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Abstract

This paper presents a model of endogenous bias in rules of price adjustment that allows

one to analyse the behaviour of inflation and output continuously throughout the entire

spectrum of rationality, from one end to the other. Specifically, it proposes an alternative

microfoundation for both the New Keynesian sticky-price and the sticky-information Phillips

Curve by considering a possibility where price setters are constrained by the length of the

time horizon  over which they can form rational expectations, and they use the growth of

past prices at the rate of the central bank’s inflation target as a heuristic alternative in place

of their own expectations beyond this horizon. Three interesting results emerge. Firstly,

how price setters form inflation expectations and whether these expectations are accurate

or heterogeneous do not matter when they are able to gather information or change prices

more frequently. Secondly, should policymakers expect private agents to similarly adopt the

inflation target as a nominal anchor for their own expectations, then even the choice of this

numerical target could prove to be pivotal to output stabilization. Thirdly, larger degrees of

bounded rationality increase the persistence of inflation, and, under sticky-information, raise

the possibility of discontinuous jumps and oscillatory dynamics of inflation and real output.

⇤
EC331 thesis prepared in partial fulfillment for the degree of B.Sc. Econometrics and Mathematical Eco-

nomics, and in participation for the XVII Carroll Round at Georgetown University and the 2018 New Economic

Talent at CERGE-EI. I am immensely grateful to A. W. Phillips Professor Ricardo Reis for advising me on this

work, and for always being a beacon of inspiration to me in the field of macroeconomics. I am also thankful

towards Dr. Matthew Levy for o↵ering insightful comments on the part for behavioural economics, and towards

Dr. Judith Shapiro for constant support. This work will not be possible without my family’s perpetual belief in

me, and also if not for the support of Kenneth Tan, Benjamin Toh and Fan Jia Rong who gave comments to an

inital draft. Contact: s.ding5@lse.ac.uk.

1



1 Introduction

Why does the relationship between inflation and output weaken, and what exactly is the role

of inflation expectations? The fact that these are sometimes unclear poses a challenge to the

microfoundations of the new Keynesian Phillips Curve (NPKC). While reflecting on Milton

Friedman’s influential 1967 presidential address to the American Economic Association that

set the stage for rational expectations (RE), Mankiw and Reis (2017) recognized the growing

tendency within the profession to lean away from this workhorse model and towards other forms

that do not impose such a demanding assumption, at least in the short run. Perhaps one might

speculate that a more robust model of expectations could potentially be found at the interaction

between new Keynesian economics and behavioural economics, given a more realistic portrayal

of the economic agent.

This, however, is not a new endeavour. Rather than follow the new Keynesian microfoundation

that proposes a purely forward-looking inflation dynamics model (Coibion, Gorodnichenko and

Kamdar, 2017), Gaĺı and Gertler (1999) introduced a model where agents are simultaneously

forward and backward-looking and Milani (2005) explored a behaviour of Bayesian learning.

Ball (2000) further examined a near-rationality model of price adjustment where agents have

rational inattention, and they pay attention only to information on inflation and nothing else

when forming their expectations. These are all ‘behavioural models’ to model the NPKC more

realistically1 by relaxing the demanding assumption of rational expectations, especially when

omniscient price setters are rare. In fact, this is the motivation behind the theory of sticky-

information. Proposed by Mankiw and Reis (2002) to replace the sticky-price model, they

model the cost of information gathering into rules of price adjustment and finds that the sticky-

information Phillips Curve is capable of producing inflation and output dynamics that are more

consistent with U.S. data.

This paper acts on this foundation to present a model of endogenous bias in dynamic price

adjustment where price setters without rational expectations rely on the central bank’s inflation

target as a heuristic anchor. It is therefore a novel attempt to present a model of inflation

expectations where agents in this model look to the central bank for their own optimal pricing

behaviour when their rationality is bounded. There is thus a bias, endogenous to the agent,

whenever there is a departure from what prices would be set optimally under rational expec-

tations. This paper will endeavour to use Tversky and Kahneman’s (1974) three judgment

1
Fuhrer and Moore (1995) showed that this canonical model is empirically inconsistent with inflation persistence

and Ball (1994a) showed that it is theoretically challenged by the disinflationary boom.
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heuristics - representativeness, availability and anchoring - to justify such a form of heuristic

behaviour when agents depart from rational expectations, and hence, attempts to introduce a

channel to which behavioural economics may impact dynamic responses of inflation and output.

Therefore, it approaches the literature on Phillips Curves from a di↵erent angle. The conjecture

for the model is as follows:

Price setters maximize utility by forming rational expectations of their future desired adjustment

price as much as they can, until they are constrained by the time horizon () beyond which they

can no longer form such expectations due to its increasingly complex nature. They subsequently

use the growth of past prices at the rate
2
of the inflation target as a heuristic alternative in place

of their own expectations beyond this horizon. In other words, their expectation Et(P ⇤
t++1)

3

is replaced with Pt�1(1 + ⇡T )+2, with ⇡T being the notation for the central bank’s inflation

target.

While there could be many constraints that prevent monopolistic firms from forming rational

expectations in reality, this paper focuses only on the length of the forecast horizon over which

one is able to do so. The motivation here lies in a somewhat odd mismatch between empirical and

theoretical macroeconomics: there have been many papers (such as Gavin and Mandal (2001),

Mankiw, Wolfers and Reis (2003) and Jonung and Lindén (2010)) written on the heterogeneity

of expectations or some biases in inflation forecasts over di↵erent time periods (or even over a

period of 12 months) that present clear evidence against the unbounded forecast horizon. Yet,

most of the theoretical work on models of inflation expectations continue to use some discounted

a�ne function of forecast horizons that sum to infinity. How does the Phillips Curve behave

when this is no longer the case? This paper thus stands in contrast with the approach taken

by current literature, which is to discount the importance4 of expectations further ahead by

assigning geometrically declining weights to expectations formed into perpetuity. By further

relaxing the standard definition of an omniscient homo economicus, this paper subsequently

explores a microfoundation established by price setters who rely on heuristic principles to ‘reduce

the complex tasks’ of assessing their future expectations of prices, which, although will not be

a precise estimate, is the best they can do given that they have ‘bounded’ or ‘procedural’

rationality (Simon, 1978).

2
Or perhaps even at some multiple of the inflation target, as section II will show that the model can be easily

adapted.

3P ⇤
t+j = Pt+j + ↵Yt+j . P ⇤

t+j is the firm’s desired price at period t + j. This implies that firms raise prices in

times of booms and lower them during recessions, with 0 < ↵ < 1 representing some real rigidities.

4
Expectations of what the firm’s desired prices would be in the far future is less important than those in the

near future as the firm gets to update their prices periodically.
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This proposed heuristic principle is a hybrid that incorporates two recent progresses in both

behavioural and monetary economics, and the design is anything but arbitrary. Firstly, the rule

is motivated in part by Gabaix’s (2014) sparsity-based utility-maximization model where agents

build simplified models of understanding the world, but replaces certain parameters which they

are unable to acquire due to their cognitive limits or costs of mental processing. However, I take

an alternative approach by using the time horizon as a basis of the agent’s reparameterization in

an attempt to align the model more closely with how a rational agent would behave in the world

through the eyes of Kahneman and Tversky. Hence, this contains traces of Gaĺı and Gertler’s

(1999) simultaneously forward and backward-looking model, except that agents are backward-

looking in expectation that some past prices will grow at the rate of the inflation target and

therefore can be used an appropriate reference point. Secondly, the rule further reasons that

since most central banks have adopted inflation targets into their loss functions5 and forward

guidance has become a recent hallmark of monetary policy, it would be rational for agents to

set prices using the central bank’s inflation target as a nominal anchor when their inflation

expectations are uncertain. In fact, this is as if one is using the inflation target to solve the

famous time inconsistency problem, except through the lens of price setters at a micro level.

As the paper will show subsequently, the role of the inflation target in the proposed rule of

price adjustment becomes crucial in stabilizing inflation and output in the presence of realistic

monetary policy shocks. By modelling the inflation target into the rule of the price adjustment,

the Phillips Curve now becomes an explicit function of the central bank’s credibility. The

following subsection provides a more thorough justification for the proposed pricing heuristic.

Acknowledging the progress made by both sides of the profession, this paper derives a framework

that may be capable of analyzing the dynamics of inflation and output continuously throughout

the entire spectrum of rationality, from one end to the other depending on the severity of the bias.

This is how the paper hopes to contribute to existing literature. To derive this framework, this

paper incorporates the rule of price adjustment into Calvo’s (1983) staggered-pricing model and

Mankiw and Reis’ (2002) sticky-information model, as both are the two more widely embraced

models of inflation expectations (Dupor, Kitamura and Tsuruga, 2006). While the sticky-

price model is flawed, it serves as a useful benchmark when one ventures to depart from full

rational expectations. The sticky-information model, on the other hand, provides a more realistic

foundation to study what happens if agents have constraints that prevent them from acquiring

rational expectations even if they are able to gather information costlessly. In fact, this paper

is a departure from the theory of sticky-information. Both models will subsequently be used to

5
See Svensson (1996), Bernanke and Mishkin (1997) with regards to the e�cacy of the inflation target as a

solution to the inflation bias problem.
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study the role of endogenous bias on a gradient going from a strict to semi-strict RE model.

By writing the proposed rule of price adjustment into both of these models, this paper will show

in section II that it is possible to derive models of both Phillips Curves that are now explicit

functions of both  and the central bank’s inflation target. Each value of  can subsequently

be mapped into a specific dynamic path and an impulse response function for prices. These will

be used in section III to study the behaviour of inflation and output in response to exogenous

shocks. In order to compare the results to some benchmark where  is initially infinity, this paper

will model the exact same shocks used by Mankiw and Reis (2002) and study the deviation in

behaviour when  decreases from infinity. I subsequently study these dynamics when  is initially

zero and when it increases from zero. Monetary policy shocks will be used to motivate the role of

the inflation target. Section IV examines the theory further by studying the interactions between

 and the initial parameters in both the sticky-price and sticky-information model, and hence

develops the framework fully. Ultimately, this framework hopes to answer two questions: Firstly,

if the current full-rationality model of expectations leaves one with some gaps in understanding

the curious relationship between inflation and output, can one better do so by surveying this

relationship from the other end of bounded rationality? Secondly, supposing that is possible to

do so, can these new Keynesian models of inflation be used as a vehicle for behavioural economics

to inform monetary policy in any way? Summarizing the results from the impulse responses and

using them to comment on these two questions, section V concludes.

1.1 Motivations for proposed design of price adjustment

One might be tempted to ask: why might price setters use the growth of past prices at the

rate of the inflation target as a heuristic alternative for their own expectations of future price

levels? When they form future expectations Et(P ⇤
t+j) to as far as they can until they become

constrained by the time horizon , why not set all Et(P ⇤
t+) = Et(P ⇤

t++1) to be a constant

function, rather than being backward-looking and set Pt�1(1+⇡T )+2 = Et(P ⇤
t++1)? Do homo

sapiens alternate from system 2 to system 1 once some threshold (such as ) has been reached?

To be sure, there are many di↵erent ways in which one can model how expectations are formed

and how prices are set conditioned on these expectations. In most cases, such as the theory of

sticky-information or sticky-prices, the model rests on a core assumption that price setters are

constrained by some exogenous variation that deter them from forming rational expectations of

some unknown price vector. Under sticky-information, for instance, this arises from the slow

rate of information di↵usion. In proposing the behaviour described above, this paper claims that
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the length of the time period ahead which one intends to form expectations over is a appropriate

internal constraint, which, similar to the exogenous constraints, is equally capable of preventing

one from forming rational expectations, even if one has information or the opportunity to change

prices. The focus, however, is to motivate an alternative behaviour to circumvent this constraint.

To do so, one might venture into fields of psychology, behavioural economics and finance where

there have been overwhelming evidences that persistently distinguished homo economicus from

homo sapiens (Lo, 2013). In their 1974 magnum opus “Judgment under Uncertainty: Heuristics

and Biases”, Tversky and Kahneman laid out three di↵erent judgment heuristics that capture

how homo sapiens would likely behave under certain circumstances. Paraphrasing using their

own words (italicized), these are:

1. Representativeness: in which probabilities are assessed by the degree to which A resem-

bles B. If A represents B or is a subset of B, and price setters know the probability of B

occurring at each period, then they can infer what the probability of A occurring is.

2. Availability: in which probabilities are assessed by the probability of past events or the

ease to which similar occurrences can be brought to mind.

3. Adjustment from an anchor: in which probabilities are assessed by making estimates

starting from an initial value, that might be the result of some partial computation.

Can one contextualize these judgment heuristics in the microfoundations of dynamic price ad-

justment to motivate the behavioural rule? It would perhaps be appropriate to do so if the

behavioural model is centered upon some degree of backward-lookingness. This is a rational

course of action for the price-setter, who, in lacking the cognitive tools to navigate the com-

plexity that is ahead of him, turns to his experience or the information contained in some

realized prices as a guide. In fact, this paper takes the view that Tversky and Kahneman’s

set of judgment heuristics (henceforth TKC) are relevant only if price setters are allowed to be

backward-looking. This provides the justification for using past prices, one period before6 as a

heuristic instrument.

Consider using the TKC to evaluate the following: is Et(p⇤t+) representative of Et(p⇤t++1)?

This could be true, especially if prices are sticky and are unlikely to change between an interval

of one period. Then, one might argue that one’s expectation Et(p⇤t+) is as good as Et(p⇤t++1).

However, the strength of this argument weakens if one were to argue that Et(p⇤t+) is as good as

6
Assume that price setters only refer to prices realized one period before as this vector contains the most recent

information about the state of the economy.
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{Et(p⇤t++1)...Et(p⇤t++q)} 8 q 2 (1,1) because the approximation of expectation over the price

vector between two periods that are longer apart begins to fail: even if the central bank targets

a zero inflation rate such that price levels remain constant, it is possible that the economy could

be hit with a shock in the future that is unobserved at time t.

In comparison, using Pt�1(1+⇡T )+2 as a representation for Et(p⇤t++1) is a better approximation

if one were to assume that price setters demonstrate satisficing behaviour by seeking to minimize

their mean squared errors (MSE) of price forecast rather than seeking to target the price level

perfectly: rather than exercise their discretion in forming forecasts, which may be inconsistent

to the literature on rational inattention, they simply follow a rule that suggests raising prices by

the rate of the inflation target. For price setters who are unable to observe P ⇤
t+j and hence form

expectations Et(P ⇤
t+j), it is a rational alternative to believe that

P ⇤
t+j

P ⇤
t

= (1+⇡T )j , especially since

P ⇤
t+j is the aggregate price level that the central bank indirectly targets through the inflation

target. This is further appropriate if the time horizon  over which price setters are able to form

rational expectations is long enough such that the eventual realized inflation beyond this period

is close to the target. Then, the justification for this rule simply rests on having the central

bank to be credible. Implicitly, this proposes a case of profit-satisficing for the price-setter that

occurs whenever the central bank minimizes its loss function.

Here, price setters know that past, realized prices one period before is not a perfect anchor for

them to form expectation of some prices in the future. However, this does not matter to them

insofar as over the long run both converges. For example, Pt�1(1 + ⇡T )+2 is mathematically a

linear trend extrapolated o↵ a point Pt�1 from the business cycle, with  on the x-axis. Then,

depending on whether Pt�1 lies on a peak or the trough, this extrapolated trend could either

be above or below the actual trend. This, however, is not a concern to our price setters, who

instead only care about their long run convergence. This requires the assumption that the

inflation target is set to be equal to the long run average growth rate of prices, and so having

prices to grow at the rate of the inflation target regardless of its position at the business cycle

will allow for convergence to the mean. This, is satisficing behaviour. Setting Et(p⇤t+) as an

approximation for {Et(p⇤t++1)...Et(p⇤t++q)} risks resulting in the two abovementioned trends

diverging forever, with the peril here being the argument that price setters are willing to tolerate

such a large mean squared error (MSE).

What about the criteria of availability under TKC? How do one assess the probability of prices?

But once one realizes that this is but a matter of inflation forecasting, the question becomes:

how often do the same (or certain) rates of inflation occur, over how many time periods and what

is its associated mean and variance? These questions matter because persistence of inflation is
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likely to be representative: to forecast what inflation will be tomorrow, one can simply refer to

the past for answers. If this is so, then Pt�1 naturally becomes a suitable factor in the forecast

of P ⇤
t+. Furthermore, this paper is inclined to take the view that it is the mean of inflation that

matters to price setters more, rather than its variability. There are two good reasons established

on the grounds of satisficing behaviour once again: (1) forecasting the long run average of

inflation of tomorrow ⇡̄t+1 is easier than forecasting a point estimate ⇡t+1 and (2) given rational

inattention, it is unlikely that price setters will actively gather all associated information on the

economy in an attempt to precisely forecast inflation. Then, given (1) and (2), price setters

actually do not need to bother with inflation forecasts if they can equate the mean of inflation

with the inflation target over the medium to long run! This is not a thoroughly demanding

assumption, especially since the hallmark of monetary policy today lies in the central bank’s

commitment to keep prices low and stable. With these premises, price setters expect past prices

Pt�1 to grow at the rate of the inflation target on average, and this becomes an approximation

for Et(p⇤t+k+1).

For practical reasons, setting Pt�1(1+⇡T )+2 = Et(P ⇤
t++1) may even allow for richer dynamics

of the impulse responses which could be extremely helpful in demonstrating the theory. If

one were to instead pursue an alternative where the price setter forms expectations for as far

as he can and fixes them for the subsequent horizon beyond which he can no longer form

expectations, this may be no di↵erent from the benchmark case of price adjustment under full

rational expectations, with the exception of having the price adjustment rule being split into its

usual Calvo summation of expected prices and some constant. One may thus expect the impulse

responses under this alternative to be of little di↵erence when compared to the benchmark.

2 Reparameterizing the Phillips Curve with 

2.1 Deriving a model of the sticky-price new Keynesian Phillips Curve with

bounded rationality

I begin by modifying the microfoundation of Calvo’s (1983) staggered-pricing model using the

proposed rule of price adjustment explained in the introduction. In this original model, oppor-

tunity to change prices arrive stochastically at a rate of �, where 0  �  1. When price setters

have the opportunity to change prices, they set their adjustment price Xt
7 to be equal to some

7
All prices Pt, adjustment price Xt and money Mt are expressed in logs throughout this paper.
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weighted average of current and expected optimal prices P ⇤
t+j in the future as follows:

Xt = �
1X

j=0

(1� �)jEt(P
⇤
t+j) (1)

Observe that the adjustment price at period t is purely a function of expectations formed today

of what the future desired price will be in perpetuity. This presupposes that the price setter is

capable of forming expectations over any time horizon, however long it is. I relax this demanding

assumption and propose that the price setter does not have such capabilities. Instead, I propose

that they behave like rational agents and form rational expectations of their desired prices as

much as possible, until they reach a process where they can no longer do so as a result of their

cognitive limits. Hence, the rule of price adjustment is rewritten in the following manner:

Xt = �
X

j=0

(1� �)jEt(P
⇤
t+j) + �

1X

j=+1

(1� �)jPt�1(1 + ⇡T )j+1 (2)

Under this rule, price setters can only form rational expectations of what their desired prices

P ⇤
t are over a time horizon that is  periods long, and they use the growth of past prices at

the rate of the central bank’s inflation target as a heuristic alternative in place of their own

expectations beyond this horizon. Observe that this rule is not a complete deviation away from

Calvo’s model. It continues to presuppose that price setters behave in a forward-looking manner

as much as they can. In fact, it requires them to be strictly forward-looking for as long as the

time horizon over which they form expectations is within their cognitive boundaries. This rule

also assumes credibility of the central bank in order to substantiate the choice of ⇡T as an anchor

for inflation. This is thus a departure from how current literature has approached the issue (see

Afrouzi and Yang (2016), Milani (2005) and Gaĺı and Gertler (1999)). This microfoundation

further suggests that some backward-looking behaviour only exists for some , and the position

of  in turn determines the geometric weights that past prices have in setting prices today.

As with Calvo’s original staggered-pricing model, aggregate prices Pt today continue to be a

weighted average of all prices that firms have set in the past:

Pt = �
1X

j=0

(1� �)jXt�j (3)

Using the law of iterated expectations and rearranging the algebra, which I leave to the appendix,

it is possible to combine equations (2) and (3) to obtain the following model of inflation:

⇡t =
↵�2

1� �(1�  )
Yt +

1� �

1� �(1�  )
Et(⇡t+1) +

 �2

1� �(1�  )
Pt (4)

such that

  =
�(1� �)+1(1 + ⇡T )+2

�� ⇡T (1� �)
(5)
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For the rest of this paper, I refer to equation (4) as the -augmented sticky-price Phillips Curve.

On an a priori basis, this model of staggered pricing suggests that output gaps and expectations

may contribute less to inflation depending on the size of  . An important point to note here

is that this modified Phillips Curve is in fact nested in the original model: if   is 0, the

-augmented model reduces to the canonical sticky-price model given by:

⇡t =
↵�2

1� �
Yt + Et(⇡t+1) (6)

When will   be equal to 0? If one were to make the strict assumption that � 6=1, then the

value of   as 0 can never be obtained by having � = 1. This is a reasonable assumption, given

that opportunity for price adjustment almost never arrives with full certainty at each period.

As such, the value of   now becomes contingent on the value of . Then, observe that as 

increases to 1, (1��)+1 geometrically declines faster then (1+⇡T )+2 increases. This holds if

one were to assume that � > ⇡T , which is a suitable assumption to make. With inflation targets

of most central banks centered arbitrarily at 2%, �  ⇡T suggests that firms change prices less

than once every 50 quarters! This is a rather absurd assumption. For now, this paper will

endeavour to defer a more thorough discussion on the role of the inflation target ⇡T to section

3.5, where shocks to monetary policy are analysed in a setting where private agents respond by

forming expectations using the inflation target as a nominal anchor. Hence, one might as well

treat ⇡T tentatively as zero.8 As long as � > ⇡T ,   reduces to 0 for a large enough  as shown

by taking the limits:

lim
!1

�(1� �)+1(1 + ⇡T )+2

�� ⇡T (1� �)
= 0 (7)

This result must necessarily hold. Having  to be equal to 1 essentially brings one back to the

workhorse model where price setters are able to form expectations over an indefinite period, and

hence, equation (4) must revert back to (6).

By incorporating the bias in the rule of price adjustment, the canonical Phillips Curve is now an

explicit function of both  (and the inflation target ⇡T ), which in turn determines the extent to

which output gaps and expectations contribute to inflation. This provides a theoretical model

to analyse the behaviour of inflation when  ranges from zero from one end of spectrum to 1

at the other. Should price setters have a shorter horizon over which they can compute rational

expectations, the role of inflation expectations and output matter less for actual inflation today

as a significant share of the price-setting rule is accounted for by the use of heuristics. What may

be of greater interest is the additional Pt term that now features in the sticky-price model. As

section III will show, this changes the solution for a dynamic path of prices. One can immediately

8
As section III will illustrate, zero is a suitable parameter value for ⇡T

also due to the fact that the path of

money Mt (either in levels or in growth rates) is set to zero ex-post to the exogenous shocks.
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infer that inflation and output dynamics under the -augmented model will deviate from those

of the benchmark as long as  6= 1.

2.2 Deriving a model of the sticky-information Phillips Curve with bounded

rationality

As an alternative proposal to replace the sticky-price model, Mankiw and Reis (2002) writes a

model of price adjustment where the rate of information arrival, �, is slow. As not everyone

receives the most updated information about the state of the economy, only a fraction updates

their prices optimally and the rest continue to set prices based on past information. This assumes

that whenever price setters acquires information, they behave in a manner that is consistent with

rational expectations. The price adjustment rule of the benchmark follows:

Xt = Et�j(P
⇤
t ) (8)

With aggregate price levels being a weighted average of all prices in the economy:

Pt = �
1X

j=0

(1� �)jEt�j(P
⇤
t ) (9)

This model of price adjustment motivates a microfoundation where price setters still form ra-

tional expectations, but these are expectations formed ex-ante to the information that arrives

later. However, depending on the rate of information arrival, price setters may have to rely on

some expectations that were formed at the beginning of time. Like Calvo’s staggered-pricing

model, this presupposes that there are no bounds to the horizon over which expectations are

formed. Applying the same behavioural conjecture, this assumption is relaxed and replaced with

the following:

Xt =

8
><

>:

Et�j(P ⇤
t ) if j  

Pt�j(1 + ⇡T )j if j > 

Similar to the microfoundation of the -augmented sticky-price model, this rule of price adjust-

ment suggests that price setters anchor themselves on the inflation target as a guide to how

prices would grow in the future. What is di↵erent here is the recency of past prices that price

setters choose as a reference point. Here, the sticky-information model di↵ers from the sticky-

price model in the past expectations matter for inflation today, rather than future expectations.

As a result, only prices occurring a period before the most outdated expectation represent the

next-best knowledge that the price setter has about the state of the economy. This results in

an adaptive behaviour that is more backward-looking into the past as compared to that for
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the -augmented sticky-price model. With this rule of price adjustment, overall prices in the

economy are then pinned down by the following:

Pt = �
X

j=0

(1� �)jEt�j(P
⇤
t ) + �

1X

j=+1

(1� �)jPt�j(1 + ⇡T )j (10)

With some tedious algebra, which I once again leave to the appendix, inflation can now be

expressed as:

⇡t = (
↵�

1� �
)Yt + �

X

j=0

(1� �)jEt�j�1(⇡t + ↵�Yt)

+ �
1X

j=+1

(1� �)j(1 + ⇡T )j
✓
⇡t�j + (

�

1� �
)Pt�j

◆
(11)

For the rest of this paper, I refer equation (11) as the -augmented sticky-information Phillips

Curve. By and large, this model of inflation resembles the benchmark sticky-information model.

Inflation today is a result of some output gap, sum of past inflation expectations formed up

to  periods into the past and some past inflation and prices realized more than  + 1 periods

ago in the past. Crucially, past expectations of current inflation only matter until a certain

time horizon  + 1 from the past (with a lower bound defined by t �  � 1) whereas they

extend back to the beginning of time in the benchmark. This is consistent with the bias under

bounded rationality, where price setters are only permitted rational expectations over a limited

time horizon. Beyond this horizon, what matters more for inflation today is past inflation. As

a result, this model of price adjustment introduces inflation inertia and a variant of adaptive

inflation by design similar to Gaĺı and Gertler’s (2004) backward-looking rule of thumb model,

except that price setters in this model only turn to backward-looking behaviour conditionally

when they need to rely on the inflation target.

As the paper will show in section III, it is further useful to study the model dynamics by

considering the value of  at its extremes. Suppose =1. This is to say that price setters

can make forecasts of what optimal prices are over a time period that is infinitely large. This

behaviour thus implies the absence of any pricing bias. It is no surprise then, that equation

(11) reduces to the baseline model of the sticky-information Phillips Curve as all coe�cients

(1 � �) of past inflation ⇡t�j and past prices Pt�j�1 are raised to the power of infinity. Under

the assumption that � 6=1 and � > ⇡T , the entire summation term of past inflation and price

variables become 0. This retrieves the benchmark model of sticky-information given by:

⇡t = (
↵�

1� �
)Yt + �

1X

j=0

(1� �)jEt�j�1(⇡t + ↵�Yt) (12)
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On the other hand, suppose instead that =0. For the sticky-information model this suggests

the unique case where price setters can only form rational expectations for one period ahead:

⇡t = (
↵�

1� �
)Yt + �Et�1(⇡t + ↵�Yt) + �

1X

j=2

(1� �)j(1 + ⇡T )j
✓
⇡t�j + (

�

1� �
)Pt�j

◆
(13)

The reason that price setters continue to form expectations even when  = 0 lies in the theory

of sticky-information. Given that information arrives with a lag, the expectations formed over

one period ex-post to information arrival does not necessarily reflect the best state of knowledge.

In this aspect, price setters optimizes with a lag as well. Subsequently, equation (13) indicates

that past expectations of inflation only matter for inflation up to one period ago, and there is a

larger role assumed by adaptive inflation.

2.3 Motivations for proposed microfoundation

Up to this juncture, the paper has presented a variant of the Phillips curve motivated by both

sticky-prices and sticky-information under a set of behaviour that is discrete in motion: first, a

strictly forward-looking behaviour as one would expect in the benchmark full rational expecta-

tions model and second, some backward-looking rule of thumb with weights conditioned on the

time horizon . Here, this paper recognises that the assumption of full rational expectations

does not strictly require the price setter to form such expectations over an infinite time horizon,

as the adjustment process imposes weights on these expectations that geometrically decline to

zero anyway. This suggests that a working model does not require price setters to be able to

form such expectations over some horizon  such that  = 1. However, notice that the rule

of price adjustment proposed earlier attaches geometrically declining weights to the heuristic

term in a similar manner and therefore continues to give a non-trivial role to rational expec-

tations in this microfoundation. What is of a larger significance here is the inclusion of some

reference-dependent expectations that has long been identified as a cornerstone of loss-averse

utility functions. This would be relevant if one were to examine some utility function of price

setters who are loss averse9, such that they prefer to target some ‘general growth’ in price levels

than forming their own stochastic expectations. As Tversky and Kahneman (1991) famously

noted, one’s preferences change endogenously according to where the point of reference is. Why

not apply the same strand of thought to the formation of expectations? Surely as self-fulfilling

equilibriums of hyperinflation and deflations would show, the expectations that one forms of

prices are very much dependent on the nature of the environment that one is in. In this sense,

9
See ‘A Model of Reference-Dependent Preferences’ by Kőszegi and Rabin (2006).
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this paper has proposed the heuristic in the price adjustment rule to resemble some form of

adaptive behaviour.

In ‘Disagreement about inflation expectations ’, Mankiw et al. (2004) illustrated using 50 years

of survey data on median inflation expectations (12 months ahead) in the U.S. that a central

bias exists in the inflation forecasts by both professional economists and households, and there

is significant evidence to reject the claim of rational expectations for both. What is relevant to

this paper here is that knowing more about the economy - as one could claim about technocrats

- certainly does not help one in making better predictions. Therefore, motivating a theory of

bounded rationality in rules of price adjustment naturally builds on the literature and what the

profession has already learned about the formation of expectations. More importantly, perhaps

what is less agreed upon within the profession is the upper bound that  should take in place

of 1 in the workhorse model as a standard. Whether having such a standard is important, and

whether or not it matters if  is not modelled as 1 is precisely the goal of section III.

3 The dynamic behaviour of inflation and output un-

der varying degrees of price setter foresight

Having derived the -augmented Phillips Curves for both sticky-prices and sticky-information,

I examine the behaviours of inflation and output in the presence of macroeconomic shocks and

compare them to the results given by the baseline model as outlined by Mankiw and Reis

(2002). Note that the shocks are the same except for the introduction of an inflation target by

an independent central bank :

• Macroeconomic shock 1: an unexpected fall in the level of aggregate demand by 10% at

period 0. That is, Mt = �log(0.9) for t  0 and Mt = 0 for t � 0. The inflation target ⇡T

is unchanged at 0.0% in all periods.

• Macroeconomic shock 2: an unexpected fall in the rate of money growth from 2.5% to 0%

per period at period 0. Thus, Mt = 0.025(t + 1) for t  �1 and Mt = 0 for t � 0. The

inflation target ⇡T is lowered from 2.5% to 0.0% at period 0.

• Macroeconomic shock 3: an announced disinflation at period t = �8 of the same magnitude

as (2). While the announcement of the forthcoming change inflation target ⇡T occurs at

period t = �8, it is only lowered from 2.5% to 0.0% at period t = 0.

14



As the intention here is to study the extent to which the business cycle behaves di↵erently in

response to the same shock, the same parameter10 values in Mankiw and Reis (2002) are used

but di↵erent solutions for the dynamic paths are solved under the -augmented Phillips Curves.

This is where the paper takes another di↵erent direction: instead of having a single parameter �

(or �, for the sticky-information case) to pin down the these solutions, there is now an additional

parameter, , that concurrently specifies the deviation from some benchmark in the ideal world

where information and opportunity to change prices arrive with full certainty at each period.

Then, by adjusting the values of  in relation to � and vice versa on an incremental basis, this

section introduces a framework that models a behaviour of inflation and output precisely for

each degree of bias. To achieve this, the dynamics of inflation and output when  is 1 and

when  deviates from 1 will be first illustrated, followed by the results when  is zero and when

 increases from zero. By motivating this study from both extremes, the hope is that one can

learn more about the limits of this behavioural model.

3.1 Solving for a dynamic path under the -augmented sticky-price Phillips

Curve

In order to construct a dynamic path for prices under the modified sticky-price and sticky-

information Phillips Curve, I use the exact same specifications in Mankiw and Reis’s original

paper for a model of aggregate demand given by:

Mt = Pt + Yt (14)

This model of aggregate demand can be combined with the -augmented sticky-price model in

(4) to yield the following expectational di↵erence equation:

Et(Pt+1) +

✓
 �2

(1� �)
� (1 + � +

�

µ
)

◆
Pt +

�

µ
Pt�1 = ��Mt (15)

with parameters µ, � and   defined as:

µ =
↵�2

1� �(1�  )
(16)

� =
↵�2

1� �
(17)

  =
�(1� �)+1(1 + ⇡T )+2

�� ⇡T (1� �)
(18)

10
According to the benchmark models, ↵ = 0.1, � = � = 0.25, ⇢ = 0.5. The residual for monetary policy shocks

is chosen to have a standard deviation of 0.007 based on historical estimates of monetary aggregates M1 and M2

between 1960 and 1999. Refer to Mankiw and Reis (2002) pages 1302 and 1308 for a more thorough discussion.
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A dynamic path for prices given by the model of the sticky-price new Keynesian Phillips Curve

can thus be obtained by solving for the expectational di↵erence equation in (15) such that:

Pt = ✓Pt�1 + (
↵�2

1� �(1�  )
)✓

1X

i=0

�
(

1� �

1� �(1�  )
)✓
�i
Et(Mt+i) (19)

This equation itself pins down the dynamic path for all prices and subsequently inflation. The

path of output can then be obtained from equation (14) easily. A full proof is deferred to the

appendix. Observe that as  ! 1, price setters approach a world without bias: they have full

rational expectations.   subsequently approaches 0, allowing us to obtain the impulse response

of the benchmark model given by:

Pt = ✓Pt�1 + (1� ✓)2
1X

i=0

(✓)iEt(Mt+i) (20)

At this juncture, notice that equations (19) and (20) each produces a di↵erent dynamic path

of prices (and, of output) that di↵er for two reasons. First, observe that the impulse response

of prices under the model with bounded rationality looks exactly like the impulse response of

the benchmark model, except that each of the terms in the summation operator are multiplied

by some scaling factor 6= 1. Second, the key parameter that determines the dynamic path is ✓,

and its value di↵ers for both equations. In the model under bounded rationality, ✓ is chosen as

the smaller of the two positive roots from the coe�cient of LP ⇤
t (L and F are lag and forward

operators respectively) following expectational di↵erence equation:

 
F 2 +

✓
 �2

1� �
� (1 + � +

�

µ
)

◆
F +

�

µ

!
LP ⇤

t = ��M⇤
t (21)

rather than the expectational di↵erence equation in the benchmark case as given by:

✓
F 2 � (2 + �)F + 1

!
LP ⇤

t = ��M⇤
t (22)

Subsequently, ✓ in the modified model is obtained without a loss of generality as the smaller of

the following two positive roots:

✓ =

� �2

1�� + (1 + � + �
µ)±

s✓
 �2

1�� � (1 + � + �
µ)

◆2

� 4�
µ

2
(23)

While ✓ determines the dynamic paths of prices and output, the deviation from its benchmark

value now rests on the value of  . Only when   = 0, one retrieves the original value of ✓ given

by the benchmark model. In turn, this occurs when  = 1, or when price setters have unlimited

foresight and can formulate rational forecasts over an infinite time horizon. Expectedly, the
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dynamic properties of the model are now determined by the values of both � and , such that

✓ is only defined when: ✓
� �2

1� �
� (1 + � +

�

µ
)

◆2

� 4�

µ
� 0 (24)

With some tedious algebra, which I once again leave to the appendix, the above inequality can

be equivalently expressed as an inequality held between two functions f(.) and g(.) where

f(,�) � g(,�) (25)

such that

f(,�) = (  +
↵�

1� �
)2 =

✓
�(1� �)+1(1 + ⇡T )+2

�� ⇡T (1� �)
+

↵�

1� �

◆2

(26)

g(,�) =
4

1� �
(  � ↵) =

4

1� �

✓
�(1� �)+1(1 + ⇡T )+2

�� ⇡T (1� �)
� ↵

◆
(27)

This relation subsequently imposes a restriction on the possible values that  and � can simul-

taneously take in the sticky-price model. As the paper would illustrate in section 3.4 below, this

restriction limits the realism of the sticky-price model in the context of bounded rationality, as

there are only a certain range of � that defines , which subsequently implies that there is only

a restricted range of real solutions for the path of prices.

3.2 Solving for a dynamic path under the -augmented sticky-information

Phillips Curve

Similar to the sticky-price model, the sticky-information model also imposes constraints on

parameter values of . However, this constraint is no longer between � and  but instead

between t and . This is due to prices being set by two di↵erent groups of price setters in the

model:

Pt = �
tX

j=0

(1� �)jEt�j [(1� ↵)Pt + ↵Mt] + �
1X

j=t+1

(1� �)jEt�j [(1� ↵)Pt + ↵Mt] (28)

Price setters who are aware of the demand shock that occurs at t = 0 strictly form expectatons of

the new path of prices ex-post beginning from t = 0, while those who are not aware of the demand

shock have ex-ante expectations that are formed strictly before t = 0. It is straightforward to

see that the upper bound of 1 the second term is changed to  under bounded rationality and

the above is written with a heuristic as follows:

Pt = �
tX

j=0

(1� �)jEt�j [(1� ↵)Pt + ↵Mt]

+ �
X

j=t+1

(1� �)jEt�j [(1� ↵)Pt + ↵Mt] + �
1X

j=+1

'jPt�j (29)
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where ' = (1 � �)(1 + ⇡T ). Notice that price setters who hold ex-ante expectations are now

constrained by their bounded rationality and no longer have past expectations that are formed

since the beginning time. This imposes a restriction t   � 1. Notice further that  does

not feature in the first summation operator. This implicitly assumes that the constraint t 

 � 1 being satisfied, such that price setters who form ex-ante expectations do so within their

cognitive bounds. What happens if t > ? The above equation must then be written in the

following manner instead:

Pt = �
X

j=0

(1� �)jEt�j [(1� ↵)Pt ++↵Mt] + �
1X

j=+1

'jPt�j (30)

Observe that all expectation terms are ex-post to the shock at t = 0, with the furthest possible

expectation formed in the past given by Et�Pt. These are all expectations formed by price

setters who are aware of the new path of aggregate demand. Price setters who had ex-ante

expectations can no longer form expectations as the time period t is now too far away from

t = 0. As a result, they set prices based on the heuristic expressed by the second term. Leaving

the full derivations to the appendix, the impulses responses are thus summarized by the following:

Pt =

8
>>>>>>><

>>>>>>>:

�log(0.9)

✓
(1��)t+1�(1��)+1

◆
+�

1X

j=+1

'jPt�j

1�(1�↵)

✓
1�(1��)t+1

◆ for t  � 1

⇣Pt��1 + 'Pt�1 if t > 

where ⇣ = �
!'

+1 and ! = 1� (1�↵)[1� (1� �)+1] are constants for a given . This provides

the path for prices under policy experiment 1. Notice that for t > , prices today are some

weighted average of yesterday’s prices and prices  � 1 periods ago. A large  subsequently

gives less Iight to past prices (as an anchor)  � 1 periods ago. This is consistent with price

setters approaching the perfect benchmark, resulting in past prices becoming more redundant

in serving its role as an anchor. The dynamic paths of prices for experiment 2 and 3 are solved

in a similar manner in subsection 4.5 of the appendix.

3.3 Theoretical results in the presence of macroeconomic shocks when  de-

viates from 1

Having solved for the dynamic path of prices for both the -augmented sticky-price and sticky-

information model, the paper now turns to illustrating the business cycle in response to macroe-

conomic shocks and how it evolves throughout the the entire spectrum as  is allowed to deviate
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from 1. Three interesting results immediately emerge when these impulse responses are com-

pared to the benchmark11:

Result 1: When price setters are only capable of forming rational expectations ahead for a

limited planning horizon, inflation demonstrates a larger degree of persistence and takes longer

to return to equilibrium after an exogenous shock. Throughout this paper, inflation persistence

will be defined as the impulse response having a gentler gradient on its path of return
12. Here,

inflation persistence is endogenous to the price adjustment rule rather than the Phillips curve13.

This is hardly a surprising result, especially given that the backward-looking nature of price

adjustment is now provided by the heuristic bias. Note, however, that a deviation from full

rational benchmark here is still unable to generate a hump-shaped response of inflation under

the sticky-price model. This is also unsurprising. Consistent with Woodford (2003), this is due

to agents being able to acquire full forward-looking behaviour for as long a horizon as they can

even under the proposed rule of price adjustment motivated by this paper.

Result 2: The path of inflation is no longer smooth under the sticky-information model. Rather,

in the presence of pricing bias, inflation may jump discontinuously after some periods of the

shock before oscillating back to equilibrium.

Result 3: Under the case when   10, announced disinflation is equally capable of causing a

boom, contradicting the results given by Mankiw and Reis (2002) and how central banks conduct

monetary policy in reality. All impulse responses of inflation and output are given as follows:

11
That is, when  = 1.

12
This definition makes it easy to identify persistence just from a simple inspection of the impulse responses

themselves.

13
Fuhrer and Moore (1995) models inflation persistence with ⇡t =

1
2⇡t�1 +

1
2Et⇡t+1 + cYt where the backward-

lookingness is modelled explicitly.
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3.3.1 Macroeconomic shock #1 when  deviates from 1: an unexpected fall in

aggregate demand

Inflation under sticky-prices Inflation under sticky-information

Output under sticky-prices Output under sticky-information

3.3.2 Macroeconomic shock #2 when  deviates from 1: an unexpected fall in

the rate of money growth from 2.5% to 0% per period at period 0

Inflation under sticky-prices Inflation under sticky-information
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Output under sticky-prices Output under sticky-information

3.3.3 Macroeconomic shock #3 when  deviates from 1: an announced disinflation

at period t = �8 of the same magnitude as (2)

Inflation under sticky-prices Inflation under sticky-information

Output under sticky-prices Output under sticky-information
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3.4 Theoretical results in the presence of macroeconomic shocks when  de-

viates from 0

Having illustrated the behaviour of inflation and output when  was initially infinity and when 

deviates from this full-rational expectations benchmark, this paper now takes a position to study

their behaviour from the other end of the spectrum: that is, when  is first 0 and when  starts

deviating from zero. At this end of the extreme,  = 0 corresponds to the hypothetical case

when price setters cannot form rational expectations at all, and becomes thoroughly backward-

looking conditioned on the inflation target. Yet, as this paper will show, both models of inflation

expectations augmented with  does not yield entirely oscillatory dynamics14 as one would expect

from the purely backward-looking model. What is unique about  approaching the limit of 0 is

that the impulse responses under both sticky-prices and sticky-information have to be modified

further.

Under the -augmented sticky-price model,  = 0 imposes strict bounds on the values of �. This

in turn determines the value of ✓ that pins down the dynamic path of prices. This is a result of

having to satisfy the following set constraints first introduced in secion 3.1:

f(,�) � g(,�) (31)

✓µ

�
< 1 (32)

such that

f(,�) = (  +
↵�

1� �
)2 =

✓
�(1� �)+1(1 + ⇡T )+2

�� ⇡T (1� �)
+

↵�

1� �

◆2

(33)

g(,�) =
4

1� �
(  � ↵) =

4

1� �

✓
�(1� �)+1(1 + ⇡T )+2

�� ⇡T (1� �)
� ↵

◆
(34)

While both equations (31) and (32) pin down the dynamic properties of the -augmented sticky-

price model, they also introduce a theoretical challenge to the model by limiting the values that

both  and � can simultaneously take. As the value of  decreases from 1 and approaches 0,

the range of values that � can take narrows to [0.88, 0.99]. The sticky-price model then implies

that a dynamic path of prices will now only exist for a very high frequency of price change,

which could well be inconsistent with empirical data. Table 1 below illustrates the relationship

between , � and the subsequent solution for ✓. It thus becomes apparent that it is no longer as

straightforward to compare the impulse responses for  = 0 and for small deviations away from

this lower bound, as a chosen value of � /2 [0.88, 0.99] for deviations of  above 0 will not yield

a solution for the path of prices. In order to subsequently provide a meaningful benchmark for

14
Mankiw and Reis (2002) also illustrates the impulse responses of a model of adaptive expectations in the form

of ⇡t = (
↵2�
1�� )Yt + ⇡t�1 to the shocks elaborated in this paper.
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Table 1: range of possible � narrows as  approaches 0

 � ✓

8 [0.23, 0.99] [0.9911, 0.0854]

6 [0.28, 0.99] [1.0009, 0.0854]

4 [0.37, 0.99] [0.9973, 0.0854]

2 [0.53, 0.99] [1.0256, 0.0854]

0 [0.88, 0.99] [1.2663, 0.1710]

the dynamics of inflation and output as  deviates slightly from 0, this paper will first provide a

complete characterisation of these dynamics as � goes from one end of the spectrum to another.

The purpose of this is to allow for an inference of behaviour beyond an arbitrarily chosen value

of � used for subsequent analyses as  deviates from 0. Interestingly, these results reveal three

highly contrasting paths of inflation when  is kept at 0, but � is allowed to vary slightly from

the lower bound of 0.88.

Path 1: At the extreme lower bound with  = 0, inflation and output exhibits explosive dynamics

and essentially becomes a bubble. Recall that the dynamic path of prices under the sticky-price

model is pinned down by the following equation:

Pt = ✓Pt�1 + (
↵�2

1� �(1�  )
)✓

1X

i=0

�
(

1� �

1� �(1�  )
)✓
�i
Et(Mt+i) (35)

where a real solution for ✓ is obtained from solving the quadratic from the following expectational

di↵erence equation:

 
F 2 +

✓
 �2

1� �
� (1 + � +

�

µ
)

◆
F +

�

µ

!
LP ⇤

t = ��M⇤
t (36)

When  is uniquely 0 and � is 0.88, the equations above yield a real solution for ✓ being larger

than 1. From equation (35), this results in prices today becoming ever higher than yesterday’s

and thus inflation ends up becoming a bubble.

Path 2: Raising � slightly to 0.90 with  = 0 results in a static path of inflation. This is a

result of ✓ being exactly 1. As a result of prices not changing after the intial shock, inflation

initially falls and returns to zero immediately at period t = 0.

Path 3: The paths of inflation retrieve their benchmark characteristics as � increases even

higher. This is a result of ✓ < 1. The impulse responses of both inflation and output are

summarized by figures (13) - (18) below:
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3.4.1 Macroeconomic shock #1 when  is 0: an unexpected fall in aggregate de-

mand

Inflation under sticky-prices Output under sticky-prices

3.4.2 Macroeconomic shock #2 when  is 0: an unexpected fall in the rate of

money growth from 2.5% to 0% per period at period 0

Inflation under sticky-prices Output under sticky-prices

24



3.4.3 Macroeconomic shock #3 when  is 0: an announced disinflation at period

t = �8 of the same magnitude as (2)

Inflation under sticky-prices Output under sticky-prices

The impulse responses under sticky-information di↵ers from those under sticky-prices in that no

parameter values are restricted in any way by the value of . However, the impulse responses

become completely di↵erent when  = 0. Overall prices under sticky-information are instead

pinned down by the following equation15:

Pt = �[(1� ↵)Pt + ↵Mt] + �
1X

j=1

'jPt�j (37)

Observe that prices are now independent from expectations. This holds true by definition and

is implied by having  = 0. The dynamic path of prices under all three macroeconomic shocks

is then given by:

Pt =
↵�

1� �(1� ↵)
Mt +

�

1� �(1� ↵)

1X

j=1

'jPt�j (38)

Rejecting the equilibrium where inflation is either a bubble or follows some static path, the

following impulse responses study the behaviour of inflation and output when  is allowed to

deviate marginally from the extreme end of 0. The parameter values of � and � are set to be

0.54. Two particular conclusions stand out:

Conclusion 1: In the presence of recessions, inflation tends to be more resilient but also takes

much longer to return to equilibrium after the shock. Combined with result 1, this implies that

as  varies from 1 to 0, the response of inflation varies from being most sensitive to being the

15
Equation (37) is obtained from setting t = 0 in the equation Pt = �

tX

j=0

(1� �)jEt�j [(1 � ↵)Pt + ↵Mt] +

�
1X

j=t+1

(1� �)jEt�j [(1� ↵)Pt + ↵Mt].
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least sensitive. The persistence of inflation, however, increases correspondingly.16

Conclusion 2: Towards the extreme near  = 0, the characteristic humped-shaped response

of inflation under the sticky-information model disappears and instead starts to resemble that

under sticky-prices. This is not too surprising a result, as the hallmark of the sticky-information

lies in how the timing of inflation expectations di↵ers from that under sticky-prices. When 

approaches 0, this di↵erence becomes negligible.

3.4.4 Macroeconomic shock #1 when  deviates from 0: an unexpected fall in

aggregate demand: Here, � = � = 0.54

Inflation under sticky-prices Inflation under sticky-information

Output under sticky-prices Output under sticky-information

16
Observe in this simulation that both inflation and output returns to equilibrium relatively faster than the

previous string of simulations where  decreases from 1. This a result of increasing the value of � and � to 0.54

from 0.25.
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3.4.5 Macroeconomic shock #2 when  deviates from 0: an unexpected fall in

the rate of money growth from 2.5% to 0% per period at period 0: Here,

� = � = 0.54

Inflation under sticky-prices Inflation under sticky-information

Output under sticky-prices Output under sticky-information

3.4.6 Macroeconomic shock #3 when  deviates from 0: an announced disinflation

at period t = �8 of the same magnitude as (2): Here, � = � = 0.54

Inflation under sticky-prices Inflation under sticky-information
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Output under sticky-prices Output under sticky-information

3.5 The role of Central Bank’s inflation target in dynamic price adjustment

in the presence of monetary policy shocks

Up to this juncture, the focus of this paper has been on  and how it a↵ects the dynamics of

both inflation and output, in terms of both duration and nature of their response to shocks.

While much could already be learned about the role of  from the impulse responses, one might

say less with regards to the role of the inflation target in the rule of price adjustment. This is

not surprising, as it was set to be 0% in all 3 shocks. Only by exploring the behaviour of impulse

responses in the presence of shocks in monetary policy may one be able to motivate the role of

the inflation target further. This is because there are now no equations that set the inflation

target to 0.0% on an a priori basis. Hence, we allow for an additional degree of freedom for the

inflation target to take whatever value it has to achieve the goal of policy stabilisation. Unlike

the previous sections, the inflation target is no longer zero.

In order to illustrate this, I explore the behaviour of inflation and output given a one standard

deviation shock in monetary policy as outlined by Mankiw and Reis (2002). While this paper

follows the same set-up in order to eventually compare the results with a benchmark, its contri-

bution lies in solving for a di↵erent expression of the impulse response, especially since the both

models of the Phillips Curve now di↵er from those of the benchmark and are now functions of

the inflation target. The solutions for the impulse responses will then di↵er according to the

extent of bias. I begin by writing the growth of money supply Mt as an AR(1) process as follows:

�Mt = ⇢�Mt�1 + ✏t (39)

where ✏t is a white-noise innovation. Under this model, the level of money supply is non-

stationary but the growth rate of money supply is stationary for all |⇢| < 1. This essentially

requires the absence of an unit root. Given this conjecture, inflation must then follow a stationary

process as well. The AR(1) process for inflation and prices can equivalently be written as a
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MA(1) process as follows:

⇡t =
1X

j=0

⇢j✏t�j (40)

Pt =
1X

⌧=0

1X

j=0

�j✏t�j�⌧ (41)

In order to solve for the impulse responses {��} of inflation given by the sticky-price model, I

substitute the above MA(1) processes into the dynamic path for prices given by equation (19)

solved in section 3.1. This yields the following stochastic equation for inflation ⇡t:

1X

⌧=0

1X

j=0

�j✏t�j�⌧ = ✓
1X

⌧=0

1X

j=0

�j✏t�1�j�⌧ + µ✓
1X

i=0

�
(
µ

�
)✓
�i

1X

j=0

1X

⌧=max{i�j,0}

⇢j✏t+i�j�⌧ (42)

as Et{✏t+i�j�⌧} = ✏t+i�j�⌧ for all i�j  ⌧ and is zero otherwise. Subsequently, �j are coe�cients

to be determined. Matching all coe�cients of ✏t�� in this stochastic equation subsequently yields

the solution for {��} such that:

�� = (✓ � 1)
��1X

j=0

�j + (
µ✓

1� ⇢
)

✓
1

1� µ
� ✓

� ⇢�+1

1� µ
� ✓⇢

◆
(43)

For the sticky-information model, I redefine the AR(1) processes of prices and money such that:

Mt =
1X

%=0

1X

i=0

⇢i✏t�i�% (44)

�Mt =
1X

i=0

⇢i✏t�i (45)

Pt =
1X

%=0

1X

i=0

 i✏t�i�% (46)

⇡t =
1X

i=0

 i✏t�i (47)

Substituting the these processes into the -augmented sticky-information Phillips Curve outlined

in section 2.2 by equation (11), and matching all coe�cients of ✏t�� in a similar manner, the

full characterization of the stochastic process for inflation { �} is given by

 � =

↵�


(1�

��1X

i=0

 i) +
�X

i=1

⇢i + ⇢�
�X

i=1

(1� �)i
�

1� �(1� ↵)
�X

i=0

(1� �)i
for �   (48)

 � =

↵�


(1�

��1X

i=0

 i) +
�X

i=1

⇢i
�
+⇧

1� �(1� ↵)
for � � + 1 (49)
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where ⇧ = �
���1X

i=0

'��i+1 i+(1+⇡T )�2
�X

j=+1

✓ ��jX

i=0

 i

◆
and noting the discontinuity at � = .

For � = � = 0.25, the impulse responses for both models of inflation are given as follows:

Inflation under sticky-prices inflation under sticky-information

Output under sticky-prices Output under sticky-information

It turns out that this is the set of impulse responses that corresponds to the inflation target ⇡T

being lowered to �25%17 as a result of the contraction in monetary policy18. What happens

if the inflation target remains unchanged at 0%? As seen in the alternative set of impulse

responses below, output does not return to equilibrium. This is as if there could be monetary

non-neutrality even in the long run. This, however, is a violation of Friedman (1968): there

cannot be a permanent trade-o↵ between inflation and output! This monetary policy simulation

thus reveals two crucial insights behind this paper:

Result 1: While inflation returns to equilibrium, output does so only if the inflation target is

lowered to match the contraction in monetary policy. In fact, the inflation target is now an

explicit policy instrument.

17
There is no closed form solution for this.

18
If it were to be an expansion in monetary policy, ⇡T

would be set to be higher at 25% rather than 0.0%.
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Intuitively, because all agents in this economy are assumed to be adjusting prices using the

inflation target as a heuristic anchor at the limits of their forecast horizon, policy can only

be e↵ective if the central bank changes the target in the right direction to guide the price

adjustment in that direction as well. In fact, it has a flavour of the Taylor principle in the sense

that when the frequency of price adjustment is low, the lowering of the inflation target needs to

be aggressive for policy to be e↵ective and vice versa19. This result potentially builds on two

other papers that has been written regarding the conduct of monetary policy. First, Blanchard

et. al (2010) proposed raising the inflation target to 4% from 2% in order to avoid the zero

lower bound. This suggests that rather than assuming an arbitrary choice of the numerical

target for inflation, this choice should be properly discerned and debated. Whilst to a di↵erent

purpose, this paper equally shows that the specific choice of this numerical target is important to

output stabilization, at least under the proposed rule of price adjustment. Second, Reis (2017)

examined two episodes where the Fed and the Bank of England gone long in the 20th century,

and found that targeting the long-term interest rate as a policy instrument for the most part

fail to anchor inflation. Yet, what the above result suggests is for the central bank to stabilise

output by going long - in the sense of targeting the long term interest rate indirectly through

attaining some target long term inflation rate - by using the inflation target as if it were to be

a short-term policy instrument. While a thorough discussion of policy implications is beyond

the scope of this paper, it recognizes that the implied consequences might fail in practicality -

especially since changing the inflation target as an active instrument may bring back the old

time inconsistency problem and put this paper in the cross hairs of the usual ‘rules vs discretion’

debate.

Inflation under sticky-prices Output under sticky-prices

19
Refer to sheet 6 of replication file for -augmented sticky-information as an example. There,  = 10 and �

varies between 0.25 and 0.45. But when � is 0.45, ⇡T
needs only to be lowered to -10%, as compared to -25% for

the case when � is 0.25.
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Inflation under sticky-information Output under sticky-information

Result 2: Under the sticky-price model, both the duration and shape of response for inflation

and output are the same regardless of the value of .

This implies that whether price setters are capable of forming rational expectations over longer

horizons no longer matters when the inflation target is used to anchor expectations. Intuitively,

the path of prices converge for all  because everyone has the same nominal anchor ; they rely

only on the target, rather than making forecasts over the long horizon. Mathematically, the

dynamic path of the -augmented model converges20 to that of the canonical model for this

inflation target. Under the sticky-information model where information arrives slowly, there is

still a role for  as not all price-setters pay attention to the policy outlook.

4 The dynamic behaviour of inflation and output as

we vary parameter values of � and �

Having learned much about the role of  and the inflation target, studying the roles of � (or �)

remains the only endeavour that is left of this paper in order to develop the proposed theory

of price adjustment under bias fully. In the original Calvo model, � was the parameter that

specified the deviation from an economy with fully flexible prices. The higher � is, the more

price setters are able to respond to shocks by re-adjusting prices and one can expect minimal

disturbance to output. For the sticky-information model, a higher � represents that a larger

population of price setters are able to gather information, and with this, subsequently acquire

rational expectations about some future path of Mt and eventually converge to some Calvo

benchmark. Without even illustrating with impulse responses, one can immediately draw a

20
Check that   decreases to 0 when ⇡T

=-0.25. Then, equation (19) reduces to (20).
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relationship between these parameters and the behaviour of the business cycle. Yet, what is

less clear about � and � are the ways in which they may alter certain results that this paper

has established thus far with respect to . Acknowledging these observations about the short

term fluctuations studied throughout this paper, I focus instead on thinking about them as a

set questions:

Question 1: If lowering  is suggestive of larger inflation persistence, can increasing � or �

decrease this persistence?

Question 2: if lowering  is suggestive of discontinuous jumps and oscillatory paths of inflation,

can increasing � result some convergence towards a smooth path as one would expect from the

benchmark?

Question 3: If empirical estimates of the dynamic response of real activity to shocks show a

gradual ‘hump-shaped’ response (Mankiw and Reis, 2006), can increasing � or � reduce this

response in both size and duration that have been augmented by ?

As one might expect, the answers to these questions are: yes, yes and yes. If  is about deviating

the model from some full rational expectations benchmark, then � and � returns the model to

this benchmark despite the fact that the solutions for the impulse responses are still functions of

. But this is hardly an intellectual victory; in the Calvo economy there is little need to demand

for rational expectations if prices are fully flexible, while in the Mankiw-Reis economy the core

assumption rests on price setters acquiring full rational expectations as long as they gather

information. Under sticky-prices, results show that increasing � mainly a↵ects the convexity

and the height of the impulse responses. When price setters are able to change prices more often,

there is no need for them to form expectations over a longer time horizon, and so one may be

tempted to conclude that the role of expectations and hence, behavioural models, are diminished

in an economy where price adjustment is more frequent. Similarly, the role of expectations is

reduced in the Mankiw-Reis world when information arrives quickly. Remarkably, the impulse

responses now resemble those illustrated previously under the case when  deviates from 1

despite the fact that the equation that pins down these responses are all di↵erent! This provides

a strong case to argue that that the time horizon  does not matter when information arrives

quickly. In the following set of impulse responses,  is set to 10 while � (and �) is allowed to

increase:
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4.0.1 Macroeconomic shock #1 when � and � deviates from 0.25: an unexpected

fall in aggregate demand: Here,  = 10

Inflation under sticky-prices Inflation under sticky-information

Output under sticky-prices Output under sticky-information

4.0.2 Macroeconomic shock #2 when � and � deviates from 0.25: an unexpected

fall in the rate of money growth from 2.5% to 0% per period at period 0:

Here,  = 10

Inflation under sticky-prices Inflation under sticky-information
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Output under sticky-prices Output under sticky-information

4.0.3 Macroeconomic shock #3 when � and � deviates from 0.25: an announced

disinflation at period t = �8 of the same magnitude as (2): Here,  = 10

Inflation under sticky-prices Inflation under sticky-information

Output under sticky-prices Output under sticky-information
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5 Conclusion and future work

In days since the 2008 financial crisis, macroeconomics has been criticized by many for drawing

inference based on ‘overly simplified’ models that rest overwhelmingly on the assumption of

rational expectations. This is not quite the case, however, when one examines the amount of

active literature prior to the crisis which sought to relax this overly demanding assumption.

Perhaps what policymakers need is a behavioural model that is robust enough to accommodate

the inconsistencies of human behaviour, and yet still yield results that can be solved using

conventional technologies21 that can be used in a conventional policy setting.

Recognising this priority, this paper extents on the work by Mankiw and Reis (2002) and exam-

ines a rule of price adjustment where price setters have realistic time horizons over which they

can form rational expectations, and, in light of the recent attention both given to, and drawn by

central banks through their conduct of forward guidance and inflation targeting, assumes that

price setters can equally make use of some past, observable prices and the inflation target as a

nominal anchor when their planning horizons are so far ahead that they can no longer justify

a well-reasoned expectation of their own. In essence, this is a form of bounded rationality a

step further from the theory of sticky-information, which, in turn, is a step away from the new

Keynesian, full rational expectations Calvo benchmark. The analysis in this paper shows that

it is possible to re-model the Phillips Curve, and present a framework that can illustrate the

behaviour of short-run business cycles throughout the entire spectrum of rationality. Subse-

quently, this paper presented several learning points from applying the framework to study the

impulse responses of inflation and output to shocks of various natures. Firstly, how price setters

form inflation expectations and whether these expectations are accurate or heterogeneous do not

matter when they are able to gather information or change prices more frequently. Secondly,

because it is often di�cult to figure out the true implications of monetary policy - whether it

is due to data uncertainty through lags or the numerous forms of technocratic language that

one would expect from central bank communication - policymakers might expect private agents

to similarly adopt a nominal anchor for their own expectations, and, as this paper shows, the

choice of even this numerical value for such an anchor - such as the inflation target - could prove

to be pivotal to output stabilization. Lastly, larger extents of bounded rationality increases the

persistence of inflation, and, under sticky-information, even allows for discontinuous jumps and

oscillatory dynamics of inflation and real output.

With this, can one better understand the fluctuations of the business cycle through the lens of

21
Such as the method of undetermined coe�cients, or minimizing some loss function of the central bank.
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bounded rationality? Can behavioural economics inform monetary policy in anyway? This paper

believes it can. This opens the door for future work to solve for a general equilibrium with some

utility-maximizing, monopolistic price setter, where his behavioural heuristic may be modeled in

a continuous, rather than a discrete process. Central banks could further be concerned with the

endogeneity of : that is, whether their increased actions - both in communication and in the

variety of instruments - aid or hinder the formation of expectations. This is pertinent to the work

on behavioural models especially since the jury is still out on whether forward guidance is about

making predictions of the state of the economy or about the policy instrument itself22 (Reis,

2018). As this paper has shown, a varying  ultimately leads to varying degrees of persistence,

duration and size of response for both inflation and output. What is the optimal policy response

to each case is subject to calibration, and likely will be the form of future research in this area.

To this end, incorporating stylized results of behavioural economics into models of how people

understand and act on monetary policy will likely pave the way for macroeconomics to progress

even further.23

22
Suppose the central bank sets policy according to it = f(st) + ✏t, where ✏t is the term that captures policy

surprises, st is the conjectured state of the economy and f(.) is the policy instrument. Then, is forward guidance

about explaining what f(.) is, or is it about communicating predictions for st?
23
This concludes. According to ShareLateX, total word count excluding the appendix is 9952.
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6 Appendix: Proofs of solutions presented in the text

6.1 Derivation of the -augmented sticky-price new Keynesian Phillips Curve

To derive the modified sticky-price Phillips Curve, start with the following rule of price adjust-

mented motivated in section II:

Xt = �
X

j=0

(1� �)jEt(P
⇤
t+j) + �

1X

j=+1

(1� �)jPt�1(1 + ⇡T )j+1 (50)

Taking out the first term and redefining the summation operator, equation (50) can be written

as:

Xt = �P ⇤
t + (1� �)�

X

j=0

(1� �)jEt(P
⇤
t+j+1) + �

1X

j=+1

(1� �)jPt�1(1 + ⇡T )j+1 (51)

Equivalently, equation (50) can be analogously defined as:

Xt+1 = �
kX

j=0

(1� �)jEt+1(P
⇤
t+j+1) + �

1X

j=+1

(1� �)jPt(1 + ⇡T )j+1 (52)

Breaking the sum and using the law of iterated expectations, I can substitute equation (52) into

(51) to obtain:

Xt = �P ⇤
t + (1� �)Et(Xt+1)

�
✓
(1� �)�

1X

j=+1

(1� �)jPt(1 + ⇡T )j+1 � �
1X

j=+1

(1� �)jPt�1(1 + ⇡T )j+1

◆
(53)

Which can further be simplified into:

Xt = �P ⇤
t + (1� �)Et(Xt+1)�

✓
�

1X

j=+1

(1� �)j⇡t(1 + ⇡T )j+1

◆

+ �2
1X

j=+1

(1� �)jPt(1 + ⇡T )j+1 (54)

The general price levels in the economy is then obtained using a weighted average of prices set

by firms in the past and the reset prices of firms that had the opportunity to adjust:

Pt = �Xt + (1� �)Pt�1 (55)

Rearranging equation (55), I can derive an expression for inflation ⇡t as follows:

Xt =
⇡t
�

+ Pt�1 (56)
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Substituting for Xt in equation (54) using equation (56), I obtain the desired model of the

modified Phillips Curve as follows:

⇡t =
↵�2

1� �
Yt + Et(⇡t+1)� (

�

1� �
)(⇡t)�

1X

j=+1

(1� �)j(1 + ⇡T )j+1

+ (
�2

1� �
)(Pt)�

1X

j=+1

(1� �)j(1 + ⇡T )j+1 (57)

I can subsequently define   to be:

  = �
1X

j=+1

(1� �)j(1 + ⇡T )j+1 =
�(1� �)+1(1 + ⇡T )+2

�� ⇡T (1� �)
(58)

Substituting equation (58) into (57) and rearranging, I obtain the desired equation for the new

Keynesian Phillips Curve with bounded rationality as seen in the text::

⇡t =
↵�2

1� �(1�  )
Yt +

1� �

1� �(1�  )
Et(⇡t+1) +

 �2

1� �(1�  )
Pt (59)

6.2 Derivation of the -augmented sticky-information Phillips Curve

Under the constraints imposed by bounded rationality, overall prices in the economy are given

by:

Pt = �
X

j=0

(1� �)jEt�j(P
⇤
t ) + �

1X

j=+1

(1� �)jPt�j(1 + ⇡T )j (60)

Taking out the first term and redefining the summation operator, I obtain:

Pt = �P ⇤
t + (1� �)�

X

j=0

(1� �)jEt�j�1(P
⇤
t ) + �

1X

j=+1

(1� �)jPt�j(1 + ⇡T )j (61)

Equation (60) can be analogously defined as:

Pt�1 = �
X

j=0

(1� �)jEt�j�1(P
⇤
t�1) + �

1X

j=+1

(1� �)jPt�j�1(1 + ⇡T )j (62)

An expression for inflation ⇡t can thus be obtained by subtracting equation (62) from equation

(61) as follows:

⇡t = �(Pt + ↵Yt) + �
X

j=0

(1� �)jEt�j�1(⇡t + ↵�Yt)

+ �
1X
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(1� �)j⇡t�j(1 + ⇡T )j � �2
X
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(1� �)jEt�j�1(P
⇤
t ) (63)
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Dividing equation (63) throughout by (1� �), I can obtain:

� �

✓
(Pt � (

�↵

1� �
)Yt

◆
= ��2

X

j=0

(1� �)jEt�j�1(P
⇤
t )

� �2

1� �

1X

j=+1

(1� �)jPt�j(1 + ⇡T )j (64)

The last term in equation (63) can therefore be substituted out using equation (64) and the

desired expression for the sticky-price Phillips Curve under bounded rationality can be obtained

as follows:

⇡t = (
↵�

1� �
)Yt + �

X

j=0

(1� �)jEt�j�1(⇡t + ↵�Yt)

+ �
1X

j=+1
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✓
⇡t�j + (

�

1� �
)Pt�j

◆
(65)

6.3 Derivation of the expression for a dynamic path under the -augmented

sticky-price new Keynesian Phillips Curve

Following Mankiw and Reis (2002) and Sargent (1987), an impulse response for prices can be

obtained for the modified sticky-price new Keynesian Phillips Curve. Recall that the modified

Phillips Curve is given by:

⇡t =
↵�2

1� �(1�  )
Yt +

1� �

1� �(1�  )
Et(⇡t+1) +

 �2

1� �(1�  )
Pt (66)

I introduce new parameters µ and � such that:

µ =
↵�2

1� �(1�  )
(67)

� =
↵�2

1� �
(68)

Plugging in equation (67) and (68) into (66), inflation ⇡t can be expressed as:

⇡t = µYt +
µ

�
Et⇡t+1 +

µ 
↵

Pt (69)

Note in particular that as   = 0, which occurs when  ! 1 as shown previously in section

II, µ = � and equation (69) reduces to the benchmark model of the sticky-price new Keynesian

Phillips Curve:

⇡t =
↵�2

1� �
Yt + Et(⇡t+1) (70)
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I can rewrite the Phillips Curve expressed by equation (66) using the aggregate demand equation

as follows:

(1� �)µ

↵�2
Et(Pt+1) +

✓
µ �2 � (1� �)µ� µ↵�2 � ↵�2

↵�2

◆
Pt + Pt�1 = �µMt (71)

Multiplying both sides of the equation by ↵�2

(1��)µ , equation (71) can be simplified into:

Et(Pt+1) +

✓
 �2

(1� �)
� (1 + � +

�

µ
)

◆
Pt +

�

µ
Pt�1 = ��Mt (72)

This produces an expectational di↵erence equation similar in structure to that found in Mankiw

and Reis’s (2002) original paper. Subsequently, I take expectations at time t and express these

expectational variables with an asterisk. Using both the forward and lag operator F and L

respectively, equation (72) can be re-expressed in the following manner:
 
F 2 +

✓
 �2

1� �
� (1 + � +

�

µ
)

◆
F +

�

µ

!
LP ⇤

t = ��M⇤
t (73)

Observe that this reduces to the expectational di↵erence equation of the benchmark model once

again when   = 0: ✓
F 2 � (2 + �)F + 1

!
LP ⇤

t = ��M⇤
t (74)

Given the equation in (73), denote the roots of the quadratic (x2 +

✓
 �2

1�� � (1+ �+ �
µ)

◆
x+ �

µ)

by ✓1 and ✓2 such that:
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 �2

1� �
� (1 + � +

�

µ
)

◆
F +

�

µ
= F 2 � (✓1 + ✓2)F + ✓1✓2 (75)

Comparing the coe�cients of each term on both sides, it is clear that:

� (✓1 + ✓2) =
 �2

1� �
� (1 + � +

�

µ
) (76)

✓1✓2 =
�

µ
(77)

Without a loss of generality, I pick ✓1 = ✓ to be the smaller of the two positive roots and write

equation (73) as:

(F � ✓)LP ⇤
t = µ✓(1� µ

�
✓F )�1M⇤

t (78)

In order to expand the negative binomial term on the right, I impose the strict assumption that:

✓µ

�
< 1 (79)

An expression for the impulse response can thus be obtained as follows:

Pt = ✓Pt�1 + µ✓
1X

i=0

�
(
µ

�
)✓
�i
Et(Mt+i) (80)
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It is easy to see that when   = 0, the impulse response expressed in equation (80) reduces to

the original impulse response of the benchmark model as seen in Mankiw and Reis (2002):

Pt = ✓Pt�1 + (1� ✓)2
1X

i=0

(✓)iEt(Mt+i) (81)

where the coe�cient (1�✓)2 is given by �✓ such that under the full rationality case when   = 0,

� =
(1� ✓)2

✓
(82)

Expressing µ and � in their original parameters, the dynamic path of prices for the -augmented

sticky-price Phillips Curve is given by:

Pt = ✓Pt�1 + (
↵�2

1� �(1�  )
)✓

1X

i=0

�
(

1� �

1� �(1�  )
)✓
�i
Et(Mt+i) (83)

6.4 Derivation of inequality f(,�) � g(,�) such that a real solution for ✓

exists

Begin with the equation below which rests within the square root of the quadratic formula

applied to equation (73). For a real root to be defined, the following inequality must hold:

✓
 �2

1� �
� (1 + � +

�

µ
)

◆2

� 4�

µ
� 0 (84)

Expanding the square and substituting for µ = ↵�2

1��(1� )
and � = ↵�2

1�� , I can obtain the following

inequality:

 2
�

4

(1� �)2
� 2 (

�2

1� �
)


2 +

�(  + ↵�)

1� �

�
+ 4 +

4�(  + ↵�)

1� �
+
�2(  + ↵�)2

(1� �)2

� (
4

1� �
)


1� �(1�  )

�
(85)

Multiplying throughout by (1� �)2 and simplifying, equation (85) can be written as:

�2 2
(1 + �2)� 4 �

2(1� �) + 2↵ �
3(1� �) + 4↵�2(1� �) + �3(↵2�� 2 2

) � 0 (86)

Recognising that 0 < � < 1 such that �2 � 0, divide the above by �2 and rearrange the equation

to obtain:

 2
(1� �)2 + 2(1� �)


 ↵�+ 2↵� 2 

�
+ ↵2�2 � 0 (87)

Dividing throughout by (1� �)2 subsequently yields:

 2
 + 2 (

↵�

1� �
) + (

↵�

1� �
)2 � 4

1� �
(  � ↵) (88)
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This provides the expressions for f(,�) and g(,�) as seen in the text whereby

f(,�) = (  +
↵�

1� �
)2 =

✓
�(1� �)k+1(1 + ⇡T )k+2

�� ⇡T (1� �)
+

↵�

1� �

◆2

(89)

g(,�) =
4

1� �
(  � ↵) =

4

1� �

✓
�(1� �)k+1(1 + ⇡T )k+2

�� ⇡T (1� �)
� ↵

◆
(90)

6.5 Derivation of the expression for a dynamic path under the -augmented

sticky-information Phillips Curve

I begin with the original model of price adjustment where  is first assumed to be unbounded.

This is given by:

Pt = �
1X

j=0

(1� �)jEt�j [(1� ↵)Pt + ↵Mt] (91)

This equation can be re-written as a summation of two terms as follows:

Pt = �
tX

j=0

(1� �)jEt�j [(1� ↵)Pt + ↵Mt] + �
1X

j=t+1

(1� �)jEt�j [(1� ↵)Pt + ↵Mt] (92)

By expressing prices Pt in this manner, it is easy to see that Pt is now an aggregate of prices set

by price setters who are aware of the shock (fall in aggregate demand at t = 0) and those who

are not aware. The first term captures a geometrically weighted average of expectations formed

beginning from t = 0 to t = t. These are the expectations formed ex-post to the change in

aggregate demand. On the other hand, the second term captures a summation of expectations

formed of prices from the beginning of time to exactly one period before the shock occurs at

t = 0. These are the expectations formed ex-ante to the change in aggregate demand, and they

represent the prices set by price setters who are not aware of the new path of aggregate demand.

Now, suppose  is no longer 1 due to cognitive restrictions imposed by bounded rationality.

Equation (92) is then expressed as a function of  as shown below:

Pt = �
tX

j=0

(1� �)jEt�j [(1� ↵)Pt + ↵Mt]

+ �
X

j=t+1

(1� �)jEt�j [(1� ↵)Pt + ↵Mt] + �
1X

j=+1

'jPt�j (93)

where ' = (1 � �)(1 + ⇡T ). There are two important points to note when defining the limits

of the summation operator in the above manner. First, observe that the expectational terms in

the second term now sum from E�1(.) to Et�(.). To ensure that these expectations are formed

ex-ante to the shock that occurs at t = 0, the restriction of t <  is imposed. This suggests
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that price setters who are not aware of the new path of aggregate demand are now restricted

by the expectations that they formed t �  periods ago in the past of prices today. The third

term captures the use of heuristics in place of expectations formed over a time horizon further

away from t � . Second, the upper bound t in the first term is smaller than  by definition

or the expectational terms now become undefined as a result of bounded rationality. Following

Mankiw and Reis (2002), the path of prices can be easily obtained such that

Pt =

8
>>>><

>>>>:

�log(0.9)

✓
(1��)t+1�(1��)+1

◆
+�

1X

j=+1

'jPt�j

1�(1�↵)

✓
1�(1��)t+1

◆ for t < 

If  is equal to 10, then prices from t = 0 to t = 9 thus follow the path outlined above.

What happens when t > ? It is clear that prices can no longer follow the specified path outlined

above, or they violate the expectational constraints imposed by equation (93). As a result, an

alternative path for prices is required for all t > . I rewrite equation (93) in the following

manner instead:

Pt = �
X

j=0

(1� �)jEt�j [(1� ↵)Pt ++↵Mt] + �
1X

j=+1

'jPt�j (94)

The first term represents price setters who are aware of the new path of aggregate demand and

form ex-ante expectations of Pt and Mt contemporaneously up to  periods ago. When t > ,

price setters with old information are now represented by the second term. In this world there

are no longer price setters who set prices according to past information because the time horizon

now prohibits the formation of expectations. Instead, these price setters who are not aware of

the new path are left with the choice of simply referring to past prices Pt�j as an convenient

anchor. Hence, the above equation can be written as:

Pt = Pt(1� ↵)[1� (1� �)+1] + �
1X

j=+1

'jPt�j (95)

Denoting ! = 1� (1� ↵)[1� (1� �)+1] to be a constant for a given , I can further rearrange

the above equation as follows:

Pt =
�

!

1X

j=+1

'jPt�j (96)

Taking out the first term and redefining the summation operator, equation (88) can be expressed

as:

Pt =
�

!
'+1Pt��1 + '

✓
�

!

1X

j=+1

'jPt�j�1

◆
(97)
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Recognising that the second term in parenthesis above is equivalent to Pt�1, the above equation

can be expressed as a di↵erence equation given by

Pt = ⇣Pt��1 + 'Pt�1 (98)

where ⇣ = �
!'

+1 is a constant. Here, I see that the path of prices from t >  is now dependent

fully on some weighted average of prices set one period ago and the furthest possible prices set

up at  periods ago. Noting a discontinuity of prices at t = , the desired paths of prices under

policy experiment 1 is thus given by:

Pt =

8
>>>>>>><

>>>>>>>:

�log(0.9)

✓
(1��)t+1�(1��)+1

◆
+�

1X

j=+1

'jPt�j

1�(1�↵)

✓
1�(1��)t+1

◆ for t  � 1

⇣Pt��1 + 'Pt�1 if t > 

For policy experiment 2, all ex-ante expectations Et�jPt where t�j < 0 are equal to 0.025(t+1).

Therefore, the desired path of prices are given by:

Pt =

8
>>>>>>><

>>>>>>>:

0.025(t+1)

✓
(1��)t+1�(1��)+1

◆
+�

1X

j=+1

'jPt�j

1�(1�↵)

✓
1�(1��)t+1

◆ for t  � 1

⇣Pt��1 + 'Pt�1 if t > 

To solve for an impulse response under policy experiment 3, equation (93) is written as follows:

Pt = �
t+8X

j=0

(1� �)jEt�j [(1� ↵)Pt + ↵Mt]

+ �
+8X

j=t+9

(1� �)jEt�j [(1� ↵)Pt + ↵Mt] + �
1X

j=+9

'jPt�j (99)

Observe that the limits of the summation operators are written in a way such that all ex-

ante expectations are formed before period t = �8. For all t � j < �8, Et�jPt = Et�jMt =

0.025(1 + t). These are inattentive price setters who are not aware of the announcement of

forthcoming disinflation at period t = 0. For all t � j � �8, there are no uncertainty given

the announcement. Price setters who are aware of the new path of prices thus set ex-post

expectations such that Et�jPt = Pt. Therefore, for t < , prices follow the path given by:

Pt =

0.025(t+ 1)(1� �)t+9

✓
1� (1� �)�t

◆
+ �

1X

j=+9

'jPt�j

1� (1� ↵)

✓
1� (1� �)t+9

◆ (100)
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For t > k, equation (96) can be written instead as:

Pt =
�

⌘

1X

j=+9

'jPt�j (101)

which can subsequently be written as a di↵erence equation as follows:

Pt =
�

⌘
'+9Pt��9 + 'Pt�1 (102)

where ⌘ = 1� (1� ↵)(1� (1� �)t+9).

6.6 Derivation of impulse responses for inflation in response to monetary

policy shocks

6.6.1 Impulse responses for the -augmented sticky-price new Keynesian Phillips

Curve

I begin by writing the growth of money supply Mt as an AR(1) process as follows

�Mt = ⇢�Mt�1 + ✏t (103)

where ✏t is a white-noise innovation. Under this model, the level of money supply is non-

stationary but the growth rate of money supply is stationary for all|⇢| < 1. Given this conjecture,

inflation follows a stationary process as Ill. The AR(1) process for inflation and prices can

equivalently be written as a MA(1) process as follows:

⇡t =
1X

j=0

⇢j✏t�j (104)

Pt =
1X

⌧=0

1X

j=0

�j✏t�j�⌧ (105)

Then, recall that the path of prices solved previously in subsection 4.3 is given by:

Pt = ✓Pt�1 + µ✓
1X

i=0

�
(
µ

�
)✓
�i
Et(Mt+i) (106)

Substituting the MA(1) process for Pt into this solution yields:

1X

⌧=0

1X

j=0

�j✏t�j�⌧ = ✓
1X

⌧=0

1X

j=0

�j✏t�1�j�⌧ + µ✓
1X

i=0

�
(
µ

�
)✓
�i

1X

j=0

1X

⌧=max{i�j,0}

⇢j✏t+i�j�⌧ (107)

as Et{✏t+i�j�⌧} = ✏t+i�j�⌧ for all i � j  ⌧ and is zero otherwise. Subsequently, �j are

coe�cients to be determined. Using the same method of undetermined coe�cients outlined by
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Mankiw and Reis (2002), �� can be solved by matching the coe�cients on ✏t�� on both sides of

the equation such that:

�X

j=0

�j = ✓
��1X

j=0

�j + µ✓
1X

i=0

((
µ

�
)✓
�i
�+iX

j=0

⇢j (108)

The above equation can subsequently be simplified to yield {��}, the impulse response of infla-

tion in response to monetary policy shocks.

�� = (✓ � 1)
��1X

j=0

�j + (
µ✓

1� ⇢
)

✓
1

1� µ
� ✓

� ⇢�+1

1� µ
� ✓⇢

◆
(109)

Once again, observe that if  = 1, µ = � and the above impulse function reduces to that of the

benchmark given by

�� = (✓ � 1)
��1X

j=0

�j +
(1� ✓)2

1� ⇢

✓
1

1� ✓
� ⇢�+1

1� ✓⇢

◆
(110)

6.6.2 Impulse responses for the -augmented sticky-information Phillips Curve

Similar to that for the sticky-price model, I begin by first defining a process for money and

prices as follows:

Mt =
1X

%=0

1X

i=0

⇢i✏t�i�% (111)

�Mt =
1X

i=0

⇢i✏t�i (112)

Pt =
1X

%=0

1X

i=0

 i✏t�i�% (113)

⇡t =
1X

i=0

 i✏t�i (114)

Substituting the above processes into the -augmented sticky-information Phillips Curve out-

lined by equation (11) in the text yields:

1X

i=0

 i✏t�i = (
↵�

1� ↵
)

✓ 1X

%=0

1X

i=0

⇢i✏t�i�% �
1X

%=0

1X

i=0

 i✏t�i�%

◆
+

�
X

j=0

(1� �)jEt�j�1

✓
(1� ↵)

1X

i=0

 i✏t�i + ↵
1X

i=0

⇢i✏t�i

◆
+

�
1X

j=+1

'j

✓ 1X

i=0

 i✏t�i�j + (
�

1� �
)

1X

%=0

1X

i=0

 i✏t�j�i�%

◆
(115)
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To obtain an expression for the impulse response { �}, all coe�cients of the white noise inno-

vation ✏t�� must be matched. However, note that the upper bound of the second term in the

above expression is now changed to , when it was 1 in the original sticky-information Phillips

Curve. This results in a discontinuity of the moment of inflation between � =  and � = + 1.

Now, consider what happens when �  . Firstly, the last term in the above expression no

longer exists. Secondly, taking expectation Et�j�1(✏t�i) yields ✏t�j�i if and only if i � j + 1.

Subsequently, the impulse response { �} from past expectations only exists for all �   as it

is only possible to replace the upper bound of the summation operator  by � if this constrain

is satisfied. Redefining the summation operator such that j = i� 1, the coe�cients of ✏t�� are

thus given by:

 � = (
↵�

1� �
)

✓ �X

i=0

⇢i �
��1X

i=0

 i � �
◆
+ (

�

1� �
)

✓ �X

i=0

(1� �)i � 1

◆
 �+

(
↵�

1� ↵
)

�X

i=1

(1� �)i⇢� (116)

What happens then, if � � ? The impulse response arising from past expectations of inflation

no longer exists now, as it is no longer possible to replace the upper bound  with �. Subse-

quently, all moments of inflation today will only arise from output, past inflation and some past

prices. Now, consider the following innovation arising from past inflation given by:

�
1X

j=+1

'j

✓ 1X

i=0

 i✏t�i�j

◆

For there to be a ✏t�� term to feature in the above expression, there must be a restriction such

that i+ j = �. Satisfying this restriction implies that the coe�cients of all ✏t�� terms are given

by  ��j . By redefining the summation operator using this restriction, it is possible to rewrite

all coe�cients of ✏t�� embedded in the above expression as:

�

1� �

���1X

i=0

'��i+1 i (117)

Similarly, consider the innovation to current inflation arising from past prices given by:

�
1X

j=+1

'j

✓
(

�

1� �
)

1X

%=0

1X

i=0

 i✏t�j�i�%

◆

All coe�cients on ✏t�� terms embedded in the summation
1X

%=0

1X

i=0

 i✏t�j�i�% are given by
��jX

i=0

 i

with the restriction j+ i = �. The impulse responses arising from past prices are thus given by:

�2

1� �

�X

j=+1

'j

✓ ��jX

i=0

 i

◆
(118)
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Using equations (117) and (118), the coe�cients of ✏t�� are thus given by:

 � = (
↵�

1� �
)

✓ �X

i=0

⇢i �
��1X

i=0

 i � �
◆
+

�

1� �

���1X

i=0

'��i+1 i+

�2

1� �

�X

j=+1

'j

✓ ��jX

i=0

 i

◆
(119)

Therefore, the complete characterization of the stochastic process for inflation as seen in the

text is given by:

 � =

↵�


(1�

��1X

i=0

 i) +
�X

i=1

⇢i + ⇢�
�X

i=1

(1� �)i
�

1� �(1� ↵)
�X

i=0

(1� �)i
for �   (120)

 � =

↵�


(1�

��1X

i=0

 i) +
�X

i=1

⇢i
�
+⇧

1� �(1� ↵)
for � � + 1 (121)

where ⇧ = �
���1X

i=0

'��i+1 i + �2
�X

j=+1

'j

✓ ��jX

i=0

 i

◆

What happens if  = 0? Then, the stochastic process for inflation given by equation (115) is

written instead as:

1X

i=0

 i✏t�i = (
↵�

1� ↵
)

✓ 1X

%=0

1X

i=0

⇢i✏t�i�% �
1X

%=0

1X

i=0

 i✏t�i�%

◆
+

�Et�1

✓
(1� ↵)

1X

i=0

 i✏t�i + ↵
1X

i=0

⇢i✏t�i

◆
+

�
1X

j=1

'j

✓ 1X

i=0

 i✏t�i�j + (
�

1� �
)

1X

%=0

1X

i=0

 i✏t�j�i�%

◆
(122)

Realising that Et�1(✏t�i) = ✏t�i for all i � 1 and 0 otherwise, the above equation can be

expressed as:

1X

i=0

 i✏t�i = (
↵�

1� ↵
)

✓ 1X

%=0

1X

i=0

⇢i✏t�i�% �
1X

%=0

1X

i=0

 i✏t�i�%

◆
+

�

✓
(1� ↵)

1X

i=1

 i✏t�i + ↵
1X

i=1

⇢i✏t�i

◆
+

�
1X

j=1

'j

✓ 1X

i=0

 i✏t�i�j + (
�

1� �
)

1X

%=0

1X

i=0

 i✏t�j�i�%

◆
(123)
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Matching once again the coe�cients on all ✏t� terms, the impulse response { �} for inflation

when  = 0 is given as follows:

 � =

↵�


(1�

��1X

i=0

 i) +
�X

i=1

⇢i + ⇢�
�X

i=1

(1� �)i
�

1� �(1� ↵)
�X

i=0

(1� �)i
for �   (124)

 � =

↵�


(1�

��1X

i=0

 i) +
�X

i=1

⇢i + (1� �)⇢�
�
+ �

1 + (1� ↵)(�2 � 2�)
for � � + 1 (125)

Such that  0 =
↵�(2��)

1+(1�↵)(�2�2�) and � = (1� �)�
��1X

i=0

'��i i + �2
�X

j=1

'j

✓ ��jX

i=0

 i

◆
.
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