 2002] showed that

dim(X) = lim infn
C(X ↾n)

n
= lim infn

K(X ↾n)

n
(15)

where C and K denote the plain and prefix-free Kolmogorov complexity respectively. Reals with effective

Hausdorff dimension 1/2 include partially predictable reals (with an imbalance of 0s and 1s) like Y⊕∅where

Y is algorithmically random, as well as random-looking versions of the halting probability like
∑

U(σ)↓ 2−2|σ|

for certain universal prefix-free machines U from [Tadaki, 2002]. Martin-Löf random reals have effective

dimension 1, but the converse does not hold. Moreover there are computably random reals of effective

dimension 0. For more on algorithmic dimension see [Downey and Hirschfeldt, 2010, Chapter 13].

Monotonous betting on sequences with dimension less than half. We construct a computable mixture

of separable strategies, which succeeds on every sequence of effective Hausdorff dimension < 1/2. For

this task we need a characterization of effective dimension in terms of tests. Given s ∈ (0, 1), an s-test is

a uniformly c.e. sequence (Vi) of sets of strings such that
∑

σ∈Vk
2−s|σ| < 2−k for each k. As mentioned in

[Downey and Hirschfeldt, 2010, §13.6] and is the case for most notions of effective statistical tests,

given s ∈ (0, 1) one can effectively obtain an effective list of all s-tests. (16)

Since s < 1, the condition
∑

σ∈Vk
2−s|σ| < 2−k means that the length of each string in Vk is more than k.

These observations will be used in the proof of Theorem 2.11. Let us say that X is weakly s-random if it

avoids all s-tests (Vi), in the sense that there are only finitely many i such that X has a prefix in Vi. By

[Tadaki, 2002], X being weakly s-random is equivalent to ∃c ∀n K(X ↾n) > s · n − c. Then by (15),

dim(X) = sup{s | X is weakly s-random} (17)

which is crucial for the proof of the following fact, which complements our main theorems in §3 and §4.

12



Theorem 2.11 (Monotonous betting for low dimension). There exist uniformly computable 0-sided and
1-sided strategies (Ni) and (Ti) respectively such that the mixture

∑

i(Ni + Ti) has finite initial capital and
succeeds on all X such that dim(X) < 1/2.

Proof. By (14) that we established in §2.3, it suffices to construct a computable family (Ni) of 0-sided

strategies such that
∑

i Ni has finite initial capital and succeeds on every sequence X which has limiting

0-frequency 1/2 and dim(X) < 1/2. For each X with these properties, by (17) there exists a rational q < 1/2

and a q-test (Vi) such that X has prefixes in infinitely many Vi. It suffices to prove that:

given ǫ > 0, q < 1/2 and a q-test (Vi), we can effectively define a computable family (Mi)

of 0-sided strategies such that
∑

i Mi has initial capital less than ǫ and succeeds on every X
with limiting 0-frequency equal to 1/2 and prefixes in infinitely many members of (Vi).

(18)

Indeed, given (18) and (16) we can effectively produce a family of 0-sided strategies whose mixture has

bounded initial capital and deal with any possible q-test (Vi) for any choice of q < 1/2. For the proof of

(18), given ǫ > 0, q < 1/2 and a q-test (Vi), let kǫ be the least integer such that 2−kǫ < ǫ/2. We define a

computable family (Nσ) of 0-sided strategies (indexed by strings) and let

Mi =
∑

σ∈Vkǫ+i

Nσ and M =
∑

i

Mi.

Under this definition of Mi and the properties q-tests, for M(λ) < ǫ it suffices to let Nσ(λ) = 2−q|σ| so that

Mi(λ) =
∑

σ∈Vkǫ+i

Nσ(λ) =
∑

σ∈Vkǫ+i

2−q|σ| < 2−kǫ−i ⇒ M(λ) < 2 · 2−kǫ < ǫ.

For each i and each σ strategy Nσ starts with Nσ(λ) = 2−q|σ| and bets all capital on all the 0s of σ, while

placing no bets on all other strings. Formally, for each non-empty ρ define:

Nσ(ρ) =

{

Nσ(ρ̂) if ρ̂ ∗ 0 � σ

2 · Nσ(ρ̂) otherwise.

}

where ρ̂ denotes the predecessor of ρ.

Since each Nσ is 0-sided, Mi and M are also 0-sided and, as noted above, M(λ) < ǫ. Hence for (18) it

remains to verify that M succeeds on every X with limiting 0-frequency 1/2 and prefixes in infinitely many

members of (Vi). To this end we observe that, as a direct consequence of the definitions of Nσ,Mi,M:

if σ ∈ Vkǫ+i has zσ many 0s then for each ρ � σ, Mi(ρ) ≥ Nσ(ρ) = Nσ(σ) = 2zσ−q|σ|. (19)

Given X with limiting 0-frequency 1/2 and prefixes in infinitely many members of (Vi), let q′ be a rational

in (q, 1/2). Since the limiting frequency of 0s in X is 1/2, there exists some n0 such that for each n > n0 the

number zX↾n of 0s in X ↾n is more than q′n, so 2zX↾n−qn > 2(q′−q)n. Given any constant c, let n1 > n0 be such

that 2(q′−q)n1 > c. Let n2 > max{n1, kǫ} be such that X has a prefix in Vn2
and all strings in Vn2

are of length

at least n1. If σ is a prefix of X in Vn2
, by the definition of M and (19), for all n ≥ n2 we have

M(X ↾n) ≥ Mn2
(X ↾n) ≥ Nσ(σ) ≥ 2zσ−q > 2(q′−q)n1 > c.

Since c was arbitrary, this shows that that limn M(X ↾n) = ∞ for all X with the properties of (18). �
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3 The power of single-sided martingales and their mixtures

We show that if a computable martingale succeeds on some casino sequence X, then there exists a com-

putable single-sided martingale which succeeds on X. This is a consequence of the following decomposi-

tion, which was also noticed independently by Frank Stephan.

Lemma 3.1 (Single-sided decomposition). Every martingale M is the product of a 0-sided martingale N
and a 1-sided martingale T . Moreover N, T are computable from M.

Proof. For ease of notation we let Mσ,Nσ, Tσ denote M(σ),N(σ), T (σ) respectively. Let σ → wM(σ) be

the wagers of M and let Nλ = Tλ =
√

Mλ. Define the wagers of N, T respectively by:

wN(σ) =

{

wM(σ)/Tσ if wM(σ) < 0, Tσ > 0;

0 otherwise;

}

, wT (σ) =

{

wM(σ)/Nσ if wM(σ) > 0, Nσ > 0;

0 otherwise;

}

We show by induction that Mσ = Nσ · Tσ for all σ. By definition this holds for σ = λ; suppose that it holds

for σ. If wM(σ) = 0 then wN(σ) = wT (σ) = 0 so Mρ = Nρ · Tρ holds for the immediate successors ρ of σ.

If wM(σ) < 0 then wT (σ) = 0 so Tσ∗i = Tσ and

Mσ∗1 = Mσ + wM(σ) = Nσ · Tσ + wM(σ) = Tσ · (Nσ + wN(σ)) = Tσ∗1 · Nσ∗1.

In the same way we have Mσ∗0 = Tσ∗0 · Nσ∗0. The case where wM(σ) > 0 is entirely symmetric. �

Corollary 3.2. Given a computable martingale M, there exist a 0-sided martingale N0 and a 1-sided
martingale N1 such that for each X on which M is successful, at least one of N0,N1 is successful.

Corollary 3.2 is a direct consequence of Lemma 3.1. and says that, in terms of computable strategies, if

there exists a successful strategy against the casino, there exists a successful single-sided strategy. This fact

is no longer true for mixtures or strongly left-c.e. martingales (recall the equivalence from §2.2).

Theorem 3.3 (Mixtures of single-sided martingales). There exists a real of effective Hausdorff dimension
1/2 such that no single-sided (or separable) strongly left-c.e. martingale succeeds on it.

It is instructive to contrast Theorem 3.3 with Proposition 2.11. Note that for each rational s ∈ (0, 1) there are

reals X with effective Hausdorff dimension s with computable subsequences, so that single-sided strategies

succeed easily on them. The basic idea for proving Theorem 3.3 is most clearly demonstrated by proving

the following simpler statement, which only deals with a single separable strategy:

Given the mixture M of a computable family (Mi) of separable martingales M, there exists

a left-c.e. real of effective Hausdorff dimension 1/2 such that M does not succeed on it.
(20)

The proof of (20) is a computable construction of the approximation to the required real X, and is presented

in §3.1–§3.3 in a modular way, so that it can be used in the more involved proof of Theorem 3.3. The only

issue that separates the proof of (20) form the proof of Theorem 3.3 is the lack of universality and effective

lists of martingales that was discussed in §2.2.

3.1 Idea and plan for the proof of (20)

We will construct the real X of (20) so as to extend a sequence of initial segments (σn). Given M as in (20)

we will construct X of effective Hausdorff dimension 1/2 such that M(X ↾n) is bounded above. Without
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loss of generality we can assume that M(λ) < 2−1. In order to ensure the dimension requirement for X, it

suffices to ensure that

KV (σn) ≤ |σn| · qn (21)

for all n, where V is a prefix-free machine that we also construct, KV is the Kolmogorov complexity with

respect to V , and (qn) is a computable decreasing sequence of rationals tending to 1/2. Let us set

qn = 1/2 + 3/(n + 2) and M̂(σ) = max
n≤|σ|

M(σ ↾n) (22)

We will ensure that for all n:

M̂(σn) ≤ 2−1 +
∑

i<n

2−i−2. (23)

One way to think about this requirement is to try to ensure that M̂(σn) − M̂(σn−1) ≤ 2−n−1 for all n. Sup-

posing inductively that σn−1 has been determined, the task of keeping M̂(σn) − M̂(σn−1) small potentially

involves changing the approximation to σn a number of times, since M is a left-c.e. martingale. This insta-

bility of the final value of σn is in conflict with (21). The main idea for handling this conflict is that if we

choose σn from a collection of strings which have roughly similar number of 0s and 1s, then a single-sided

strategy is limited to winning on around half of the available bits. With such a limitation on the components

of M, the separability of M ensures that the growth potential of M is also limited, in a way that allows

the satisfaction of (21). Since the construction deals with approximations (Ni) of M, it is crucial for this

argument that the intermediate bets Nt − Ns between two stages s < t are single-sided, or separable. As we

discussed in §2.1, such an approximation can be chosen when M is a mixture of a computable family (Mi)

of separable strategies.

The next concern, given the restriction to strings with balanced number of 0s and 1s, is to be able to

choose an extension of σn where capital does not increase substantially (note that without the restriction to

a particular set of extensions of σn, we can choose an extension where the capital does not increase at all).

Lemma 3.4 (Low capital gain somewhere). Given any σ, any δ > 0 and any set S of extensions of σ
of some fixed length |σ| + n such that |S | ≥ (1 − δ) · 2n, there exists at least one string τ ∈ S such that
M(τ∗) ≤ M(σ)/(1 − δ) for all τ∗ with σ ⊆ τ∗ ⊆ τ.

Proof. Towards a contradiction suppose that there exists no such string in S , and for each τ ∈ S let τ∗ be

the shortest initial segment extending σ for which M(τ∗) > M(σ)/(1 − δ). Then S ∗ = {τ∗ | τ ∈ S } is a

prefix-free set of strings. Since every element of S has an initial segment in S ∗ it follows that:

∑

τ∗∈S ∗
2−|τ

∗ | · M(τ∗) > (1 − δ) · 2−|σ| · M(σ)

1 − δ
= 2−|σ| · M(σ)

which contradicts Kolmogorov’s inequality relative to σ. �

Note that M(σ)/(1 − δ) = M(σ) + M(σ) · δ/(1 − δ), so a small multiplicative amplification of the capital

from σ to τ can be translated into a small additive increase in M(τ)−M(σ), as long as we keep M(σ) under

a fixed bound. Once σn−1 has been chosen and a ‘fat’ (i.e. high probability) set of appropriate extensions

has been determined, Lemma 3.4 tells us that we will be able to choose σn without increasing the capital of

M by too much. The following fact follows from Lemma 3.4 and the law of large numbers in Lemma 2.10.
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σn the nth initial segment of X with approximations σn[s]

sn length of σn according to the calculations in §3.2

ǫn appropriate value of the error ǫ of Lemmata 3.5 and 3.6 at level n, set as 2−n−5

qn bound on KV (X ↾sn )/sn set at 1/2 + 3/(n + 2)

2−pn sufficient upper bound on M(σn−1) − Mt(σn−1) for σn[t] = σn (assuming σn−1[t] = σn−1)

Table 1: Parameters for the proof of (20)

Lemma 3.5 (Special extension). There exists a computable function f such that if M is a non-negative
martingale such that M(λ) ≤ 1, then for each ǫ ∈ (0, 1), σ ∈ 2<N, and ℓ > f (ǫ) there exists τ � σ of length
ℓ such that M(ρ) ≤ M(σ)/(1 − ǫ) for all ρ ∈ [σ, τ] and the number of zeros (and hence, 1s) in τ after σ is
in
(

(1 − ǫ)(|τ| − |σ|)/2, (1 + ǫ)(|τ| − |σ|)/2).

We show that the potential for success for a separable strategy along the extensions of Lemma 3.5 is limited.

Lemma 3.6 (Growth along special extensions). Let (Ni), (T j) be computable families of 0-sided and 1-sided
martingales respectively, with finite total initial capital and consider the mixture M =

∑

i Ni +
∑

j T j with
the approximations Ms =

∑

i<s Ni +
∑

j<s T j. Given ǫ, σ, if τ is the extension of σ of Lemma 3.5 applied on
Ms, then for all t > s if Mt(σ) − Ms(σ) < 2−p then Mt(τ) ≤ Ms(τ) + 2δ·(|τ|−|σ|)−p, where δ := (1 + ǫ)/2.

Proof. For simplicity let N∗ =
∑

i∈[s,t) Ni and T ∗ =
∑

i∈[s,t) Ti, so that Mt(τ) ≤ Ms(τ) + N∗(τ) + T ∗(τ), and

note that N∗ is a 0-sided martingale while T ∗ is a 1-sided martingale. Between stages s and t there is at

most 2−p increase in M(σ), so N∗(σ) + T ∗(σ) ≤ 2−p. By the properties of τ, letting δ := (1 + ǫ)/2, there

exist at most δ · (|τ| − |σ|) many 0s between σ and τ and the same is true of the 1s. Hence, since N∗, T ∗ are

single-sided, we have N∗(τ) ≤ N∗(σ) · 2δ·(|τ|−|σ|) and T ∗(τ) ≤ T ∗(σ) · 2δ·(|τ|−|σ|). By adding these two, using

the fact that N∗(σ) + T ∗(σ) ≤ 2−p, we get Mt(τ) ≤ Ms(τ) + 2−p · 2δ·(|τ|−|σ|) . �

3.2 Fixing the parameters for the proof of (20)

Let (Ms) be a canonical approximation to M. We will use Lemma 3.6 for the definition of the sequence

(σi) that we discussed in §3.1. For the approximations to σn with n > 0, we will apply Lemma 3.6 for the

specific values ǫn = 2−n−5 of ǫ and pn of p (to be defined below), thus obtaining increasingly better bounds

for larger n. For each n the segment σn as well as its approximations will have a fixed length sn which we

motivate and define as follows. Suppose that n > 0 and our choice of σn−1 has settled, but that now we

are forced to choose a new value of σn, because the capital on some initial segment has increased by too

much. What does Lemma 3.6 tell us about the increase in capital, 2−pn say, that must have seen at σn−1 in

order for this to occur? A bound for pn gives a corresponding bound on the number of times that σn will

have to be chosen: after σn−1 has settled the approximation to the next initial segment σn can change at

most 2pn many times. Overall, σn can then change at most 2
∑

i<n pi · 2pn many times, and in order to satisfy

(21), at each of these changes we need to enumerate to the machine V a description of length qn · sn. In

order to keep the weight of these requests bounded, we will aim at keeping the total weight of the requests

corresponding to σn bounded above by 2−n, for which it is sufficient that:

2−snqn · 2pn · 2
∑

i<n pi < 2−n ⇐⇒ 2pn−snqn < 2−n−∑i<n pi ⇐⇒ snqn − pn > n +
∑

i<n

pi. (24)
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By the bound given in Lemma 3.6 in order for the growth of M̂(σn) at each length sn to be bounded above

by 2−n−2, we need to set:

pn = sn · δn + n + 2 where δn := (1 + ǫn)/2. (25)

By Lemma 3.6 it then follows that any growth of M(τ) by at least 2−n−2 for some τ with σn−1 ⊆ τ ⊆ σn,

requires an increase of at least 2−pn in M(σn−1). Then pn − qnsn = n + 2 + sn · (δn − qn). By the definitions

of qn, ǫn we have δn < qn, so (24) reduces to:

sn · (qn − δn) > 2n + 2 +
∑

i<n

pi ⇐⇒ sn ≥
2n + 2 +

∑

i<n pi

qn − δn
.

Considering the bound of Lemma 3.5 for the existence of a special extension of σn−1, it suffices that:

sn = max

{

2n + 2 +
∑

i<n pi

qn − δn
, f (ǫn)

}

. (26)

where f is the computable function of Lemma 3.5.

3.3 Construction and verification for (20)

We inductively define the approximations σn[s] of σn for all n, in stages s. Let σ0[s] = λ for all s, s0 = 0

and δn := (1 + ǫn)/2 for all n. The following notion incorporates the properties of Lemma 3.5 in the

framework of the construction and the specific values of the parameters that were set in §3.2.

Definition 3.7 (Special extensions). At each stage s + 1 and for each n > 0 such that σn−1[s] ↓ we say that

τ is a special extension of σn−1[s] if |τ| = sn, M̂s(τ) ≤ M̂(σn−1)[s]/(1 − ǫn) and the number of 0s as well as

the number of 1s between σn−1[s] and τ is at most δn · (sn − sn−1).

Definition 3.8 (Attention). At stage s + 1 the segment σn requires attention if n > 0 and either σn[s] ↓ and

M̂s+1(σn[s]) > 2−1 +
∑

i<n 2−i−2, or σn[s] ↑.

Construction for (20). At stage s + 1 pick the least n ≤ s such that σn requires attention, if such exists. If

σn[s] ↑, define σn[s + 1] to be the leftmost special extension of σn−1[s]. If σn[s] ↓, set σi[s + 1] ↑ for all

i ≥ n. In any case, let k ≤ s the least (if such exists) such that σk[s + 1] ↓ and KVs(σk[s + 1]) > qk · sk, and

issue a V-description of σk[s + 1] of length qk · sk.

Remark. If at stage s + 1 segment σn[s + 1] is newly defined as a special extension of σn−1 we have

M̂(σn)[s + 1] ≤ M̂s+1(σn−1[s])/(1 − ǫn) = M̂s+1(σn−1[s]) + M̂s+1(σn−1[s]) · ǫn/(1 − ǫn). (27)

Since M̂(σn−1) < 1 and ǫn/(1 − ǫn) < 2−n−2, condition (27) implies

M̂(σn)[s + 1] ≤ M̂(σn−1)[s + 1] + 2−n−2. (28)

Verification of the construction for (20). By Lemma 3.4 we can always find a special extension as

required in the first clause of the construction. In this sense, the construction of (σn[s]) is well-defined. In

any interval of stages where σn−1 remains defined, successive values of σn are lexicographically increasing.

It follows that each σn[t] converges to a final value σn such that σn ≺ σn+1. The real X determined by the

initial segments σn is thus left-c.e. and since (27) implies (28), we have M̂(X ↾n) < 1 for all n.
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It remains to show that the weight of V is bounded above by 1. Suppose that σn gets newly defined at stage

s + 1 and at stage t > s + 1 it becomes undefined, while σn−1[ j] ↓ for all j ∈ [s, t]. Then M̂(σn)[s + 1] ≤
M̂(σn−1)[s] + 2−n−2. Since σn becomes undefined at stage t, we have M̂t(σn[s + 1]) > 2−1 +

∑

i<n 2−i−2. By

Lemma 3.6 and (25) it follows that M̂t(σn−1[s + 1]) − M(σn−1)[s + 1] > 2−pn . Hence:

during an interval of stages where σn−1 remains defined, σn can take at most 2pn values

which means that the weight of the V-descriptions that we enumerate for strings of length sn is at most

2−snqn · 2
∑

i≤n pi . By the definition of sn in (26) and (24) this weight is bounded above by 2−n. So the total

weight of the descriptions that are enumerated into V is at most 1.

4 Proof of Theorem 3.3 and generalizations

It is possible to adapt the proof of Lemma (20) into an effective construction for the proof of Theorem 3.3,

which also gives that the real X is left-c.e. For simplicity, we opt for a less constructive initial segment

argument for the proof of Theorem 3.3, which uses the facts we obtained in §3 in a modular way. The price

we pay is that the constructed X is no-longer left-c.e. as in (20). The following is the main tool for the proof

of Theorem 3.3, where qn has the same value as in §3.

Lemma 4.1 (Inductive property). There exists a prefix-free machine V such that for each n > 0, σ0 ≺ · · · ≺
σn−1 and M =

∑

j<x N j, where each N j, j < x is a mixture of a computable family of strictly single-sided
martingales with

M̂(σn−1) < 2−1 +
∑

i<n−1

2−i−2 (29)

where σ0 is the empty string, there exists σn ≻ σn−1 such that

KV (σn) < |σn| · qn and M̂(σn) ≤














2−1 +
∑

i<n−1

2−i−2















+ 2−n−2. (30)

4.1 Proof of Theorem 3.3 from Lemma 4.1

Let (M j[s]) be a (non-effective) list of all canonical approximations to left-c.e. martingales M j with initial

capital < 1. This list includes an approximation to each strongly left-c.e. strictly single-sided martingale,

and by Lemma 2.6 it suffices to show the theorem with regard to the martingales in this list. Using Lemma

4.1 we inductively define a sequence (σi) of strings such that σi ≺ σi+1 for each i, σ0 is the empty string,

and (30) holds for each n > 0 and the separable left-c.e. martingale

S n :=
∑

j<n

2−|σ j |− j−2 · M j.

We will ensure that for each n we have

KV(σn) < |σn| · qn and Ŝ n(σn) ≤ 2−1 +
∑

i<n

2−i−2 ≤ 1 (31)

where V is the prefix-free machine of Lemma 4.1. If we let X to be the real defined by the initial segments

(σi), then the second clause of (31) implies that for each j, x ∈ N we have M j(X ↾x) ≤ 2|σ j |+ j+2 < ∞ as
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required. Hence by the choice of (M j) and Lemma 2.6, no single-sided left-c.e. martingale succeeds on X
and by Theorem 2.11 the effective Hausdorff dimension is at least 1/2. The first clause of (31) implies that

the effective Hausdorff dimension of X is at most 1/2. Hence (31) is sufficient for the proof of Theorem 3.3.

For the inductive use of Lemma 4.1 in the construction, consider the following inequality for some n (the

equality is always true) which can be thought of as obtained at step n from Lemma 4.1:

Ŝ n(σn) ≤














2−1 +
∑

i<n−1

2−i−2















+ 2−n−2 =















2−1 +
∑

i<n

2−i−2















− 2−n−2 (32)

and note that, since Mn(σn) < 2|σn | we have 2−|σn |−n−2 · Mn(σn) < 2−n−2 so

if (32) holds then Ŝ n+1(σn) ≤ 2−1 +
∑

i<n

2−i−2 (33)

which is the hypothesis that is needed in order to apply Lemma 4.1 at step n + 1 which will define σn+1.

Construction. Let σ0 be the empty string and let V be the machine from Lemma 4.1. For each n > 0,

inductively assume that (29) holds for S n−1 and let σn be an extension of σn−1 such that (30) holds.

Verification. First we show that the construction is well-defined. Note that (30) holds for n = 0. Assuming

that n > 0 and (30) holds with S n in place of M, by (33) it follows that (29) holds with S n+1 in place of M
and with n + 1 in place of n. Hence by Lemma 4.1 at step n + 1 there exists an extension σn+1 of σn which

satisfies (30) with n + 1 in place of n. This concludes the justification that the construction is well-defined.

The construction, and in particular condition (30) imposed on the extensions, shows that (31) holds for

each n. This concludes the verification of the properties of the constructed sequence (σi) and, as discussed

above, the proof of Theorem 3.3.

4.2 Preliminaries for the proof of Lemma 4.1

The construction of V of Lemma 4.1 will be computable, so for the proof of the lemma we need to define an

effective map which takes as an input η a description (index) of M and strings σi, i < n, and always outputs

a sufficiently small part Vη of V (dealing with the specific input η) and an approximation σn[s] such that

if the input η = (M, σi, i < n) meets the hypothesis of Lemma 4.1 then σn[s] converges

to some σn which satisfies the properties of the lemma with Vη in place of V .
(34)

Since Lemma 4.1 asks for a single machine V that applies to all inputs, we need to make sure that the

special machines Vη are sufficiently small so that there exists a machine V with the property that KV is

bounded by KVη for all inputs η. In order to express this property precisely, let (Ni[s]) an effective sequence

(viewed as a double list of functions σ 7→ Ni(σ)[s]) of all canonical partial computable approximations

of all (partial computable) mixtures of single-sided strategies. The set H of inputs is the set of all tuples

η = (i, σ0, . . . , σn−1) where i ∈ N is interpreted as an index in the list (Ni[s]), and σ0 ≺ · · · ≺ σn−1 is a

chain of strings. Let g : H → N a one-to-one computable function so that
∑

η∈H 2−g(η) < 1.

Given any η ∈ H the map η 7→ (Vη, σn[s]) will determine a prefix-free machine Vη such that

for each η ∈ H, wgt
(

Vη
)

< 2−g(η) so
∑

η∈H wgt
(

Vη
)

< 1. (35)
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By (35) we may define a union prefix-free machine V such that KV(ρ) ≤ KVη(ρ) for each ρ and each η ∈ H.

We have shown that

for the proof of Lemma 4.1 it suffices to define a computable map η 7→ (Vη, σn[s]) from H to

pairs of prefix-free machines and approximations of strings, such that (34) and (35) hold.

The construction of the effective map η 7→ (Vη, σn[s]) is a modification of the proof of (20) in §3.2,§3.3

and uses Lemma 3.6 in the same way. The parameters qn, ǫn, pn are as defined in §2.2. Since here we have

a special upper bound 2−g(η) for the weight of Vη, we need to re-calculate a suitable value for sn, which is

the required lower bound for the length of σn of Lemma 4.1. Following §3.2, condition (24) becomes

2−snqn · 2pn < 2−g(η) ⇐⇒ snqn − pn > g(η). (36)

Given the definition of pn in (25) and arguing as in §3.2, in order for the growth of M̂(σn) at each length sn

to be bounded above by 2−n−3, for (36) it suffices that

sn · (qn − δn) > g(η) + n + 3 ⇐⇒ sn ≥
g(η) + n + 3

qn − δn

so it suffices to define the length of each approximation to σn in the proof of Lemma 4.1 by:

sn = sn(η) = max

{

g(η) + n + 3

qn − δn
, f (ǫn)

}

. (37)

We also need the following simplified version of Definition 3.7 which will be used in the construction.

Definition 4.2 (Special extensions). At stage s + 1 we say that τ is a special extension of σn−1 if |τ| = sn

and it satisfies the properties of Lemma 3.5 for ǫ := ǫn, σ := σn−1, p := pn and s + 1 in place of s.

It remains to define and verify the construction of the map η 7→ (Vη, σn[s]).

4.3 Construction and verification for the proof of Lemma 4.1

Given η ∈ H, let σ j, j < n be the associated strings in η in order of magnitude. For simplicity, let (Ms)

be the canonical partial computable left-c.e. approximation given by η and let U := Vη. The following

construction, on input η produces an effective enumeration Us of the prefix-free machine U := Vη and an

effective approximation σn[s] of the string σn (which may or may not converge).

Construction of U, σn from η. At stage 0 we let σn[0] ↑ and U0 be empty. At stage s+ 1, do the following

provided that Ms+1 is defined on all strings of length s, and (29) holds at stage s + 1 (otherwise go to the

next stage). Check if one of the following holds:

(i) σn[s] ↑, there have been at most 2pn previous definitions of σn in previous stages, and there exists

a special extension of σn−1.

(ii) σn[s] ↓ and M̂s+1(σn[s]) > 2−1 +
∑

i∈[ j,n−1) 2−i−2 + 2−n−3.

If (i) holds, define σn[s + 1] to be the leftmost special extension of σn−1 as per Definition 4.2. If (ii) holds,

set σn[s + 1] ↑. In any case, if σn[s + 1] ↓ and KUs(σn[s + 1]) > qn · |σn[s + 1]|, issue a U-description of

σn[s + 1] of length qn · |σn[s + 1]|.

20



Remark. If σn[s + 1] is newly defined as a special extension of σn−1, by Definition 4.2 we have that

M̂s+1(σn)[s + 1] ≤ M̂s(σn−1)/(1 − ǫn) = M̂s+1(σn−1) + M̂s+1(σn−1) · ǫn/(1 − ǫn). (38)

By (29) referenced at stage s+ 1, we have M̂s+1(σn−1) < 1 so by ǫn/(1− ǫn) < 2−n−3 condition (38) implies

M̂s+1(σn[s + 1]) ≤ M̂s+1(σn−1) + 2−n−3. (39)

Verification of the constructing of U, σn from η.

First we show that the weight of U is bounded above by g(η). In this argument we do not assume anything

about the input η, the associated approximation (Ms), or the convergence of the approximations (σn[s]).

Clause (i) of the construction enforces that

the approximation to σn can change at most 2pn many times. (40)

This is the assumption we used in our calculations of (36) and (37), which we can now use to derive the

bound on the weight of U based on the values of pn, sn, qn, ǫn that we set. By (40) and since |σn[s]| = sn,

the weight of the U-descriptions that we enumerate for the approximations to σn is at most 2−snqn · 2pn . The

definition of sn in (37) and (36) imply that the above bound is at most 2−g(η) as required.

It remains to show that in the case that if (Ms) is a total computable canonical approximation to a single-

sided mixture M such that (29) holds, the construction will produce an approximation σn[s] which con-

verges to a string σn after finitely many stages, such that the second clause of (30) holds. Suppose that σn

gets (re)defined at stage s + 1 and at stage t > s + 1 it becomes undefined. By (39) and (29) we have

M̂s+1(σn[s + 1]) ≤ 2−1 +
∑

i∈[ j,n−1)

2−i−2 + 2−n−3. (41)

Since σn becomes undefined at stage t, we have M̂t(σn[s + 1]) > 2−1 +
∑

i<n−1 2−i−2 + 2−n−2. By (39),(41),

(29) and an application of Lemma 3.6 for ǫ := ǫn, p := pn, σ := σn−1 and τ := σn[s + 1], it follows

that M̂t(σn−1) − Ms+1(σn−1) > 2−pn . Since the latter event can occur at most 2pn many times, we have

shown that if σn is newly defined by the construction at some stage s + 1 and this is the 2pn-th such

definition during the construction, then it will never be undefined again, i.e. σn[t] ↓ for all t > s. In

particular, the second clause of (i) in the construction (regarding the number of previous definitions of σn)

can never block the redefinition of σn, subject to the other two condition holding. Given this fact, and

Lemma 3.5 which concerns the existence of special extensions, it is not possible that σn is undefined for

co-finitely many stages; in other words, for each s0 there exists s > s0 such that σn[s] ↓. Since (Ms) is

a left-c.e. approximation, by (29) and (39) successive values of σn[s] during redefinitions of σn will be

lexicographically increasing, so σn[s] converges to a final value σn such that σn−1 ≺ σn. Since (38) implies

(39), we have that the second part of (30) holds, as required. This concludes the proof of (34) and (35)

hence, as explained in §4.2, the proof of Lemma 4.1.

4.4 Generalization to decidably-sided strategies

We adapt argument of §4.1-§4.3 in order to prove the following analogue of Theorem 3.3.
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Theorem 4.3. There exists a real X of effective Hausdorff dimension 1/2 such that no decidably-sided
strongly left-c.e. martingale (or mixture of a computable family of f -sided strategies for some computable
f ) succeeds on it.

We need the following an analogue of Lemma 4.1 for decidably-sided left-c.e. martingales.

Lemma 4.4 (Inductive property for decidably-sided sums). There exists a prefix-free machine V with the
property that for each n > 0, chain of strings σ0 ≺ · · · ≺ σn−1, computable prediction functions fi, i < n and
M =

∑

i<n Mi, where each Mi, i < n is a mixture of a computable family of fi-decidably sided martingales
with canonical approximation such that

M̂(σn−1) < 2−1 +
∑

i∈[ j,n−1)

2−i−2

where σ0 is the empty string, there exists σn ≻ σn−1 such that

KV (σn) < |σn| · qn and M̂(σn) ≤



















2−1 +
∑

i∈[ j,n−1)

2−i−2



















+ 2−n−2.

Theorem 4.3 follows from Lemma 4.4 by the argument of §4.1 which derived Theorem 3.3 from Lemma

4.1. The only difference is that here (M j[s]) is a list of all canonical approximations to mixtures of

decidably-sided martingales whose initial capital is less than 1. For the proof of Lemma 4.4 we need

to obtain analogues of the key facts from §3 for the case of decidably-sided martingales. We start with the

following analogue of Lemma 3.5, which follows by a direct application of Lemma 3.4 to the law of large

numbers in Lemma 2.10, applied to the intersection of finitely many events.

Lemma 4.5 (Special extensions for decidably sided). There exists a computable g such that for each ǫ ∈
(0, 1), σ ∈ 2<N, n > 0, and (M j, f j), j < n where each f j is a prediction function and M j is an f j-sided
martingale with M j(λ) ≤ 1, and each ℓ > g(ǫ, n), there exists τ � σ of length ℓ such that for each j < n,

the number of correct f j-predictions in [σ, τ] is in
(

(1−ǫ)(|τ|−|σ|)/2, (1+ǫ)(|τ|−|σ|)/2
)

and M j(ρ)[s] ≤ M j(σ)[s]/(1 − ǫ) for all ρ with σ ⊆ ρ ⊆ τ.

Now we may obtain the required analogue of Lemma 3.6.

Lemma 4.6 (Growth along special extension for decidably sided). Let (M j, f j), j < n be as in Lemma 4.5,
let M j[s] be canonical approximations of M j, and define N :=

∑

j<n M j and Ns :=
∑

j<n M j[s]. Given
ǫ > 0, p, s ∈ N, σ ∈ 2<ω, if τ is the extension of σ given by Lemma 4.5, then for all t > s:

Nt(σ) − Ns(σ) < 2−p ⇒ Nt(τ) ≤ Ns(τ) + 2δ·|τ|−p

where δ := (1 + ǫ)/2.

The proof of Lemma 4.6 for the special case where N is itself a mixture of f -sided martingales for a

computable f is entirely analogous to the proof of Lemma 3.6 which refers to single-sided martingales,

with the difference that Lemma 4.5 is used in place of Lemma 3.5. The case where N is the sum of finitely

many such mixtures (with distinct prediction functions f j) follows from the special case in the same way

that the separable case of Lemma 3.6 follows from the special case of a single-sided martingale (recall the

first paragraph of the proof of Lemma 3.6).
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It remains to show that a straightforward adaptation of the argument in §4.2, §4.3 proves Lemma 4.4.

The entire set-up of §4.2 remains the same, including the parameter values and Definition 4.2 which is later

used in the construction, with the exception that instead of Lemma 3.5 we use Lemma 4.6. The construction

of the required map in §4.3 remains exactly the same, except that the updated version of Definition 4.2 of

special extensions is used (based on Lemma 4.6 instead of Lemma 3.6). The verification of the construction

in §4.3 also remains the same, except that the reference to Lemma 3.6 is replaced with a reference to Lemma

4.6. This concludes the proof of Lemma 4.4 and, as explained above, the proof of Theorem 4.3.

5 Conclusion and some questions

We have studied the strength of monotonous strategies, which bet constantly on the same outcome (single-

sided martingales) or bet on a computable outcome (decidably-sided martingales). In the case of com-

putable strategies we have seen that they are as strong as the unrestricted strategies, while in the case of

uniform effective mixtures of strategies (strongly left-c.e. martingales) they are significantly weaker. On

the other hand, for casino sequences of effective Hausdorff dimension less than 1/2, successful left-c.e.

strategies can be replaced by successful uniform effective mixtures of single-sided strategies.

Limitations of the present work and open problems. Our main negative results, Theorems 3.3 and 4.3,

rely on two main properties: (a) the given strategies are martingales and not merely supermartingales; (b)

the given monotonous martingales are not merely left-c.e. but strongly l,c.e., i.e. are assumed to have left-

c.e. wagers. Restriction (a) relates to the non-interchangeability between martingales and supermartingales

under monotonousness, as discussed in §2.2; the main interest on (a) is the connection with a problem

of Kastermans, which we briefly discuss below. Perhaps most significant is restriction (b), which rests

on the difference between mixtures of computable families of monotonous strategies on the one hand, and

monotonous mixtures of computable families of strategies on the other. The difference in these two ap-

proaches of combining monotonousness with computable enumerability of strategies, described as uniform

and non-uniform in (i), (ii) of §1 respectively, relies on whether the intermediate bets witnessed by a com-

putable observer with access to the approximation of the strategy are monotonous or not. Our main open

question is whether (b) is essential for Theorems 3.3 and 4.3:

Question: If a left-c.e. martingale succeeds on X, does there exist a left-c.e. single-sided

strategy (i.e. a single-sided martingale M which is the mixture of a computable family of

strategies) which succeeds on X?

(42)

Equivalently, we can ask if the standard notion of algorithmic randomness, Martin-Löf randomness, can

be defined with respect to single-sided left-c.e. martingales. A third limitation (c) in Theorem 4.3 is the

assumption, included in Definition 2.3, that the prediction functions f are total computable and not merely

partial computable, allowing the possibility of partiality on states σ where the wager is 0. Such a general-

ization would formalize a notion of partially decidably-sided strategies, which cannot be dealt with by the

argument in the proof of Theorem 4.3.

Relation to a problem of Kastermans. Consider the case of left-c.e. supermartingales that are par-

tially decidably-sided, according to the above discussion; such strategies are known as kastergales, see

[Downey and Hirschfeldt, 2010, §7.9]). Kastermans, as reported in [Downey, 2012] and [Downey and Hirschfeldt,

2010, §7.9] asked whether there exists a sequence where all kastergales are bounded, but some computably

enumerable strategy succeeds. A simple negative answer to this question would be that for every real X
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where a left-c.e. martingale succeeds, there exists a single-sided, or even just decidably-sided martingale

which succeeds on X. First, note that a positive answer to (42) would give a very simple and elegant nega-

tive answer to Kastermans’ question. In the same fashion, Theorem 4.3 can be viewed as a partial negative

answer to Kastermans’ question. Then limitations (a), (b) and (c) of our methods discussed above are the

obstacles in extending our partial answer to a full negative answer to Kastermans’ question.
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