
Causal optimal transport and its links to enlargement of

filtrations and continuous-time stochastic optimization

B. Acciaio∗ J. Backhoff-Veraguas† A. Zalashko‡

June 4, 2019

Abstract

The martingale part in the semimartingale decomposition of a Brownian motion with
respect to an enlargement of its filtration, is an anticipative mapping of the given Brownian
motion. In analogy to optimal transport theory, we define causal transport plans in the
context of enlargement of filtrations, as the Kantorovich counterparts of the aforementioned
non-adapted mappings. We provide a necessary and sufficient condition for a Brownian mo-
tion to remain a semimartingale in an enlarged filtration, in terms of certain minimization
problems over sets of causal transport plans. The latter are also used in order to give robust
transport-based estimates for the value of having additional information, as well as model
sensitivity with respect to the reference measure, for the classical stochastic optimization
problems of utility maximization and optimal stopping.
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1 Introduction

From the seminal works of Monge [Mon81] and Kantorovich [Kan42], the theory of optimal
transport has widely developed and established itself as a fervent research area, with growing
applications in the most various areas of sciences and engineering. Powerful connections have
also been established between the theory of optimal transport and stochastic analysis, includ-
ing, among many others, the work by Feyel and Üstünel [FÜ04] extending Brenier’s result to
Wiener spaces, [BHLP13, GHLT14] on model-independent finance, and [BCH17] on Skorokhod
Embedding. In the recent article by Lassalle [Las15], the author creates another bridge be-
tween optimal transport and stochastic analysis, considering the transport problem under the
so called causality constraint. The origins of this concept can be found in the work of Ya-
mada and Watanabe [YW71]; see also [Jac80, Kur14] for a generalization of the latter. For a
discrete-time analogue of transport under causality, see [BBLZ17].
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The aim of the present article is to exploit ideas and techniques from optimal transport under
causality, in order to revisit the classical stochastic analysis problem of enlargement of filtrations.
We recall that the central question of enlargements of filtrations is whether the semimartingale
property is preserved when passing from a given filtration to a larger one; see [BY78, JY78, Jeu80,
Jac85] for some of the earliest works on the subject. We also stress that, from the point of view
of financial applications, considering different filtrations means accommodating agents having
access to different sets of information. This clearly triggers the question of how much having
different information matters when facing a particular optimization/decision problem. By means
of causal transport, we will address both the issue of semimartingale preservation, as well as
that of estimating the value of different (usually additional) information. To describe causality,
one is first given two Polish filtered probability spaces (X , {FXt }Tt=0, µ) and (Y, {FYt }Tt=0, ν). A
transport plan π is a probability measure on X × Y having the prescribed marginals µ, ν; this
is denoted by π ∈ Π(µ, ν). It is further called causal if a certain measurability condition holds,
roughly: the amount of mass transported by π to a subset of the target space Y belonging to FYt ,
depends on the filtration in the source space only up to time t. Thus a causal plan transports µ
into ν in a non-anticipative way. Although Lassalle analyzes this constrained transport problem
in a general set-up, his most noteworthy results (e.g. connection between relative entropy, weak
solutions of stochastic differential equations, and causal transports) are obtained in the setting
of X = Y being the space of continuous functions and, importantly, both filtrations FXt = FYt
being the canonical one; see [Las15, Sect. 6]. This framework does not allow for anticipation of
information, so it is not suitable for the study of enlargement of filtrations.

Given a cost function c on X × Y, the general causal transport problem is defined as

inf{Eπ[ c ] : π ∈ Π(µ, ν), π causal}. (1.1)

The situation of interest for our purposes is when both X and Y are the space of continuous
functions, possibly endowed with different filtrations. Concretely, let B be a Brownian motion on
some probability space (Ω,FB,P), where FB is the filtration generated by B, and let GB ⊇ FB
be a finer filtration (i.e., GB is an enlargement of FB). If B is still a semimartingale with respect
to the larger filtration GB, then its unique continuous semimartingale decomposition takes the
form

dBt = dB̃t + dAt, (1.2)

where B̃ is a GB-Brownian motion and A is a continuous GB-adapted finite variation process.
Then the joint law of (B̃, B) turns out to be a causal transport plan on path space, when
considering the canonical and an appropriate enlarged filtration (see Section 2.2 for the precise
framework).

The main theoretical result of this article is a characterization of the preservation of the
semimartingale property in an enlarged filtration, for a process which is a Brownian motion
in the original filtration. A necessary and sufficient condition for this preservation property
is given in terms of the causal transport problem (1.1) on the space of continuous paths, for
specific cost functions depending on the difference of the coordinate processes on the product
space; see Theorem 3.2. In addition, when considering transport plans under which this dif-
ference is absolutely continuous, we can give necessary and sufficient conditions not only for
the semimartingale preservation property to hold, but also to ensure that the finite variation
process in (1.2) is absolutely continuous (which yields the so-called information drift); see The-
orem 3.5. When the cost function is of Cameron-Martin type, and the filtration enlargement is
done entirely at time zero, the causal transport problem can be interpreted in terms of entropy
and mutual information. Thus we are inclined to say that, irrespective of the cost function and
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the kind of enlargement, the value of our causal transport problems can be seen as a mutual
information in a wider sense.

The analysis contained in this paper is a first step towards the study of the semimartingale
preservation problem via optimal transport techniques. In Theorems 3.2 and 3.5, the condition
ensuring semimartingale preservation consists in the finiteness of a causal transport problem. As
of today, the determination of such a quantity is a barely explored topic. This is one reason why
we do not provide in this work new examples where semimartingale preservation holds/fails. On
the other hand, at least at an heuristic level, the discretization of this problem could be amenable
to existing numerical methods. The growing activity regarding numerical optimal transport, see
e.g. [Cut13, BCC+15, PC19, EK18], supports this agenda. The study of numerics specific to
causal optimal transport in continuous time is object of current research by the authors, while
in discrete time there are already results present in the literature, see e.g. [Pfl09, PP12, PP14].

Another contribution of the article consists in the analysis of duality for the primal problem
(1.1). Notoriously, duality plays a central role in classical optimal transport. We formulate the
causality property via infinitely many linear constraints, which naturally leads to the formulation
of a dual problem for (1.1). In order to prove that the values of the primal and dual coincide,
we cannot invoke existing results, as these would require imposing restrictive conditions on
the problem, and we shall rather take advantage of the specific setting we work in. In the
absolutely continuous case described above, we further identify a non-linear dual problem which
we can fully solve and relate to the original problem (1.1). This is novel even in the absence
of anticipation/enlargements. Interestingly, this gives a different proof of the semimartingale
preservation property, and is achieved through optimal transport and convex analysis techniques,
without resorting to stochastic analysis arguments; see Theorem 3.8.

We finally describe the main application of the present work. The connection between
stochastic analysis and causal transport, as developed in this article, allows us to give a novel
application in the framework of continuous-time stochastic optimization. For such problems, we
derive what we call robust transport bounds. Concretely, we show how causal transport provides
robust estimates, for a class of stochastic optimization problems, regarding both

(i) the value of additional information, and

(ii) model sensitivity.

Point (i) refers to the difference between the values of a stochastic optimization problem when
the optimization is run over a smaller “original” filtration, and when it is done over a finer
“enlarged” one. We establish that for utility maximization (more generally, stochastic control of
linear systems) and optimal stopping, this difference is bounded in a robust way by the value of a
causal transport problem; see Proposition 4.8 and Proposition 4.4(i). On the other hand, Point
(ii) refers to the difference between the values of a stochastic optimization problem when the
optimization is run under two different probabilistic models (i.e. reference probability measures).
As in the previous case, we establish that such difference is dominated by a causal transport
problem in a rather robust fashion; see Proposition 4.4(ii). We refer to [PK96] for the original
motivation regarding the value of information, and to [Pfl09, PP12] for a discrete-time approach
related to ours. In specific situations, the computation of our robust bounds can be carried out
by PDE methods or discretization schemes; see respectively [BNT19] and [ABC18].

The article is organized as follows. In Section 2 we introduce the main concepts and present
some preliminary results. In Section 3 we state and prove our main results on the semimartin-
gale preservation property, we state a non-linear duality result, and provide some links to the
literature. Section 4 contains applications of causal transport to continuous-time stochastic op-
timization problems. Then Section 5 is devoted to an in-depth study of duality when viewing
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(1.1) as a linear program. Finally, in the appendix we collect some technical results, recall some
needed tools, and provide some pending proofs.

Notation. For a Polish space Z, we use P(Z) to denote the set of Borel probability measures
on Z, and endow it with the topology of weak convergence. Given a probability space (Ω,H,P)
and a measurable map f : Ω→ Z, f#P ∈ P(Z) denotes the push forward of P by f , that is,

f#P(C) = P(f−1(C)).

The symbol EP denotes integration w.r.t. P. By B(Z) we denote the Borel σ-field on Z, and for
any σ-field J ⊆ B(Z) we write B(Z,J ) (resp. Bb(Z,J )) for the set of all real-valued functions
on Z that are measurable (resp. bounded measurable) w.r.t. J . Furthermore, given a measure
η ∈ P(Z), we adopt the notation

ηJ := completion of J w.r.t. η.

The unique extension of η to ηB(Z) is still denoted by η. With C(Z) (resp. Cb(Z)) we mean the
set of all continuous (resp. bounded continuous) real-valued functions defined on Z.

2 Setting and preliminary results

2.1 Classical and causal transport.

Let (X ,B(X ), µ) and (Y,B(Y), ν) be two Polish probability spaces. We denote by Π(µ, ν) the
subset of elements in P(X × Y) having marginals µ and ν. The classical optimal transport
problem consists in minimizing the cost of transporting the (source) measure µ to the (target)
measure ν, with respect to a given cost function c : X ×Y → R ∪ {+∞}. The transportation is
represented mathematically by a measure π ∈ Π(µ, ν), referred to as “transport plan between µ
and ν,” so the minimization problem is formulated as

inf{Eπ[ c ] : π ∈ Π(µ, ν)}. (2.1)

This kind of problems have a rich theory, particularly concerning optimality conditions and
duality. The latter means the equivalence between (2.1) and the following maximization problem

sup {Eµ[φ] + Eν [ψ] : φ ∈ Cb(X ), ψ ∈ Cb(Y), φ⊕ ψ ≤ c} ,

where here and throughout the article we write

φ⊕ ψ ≤ c ⇐⇒ φ(x) + ψ(y) ≤ c(x, y) ∀x, y.

We do not give an exhaustive list of references on the matter, but rather recommend [Vil03,
Kel84] for a sample of results in this direction, going from the cost c being lower semicontin-
uous, to being finite and Borel measurable (and beyond). For our purposes, we will need to
slightly extend some of the well-known results in classical transport to our particular setting;
see Section 5.1.

We now proceed to introduce the specific class of transport plans we shall consider in this
work. To this end, we fix a finite time horizon [0, T ], and endow the Polish spaces X and Y
with right-continuous filtrations FX = (FXt )t∈[0,T ] and FY = (FYt )t∈[0,T ], with FXT = B(X ) and

FYT = B(Y). As a rule, x, y will denote generic elements of X ,Y, respectively.
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Definition 2.1 (Causal transport plan). A transport plan π ∈ Π(µ, ν) is called causal between
(X ,FX , µ) and (Y,FY , ν) if, for any t ∈ [0, T ] and any set A ∈ FYt , the map

X 3 x 7→ πx(A) = Eπ[IX×A|FXT ⊗ {∅,Y}](x)

is measurable with respect to µFXt , where πx(dy) is any regular conditional kernel of π w.r.t. the

first coordinate. Denote the set of such plans by ΠF
X ,FY (µ, ν).

Intuitively, the causality property means that the amount of mass transported into a set
A ∈ FYt in the target space, depends on the filtration in the source space only up to time t. If
we think of filtrations in terms of information, this corresponds to a non-anticipative constraint.
This concept goes back to the so-called Yamada-Watanabe criterion (see [YW71]), and has been
recently popularized by [Las15]. We stress that the last author actually uses a weaker definition,
but gives sufficient conditions for its equivalence with the one given above. These are however
too restrictive for the purpose of the present work. In the following remark we collect some
useful equivalent characterizations of causality. We recall that, two filtrations H1 ⊆ H2 are
said to satisfy the H-hypothesis if every square integrable H1-martingale is a square integrable
H2-martingale.

Remark 2.2. The set ΠF
X ,FY (µ, ν) is never empty, since it contains the product measure.

Notice as well that if π is causal between (X ,FX , µ) and (Y,FY , ν), then π is also causal
between (X ,FX , µ) and (Y, F̃Y , ν) for all F̃Y ⊆ FY , as seen directly from Definition 2.1.

Remark 2.3. For a probability measure π ∈ Π(µ, ν), the following are equivalent:

1. π is a causal transport plan between FX and FY ;

2. π
(
X ×Dt|FXt ⊗ {∅,Y}

)
= π

(
X ×Dt|FXT ⊗ {∅,Y}

)
π-a.s., for all t ∈ [0, T ], Dt ∈ FYt ;

3. the σ-fields {∅,X} ⊗ FYt and FXT ⊗ {∅,Y} are conditionally independent with respect to π
given FXt ⊗ {∅,Y}, for all t ∈ [0, T ];

4. the H-hypothesis holds between µFX ⊗ {∅,Y} and µFX ⊗FY with respect to π.

The equivalences above can be shown as in [BY78, Theorem 3]. For convenience of the reader
we just stress the reason why causality/conditional independence implies the H-hypothesis: if M
is a (π, µFX ⊗ {∅,Y})-martingale, then Eπ[Mt+s|µFXt ⊗ FYt ] = Eπ[Mt+s|µFXt ⊗ {∅,Y}] = Mt,
hence M is a (π, µFX ⊗FY)-martingale.

In analogy with (2.1), and as in [Las15], we define the causal transport problem:

inf{Eπ[ c ] : π ∈ ΠF
X ,FY (µ, ν)}, (2.2)

which constitutes the core of our work. In Section 5 we will prove a duality result for this
problem, and in Sections 3 and 4 we will show how the causal transport problem for specific
cost functions allows to characterize semimartingale preservation under filtration enlargement,
and to estimate the value of additional information for some stochastic optimization problems.

2.2 Path space and filtration enlargement.

We will consider causal plans that transport measures defined on spaces of continuous functions.
For t ∈ (0, T ], we denote by C[0, t] the set of continuous functions f : [0, t] → R such that
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f(0) = 0, and we let C = C[0, T ]. Let W = (Wt)t∈[0,T ] be the coordinate process on C, Wt(ω) = ωt
for ω ∈ C, and let F =(Ft)t∈[0,T ] the right-continuous version of the filtration generated by W :

Ft :=
⋂
u>t

σ(Ws, s ≤ u).

In order to consider all possible kinds of anticipation of information regarding the evolution of
the coordinate process, we study right-continuous filtrations G = (Gt)t∈[0,T ] such that

Gt ⊇ Ft for all t ∈ [0, T ), and GT = FT . (2.3)

It is worth mentioning the two most studied kinds of filtration enlargements, which are partic-
ular cases of (2.3):

• initial enlargement with a (FT -measurable) random variable, say L (so Gt = Ft ∨ σ(L),
t ∈ [0, T ]);

• progressive enlargement with a random time (non-negative FT -measurable random vari-
able), say τ (so (Gt) is the right-continuous version of (G0

t ), where G0
t := Ft ∨ σ(τ ∧ t),

t ∈ [0, T ]), in which case G turns τ into a stopping time.

In fact, not many works are devoted to the study of general enlargements of filtration beyond
these two cases, as considered in the present article, see e.g. [ADI07, Jeu80, KP15, CJ18]. We
refer the reader to the monographs [Jeu80, MY06, AJ17], [JYC09, Sec. 5.9] and [Pro04, Ch. VI],
for an account of the main results and the literature on filtration enlargements.

In what follows we will consider X = Y = C and, given two measures µ, ν on C, we will study
causal transport plans between (C,F , µ) and (C,G, ν). We shall commonly denote by

(ω, ω)

generic elements in C × C. Often, as source measure µ, we will take

γ := Wiener measure on C started at 0.

For a continuous process Z = (Zt)t∈[0,T ] defined on a given space Ω, we denote by

FZ := Z−1(F) and GZ := Z−1(G),

respectively, the right-continuous version of the filtration generated by Z on Ω, and the filtration
containing anticipation of information regarding the evolution of Z. Working with the path space
C eases the exposition of our analysis. We point out, however, that our results have a natural
extension in the multidimensional setting Cd, i.e. for multidimensional continuous processes, see
Remarks 3.3 and 3.10.

For the rest of this section, we work on a fixed probability space (Ω,H,P). In particular, for
any process Z = (Zt)t∈[0,T ] defined on it, it is implicitly understood that FZT ⊆ H.

Definition 2.4 (Causal coupling). A pair (X,Y ) of continuous processes on (Ω,H,P) is called
a causal coupling w.r.t. the filtrations FX and GY if (X,Y )#P is a causal transport plan between
(C,F , X#P) and (C,G, Y#P).

Remark 2.5. Definition 2.1 and Remark 2.3 imply that (X,Y ) is a causal coupling if and
only if for all t, GYt and FXT are conditionally independent given FXt , that is, the H-hypothesis
holds between FX and FX ∨ GY , with respect to P. Note also that the concept of causality here
corresponds to that of strong global noncausality by Florens and Fougere [FF96]. More precisely,
(X,Y ) is a causal coupling w.r.t. FX and GY in our sense, if and only if (GYt ) does not strongly
cause X given (FXt ) in the sense of [FF96].
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The following result shows that there is an easier way to check causality in a Brownian
setting; it extends the result [Las15, Proposition 4] to our setting with enlargements.

Lemma 2.6. Let X be a Brownian motion, and Y be a continuous process. Then the following
are equivalent:

1. (X,Y ) is a causal coupling w.r.t. FX and GY ;

2. X is a Brownian motion w.r.t. FX ∨ GY ;

3. there is a filtration J on Ω s.t. X is a J -Brownian motion and GY ⊆ J .

From the proof of the lemma, it will become clear that more generally if X is any process
such that Xt+s −Xt is independent of GYt ∨ FXt for all s, t ≥ 0, then (X,Y ) is causal.

Proof. 1⇒2: By Lévy theorem, it is enough to show that X is an FX ∨ GY -martingale. For
0 ≤ s < t ≤ T and fs ∈ L∞(Ω,FXs ∨ GYs ,P), we have

EP [Xtfs] = EP
î
EP
î
Xtfs | FXt

óó
= EP

î
XtEP

î
fs | FXt

óó
= EP

î
XtEP

î
fs | FXs

óó
= EP

î
EP
î
Xt | FXs

ó
EP
î
fs | FXs

óó
= EP

î
XsEP

î
fs | FXs

óó
= EP [Xsfs] ,

where causality is used in the third equality.
2⇒3 follows by taking J := FX ∨ GY .
3⇒1: For t ∈ [0, T ] and Dt ∈ GYt ,

P(Dt | FXT ) = P(Dt | FXt , {Xt+u −Xt, u ∈ [0, T − t]}) = P(Dt | FXt ),

since X is an FX ∨GY -Brownian motion, hence its increments Xt+s−Xt are jointly independent
of FXt and of the event Dt ∈ GYt . This shows that (X,Y ) is causal, by Definition 2.4 and
Remark 2.3(2).

Throughout the article, we talk of (continuous) semimartingale decomposition, referring to
the unique decomposition of a continuous semimartingale into a continuous local martingale and
a continuous finite variation process. The notion of causality can be used to study semimartingale
decompositions in the setting of enlargement of filtrations, and this is the object of study of
Section 3. We start by illustrating in Section 2.2.1 the lemma above, and show a first connection
between decomposition of semimartingales and causality. A necessary and sufficient condition for
a Brownian motion to remain a semimartingale in the enlarged filtration is given in Theorem 3.2.

2.2.1 Some examples of enlargement of Brownian filtration

In this section we collect some well-known examples of filtration enlargements in a Brownian
setting, which will be useful for future reference (see e.g. [MY06] for these and many other
examples). Let B be a Brownian motion in its right-continuous natural filtration. If B re-
mains a semimartingale with respect to the enlarged filtration GB, then its unique continuous
semimartingale decomposition takes the form

dBt = dB̃t + dAt,

where B̃ is a GB-Brownian motion and A is a continuous GB-adapted finite variation process. In
particular, for every finite horizon T > 0, by Lemma 2.6, we have that (B̃, B) is a causal trans-

port plan w.r.t. F B̃ and GB, that is, (B̃, B)#P ∈ ΠF ,G(γ, γ). On the other hand, note that in
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general (B, B̃) is not causal, not even w.r.t. FB and F B̃, that is, (B, B̃)#P 6∈ ΠF ,F (γ, γ). For ex-
ample, this can be easily seen in the bridge case (2) illustrated below, where dB̃t = dBt−BT−Bt

T−t dt.

(1) Initial enlargement with countably many atoms (see [Yor85]): initial enlargement with
a discrete FBT -measurable random variable, say L (namely GBt = FBt ∨ σ(L) for all t ∈ [0, T ]),
that takes values ln, n ∈ N. This corresponds to enlarging the filtration at time zero with the
sets Cn = {L = ln}, n ∈ N. In this case the decomposition of B in the enlarged filtration takes
the form

dBt = dB̃t +
∑
n
ICn

ηnt
Mn
t
dt, (2.4)

where Mn
t = P(Cn|FBt ), which by martingale representation can be written as Mn

t = Mn
0 +∫ t

0 η
n
s dBs, with Mn

0 = P(Cn) and for some predictable process ηn.
(2) Brownian bridge: initial enlargement by the value of the Brownian motion at the terminal

time T , namely GBt = FBt ∨ σ(BT ) for all t ∈ [0, T ]. In this case it is well-known that the
decomposition of B in the enlarged filtration GB = FB ∨ σ(BT ) is

dBt = dB̃t + BT−Bt
T−t dt. (2.5)

(3) Progressive enlargement with last hitting time (see [Yor97, Section 12.2.4]): progressive
enlargement with the random time τ = sup {u ≤ T,Bu = 0}. In this case, using the notation
Φ(x) =

√
2/π

∫∞
x e−u

2/2du, the decomposition of B in the enlarged filtration is the following:

dBt = dB̃t −
»

2
π

exp(−B2
t /2(T−t))√
T−t

(
sgn(Bt)

Φ(|Bt|/
√
T−t)I{t≤τ} −

sgn(BT )

1−Φ(|Bt|/
√
T−t)I{τ≤t≤T}

)
dt. (2.6)

(4) Bessel process (see [Jeu80, Sect. 6.3]): define a 3-dimensional Bessel process by dRt =
1
Rt
dt+ dBt, and denote Jt := infs≥tRs. Then the process B̃t := Rt − 2Jt is a Brownian motion

in the filtration obtained by enlarging FB with the process J , and

dBt = dB̃t + (2dJt − 1
Rt
dt).

Note that, contrary to the previous cases, here the finite variation process in the semimartingale
decomposition of B in the enlarged filtration is not absolutely continuous.

3 Causal optimal transport and semimartingale decomposition

Throughout this whole section we consider the continuous path space framework of Section 2.2.
In particular, we consider the filtrations F and G defined there. The following notation will be
frequently used: for a process/path Z we denote by

Vt(Z) = sup0≤t1≤···≤tk≤t
∑

i<k |Zti − Zti+1 |

the variation of Z up to time t.
We show the connection between the semimartingale decompositions arising in enlargement

of filtrations, and certain causal optimal transport problems. We consider both the case when
the finite variation part in the semimartingale decomposition is absolutely continuous and when
it is not; we do it separately for the sake of applications and connection with the literature. All
results are shown in a one-dimensional Brownian setting, for simplicity of exposition. We note,
however, that analogous results hold in a multidimensional setting, see Remarks 3.3 and 3.10.
Recall that γ is the Wiener measure on the path space C, and that (ω, ω) denotes a generic
element in C × C. By id we mean the identity mapping on C.
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3.1 The general case

We first need to obtain the following result, reminiscent of [Las15, Proposition 6]:

Theorem 3.1. Let ν be a measure on C such that ν � γ. Then the following are equivalent:

(i) for some continuous, νG-adapted, integrable variation process A = A(ω), i.e. such that

Eν [VT (A)] <∞, (3.1)

the process ξt(ω) := ωt −At(ω) is a (ν, νG)-Brownian motion;

(ii) the following causal optimal transport problem is finite:

inf
π∈ΠF,G(γ,ν)

Eπ[VT (ω − ω)]. (3.2)

Moreover, whenever (i)-(ii) hold, we have that:
1. the transport plan π̂ := (ξ, id)#ν belongs to ΠF ,G(γ, ν), and is optimal for (3.2);
2. for every transport plan π ∈ ΠF ,G(γ, ν) with finite cost in (3.2), the process Ã(ω, ω) := A(ω)
in (i) is the (π, π({∅, C}⊗G))-dual predictable projection of the process (ω, ω) 7→ Λ(ω, ω) := ω−ω.

Proof. (i) ⇒ (ii): From the process ξ in (i), define the coupling π̂ := (ξ, id)#ν. The fact that
π̂ ∈ ΠF ,G(γ, ν) follows as in the proof of Lemma 2.6, and Eπ̂[VT (ω − ω)] = Eν [VT (A)(ω)] <∞.

(ii) ⇒ (i): Fix π ∈ ΠF ,G(γ, ν) with Eπ[VT (ω−ω)] <∞. The continuous process Λt(ω, ω) :=
ωt − ωt is of integrable variation with respect to π, hence we can define its dual predictable
projection Ã(ω, ω) with respect to π({∅, C} ⊗ G), the π-completion of {∅, C} ⊗ G. In particular,
Ã is an integrable variation process on C × C. By Lemma C.1, we may assume that Ã does
not depend on the first coordinate, thus it corresponds to a νG-predictable integrable variation
process A on C, in the sense that Ã(ω, ω) = A(ω), which gives (3.1). Altogether we have

Eπ
î∫ T

0 Xt(ω)dΛt(ω, ω)
ó

= Eν
î∫ T

0 Xt(ω)dAt(ω)
ó
, (3.3)

for every νG-predictable bounded process X. Moreover, we have

Eν [VT (A)] = Eπ[VT (Ã)] ≤ Eπ[VT (Λ)] <∞. (3.4)

Now, note that the jump times of A are νG-predictable, by [DM80, Theorem B, page xiii], and
that for each jump time τ , ∆Aτ = Eπ[∆Λτ |{∅, C}⊗ νGτ−] = 0 a.s., from the continuity of Λ; see
[DM80, Theorem VI.76]. Therefore, A is continuous.

We now define the process ξ as in (i), and need to show that it is a (ν, νG)-Brownian motion.
For 0 ≤ s < t ≤ T and fs ∈ L∞(C, νGs, ν), we have

Eν [(ξt(ω)− ξs(ω))fs(ω)] = Eν [(ωt − ωs −
∫ t
s dAu(ω))fs(ω)]

= Eπ[(ωt − ωs)fs(ω)] + Eπ[(
∫ t
s dΛu −

∫ t
s dAu(ω))fs(ω)]

= Eπ[(
∫ t
s dΛu −

∫ t
s dAu(ω))fs(ω)] = 0,

where the third equality follows since ω, which is a (γ, γF)-martingale, is consequently by causal-
ity a (π, γF⊗G)-martingale, thus also a (π, π(γF⊗G))-martingale and in particular a (π, γF⊗νG)-
martingale. The last equality follows from (3.3) with Xt := fs1]s,T ](t). This shows that ξ is a
(ν, νG)-martingale, and we conclude by an application of Lévy theorem together with Girsanov
theorem; indeed, the quadratic variation of ξ at t must be t, by the assumption ν � γ.

Finally, with the aid of (3.4), we see that the transport plan π̂ := (ξ, id)#ν is optimal for
(3.2). Moreover, since ω is continuous, the uniqueness of the semimartingale decomposition
entails that the process A found in the proof of (ii)⇒ (i) must have not depended on which π
(with finite cost in (3.2)) we started with.
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In the setting of Theorem 3.1, we note that Lemma 5.5 and Theorem 5.6 stated in Section 5
apply, since γ satisfies the weak continuity property (5.2), and the total variation of the difference
of the coordinate processes is bounded from below and lower semicontinuous w.r.t. supremum
norm. Therefore, ΠF ,G(γ, ν) is weakly compact, the problem in (3.2) is attained, and furthermore
duality holds.

We now state the main theoretical result of the article, that provides a necessary and sufficient
condition for a Brownian motion to remain a semimartingale in an enlarged filtration. We use
the notations introduced in Section 2.2.

Theorem 3.2 (Semimartingale preservation property). The following are equivalent:

(i) any process B, on some probability space (Ω,H,P), which is a Brownian motion in its
natural filtration FB, remains a semimartingale in the enlarged filtration GB;

(ii) the causal transport problem (3.2) is finite for some measure ν ∼ γ.

Moreover, when (i)-(ii) hold, and denoting by B = B̃ +N the semimartingale decomposition of

B in GB, we have that (B̃, B) is a causal coupling with respect to F B̃ and GB.

When (i)-(ii) hold, the idea is that (B̃, B) is an optimal coupling (possibly under a different
measure) for a causal transport problem as in (3.2). Note that the characterization of semi-
martingale preservation is given in terms of finiteness of the causal transport problem (3.2) and
does not depend on its actual value.

Proof. (ii) ⇒ (i): By Theorem 3.1, there exists a continuous, νG-adapted, integrable variation
process A such that the process ξt(ω) := ωt − At(ω) is a (ν,G)-Brownian motion. Since ν ∼ γ,
Girsanov theorem implies that ω is a (γ,G)-semimartingale. Moreover, since ω is the coordinate
process on C, and from B#P = γ and GB = B−1(G), we have that B is a (P,GB)-semimartingale.

(i) ⇒ (ii): Let B = M + U be the semimartingale decomposition of B in GB, with M a
(P,GB)-Brownian motion and U a finite variation process, so that in particular VT (U) < ∞.
Since 0 < (1 + VT (U))−1 ≤ 1, we have

c−1 := EP [(1 + VT (U))−1
]
∈ (0, 1],

and ZT := c (1 + VT (U))−1 > 0 P-a.s., with EP[ZT ] = 1. We can then define a probability
measure Q on (Ω,FBT ) via dQ

dP := ZT , so that Q ∼ P and

EQ[VT (U)] = cEP
î

VT (U)
1+VT (U)

ó
≤ c <∞. (3.5)

Let Z be the (P,GB)-martingale defined from ZT . Then, by Girsanov theorem, B has
decomposition

Bt = M̃t +
Ä∫ t

0
d〈Z,M〉s

Zs
+ Ut

ä
,

where M̃ := M −
∫ .

0
d〈Z,M〉s

Zs
is a (Q,GB)-Brownian motion. Moreover,

EQ
[∫ T

0

∣∣∣d〈Z,M〉sZs

∣∣∣] = EP
î∫ T

0 |d〈Z,M〉s|
ó
≤ EP

î√
〈Z,Z〉T

√
〈M,M〉T

ó
=
√
TEP

î√
〈Z,Z〉T

ó
≤ K
√
TEP

î
supt∈[0,T ] Zt

ó
≤ cK

√
T ,

by the Kunita-Watanabe inequality and the Burkholder-Davis-Gundy inequality (with constant

K). Together with (3.5), this implies that the process N :=
∫ .

0
d〈Z,M〉s

Zs
+ U is of Q-integrable

variation. This shows that (ii) holds with ν := B#Q (γ = B#P and Q ∼ P imply ν ∼ γ), as

π = (M̃,B)#Q ∈ ΠF ,G(γ, ν) has finite cost in (3.2).

Finally, by Lemma 2.6, (B̃, B) is a causal coupling with respect to F B̃ and GB.
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From the above results it is clear that if there is one causal transport in ΠF ,G(γ, ν), for some
measure ν ∼ γ, for which the difference of the coordinates is of integrable variation and a.s.
absolutely continuous, then the finite variation part in the semimartingale decomposition of the
Brownian motion in the enlarged filtration is also absolutely continuous, see Section 3.2.

Remark 3.3 (Multidimensional processes). We want to point out that the previous theorems can
be easily extended to a multidimensional setting. Indeed, instead of the path space C, that accom-
modates 1-dimensional continuous processes, we can consider Cd, path space for d-dimensional
continuous processes. In this case, we write {(ait)t∈[0,T ]}di=1 7→ VT (a) :=

∑d
i=1 VT (ai) in (3.1)-

(3.2) for the variation of a multidimensional process. Then the proof of Theorem 3.1 follows
exactly the same arguments, where the dual projections are now taken componentwise. As for
Theorem 3.2, one should define ZT as c/(1 +

∑d
i=1 VT (Ui)) instead.

3.2 The absolutely continuous case

In many well-known filtration enlargements, the finite variation part in the semimartingale
decomposition of the Brownian motion in the enlarged filtration is absolutely continuous (as in
the examples (2.4), (2.5) and (2.6) above), i.e. is of the form

dBt = dB̃t + bt(B)dt.

This is true, for example, in the case of initial enlargement of filtrations under Jacod’s assumption
(see [Jac85], and Section 3.3 below) and under Yor’s method (see [Yor97, Sect. 12.1]), as well as
in the case of progressive enlargement with a random time (see [JY78] and [Jeu80]); for general
enlargements see [ADI06]. That is why this is a framework of major interest which deserves
a deeper analysis. In analogy to Theorems 3.1 and 3.2, we can give necessary and sufficient
conditions for such a decomposition to hold, together with a characterization of b in terms of

causal transport. We will use the notation (
˙̆

ω − ω) to indicate the density of the process ω − ω
when it exists, that is,

ωt − ωt =

∫ t

0
(

˙̆
ω − ω)s ds, t ∈ [0, T ].

Theorem 3.4. Let ν be some measure on C such that ν � γ, and let ρ : R → R+ be a convex
even function such that ρ(+∞) = +∞ and ρ(0) = 0. Then the following are equivalent:

(i) for some G-predictable process α = α(ω) such that

Eν
î∫ T

0 ρ(αs)ds
ó
<∞,

the process ξt(ω) := ωt −
∫ t

0 αs(ω)ds is a (ν, νG)-Brownian motion;

(ii) the following causal optimal transport problem is finite:

inf
π∈ΠF,G(γ,ν)

Eπ
[∫ T

0 ρ((
˙̆

ω − ω)t)dt
]
. (3.6)

Moreover, whenever (i)-(ii) hold, then π̂ := (ξ, id)#ν belongs to ΠF ,G(γ, ν), it is optimal for
(3.6), and for every π ∈ ΠF ,G(γ, ν) with finite cost in (3.6), it holds that the process α̃(ω, ω) :=

α(ω) equals the predictable projection of (
˙̆

ω − ω) with respect to (π, {∅, C} ⊗ νG).

Theorem 3.5 (Semimartingale preservation property). The following are equivalent:

11



(i) any process B, on some probability space (Ω,H,P), which is a Brownian motion in its
natural filtration FB, remains a semimartingale in the enlarged filtration GB, with decom-
position

dBt = dB̃t + bt(B)dt; (3.7)

(ii) the causal transport problem (3.6) is finite for some measure ν ∼ γ and some function ρ
as in Theorem 3.4.

Moreover, if (ii) holds for ν = γ, then the value of the causal transport problem (3.6) equals

Eγ [
∫ T

0 ρ(bt(B))dt] <∞, hence the information drift in (3.7) is ρ-integrable.

Remark 3.6. For ρ(x) = x2/2, the cost in (3.6) is called Cameron-Martin cost. In this case,
finiteness of problem (3.6) for ν = γ is equivalent to square integrability of the drift in (3.7),
by Theorem 3.5. When this holds, one can apply Girsanov theorem, which ensures that B is a
Brownian motion in GB under a change of measure. Therefore, by martingale representation, the
H ′-hypothesis between FB and GB follows, i.e. all FB-semimartingales remain semimartingales
w.r.t. GB. Square integrability of the drift holds for example when initially enlarging with a
discrete random variable as in case (1) of Section 2.2.1 when the variable takes finitely many
values, while it fails in the Brownian bridge case and for progressive enlargements with last
hitting times, as in (2) and (3) of Section 2.2.1. We stress the fact that the semimartingale
property being preserved by the Brownian motion is usually not enough to guarantee the H ′-
hypothesis, see [JY79]. In the case of initial enlargements with a random variable, we also have
that the value of the causal problem (3.6) equals the mutual information between the Brownian
motion B and such random variable, see Section 3.3.

The proofs of the above theorems follow the same steps of the proofs of Theorems 3.1
and 3.2, so we omit them. One simply observes that ρ(x) ≥ m|x| + n for some m > 0, so
the relevant processes in the proofs are of integrable and a.s. absolutely continuous variation.
Then one recalls that for an integrable variation process X which is absolutely continuous, say
X =

∫ .
0 atdt, the dual predictable projection of X w.r.t. some filtration H is also absolutely

continuous, and is indistinguishable from both
∫ .

0
patdt and

∫ .
0
oatdt, where pa and oa are the

predictable and optional projections of a w.r.t. H, respectively.

Remark 3.7. In order to establish an analogue of Theorems 3.2 and 3.5 for general continuous
semimartingales, one needs to consider the following condition for transport plans instead of
causality:

Eπ[(ωt − ωs)fs(ω)] = 0 ∀ 0 ≤ s < t ≤ T, fs ∈ L∞(C, νGs, ν). (3.8)

In the present paper we prefer to work with the original concept of causality rather than with
(3.8). For this reason, we only work in a Brownian framework.

The proofs sketched before the remark are of stochastic analysis flavour, exactly as for
Theorems 3.1 and 3.2. We now describe what the optimal transport perspective has to say in
the absolutely continuous case. An interesting observation is that in this setting we can actually
say more about the problem dual to (3.6), which, as Theorem 5.6 below points out, is given by

sup
ψ∈Cb(C), h∈H

ψ(ω)≤
∫ T
0 ρ((

˙̆
ω−ω)t)dt+h(ω,ω)

Eν [ψ], (3.9)
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where1

H := span ({g(ω) [f(ω)− Eγ [f |Ft](ω)] : f ∈ Cb(C), g ∈ Bb(C,Gt), t ∈ [0, T ]}) .

Observe that γ is implicitly present in Problem (3.9), since it appears in the constraints set
H. The next result is proved in Appendix B, where its ingredients are more closely examined.
The necessary elementary facts on Orlicz spaces are given in Appendix A. We stress that even
without anticipation of information (i.e. F = G) this is a novel result.

We will talk of refined dual problem, by referring to the following formulation:

sup
¶
Eν
î∫ T

0 Ft(ω)dωt −
∫ T

0 ρ∗(Ft(ω))dt
ó

: F ∈ Sa(G)
©
, (3.10)

where ρ∗ denotes the convex conjugate of ρ, and Sa(G) denotes the set of simple previsible
processes w.r.t. G, namely,

Sa(G) :=
{∑m

i=1 F
i(ω)I(τi,τi+1](t) : m ∈ N, 0 ≤ τ1 ≤ · · · ≤ τm ≤ T G-stopping times, F i ∈ Bb(Gτi)

}
,

so the first integral in (3.10) is defined as a finite sum as customary. Moreover, we write ρ(0)
0 for

limx↘0
ρ(x)
x , and ρ(+∞)

+∞ for limx↗+∞
ρ(x)
x .

Theorem 3.8. Let ν � γ, and suppose that ρ is strictly convex, even, and satisfies for some
C, x0 > 0 and ` > 1:

ρ(x) = 0⇔ x = 0 , ρ(0)
0 = 0 , ρ(+∞)

+∞ = +∞ , ρ(2x) ≤ Cρ(x) and ρ(x) ≤ ρ(`x)
2` if x ≥ x0 .

Then:
(i) The primal (3.6), the dual (3.9), and the refined dual (3.10), have all the same value.

From now on we assume that this common value is finite.

(ii) The refined dual (3.10) can be computed (without changing its value) over Mρ∗, the closure
of Sa(G) w.r.t. the so-called gauge norm

F 7→ ‖F‖ρ∗ := inf{β > 0 : Eν [
∫ T

0 ρ∗(Ft/β)dt] ≤ 1}, (3.11)

and it is attained there by a unique optimizer F̂ = F̂ (ω).
(iii) The optimal drift α in Theorem 3.4(i) is related to F̂ through

ρ∗(F̂t(ω)) + ρ(αt(ω)) = αt(ω)F̂t(ω) dν × dt-a.s., (3.12)

namely αt(ω) = (ρ∗)′(F̂t(ω)), or equivalently, F̂t(ω) ∈ ∂ρ(αt(ω)), with ∂ denoting sub-differential.
(iv) ξt(ω) := ωt −

∫ t
0 αs(ω)ds is a (ν, νG)-Brownian motion, so if further γ � ν we have that

the canonical process ω is a (γ, νG)-semimartingale.

The refined dual problem has in principle no immediate connection to γ. In fact, it provides
a lower bound for the causal transport problem even if ν 6� γ, as we prove in Lemma B.1 in
the appendix. It is a non-trivial consequence of Theorem 3.8 that when ν � γ the values of the
refined dual and the causal transport problem coincide.

The typical examples for which the given conditions on ρ are satisfied, are power functions
ρ(x) ∼ |x|p with exponent 1 < p < +∞, which covers the Cameron-Martin case, as well as
ρ(x) = |x|a(1 + | log |x||) for a > 1; see the comments after [RR91, Ch. II.2.3, Corollary 4].

1Here and thereafter, span denotes the linear space of functions obtained by finite linear combinations of those
functions in the generating class.
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Remark 3.9. We stress that the dual (3.9) is most often not attained on continuous functions.
Still, the refined dual (3.10) admits an optimizer which induces a formal optimal element for

(3.9) by setting h(ω, ω) :=
∫ T

0 F̂t(ω)dωt and

ψ(ω) :=
∫ T

0 F̂t(ω)dωt −
∫ T

0 ρ∗(F̂t(ω))dt =
∫ T

0 F̂t(ω)dξt(ω) +
∫ T

0 ρ(αt(ω))dt.

Notice that, even though the optimal F̂ depends on the cost function ρ, the optimal drift α does
not. In the Cameron-Martin case ρ(x) = x2/2, we actually get from (3.12) that F̂ = α and

so ψ(ω) =
∫ T

0 αt(ω)dωt −
∫ T

0 (αt(ω))2/2 dt. Furthermore, in the absence of enlargement (i.e.
F = G) we find by Girsanov theorem the identity

dν
dγ (ω) = exp(ψ(ω)).

In words: the causal Kantorovich potential ψ between Wiener measure and ν is the logarithm of
their relative density.

In the proof of Theorem 3.8 (see Appendix B) we extend the stochastic integral
∫ T

0 Ft(ω)dωt
beyond simple G-previsible integrands via functional analytic arguments, much inspired by
[Léo12]. Of course, this could have been done via Theorem 3.4, using that a fortiori the co-
ordinate process ω is a (ν,G)-semimartingale. We avoided this to show that there is a true
transport/functional method for this. Likewise, Point (iv) is obtained without using previous
results.

Remark 3.10 (Multidimensional processes). As seen in Remark 3.3 for the general case, also
the theorems of this section have an analogue in the multidimensional setting. It suffices to
define the gauge norm (3.11) as acting on the euclidean norm of Ft(ω), interpret the r.h.s. of
(3.12) as inner product, etc. This is straightforward, so we do not give the details.

3.3 Initial enlargement: Jacod’s condition and connections with the litera-
ture

In this section we analyse the connections between our results with the existing literature on ini-
tial enlargement of filtrations. Let B be a Brownian motion on the probability space (Ω,FB,P).
We enlarge the Brownian filtration FB with a real-valued random variable L(B), and denote by
GB the enlarged filtration, GB = FB ∨ σ(L(B)). Let ` : FBT → [0, 1] be the law of L(B), and
`t : Ω× FBT → [0, 1] be a regular version of the FBt -conditional law of L(B), t ∈ [0, T ). Jacod’s
celebrated method [Jac85] relies on the following density hypothesis: for all t ∈ [0, T ), `t � ` in
the P-a.s. sense. In this case, there exists a suitable version of the density of `t with respect to
`, which we denote by pxt , such that for every x ∈ R, the process (pxt )t∈[0,T ) is a martingale on

(Ω,FB,P). Given that we are in a Brownian filtration, this ensures the existence of FB-adapted
processes Nx such that pxt = 1 +

∫ t
0 N

x
s dBs. The semimartingale decomposition of B in GB is

then given by Bt = B̃t +A
L(B)
t , where the finite variation process is absolutely continuous, that

is A
L(B)
t =

∫ t
0 α

L(B)
s ds, with αxt = Nx

t /p
x
t .

3.3.1 Relation with Jeulin’s characterization

Proposition 3.8 in [Jeu80] provides necessary and sufficient conditions for a martingale to remain
a semimartingale in an initially enlarged filtration, in terms of a change of measure and a
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finiteness condition. The connection with our results can be easily illustrated under Jacod’s
hypothesis. In case of no change of measure, the finiteness condition in [Jeu80] reads as

EP
î∫ T

0

∫
R |N

x
t |`(dx)dt

ó
<∞, (3.13)

which ultimately follows by noticing

P(L(B) > x|FBt ) =
∫∞
x `t(da) =

∫∞
x pat `(da) =

∫∞
x [1 +

∫ t
0 N

a
s dBs]`(da).

According to our Theorem 3.5, the causal transport problem (3.6) must be finite for some
measure ν ∼ γ and some function ρ as in Theorem 3.4. Let ρ = |.|, ν = γ, and π̂ be as in

Theorem 3.4, that is π̂ = (ξ, id)#γ ∈ ΠF ,G(γ, γ), with ξt(ω) = ωt −
∫ t

0 α
L(B)
s (ω)ds. Then

Eπ̂
[∫ T

0 ρ((
˙̆

ω − ω)t)dt
]

= EP
[∫ T

0

∣∣∣αL(B)
t

∣∣∣ dt] = EP
ï∫ T

0

∣∣∣∣NL(B)
t

p
L(B)
t

∣∣∣∣ dtò = EP
[∫ T

0

∫
R

∣∣∣Nx
t
pxt

∣∣∣ `t(dx)dt
]

= EP
î∫ T

0

∫
R |N

x
t |`(dx)dt

ó
,

which is exactly (3.13).
More generally, the change of measure in [Jeu80] plays the role of the measure ν being

possibly different from γ in our Theorem 3.5-(ii).

3.3.2 Reduction to the case of same filtration

As explained in the “Comparison with Jacod’s condition” Section in [ADI07], Jacod’s method
can be interpreted in the following way: assuming that for almost all x, Px := P(·|L(B) =
x) � P, one applies Girsanov theorem and finds B − Ax to be a (local) martingale w.r.t. Px.
Then, combining these, one obtains that B − AL(B) is a (local) martingale w.r.t. P and the
enlarged filtration GB. Notably, there is a causal optimal transport counterpart to the method
just described. Denote

γL=x := “conditional law of B given L(B) = x”.

Lemma 3.11. Set G = F ∨ σ(L). We have

inf
π∈ΠF,G(γ,γ)

Eπ
[ ∫ T

0
ρ((

˙̆
ω − ω)t)dt

]
=

∫ {
inf

π∈ΠF,F (γ,γL=x)
Eπ
[ ∫ T

0
ρ((

˙̆
ω − ω)t)dt

]}
`(dx). (3.14)

Observe that the integrand in the r.h.s. of (3.14) is a causal transport problem in itself, but
without enlargement of filtration. The proof relies on easily checking that for π ∈ ΠF ,G(γ, γ)
one has πL(ω)=x ∈ ΠF ,F (γ, γL=x), and ultimately on a standard measurable selection argument,
and so we omit it.

3.3.3 Cameron-Martin cost: entropy and mutual information

In the Cameron-Martin case of ρ(x) = x2/2, [Las15, Lemma 5] implies that the integrand in the
r.h.s. of (3.14) equals the relative entropy of γL=x w.r.t. γ, whenever this is finite. For us this
means that

inf
π∈ΠF,G(γ,γ)

Eπ
[

1
2

∫ T
0 (

˙̆
ω − ω)2

tdt
]

=
∫

Ent(γL=x|γ)`(dx). (3.15)

Since the relative entropy Ent(γL=x|γ) is further integrated w.r.t. the law of L(B), we get
that the r.h.s. in (3.15) corresponds to the so-called Mutual Information between B and L(B),
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denoted by I(B,L(B)). It is defined as the relative entropy of the joint law PB,L(B) w.r.t. the
decoupling measure PB ⊗ PL(B), namely:

I(B,L(B)) := Ent(PB,L(B)|PB ⊗ PL(B)) =
∫

Ent(γL=x|γ)`(dx).

On the other hand, by Theorem 3.5, the l.h.s. in (3.15) is finite if and only if the information
drift αL(B) in the semimartingale decomposition of B w.r.t. GB is square integrable, in which

case the value of the causal transport problem equals 1
2E

γ [
∫ T

0 (α
L(B)
t )2dt]. In [PK96] (see also

[ADI06], [AIS98]) it is proved that this value corresponds to the additional utility obtained by
an investor who maximizes the expected log-utility of terminal wealth in a certain complete
market model w.r.t. GB, compared to an investor w.r.t. FB. Further, it is known that this value
also equals the relative entropy Ent(P|Q), where Q is a probability measure under which B is a
(Q,GB)-Brownian motion; see Remark 3.6. Putting things together, we have

Corollary 3.12. Assuming that γL=x � γ ∀x `-a.s., then

inf
π∈ΠF,G(γ,γ)

Eπ
[

1
2

∫ T
0 (

˙̆
ω − ω)2

tdt
]

= Ent(P|Q) =
∫

Ent(γL=x|γ)l(dx) = I(B,L(B)).

Note that the equality with the mutual information recovers the result of [ADI06, Theorem
5.13] using our methods. If the initial enlargement is done by a discrete random variable as in
Section 2.2.1-(1), then

inf
π∈ΠF,G(γ,γ)

Eπ
[

1
2

∫ T
0 (

˙̆
ω − ω)2

tdt
]

= −
∑
n
pn ln(pn),

where pn = P(Cn), and the term on the r.h.s. is referred to as the entropy of the partition
{Cn}n∈N; see [Yor85] and [AIS98].

4 Robust transport bounds for stochastic optimization

In this section we show how the causal transport framework allows us to give robust estimates
for the value of additional information, as well as model sensitivity, for some classical stochastic
optimization problems in continuous-time. By value of information we mean the difference
between the optimal values of these problems with and without additional information (i.e.
w.r.t. the enlarged and the original filtration, respectively). By model sensitivity we mean
the difference between the optimal values of these problems under two different probabilistic
models (i.e. reference probability measures). For the value of information, the main idea is to
take “causal projections” of candidate optimizers in the problem with the larger filtration, so
building a feasible element in the problem with the smaller filtration, and making a comparison
possible. For model sensitivity, it means to project an optimizer under one model in order to
build a feasible element for the other model, which enables a direct comparison. In discrete-time
and in the setting of model sensitivity in multistage stochastic programming, this idea goes back
to [Pfl09, PP12].

We start with Section 4.1, on optimal stopping problems, for which the outlined projection
approach is more delicate and fully novel to the best of our knowledge (even in discrete-time).
Then in Section 4.2 we deal with utility maximization with portfolio constraints; this is a
prominent example of a controlled linear system, and indeed the same arguments would be
applicable to such systems in general. In both optimization problems considered below, we
will obtain robust estimates in terms of causal minimization problems. These estimates not
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only provide a theoretical insight, they also give us bounds which can be actually obtained or
approximated in several situations of interest. We refer the reader to the work [BNT19], where
an L2 causal transport problem is solved in the case where the marginals are diffusion processes
and the filtrations are the canonical ones. The authors characterize the value of the problem via
PDE techniques. Thus in the case of optimal stopping (see Proposition 4.4 below) our upper
bound could be obtained/approximated by high-dimensional but otherwise standard PDEs; this
has to be compared with the difficulty of solving the free boundary problems associated to
optimal stopping. Another promising direction regarding the computation of our bounds, is the
discretization method introduced in [ABC18]; we are currently working on the full numerical
implementation of this method.

4.1 Optimal stopping

Here we consider the framework of Section 2.2, with canonical space C := C[0, T ] and filtrations
F ⊆ G on it. We begin with the definition of a randomized stopping time:

Definition 4.1. A randomized stopping time Σ with respect to a filtration H and a probability
measure µ ∈ P(C), written Σ ∈ RST (H, µ), is an increasing right-continuous H-adapted process
on [0, T ], with Σ0 = 0 and ΣT = 1, µ− a.s.

This notion generalizes the concept of stopping time, say τ , according to which a path ω is
stopped at a unique point in time τ(ω). Stopping according to a randomized stopping time Σ
means that a path ω is stopped in [0, t] with probability Σt(ω). We recommend [BCH17, Sect. 3.2]
for a modern view on this matter, and refer to [BC77] for the original motivation/definition.

The next lemma is of fundamental importance for our applications. It identifies what causal
dual optional projections do to randomized stopping times:

Lemma 4.2. Let Σ ∈ RST (G, ν). Then, for any µ ∈ P(C) and any causal transport plan
π ∈ ΠF ,G(µ, ν), there is a randomized stopping time Σ̃ ∈ RST (F , µ) such that

Eπ
î∫ T

0 `(ω, t)dΣt(ω)
ó

= Eµ
î∫ T

0 `(ω, t)dΣ̃t(ω)
ó
,

for all F-optional processes (ω, t) 7→ `(ω, t) which are bounded or positive.

Proof. Let Σ̃(ω, ω) be the dual optional projection of Σ = Σ(ω) with respect to (π, π(F⊗{∅, C})).
From Lemma C.1, we may assume that Σ̃(ω, ω) = Σ̃(ω), and from Lemma C.2 below we have
that Σ̃ equals the optional projection of Σ with respect to (π, π(F ⊗ {∅, C})). Moreover, by
[DM80, Lemma 7, App. I], we can assume Σ̃ to be (F ⊗ {∅, C})-optional. This implies that Σ̃
lies in the interval [0, 1] too, and hence belongs to RST (F , µ).

Our purpose is to quantitatively gauge, via causal transport arguments, the dependence of
optimal stopping problems on [0, T ] with respect to the filtration or the reference probability
measure. See [LP90, CT07] or the seminal but unpublished work [Ald81], for the related issue of
(qualitative) stability of these problems. Lemma 4.2 above suggests that we should rather define
optimal stopping over randomized stopping times. It is well-known that, in the non-anticipative
case, one can move between formulations over stopping times and over randomized stopping
times. That this is also true in the anticipative case is somewhat hidden in the aforementioned
articles, so we sketch the arguments for convenience of the reader:
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Lemma 4.3. Let ν ∈ P(C), and let (ω, t) 7→ `(ω, t) be measurable, F-optional, bounded or
positive. Then

inf {Eν [`τ ] : τ a G-stopping time on C, τ ≤ T} = inf
Σ∈RST (G,ν)

Eν
[∫
`tdΣt

]
. (4.1)

Furthermore, let (Ω,H,P) be a complete filtered probability space, X : Ω → C measurable and
H-adapted with X#P = ν. Assuming that

∀t ≤ T, X−1(GT ) is conditionally independent of Ht given X−1(Gt), (4.2)

we further have that the common value in (4.1) equals

inf
¶
EP [`(X, τ)] : τ a H ∨X−1(G)-stopping time on Ω, τ ≤ T

©
. (4.3)

Proof. We first prove (4.1), following [CT07, Proof of Lemma 9]. Evidently the r.h.s. in (4.1) is
the lesser one. For the converse inequality, take Σ ∈ RST (G, ν) and define

(ω, x) ∈ C × [0, 1] 7→ τ(ω, x) := inf{t ∈ [0, T ] : Σt > x},

so by [DM80, Ch. VI.55] we have

Eν
î∫ T

0 `(ω, t)dΣt(ω)
ó

= Eν
î∫ 1

0 `(ω, τ(ω, x)) dx
ó
.

Observe that for x fixed and each t we have {ω ∈ C : τ(ω, x) > t} = {ω ∈ C : Σt ≤ x} ∈ Gt,
hence ω 7→ τ(ω, x) is a G-stopping time on C. Applying Fubini-Tonelli theorem, we find

Eν
[∫
`(ω, t)dΣt(ω)

]
=
∫ 1

0 Eν [`(ω, τ(ω, x))] dx,

and since the integrand in the r.h.s. here is for each x larger than the l.h.s. of (4.1), this
establishes the equality. As for (4.3), one follows the arguments in [LP90, Proposition 3.5], or
more precisely their extension in [CT07, Lemma 17].

If ν above is Markov (resp. Wiener) and F = G, then (4.2) is equivalent to X being Markov
(resp. Brownian motion) w.r.t. H. This should convey the message that both Condition (4.2)
and Problem (4.3) are natural in our more general context.

We now look at optimal stopping under (F , µ), which by the previous lemma equals

vF ,µ := inf
Σ∈RST (F ,µ)

Eµ
[∫
`tdΣt

]
. (OS(F , µ))

We want to compare this problem with the one where extra information (anticipation) is available
and/or the law of the process to be stopped is different, namely (again by Lemma 4.3)

vG,ν := inf
Σ∈RST (G,ν)

Eν
[∫
`tdΣt

]
. (OS(G, ν))

The comparison of vF ,µ with vG,µ corresponds to assessing the cost of information/anticipation.
On the other hand, the comparison of vF ,µ with vF ,ν corresponds to the study of the dependence
of non-anticipating optimal stopping with respect to different reference measures, or equivalently,
with respect to different processes; in other words, model sensitivity. We have:
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Proposition 4.4. Assume that vF ,µ and vG,ν are both finite, and that the cost function ` : C×R+

is optional and K-Lipschitz in its first argument with respect to a metric d on C, uniformly in
time (i.e. in the second argument). Then we have

vF ,µ − vG,ν ≤ K inf
π∈ΠF,G(µ,ν)

Eπ[d(ω, ω)]. (4.4)

In particular, in the two special cases of interest we have:

(i) If µ = ν, then

0 ≤ vF ,µ − vG,µ ≤ K inf
π∈ΠF,G(µ,µ)

Eπ[d(ω, ω)]; (4.5)

(ii) If F = G, then ∣∣vF ,µ − vF ,ν∣∣ ≤ K inf
π∈ΠF,Fbc (µ,ν)

Eπ[d(ω, ω)], (4.6)

where the constraint in the transport problem in the right-hand side of (4.6) means that
both π ∈ ΠF ,F (µ, ν) and π̃ ∈ ΠF ,F (ν, µ), where π̃ = ((ω, ω) 7→ (ω, ω))#π.

Proof. Take an optimizer Σ for (OS(G, ν)) (same argument holds for an optimizing sequence).
We write this in the ω-variable and consider any causal transport π between µ and ν. Let
Σ̃ ∈ RST (F , µ) be the randomized stopping time associated to Σ, as in Lemma 4.2. We have

vF ,µ ≤ Eµ
î∫ T

0 `(ω, t)dΣ̃t(ω)
ó

= Eπ
î∫ T

0 `(ω, t)dΣt(ω)
ó
.

Hence the difference can be bounded above as follows

vF ,µ − vG,ν ≤ Eπ
î∫ T

0 [`(ω, t)− `(ω, t)]dΣt(ω)
ó
≤ KTEπ[d(ω, ω)].

Being π a generic causal transport between the measures µ and ν, we get the bound in (4.4).
In the case (i), obviously vF ,µ ≥ vG,µ, since only the set of feasible optimization variables

changes. As for the case (ii), exchanging the roles of µ and ν we get∣∣vF ,µ − vF ,ν∣∣ ≤ K max

®
inf

π∈ΠF,F (µ,ν)
Eπ[d(ω, ω)], inf

π∈ΠF,F (ν,µ)
Eπ[d(ω, ω)]

´
≤ K inf

π∈ΠF,Fbc (µ,ν)
Eπ[d(ω, ω)].

The last inequality follows since the cost d is symmetric (as a metric), implying that the r.h.s.
can be computed on ΠF ,Fbc (µ, ν) or ΠF ,Fbc (ν, µ) equivalently.

Replacing the Lipschitz condition in Proposition 4.4 by uniform continuity, one obtains
analogue results involving a modulus of continuity. Notice that if `(x, t) = f

Ä∫ t
0 xsds

ä
and f

is Lipschitz, then Proposition 4.4 applies with d(ω, ω) = ‖ω − ω‖L2[0,T ]. The corresponding
optimal stopping problem can be interpreted e.g. as the optimal exercise of an American option
of Asian type. In this case the PDE method of [BNT19] can be applied in order to characterize
and compute the upper bound in case F = G. On the other hand, if `(x, t) = f(xt) and
`(x, t) = f(sups≤t xs), then again the assumptions of Proposition 4.4 are satisfied, with d(ω, ω) =
‖ω−ω‖∞. In this case the bound in (4.4) can be further majorized up to a multiplicative constant
by

inf
π∈ΠF,G(µ,ν)

Eπ[VT (ω − ω)].

Remark 4.5. Note that, for any choice of filtrations F and G on C (non-necessarily satisfying
F ⊆ G), Lemma 4.2 still holds true. This means that, under the assumptions of Proposition 4.4,
the bound in (4.4) still holds, thus giving an estimate of the difference between the optimal stop-
ping problems of agents with different information (non-necessarily one bigger than the other).
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4.2 Utility maximization

This part follows in spirit the previous section. We want to compare the optimal value of
expected utility from terminal wealth, over a fixed finite time horizon [0, T ], when the reference
filtration is enlarged by anticipation of information in the sense of Section 2.2. A wide literature
is devoted to the utility maximization problem, in complete or incomplete markets, and with or
without additional constraints; see [XS92, KLSX91, KLS87, CK92] among the earliest articles
on the subject. Pikovsky and Karatzas [PK96] were the first ones to include anticipation of
information. In a complete market, and for initial filtration enlargements, they provide the
explicit value of this anticipation of information, in terms of log-utility maximization, with or
without short-selling constraints; see also [AIS98, ADI06].

In this section we consider possibly incomplete markets, and any kind of anticipation of
information (not just initial), and give an estimate of the value of information in terms of
utility maximization under short-selling constraints, for a class of utility functions which includes
the logarithm among other well-known ones; see Assumption 4.7. In order to do this, we set
X = Y = Cd = C([0, T ],Rd), the space of continuous Rd-valued functions on the interval [0, T ],
and keep the notation ω, ω for the coordinate processes. Let (Ω,P) be a probability space,
equipped with FB, the natural filtration of a d-dimensional Brownian motion B = (B1, . . . , Bd)

∗,
i.e. FB = σ(B1, . . . , Bd), augmented so as to satisfy the usual conditions. We use notation
analogous to that of Section 2.2, and denote by GB the enlargement of the filtration FB with
some anticipation of information on the evolution of B. Hence GB represents the information
available to the informed agent. In this section we assume:

Assumption 4.6. The process B remains a semimartingale with respect to GB, say with semi-
martingale decomposition B = B̃ +A.

We consider a financial market consisting of a riskless asset (bond), which we normalize to
1, and m ≤ d risky assets whose price dynamics are described by the stochastic equations

dSit = Sit
(
bit dt+

∑d
j=1 σ

i,j
t dB

j
t

)
, i = 1, . . . ,m,

with initial condition Si0 = si0 > 0. The vector process b = (b1t , . . . , b
m
t )∗ of mean rates of return

is assumed to be FB-progressively measurable and L-Lipschitz uniformly in time, i.e.

|bit(ω1)− bit(ω2)| ≤ L
∑d

k=1 sup0≤s≤t |ω
1,k
s − ω2,k

s | ∀ t, i and ∀ω1, ω2 ∈ Cd. (4.7)

The m× d volatility matrix σt = (σi,jt )1≤i≤m,1≤j≤d has full rank, it is FB-progressively measur-
able and M -Lipschitz uniformly in time, i.e.

|σi,jt (ω1)− σi,jt (ω2)| ≤M
∑d

k=1 sup0≤s≤t |ω
1,k
s − ω2,k

s | ∀ t, i, j and ∀ω1, ω2 ∈ Cd, (4.8)

and there exists some constant C s.t. |σi,jt | ≤ C for each time t and for any i, j . We denote by λit
the proportion of an agent’s wealth invested in the ith stock at time t (1 ≤ i ≤ m), the remaining
proportion 1 −

∑m
i=1 λ

i
t being invested in the bond. We shall forbid short-selling of stocks and

bond, which corresponds to the constraint λi ∈ [0, 1] for all i, and
∑m

i=1 λ
i
t ≤ 1. We write λ ∈ A

for this constraint; the case of arbitrary compact-convex constraints can be treated in the same
way. Let A(GB) and A(FB) be the sets of admissible portfolios for the agent with and without
anticipative information, i.e. the sets of GB-, respectively FB-progressively measurable A-valued
processes (λt)t∈[0,T ]. Denoting by Xλ the wealth process corresponding to a portfolio λ and

starting from a unit of capital, we have dXλ
t = Xλ

t λ
∗
t [btdt+ σtdBt], that is,

Xλ
t = exp

Ä∫ t
0 (λ∗sbs − 1

2 ||σ
∗
sλs||2)ds+

∫ t
0 λ
∗
sσsdBs

ä
.
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The above expression makes sense for portfolios in A(GB) by Assumption 4.6 and from the fact
that A is bounded. We also need:

Assumption 4.7. The utility function U : R+ → R is concave, increasing, and such that, for
some K ∈ R+, we have F := U ◦ exp is K-Lipschitz, concave and increasing.

We remark that this assumption is fulfilled e.g. by U negative power utility U(x) = xa

a for
a ≤ 0, or logarithmic utility U(x) = ln(x), or exponential utility U(x) = − 1

ae
−ax for a ≥ 1. The

function F is 1-Lipschitz for the first two examples, and e−a-Lipschitz for the last one.
The utility maximization problem without anticipation of information is then given by

vF = sup
λ∈A(FB)

E[U(Xλ
T )]. (U(F))

We proceed to compare this value with the following problem under anticipation of information:

vG = sup
λ∈A(GB)

E[U(Xλ
T )], (U(G))

hence obtaining a bound on the price of information relative to the risk-attitude encoded by U .

Proposition 4.8. The difference between the value functions of informed and uninformed agents
can be bounded as follows (with the convention +∞−∞ = 0)

0 ≤ vG − vF ≤ K̃ inf
π∈ΠF,G(γ,γ)

Eπ[VT (ω − ω)], (4.9)

for some explicit constant K̃, see (4.11).

We recall that by the total variation of an Rd-valued process X we mean the sum of total
variations of its components, i.e. VT (X) =

∑d
i=1 VT (Xi). Thanks to the multidimensional version

of Theorem 3.2 (see Remark 3.3), we have that if the causal problem in (4.9) is finite, then its
value equals Eγ [VT (A)].

Proof. In the case vF =∞ we do not have anything to prove, hence we assume vF to be finite.
In the path space Cd, the expected utility from terminal wealth for the agents with and without
anticipative information is given by

Eγ
î
F
Ä∫ T

0 (λ∗t bt − 1
2 ||σ

∗
t λt||2)dt+

∫ T
0 λ∗tσtdωt,

äó
where λ is G- and F-progressively measurable, respectively.

We now fix a causal transport π ∈ ΠF ,G(γ, γ) ⊂ P(Cd × Cd) for which the total variation
VT (ω − ω) is π-a.s. finite, and consider (U(F)) to be solved in the ω variable and (U(G)) in
the ω variable. Assume vG < ∞ and that there is an optimizer λ̂(ω) = (λ̂1(ω), . . . , λ̂m(ω)) for
problem (U(G)) (else one can argue in the same way for every element λn of a sequence such
that E[U(Xλn

T )]→ vG for n→∞). We denote by λ̃ = (λ̃1, . . . , λ̃m) its optional projection with
respect to (π,F ⊗ {∅, C}), so that in particular

λ̃it(ω) = λ̃it(ω, ω) = Eπ[λ̂it(ω)|Ft] = Eπ[λ̂it(ω)|FT ], i = 1 . . . ,m,

(for simplicity, here and in what follows, we use the notation Eπ[.|Ft] for Eπ[.|Ft⊗{∅, C}]). The
last equality follows by causality and is crucial for the next argument. Note that λ̃ ∈ A(FB),
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which yields

vF ≥ Eγ
[
F
( ∫ T

0 (λ̃∗t (ω)bt(ω)− 1
2 ||σ

∗
t (ω)λ̃t(ω)||2)dt+

∫ T
0 λ̃∗t (ω)σt(ω)dωt

)]
≥ Eπ

[
F
(
Eπ
[ ∫ T

0 (λ̂∗t (ω)bt(ω)− 1
2 ||σ

∗
t (ω)λ̂t(ω)||2)dt+

∫ T
0 λ̂∗t (ω)σt(ω)dωt

∣∣∣FT ])]
≥ Eπ

[
F
( ∫ T

0 (λ̂∗t (ω)bt(ω)− 1
2 ||σ

∗
t (ω)λ̂t(ω)||2)dt+

∫ T
0 λ̂∗t (ω)σt(ω)dωt

)]
,

by Jensen’s inequality, being F concave and increasing, and by causality. Therefore, by Lipschitz
continuity of the function F , we have

0 ≤ vG − vF ≤ KEπ
[∣∣∣ ∫ T0 λ̂∗t (ω) (bt(ω)− bt(ω)) dt− 1

2

∫ T
0

(
||σ∗t (ω)λ̂t(ω)||2 − ||σ∗t (ω)λ̂t(ω)||2

)
dt

+
∫ T

0 λ̂∗t (ω) (σt(ω)dωt − σt(ω)dωt)
∣∣∣]

≤ KEπ
[ ∫ T

0 |λ̂
∗
t (ω)(bt(ω)− bt(ω))|dt+

∣∣∣ ∫ T0 λ̂∗t (ω) (σt(ω)dωt − σt(ω)dωt)
∣∣∣

+ 1
2

∫ T
0

∑d
j=1

[∑m
i=1 |λ̂it(ω)| |σi,jt (ω)− σi,jt (ω)|

][∑m
i=1 |λ̂it(ω)| |σi,jt (ω) + σi,jt (ω)|

]
dt
]

≤ KEπ
[ ∫ T

0

∑m
i=1

∣∣bit(ω)− bit(ω)
∣∣ dt+∣∣∣ ∫ T0 λ̂∗t (ω)σt(ω)(dωt−dωt)

∣∣∣+∣∣∣ ∫ T0 λ̂∗t (ω)(σt(ω)−σt(ω))dωt

∣∣∣
+ 1

2

∫ T
0

∑d
j=1

î∑m
i=1 |σ

i,j
t (ω)− σi,jt (ω)|

ó î∑m
i=1 |σ

i,j
t (ω) + σi,jt (ω)|

ó
dt
]
. (4.10)

Now, by (4.7) and since ω0 − ω0 = 0 on Cd, we have that π-a.s.

∫ T
0

m∑
i=1

∣∣bit(ω)− bit(ω)
∣∣ dt ≤ LTm d∑

k=1

sup
0≤t≤T

∣∣ωkt −ωkt ∣∣ ≤ LTm d∑
k=1

VT (ωk −ωk) = LTmVT (ω−ω).

The second term in (4.10) is easily bounded π-a.s. as follows∣∣∣ ∫ T0 λ̂∗t (ω)σt(ω)(dωt − dωt)
∣∣∣ =

∑d
j=1

∑m
i=1

∣∣∣ ∫ T0 λ̂it(ω)σi,jt (ω)(dωjt − dω
j
t )
∣∣∣ ≤ CmVT (ω − ω).

Finally we consider the third term in (4.10), and denote Xt =
∫ t

0 λ̂
∗
s(ω) (σs(ω)− σs(ω)) dωs. This

is a martingale under π, because by causality the coordinate process ω is an F ⊗ G-martingale.
Hence, we can apply the Burkholder-Davis-Gundy inequality, obtaining

Eπ[|XT |] ≤ C1Eπ
[√
〈X,X〉T

]
= C1Eπ

ñ…∫ T
0

∑d
j=1

∣∣∣∑m
i=1 λ̂

i
t(ω)(σi,jt (ω)− σi,jt (ω))

∣∣∣2dtô
≤ C1

√
mEπ

[√
T∫
0

d∑
j=1

m∑
i=1
|σi,jt (ω)− σi,jt (ω)|2dt

]

≤ C1M
√
mdEπ

[√
T∫
0

{∑d
k=1 sup0≤s≤t |ωks − ωks |

}2
dt

]
≤ C1M

√
TmdEπ

î∑d
k=1 sup0≤s≤T |ωks − ωks |

ó
≤ C1M

√
TmdEπ [VT (ω − ω)] .
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Hence, the difference vG − vF is bounded above by K̃Eπ[VT (ω − ω)], with

K̃ = K(LTm+m2dCMT + Cm+ C1M
√
Tdm). (4.11)

Since π was a generic transport in ΠF ,G(γ, γ), this concludes the proof for the case vG < ∞.
The case vG =∞ follows similarly, working along a sequence λn s.t. E[U(Xλn

T )]→∞.

Remark 4.9. In the proof of Proposition 4.8, the only place where we use the fact that one
filtration is bigger than the other is to state that the difference of the two utility maximization
problems is non-negative. Thus all estimates in (4.9), except the leftmost one, can be obtained
in the same way for agents with any sets of informations (non-necessarily one bigger than the
other).

5 Attainability and Duality

5.1 Classical and constrained transport: an extension

In this section we consider the general abstract setting of Section 2.1. As we have seen in
previous sections, it is important to obtain attainability and duality results for (2.1), and more
specifically (2.2), when the cost function c is Borel measurable with values in the extended
real line (−∞,+∞]; e.g. for Cameron-Martin or total-variation costs. For such problems there
is no systematic theory, and indeed [BS11, Example 4.1] shows that duality may fail in such
a setting. Fortunately, the cost functions of interest in this article have a strong structural
property. Assuming this property will allow us to prove attainability/duality results for (2.1)-
(2.2) in a simple and self-contained way. The next result can also be proven via the following
argument: on every Polish space, there is a finer Polish topology having the same Borel sets, for
which a given real-valued Borel function becomes continuous. This argument, however, would
not lead us to prove Corollary 5.3 below, nor help us studying our ultimate object, namely (2.2).
So we rather give our own arguments below.

Proposition 5.1. Let f : X → R and g : Y → R be bounded Borel functions and c̃ : X × Y →
(−∞,∞] be lower semicontinuous and bounded from below. Suppose that either f or g is further
continuous, and define

c(x, y) := c̃(x, y) + f(x)g(y).

Then the optimal transport problem (2.1) corresponding to the cost c is attained. Furthermore,
there is no duality gap:

inf
π∈Π(µ,ν)

Eπ[ c ] = sup
φ∈Cb(X ), ψ∈Cb(Y)

φ⊕ψ≤c̃+fg

{Eµ[φ] + Eν [ψ] } .

Before providing the proof of the above proposition, we introduce the following lemma.

Lemma 5.2. Assume that X ,Y are Polish spaces equipped with Borel probability measures µ, ν.
Let f : X → R and g : Y → R be bounded Borel function, at least one of which is continuous.
Then the function

π 7→ Eπ[f(x)g(y)]

is continuous on Π(µ, ν) with respect to the weak topology.
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Proof. Recall that Π(µ, ν) is a compact subset of P(X × Y) with respect to the weak topology.
W.l.o.g. we assume that f is continuous and let M ∈ R be such that |f | ≤ M , and gk : Y →
R, k ∈ N, be a sequence of bounded continuous functions converging to g in L1(ν). Consider a
sequence of measures (πn)n ⊆ Π(µ, ν) such that πn converges weakly to π for some π ∈ Π(µ, ν).
For any ε > 0, take k(ε) such that ‖g − gk‖L1(ν) ≤ ε/(2M + 1) for all k ≥ k(ε), and take n(ε)
such that |Eπ[fgk(ε)]− Eπn [fgk(ε)]| ≤ ε/(2M + 1) for all n ≥ n(ε). Then, for all n ≥ n(ε),

|Eπ[fg]− Eπn [fg]| ≤ Eπ[|f ||g − gk(ε)|] +
∣∣Eπ[fgk(ε)]− Eπn [fgk(ε)]

∣∣+ Eπn [|f ||g − gk(ε)|]
≤ Mε/(2M + 1) + ε/(2M + 1) +Mε/(2M + 1) ≤ ε,

which proves the desired statement.

Proof of Proposition 5.1. We employ classical arguments, as in [Vil03] or [BS11, Sect. 1.3]. Since
c̃ is lower semicontinuous, there exists a sequence (c̃n)n of bounded continuous functions on
X × Y such that c̃n ↑ c̃. We are going to show that P (cn) := infπ∈Π(µ,ν) Eπ[cn] converges to
P (c) := infπ∈Π(µ,ν) Eπ[c], where cn(x, y) = c̃n(x, y)+f(x)g(y). In order to do so, for each n ∈ N,
we pick πn ∈ Π(µ, ν) such that Eπn(cn) ≤ P (cn) + 1/n. Since Π(µ, ν) is weakly compact, we
may assume that (πn)n converges weakly to some transport plan π ∈ Π(µ, ν). Then,

P (c) ≤ Eπ[c] = lim
m

Eπ[cm] = lim
m

(lim
n

Eπn [cm]) ≤ lim
m

(lim
n

Eπn [cn])

= lim
n

Eπn [cn] = lim
n
P (cn) ≤ P (c),

where we used monotone convergence, Lemma 5.2 to ensure that Eπ[cm] = limn Eπn [cm], and the
facts that cn is an increasing sequence with P (cn) ≤ Eπn(cn) ≤ P (cn) + 1/n. This concludes the
proof of our claim and actually shows that π is an optimizer for the cost c (this easily follows by
compactness and Lemma 5.2). The function cn is Borel bounded, so by [Kel84, Theorem 2.14] we
have that duality holds for it. Thus we can pick (ψn, φn) such that Eµ[ψn]+Eν [φn] ≥ P (cn)−1/n,
hence supn(Eµ[ψn]+Eν [φn]) ≥ limn P (cn)−1/n = P (c). Since ψn(x)+φn(y) ≤ cn(x, y) ≤ c(x, y),
duality is established.

It is clear that in Proposition 5.1 one can take c to contain a finite sum of terms of the
form f(x)g(y) as described. We give now a corollary of this proposition, dealing with a class of
optimal transport problems under linear constraints. It is this result that we shall apply to the
setting of causal optimal transport. We refer to [Zae15, BG19] for more on linearly constrained
transport problems, but remark that the result below is not a consequence of theirs.

Corollary 5.3. Let F (resp. G) be a non-empty collection of real-valued bounded Borel functions
on X (resp. Y), and define HF,G := span{fg : f ∈ F, g ∈ G}. We define the optimal transport
with linear constraints determined by HF,G as

inf
π∈Π(µ,ν)

∀h∈HF,G: Eπ [h]=0

Eπ[ c ]. (5.1)

Assume that c : X × Y → (−∞,∞] is lower semicontinuous and bounded from below, and that
either all elements of F, or all elements of G, are continuous. Then (5.1) is attained, and there
is no duality gap:

inf
π∈Π(µ,ν)

∀h∈HF,G: Eπ [h]=0

Eπ[ c ] = sup
φ∈Cb(X ), ψ∈Cb(Y), h∈HF,G

φ⊕ψ≤c+h

{Eµ[φ] + Eν [ψ] } .
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Proof. The set of all π ∈ Π(µ, ν) s.t. for all h ∈ HF,G it holds that Eπ[h] = 0, is a weakly closed
subset of the compact set Π(µ, ν) (this follows from Lemma 5.2). This is enough to ensure the
attainability of (5.1). Further, it is immediate that

inf
π∈Π(µ,ν)

∀h∈HF,G: Eπ [h]=0

Eπ[ c ] = inf
π∈Π(µ,ν)

sup
h∈HF,G

Eπ[ c+ h ] = sup
h∈HF,G

inf
π∈Π(µ,ν)

Eπ[ c+ h ],

by the usual minimax arguments (e.g. [Sio58], observing that the affine bilinear objective func-
tions is lower semicontinuous in π by Lemma 5.2, as π varies over a compact). By Proposition 5.1,

inf π∈Π(µ,ν)

∀h∈HF,G: Eπ [h]=0

Eπ[ c ] = suph∈HF,G supφ∈Cb(X ),ψ∈Cb(Y)
φ⊕ψ≤c+h

{Eµ[φ] + Eν [ψ] } ,

yielding the desired result.

5.2 Attainability and Duality in causal transport

We recall from (2.2) that by a causal optimal transport problem with respect to a cost function
c : X × Y → (−∞,∞], we mean the optimization problem

inf
π∈ΠFX ,FY (µ,ν)

Eπ[ c ].

It has already been observed that these problems form a subclass of optimal transport problems
under linear constraints; see [Las15, BBLZ17]. Let us make this precise in the present setting,
by defining

H := span
Ä¶
g
[
f − Eµ[f |FXt ]

]
: f ∈ Cb(X ), g ∈ Bb(Y,FYt ), t ∈ [0, T ]

©ä
.

Lemma 5.4. Let π ∈ Π(µ, ν). Then π is causal between FX and FY (i.e. π ∈ ΠF
X ,FY (µ, ν)) if

and only if Eπ[h ] = 0 for all h ∈ H.

Proof. For g bounded (Y,FYt )-measurable, denote gt(x) := Eπ[g(y)|FXT ⊗ {∅, C}](x). By defini-
tion, π is causal between FX and FY if and only if for all t ≤ T and all such gt we have

gt = Eµ[gt|FXt ], µ− a.s,

which is equivalent to

Eµ[f(gt − Eµ[gt|FXt ])] = 0,

for every continuous bounded function f : X → R and for all t ≤ T . The fact that we can
take the f ’s continuous and not merely measurable comes from the fact that µ is a Borel finite
measure on a Polish space. It is easy to see that the previous equation is equivalent to

Eµ[gt(f − Eµ[f |FXt ])] = 0.

Finally, by the tower property of conditional expectations, the latter is in turn equivalent to

Eπ[g(f − Eµ[f |FXt ])] = 0.
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In [Las15, Sect. 3] the author proves, in the general setting of Polish spaces, that the set

ΠF
X ,FY (µ, ν) is closed for weak convergence. Thus an attainability and duality theory for the

problem of optimal transport under the causality constraint follows. This is done there at the
expense of a regularity assumptions of sorts on the filtration FY (see [Las15, Definition 3]).
Such an assumption would, in our context, drastically limit the applicability of the transport
approach. As we now show, we can still obtain an attainability and duality theory without
assumptions on FY . We do this at the price of requiring the first marginal µ to be “weakly
continuous” in a precise sense. This is enough for the purpose of our work.

Lemma 5.5. Assume that µ satisfies the following weak continuity property:

∀f ∈ Cb(X ), t ∈ [0, T ] : x 7→ Eµ[f |FXt ](x) is continuous. (5.2)

Then the set ΠF
X ,FY (µ, ν) of causal couplings is compact for weak convergence.

Proof. Since ΠF
X ,FY (µ, ν) ⊆ Π(µ, ν), and the latter is weakly compact, we only need to show

that ΠF
X ,FY (µ, ν) is weakly closed. This follows from Lemma 5.4, since the condition Eπ[h ] = 0

is closed for all h ∈ H, by Lemma 5.2 and the continuity property (5.2).

Theorem 5.6 (Causal transport duality). Let c : X × Y → (−∞,∞] be bounded from below
and lower semicontinuous. Further assume that µ satisfies the weak continuity property (5.2).
Then (2.2) is attained and there is no duality gap:

inf
π∈ΠFX ,FY (µ,ν)

Eπ[ c ] = sup
φ∈Cb(X ), ψ∈Cb(Y), h∈H

φ⊕ψ≤c+h

{Eµ[φ] + Eν [ψ] } = sup
ψ∈Cb(Y), h∈H

ψ≤c+h

Eν [ψ].

Proof. Attainability follows by classical arguments from Lemma 5.5. Duality is a direct conse-
quence of Lemma 5.4 and Corollary 5.3, upon observing that H has the correct structure and
that, under the weak continuity assumption on µ, all the x-dependent factors generating H are
continuous and bounded. The fact that φ disappears from the dual problem follows from the
fact that φ− Eµ[φ] belongs to H.

The previous weak continuity property of µ is fulfilled if e.g. X is a path space and µ is the
law of a Feller process. So the case that interests us, Wiener measure on the space of continuous
paths, is fully covered.

A Elements of Orlicz space theory

As presented in [RR91], a convex even function Φ : R → R+ ∪ {+∞} satisfying Φ(0) = 0 and
Φ(∞) =∞, is called a Young function. If such a function is finite-valued, it is zero only at the
origin, and satisfies both Φ(0)/0 = 0 and Φ(∞)/∞ = ∞, then it is called an N-function. We
remark that Φ is a Young function (resp. N-function) if and only if its conjugate Φ∗ is so.

From now on we identify processes which are dν×dt-a.e. equal. Assuming that Φ is a Young
function, we define

MΦ :=
¶
F : C × [0, T ]→ R, s.t. F is G-previsible and ∀k > 0 : Eν [

∫ T
0 Φ(kFt)dt] <∞

©
,

which is a closed subspace (sometimes called Orlicz heart or Morse-Transue space) of the so-
called Orlicz space

LΦ :=
¶
F : C × [0, T ]→ R, s.t. F is G-previsible and ∃k > 0 : Eν [

∫ T
0 Φ(kFt)dt] <∞

©
,
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when endowed with the gauge norm

‖F‖Φ := inf
¶
β > 0 : Eν [

∫ T
0 Φ(Ft/β)dt] ≤ 1

©
.

The gauge norm actually turns LΦ into a Banach space, and if e.g. Φ is an N-function then the
norm-dual of MΦ is LΦ∗ ([RR91, Ch. III.3.3, Theorem 10] and [RR91, Ch. IV.4.1, Theorem 6]).

We now introduce growth conditions on Φ and Φ∗. We say that a Young function Φ is in
∆2 if there are some constants C, x0 > 0 s.t. whenever x ≥ x0 we have Φ(2x) ≤ CΦ(x). This is
seen equivalent to the following condition on Φ∗: there exist ` > 1, x0 > 0 s.t. whenever x ≥ x0

we have Φ∗(x) ≤ Φ∗(`x)
2` . When Φ is an N-function, then by [RR91, Ch. II.2.3, Theorem 3]:

Φ in ∆2 ⇐⇒ ∃x0 > 0, ε > 1 s.t.
î
x ≥ x0 ⇒ xΦ′(x)

Φ(x) ≤ ε
ó
. (A.1)

Clearly when Φ is in ∆2 we have MΦ = LΦ. The reflexivity of LΦ is essentially equivalent to Φ
and Φ∗ being in ∆2.

We finally provide a technical lemma useful in the proof of Theorem 3.8:

Lemma A.1. If ρ∗ is an N-function in ∆2, then

(ω, ω) ∈ C × C 7→
∫ T

0 ρ((
˙̆

ω − ω)t)dt

is lower semicontinuous when C × C is equipped with the supremum norm.

Proof. It suffices to show the lower semicontinuity of ω 7→ r(ω) :=
∫ T

0 ρ(ω̇t)dt, where ω̇t is the
density of ω, if ω is absolutely continuous, and equals +∞ otherwise. Let CK := {ω ∈ C : r(ω) ≤
K}. Since ρ∗ is in ∆2, we have by [RR91, Ch. II.2.3, Corollary 5] that ρ grows at least as fast as
some power function with exponent p > 1. This shows that CK is bounded in W 1,p([0, T ]), the
Sobolev space of absolutely continuous functions with p-integrable first derivative. By classical
arguments we have that if ωn → ω uniformly, with ωn ∈ CK , then ω ∈ W 1,p([0, T ]) and in
particular ω is absolutely continuous too. By Fatou’s Lemma we further get ω ∈ CK , yielding
the desired result.

B Proof of Theorem 3.8

We consider a fixed measure ν on C. The idea behind the refined dual (3.10) comes from the
next argument:

Lemma B.1. Let ρ : R → R ∪ {+∞} be convex. Weak-refined duality holds, in the sense that
the value of the primal problem (3.6) can only be larger than that of the refined dual (3.10).

Proof. W.l.o.g. we assume that (3.6) is finite. Let F ∈ Sa(G). For any pair (ω, ω) whose
difference is absolutely continuous, with derivative αt, the Fenchel-Young inequality gives

ρ(αt) ≥ Ft(ω̄)αt − ρ∗(Ft(ω̄)),

so that integrating in time yields∫ T
0 ρ(αt)dt ≥

∫ T
0 Ft(ω̄)αtdt−

∫ T
0 ρ∗(Ft(ω̄))dt

=
∫ T

0 Ft(ω̄)d(ω̄ − ω)t −
∫ T

0 ρ∗(Ft(ω̄))dt.
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Now, taking expectation under any π ∈ ΠF ,G(γ, ν) with finite cost for the problem in (3.6), we
obtain by causality

Eπ
[∫ T

0 ρ((
˙̆

ω − ω)t)dt
]
≥ Eν

î∫ T
0 Ft(ω̄)dω̄ −

∫ T
0 ρ∗(Ft(ω̄))

ó
.

We conclude that the value of the primal problem is not any less than (3.10).

We now define a stochastic integral; see Appendix A for terminology and notation on Orlicz
spaces, such as “N- and Young-functions”, the “∆2 condition” and so forth.

Lemma B.2. Suppose that ρ∗ is a Young function having a global minimum at the origin. Then

Sa(G)
‖·‖ρ∗

= Mρ∗ . (B.1)

If further the refined dual (3.10) is finite, then the functional

F =
∑
F iI(τi,τi+1] ∈ Sa(G) 7→ Eν [

∫ T
0 Ft(ω)dωt] := Eν [

∑
F i(ω)(ωτi+1 − ωτi)]

can be uniquely extended to Mρ∗ by continuity. Using the same notation for its extension, we
can replace the optimization variables in (3.10) by taking “F ∈Mρ∗” without changing the value
of the optimization problem.

Proof. By [RR91, Ch. III.3.4, Proposition 3], we have (B.1) under the given hypotheses; the
measure considered being dν × dt, the sigma-algebra being the G-previsible one, and the Young
function being ρ∗. One need only observe that the previsible sigma-algebra is generated by the
algebra of sets whose elements are finite disjoint unions of “base” sets of the form D × (τ , τ ],
with D ∈ Gτ and G-stopping times τ ≤ τ . If we denote by v the value of problem (3.10), from
now on assumed finite, we then have for all F ∈ Sa(G), β > 0:

Eν [
∫ T

0 (Ft(ω)/β)dωt] ≤ v + Eν [
∫ T

0 ρ∗(Ft/β)dt],

so by definition
Eν [
∫ T

0 Ft(ω) dωt] ≤ (v + 1)‖F‖ρ∗ . (B.2)

This shows that the discrete integral, seen as a continuous linear functional on Sa(G), can be
uniquely and continuously extended to the norm closure of this space, which we know to coincide
with Mρ∗ . Because the convex functional F 7→ Eν [

∫ T
0 ρ∗(Ft) dt] is finite throughout Mρ∗ , for all

F, F̄ ∈Mρ∗ with ‖F − F̄‖ρ∗ ≤ 1/2 we have that

Eν [
∫ T

0 ρ∗(F̄t) dt] ≤ 1/2Eν [
∫ T

0 ρ∗(2Ft) dt] + 1/2Eν [
∫ T

0 ρ∗
Ä
Ft−F̄t

1/2

ä
dt] ≤ cF + 1,

where cF is a constant only depending on F . This shows that the convex functional is locally
bounded and thus continuous by classical results; the last statement then follows.

Lemma B.3. Assume that ρ∗ (equiv. ρ) is an N-function, that ρ is in ∆2, and that the refined
dual (3.10) is finite. Then (3.10) is attained in Mρ∗.

Proof. By Lemma B.2, we can consider (3.10) as defined over Mρ∗ . By [RR91, Ch. IV.4.1,
Theorem 6] we see that Lρ

∗
is the norm dual space of Mρ, so the classical Banach-Alaoglu’s

theorem implies that closed balls in Mρ∗ are σ(Mρ∗ ,Mρ)-compact, since Mρ∗ is a norm-closed
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and convex subset of Lρ
∗
. By [RR91, Ch. V.5.3, Theorem 3] and the comment following its

proof, we see that ρ in ∆2 implies that

lim
‖F‖ρ∗→∞

Eν [
∫ T
0 ρ∗(Ft)dt]

‖F‖ρ∗
= +∞. (B.3)

As a consequence of this and (B.2) (which holds also in Mρ∗), we get

Eν [
∫ T

0 Ft(ω)dωt −
∫ T

0 ρ∗(Ft(ω))dt] ≤ ‖F‖ρ∗
{
v + 1− Eν [

∫ T
0 ρ∗(Ft)dt]

‖F‖ρ∗
}
,

where v is the value of (3.10), and by (B.3) the r.h.s. above goes to −∞ as ‖F‖ρ∗ → ∞. This
shows that in computing (3.10) one may restrict the problem to a big enough fixed ball in Mρ∗ ,
which is σ(Mρ∗ ,Mρ)-compact. As at the end of the proof of Lemma B.2, we observe that the
objective function is norm-continuous, and because it is concave it is also σ(Mρ∗ ,Mρ)-upper
semicontinuous. The existence of an optimizer in Mρ∗ follows.

Lemma B.4. Suppose (3.10) is finite and attained by some F̂ ∈ Mρ∗, and that ρ∗ is a differ-
entiable N-function (equiv. ρ is a strictly convex N-function) which is in ∆2. Setting

αt(ω) := (ρ∗)′(F̂t(ω)) and ξt(ω) := ωt −
∫ t

0 αt(ω)dt,

we have that Eν [
∫ T

0 ρ(αt)dt] < +∞, and so α ∈ Lρ and ξ is a (ν,G)-martingale.
If further ν � γ, then ξ is a (ν,G)-Brownian motion, (ξ, id)#ν ∈ ΠF ,G(γ, ν), the primal

problem (3.6) is finite and its value is equal to (3.9) and (3.10).

Proof. We first observe that by the identity of sub-differentials

Eν [
∫ T

0 ρ ◦ (ρ∗)′(F̂t)dt] = −Eν [
∫ T

0 ρ∗(F̂t)dt] + Eν [
∫ T

0 F̂t (ρ∗)′(F̂t)dt], (B.4)

so the finiteness of the l.h.s. is equivalent to the finiteness of the second term in the r.h.s. Since ρ∗

is an N-function in ∆2 we have by (A.1) that, when F̂t(ω) is large, the integrand F̂t(ω)(ρ∗)′(F̂t(ω))
is dominated by a (fixed) constant times ρ∗(F̂t(ω)), and so we conclude that the left- and right-

hand sides above are indeed finite. In particular α ∈ Lρ holds, and h ∈Mρ∗ 7→ Eν [
∫ T

0 αthtdt] is
finite-valued and continuous by [RR91, Ch. III.3.3, Proposition 1].

Since (3.10) is a concave problem, we have that if ζ̂ is an optimizer for sup
ζ∈Mρ∗

H(ζ), then

∀h ∈Mρ∗ it holds that ∂
∂εH(ζ̂ + εh)|ε=0 = 0, where

H(ζ) := Eν [
∫ T

0 ζt(ω) dωt]− Eν [
∫ ∫ T

0 ρ∗(ζt)dt].

Thus we get that
Eν [
∫ T

0 ht(ω)dωt]− Eν [
∫ T

0 αthtdt] = 0 ∀h ∈Mρ∗ .

This means that Eν [
∫ T

0 htdξt] = 0 for all such h, which implies that ξ is indeed a (ν,G)-
martingale. Since the bracket of the canonical process is the identity under γ, this is in-
herited by ξ by Girsanov theorem under the assumption ν � γ, so by Levy’s theorem ξ is
then a (ν,G)-Brownian motion. By Lemma 2.6, (ξ, id)#ν is causal. In light of the finite-
ness in (B.4), this proves that the primal problem (3.6) is finite. The lower semicontinuity of

(ω, ω) 7→
∫ T

0 ρ((
˙̆

ω − ω)t)dt was established in Lemma A.1, and so by Theorem 5.6 we get that
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there is no duality gap. To conclude the proof, we only need to check the equality between (3.6)
and the refined dual. For this, we rewrite (B.4) as

Eν [
∫ T

0 ρ(αt)dt] = −Eν [
∫ T

0 ρ∗(ζ̂t)dt] + Eν [
∫ T

0 ζ̂t(ω)dωt],

where we used that Eν [
∫ T

0 ζ̂tdξt] = 0. This proves that the refined dual has a greater value than
the primal, and we conclude by Lemma B.1.

We can finally give the proof of Theorem 3.8:

Proof of Theorem 3.8. Under the assumptions made, both ρ and ρ∗ are N-functions in ∆2. For
Point (i), and thanks to Lemma B.1, we only need to prove that when the refined dual is finite,
its value coincides with the primal one. This follows by Lemmata B.3 and B.4. Point (ii) is
contained in Lemma B.2. Point (iii) follows from the latter lemma, and because the strict
convexity of ρ implies differentiability of ρ∗. Finally, Point (iv) is given by Lemma B.4 together
with an application of Girsanov theorem.

We stress that Point (iv) of Theorem 3.8 can also be obtained via more sophisticated stochas-
tic analysis arguments: if the primal problem (equiv. the refined dual) is finite, then as in the

proof of Lemma B.2 one shows that for all F ∈ Sa(G) : Eν [
∫ T

0 Ft(ω) dωt] ≤ (v + 1)‖F‖ρ∗ ,
where v is the common optimal value. If |F | ≤ C then ‖F‖ρ∗ ≤ C‖1‖ρ∗ < ∞. This suggests

that {
∫ T

0 Ft(ω) dωt : F ∈ Sa(G), ‖F‖∞ ≤ 1} is bounded in ν-probability, so by the Bichteler-
Dellacherie theorem ω is a (ν,G)-semimartingale, and we conclude by Girsanov theorem. Such
a proof is reminiscent of original arguments in [Jac85].

C Projections of processes

We recall the notions of (dual) optional and predictable projections, which are used throughout
the article, and refer to [DM80, Ch. VI] for an accurate study of the subject.

Let X be a positive or bounded measurable process on a filtered probability space (Ω,H,P).
The optional projection of X is the unique (up to indistinguishability) optional process Y such
that

E
[
Xτ I{τ<∞}|Hτ

]
= Yτ I{τ<∞} a.s.

for every stopping time τ . The predictable projection of X is the unique (up to indistinguisha-
bility) predictable process N such that

E
[
Xτ I{τ<∞}|Hτ−

]
= Nτ I{τ<∞} a.s.

for every predictable stopping time τ . These notions of projection can be given for a broader
class of processes, including those of integrable variation; see [DM80, Remark VI.44-(f)].

Now, let H be a raw process of integrable variation on (Ω,H,P). The dual optional (resp.
predictable) projection of H is the optional (resp. predictable) integrable variation process U
defined by

E
[∫∞

0 XtdUt
]

= E
[∫∞

0 XtdHt

]
for any bounded optional (resp. predictable) process X. W.l.o.g. we assume U0 = 0.

The following lemma is fundamental for the proof of Theorem 3.1 and Proposition 4.4. It
follows directly from [DM80, Lemma 7, App. I], and holds for any two filtrations F and G on C.
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Lemma C.1. Let π ∈ Π(µ, ν) be a (non-necessarily causal) transport plan, and let Λ be a
(B([0, T ])⊗FT ⊗ GT )-measurable process on C × C of integrable variation. Then:

1. The optional projection of Λ with respect to (π, π(F ⊗ {∅, C})) (resp. (π, π({∅, C} ⊗ G))),
which we denote by oΛF (resp. oΛG) is π-indistinguishable from an optional process with
respect to (µ, µF) (resp. (ν, νG)), so w.l.o.g. one may assume

oΛF (ω, ω) = oΛF (ω), oΛG(ω, ω) = oΛG(ω).

The analogous statement holds for the predictable projections.

2. The dual optional projection of Λ with respect to (π, π(F⊗{∅, C})) (resp. (π, π({∅, C}⊗G))),
which we denote by FΛo (resp. GΛo), is π-indistinguishable from an optional process with
respect to (µ, µF) (resp. (ν, νG)), so w.l.o.g. one may assume

FΛo(ω, ω) = FΛo(ω), GΛo(ω, ω) = GΛo(ω).

The analogous statement holds for the dual predictable projections.

The essential difference between oΛF and FΛo, as explained in [DM80, Remark VI.74-(c)],
is that while the first one formalizes E[Λt|Ft], the second one does so to

∫ t
0 E[dΛs|Fs]. Causality

imposes a strong relation between the two kinds of projections:

FΛot − FΛo0 =
∫ t

0 Eπ[dΛs|Fs] =
∫ t

0 Eπ[dΛs|Ft] = Eπ[
∫ t

0 dΛs|Ft]
= Eπ[Λt − Λ0|Ft] = oΛFt − oΛF0 .

This result is formalised in Lemma C.2, and was crucial in our applications to optimal stopping
problems in Section 4.1. Such a phenomenon is not symmetric, just as causality, i.e., one does
not expect it to hold for projections w.r.t. G. We give a proof of such result for completeness.
However, one can see it also as a consequence of results in [AL16]. Indeed, in that article it is
proved that if two filtrationsH1 ⊆ H2 satisfy the H-hypothesis, then for anyH2-optional process
of integrable variation, its H1-optional and H1-dual optional projections coincide. Thanks to
Remark 2.3, Lemma C.2 then follows by [AL16, Theorem 2].

Lemma C.2. Let π ∈ ΠF ,G(µ, ν) be a causal transport plan, and let Λ be an (F ⊗ G)-adapted,
integrable variation càdlàg process with Λ0 = 0. Then

FΛo is π-indistinguishable from oΛF .

Proof. We drop the superscript F to simplify the notation. Fix t ∈ [0, T ], and consider the
process X = (Xs)s∈[0,t] with constant paths given by

Xs = I{oΛt>Λot }, s ∈ [0, t].

Its optional projection with respect to (π, π(F ⊗ {∅, C})) satisfies

oXs = π[oΛt > Λot |π(Fs ⊗ {∅, C})], s ∈ [0, t].

Note that (oXs)s∈[0,t] is an π(F ⊗ {∅, C})-martingale, hence π-indistinguishable from an (F ⊗
{∅, C})-martingale, by [DM80, Lemma 7, App. I], which is then also an (F ⊗ G)-martingale by
causality; see Remark 2.3. This means that (oXs)s∈[0,t] is the càdlàg version of the (F ⊗ G)-
martingale Ms = π[oΛt > Λot |Fs ⊗ Gs], 0 ≤ s ≤ t, thus π-indistinguishable from the optional
projection of X w.r.t. (π, π{F ⊗ G}), which we denote by Y .
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Now, by definition of optional projection, Eπ[ΛtXt] = Eπ[oΛtXt]. On the other hand, since
X is constant and Λ0 = 0,

Eπ[ΛtXt] = Eπ[ΛtX0] = Eπ
î∫ t

0 XsdΛs
ó
.

Now, using [DM80, Remark VI.58-(d)] and the fact that Λ is an (F ⊗ G)-adapted integrable

variation process, we have that Eπ
î∫ t

0 XsdΛs
ó

= Eπ
î∫ t

0 YsdΛs
ó
. Therefore we have

Eπ[ΛtXt] = Eπ
î∫ t

0 YsdΛs
ó

= Eπ
î∫ t

0
oXsdΛs

ó
= Eπ

î∫ t
0 XsdΛos

ó
= Eπ [Λot Xt]− Eπ [Λo0Xt] = Eπ [Λot Xt] ,

where in the second equality we use that oX and Y are π-indistinguishable, and in the third one
the definition of dual optional projection (recall that Λo0 = 0). Altogether we have

Eπ[oΛtI{oΛt>Λot }] = Eπ[Λot I{oΛt>Λot }],

hence {oΛt > Λot} is π-negligible. Arguing similarly, we get that {oΛt 6= Λot} is π-negligible.
Since this is true for all t ∈ [0, T ], we have that oΛ and Λo are versions of each other and hence
π-indistinguishable since both are càdlàg (see [DM80, Theorem VI.47]).
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erty, Séminaire de Probabilités XLVIII, Springer, 2016, pp. 459–467.

[Ald81] D. Aldous, Weak convergence and the general theory of processes (weak convergence
of stochastic processes for processes viewed in the Strasbourg manner), unpublished,
1981.

[BBLZ17] J. Backhoff-Veraguas, M. Beiglbock, Y. Lin, and A. Zalashko, Causal transport in
discrete time and applications, SIAM Journal on Optimization 27 (2017), no. 4,
2528–2562.

32



[BC77] J. R. Baxter and R. V. Chacon, Compactness of stopping times, Z. Wahrschein-
lichkeitstheorie und Verw. Gebiete 40 (1977), no. 3, 169–181. MR 0517871

[BCC+15] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré, Iterative Bregman
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