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Abstract

A subset of the unit hypercube {0, 1}n is cube-ideal if its convex hull is described by hypercube and

generalized set covering inequalities. In this note, we study sets S ⊆ {0, 1}n such that, for any subset X ⊆
{0, 1}n of cardinality at most 2, S ∪X is cube-ideal.

Keywords. Cube-ideal sets, cropped cubes, ideal clutters, generalized set covering inequalities, resistant sets,

structure theorem.

1 Introduction

Take an integer n ≥ 1. Denote by {0, 1}n the extreme points of the n-dimensional unit hypercube [0, 1]n. A

sub-hypercube of {0, 1}n is a subset of the form{
x ∈ {0, 1}n : xi = 0 i ∈ I, xj = 1 j ∈ J

}
I, J ⊆ {1, . . . , n}, I ∩ J = ∅;

its rank is n − |I| − |J |. For a coordinate i ∈ [n] := {1, . . . , n}, we refer to xi ≥ 0 and xi ≤ 1 as hypercube

inequalities. Generalized set covering inequalities are inequalities of the form∑
i∈I

xi +
∑
j∈J

(1− xj) ≥ 1 I, J ⊆ [n], I ∩ J = ∅,

which are precisely the inequalities that cut off sub-hypercubes of {0, 1}n. Interpreted as clause satisfaction

inequalities for the Boolean satisfiability problem, generalized set covering inequalities are prevalent in the lit-

erature. Also referred to as cropping inequalities [7, 13], these inequalities have surfaced as cocycle inequalities

valid for cycle polytopes of binary matroids [5], as set covering inequalities (J = ∅) for various set covering

problems [6, 11, 8], and as cover inequalities (I = ∅) for the knapsack problem [4, 12, 16].

Take a set S ⊆ {0, 1}n. S is cube-ideal if its convex hull, denoted conv(S), can be described by hypercube

and generalized set covering inequalities. This notion was introduced and studied in [1]. Cube-ideal sets form a

rich class of objects: Basic classes include the cycle space of a graph [15] and the up-monotone set associated
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with an ideal clutter (see [1]). Ideal clutters arise from T -joins and T -cuts in grafts (Edmonds-Johnson [10]),

from dijoins and dicuts in digraphs (Lucchesi-Younger [14]) and other combinatorial structures. In this note, we

introduce a new class of cube-ideal sets that is geometric in nature. We need a few definitions first.

Given points a, b ∈ {0, 1}n, the distance between a and b, denoted dist(a, b), is the number of coordinates a

and b differ on. Denote by Gn the skeleton graph of [0, 1]n, whose vertices are the points in {0, 1}n, where two

vertices a, b ∈ {0, 1}n are adjacent if dist(a, b) = 1. For a subset X ⊆ {0, 1}n, denote by Gn[X] the subgraph

of Gn induced on vertices X .

Given S ⊆ {0, 1}n, we refer to the points in S as feasible and to the points in S := {0, 1}n−S as infeasible.

The connected components of Gn[S] are feasible components, while the components of Gn[S] are infeasible

components.

Theorem 1 ([2]). Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. If each infeasible component is a sub-hypercube

or has maximum degree at most two, then S is cube-ideal.

The various basic classes of cube-ideal sets suggest that finding a structure theorem for cube-ideal sets is a

daunting task. In this note, however, we provide a structure theorem for cube-ideal sets S ⊆ {0, 1}n that remain

cube-ideal even after adding one or two points to S.

Theorem 2. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n where, for every subset X ⊆ {0, 1}n of cardinality at

most two, S ∪X is cube-ideal. Then every infeasible component is a sub-hypercube or has maximum degree at

most two.

To prove this theorem, it will be more convenient to work with the more concrete concept of 2-resistance.

We define and study 2-resistance in §2, and then prove Theorem 2 as well as other applications in §3. In the

latter section we will also introduce and discuss the concept of k-resistance for integers k ≥ 1.

2 A characterization of 2-resistant sets

Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Take a coordinate i ∈ [n]. The set obtained from S ∩ {x : xi = 0}
after dropping coordinate i is called the 0-restriction of S over coordinate i, and the set obtained from S ∩ {x :

xi = 1} after dropping coordinate i is called the 1-restriction of S over coordinate i. A restriction of S is a set

obtained after a series of 0- and 1-restrictions. The projection of S over coordinate i is the set obtained from

S after dropping coordinate i. A minor of S is what is obtained after a series of restrictions and projections. A

minor is proper if at least one operation is applied. Denote by ei the ith unit vector. To twist coordinate i ∈ [n]

is to replace S by

S4ei := {x4ei : x ∈ S} ,

where the second 4 denotes coordinate-wise addition modulo 2. S′ ⊆ {0, 1}n is isomorphic to S, written as

S′ ∼= S, if S′ is obtained from S after relabeling and twisting some coordinates.
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Figure 1: An illustration of P3 and S3. Round points are feasible while square points are infeasible.

Figure 2: The excluded minor, and restriction, defining 2-resistance.

Let P3 := {110, 101, 011} ⊆ {0, 1}3 and S3 := {110, 101, 011, 111} ⊆ {0, 1}3, as displayed in Fig-

ure 1. We say that S is 2-resistant if, for every subset X ⊆ {0, 1}n of cardinality at most two, S ∪ X has no

P3, S3 isomorphic minor. (Going forward, the prefix “isomorphic” will be omitted from “isomorphic minor”

and “isomorphic restriction”.) The following is straightforward:

Remark 3. If a set is 2-resistant, then so is every minor of it.

How is 2-resistance relevant? Notice that

conv(P3) =
{
x ∈ [0, 1]3 : x1 + x2 + x3 = 2

}
and conv(S3) =

{
x ∈ [0, 1]3 : x1 + x2 + x3 ≥ 2

}
,

implying in turn that P3, S3 are not cube-ideal. In fact, up to isomorphism, P3, S3 are the only non-cube-ideal

sets of dimension at most 3.

Remark 4 ([1]). If a set is cube-ideal, then so is every minor of it.

As a consequence, a cube-ideal set has no P3, S3 minor. In particular, if S ∪X is cube-ideal for every set X of

cardinality at most two, then S must be 2-resistant.

We are now ready to prove the following characterization of 2-resistant sets:

Theorem 5. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Then the following statements are equivalent:

(i) S is 2-resistant,

(ii) S has no restriction F ⊆ {0, 1}3 such that F ∩ {000, 100, 010, 001, 110} = {110},

(iii) S has no minor F ⊆ {0, 1}3 such that F ∩ {000, 100, 010, 001, 110} = {110},

(iv) every infeasible component of S is a sub-hypercube or has maximum degree at most two.

Proof. (i)⇒ (ii): Observe that F is not 2-resistant, because F ∪{101, 011} is either P3 or S3. Thus, a 2-resistant

set has no F restriction by Remark 3. (ii)⇒ (iv): Assume that S has no F restriction.
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Claim 1. Let x be an infeasible point with at least three infeasible neighbors. If x4ei, x4ej are infeasible for

some distinct i, j ∈ [n], then x4ei4ej is also infeasible.

Proof of Claim. Suppose for a contradiction that x4ei4ej is feasible. Since x has at least three infeasible

neighbors, there is a coordinate k ∈ [n] − {i, j} such that x4ek is infeasible. After a possible twisting and

relabeling of the coordinates, we may assume that x = 0 and i = 1, j = 2, k = 3. Let F ⊆ {0, 1}3 be the

restriction of S obtained after 0-restricting coordinates 4, . . . , n. Then F ∩ {000, 100, 010, 001, 110} = {110},
a contradiction. ♦

Claim 2. Let x be an infeasible point with at least three infeasible neighbors. Let k ≥ 3 be the number

of infeasible neighbors of x. Then the sub-hypercube of rank k containing x and its infeasible neighbors is

infeasible.

Proof of Claim. After a possible twisting and relabeling, if necessary, we may assume that x = 0 and its infea-

sible neighbors are e1, . . . , ek. We need to show that for all subsets I ⊆ [k],
∑

i∈I ei ∈ S. We will proceed

by induction on |I| ≥ 0. The base cases |I| ∈ {0, 1} hold by assumption, and the case |I| = 2 follows from

Claim 1. For the induction step, assume that |I| ≥ 3. After a possible relabeling, if necessary, we may assume

that I = [`]. Let y :=
∑`−2

i=1 ei. By the induction hypothesis, y and its three neighbors y4e`−2, y4e`−1, y4e`
are infeasible. It therefore follows from Claim 1 that y4e`−14e` =

∑`
i=1 ei is infeasible, thereby completing

the induction step. ♦

Let K be an infeasible component, and let k be the maximum number of infeasible neighbors of a point in

K. If k ≤ 2, then K has maximum degree at most two. Otherwise, k ≥ 3. It then follows from Claim 2 that K

contains a sub-hypercube of rank k. Our maximal choice of k in turn implies that K is in fact the sub-hypercube

of rank k. Thus, every infeasible component is a sub-hypercube or has maximum degree at most two. (iv) ⇒
(iii): Assume that every infeasible component is a sub-hypercube or has maximum degree at most two.

Claim 3. If S′ is a minor of S, then every infeasible component of S′ is a sub-hypercube or has maximum degree

at most two.

Proof of Claim. It suffices to prove this for single restrictions and single projections. The claim clearly holds for

single restrictions. As for projections, assume that S′ is obtained from S after projecting away coordinate n. Let

K ′ ⊆ {0, 1}n−1 be an infeasible component of S′. Clearly, {(x, 0), (x, 1) : x ∈ K ′} ⊆ {0, 1}n is connected

in Gn and infeasible for S, so it is contained in an infeasible component K of S. If K has maximum degree

at most two, then so does {(x, 0), (x, 1) : x ∈ K ′}, implying in turn that K ′ has maximum degree at most

two. Otherwise, K is a sub-hypercube. In this case, as K ′ is an infeasible component of S′, it must be that

K = {(x, 0), (x, 1) : x ∈ K ′}, implying in turn that K ′ is a sub-hypercube. Thus, K ′ is a sub-hypercube or has

maximum degree at most two, as claimed. ♦

Thus, since the infeasible component of F containing 000 is neither a sub-hypercube or of maximum degree

at most two, S does not have an F minor. (iii)⇒ (i): Assume that S is not 2-resistant. Then there is a subset
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X ⊆ {0, 1}n of cardinality at most two such that S ∪X has a P3, S3 minor. Thus there is a subset Y ⊆ {0, 1}3

of cardinality at most two such that S has a P3−Y, S3−Y minor. After relabeling the coordinates, if necessary,

we see that both P3 − Y, S3 − Y are the desired minor.

3 Consequences of Theorem 5

The first application of Theorem 5 is Theorem 2:

Proof of Theorem 2. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n where, for every subset X ⊆ {0, 1}n of

cardinality at most two, S ∪ X is cube-ideal. In particular, S is 2-resistant, so by Theorem 5, every infeasible

component of S is a sub-hypercube or has maximum degree at most two, as required.

Using Theorem 1 we get the following immediate consequence:

Corollary 6. A 2-resistant set is cube-ideal.

For the third application, we need another concept. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. S is polar

if either it contains antipodal points, or all of its points agree on a coordinate:

{x,1− x} ⊆ S for some x ∈ {0, 1}n or S ⊆ {x : xi = a} for some i ∈ [n] and a ∈ {0, 1}.

S is strictly polar if every restriction of it, including S itself, is polar. Introduced and studied in [1], strict

polarity is a notion closely tied with cube-idealness as the authors used the two notions to reformulate the τ = 2

Conjecture of Cornuéjols, Guenin and Margot [9]. We will characterize when 2-resistant sets are strictly polar.

To this end, consider the sets

R1,1 := {000, 110, 101, 011} ⊆ {0, 1}3

R2,1 := {0000, 1110, 1001, 0101, 0011, 1101, 1011, 0111} ⊆ {0, 1}4

R5 := {00000, 10000, 11000, 11100, 11110, 01110, 00110, 00010}

∪ {01001, 01101, 00101, 10101, 10111, 10011, 11011, 01011} ⊆ {0, 1}5,

as displayed in Figure 3. Notice that these sets are 2-resistant, as every infeasible component has maximum

degree at most two, and non-polar. (These three sets are part of an infinite class {Rk,1 : k ≥ 1} of non-polar

sets, introduced and studied in [2], and “correspond” to an infinite class {Qk,1 : k ≥ 1} of ideal minimally

non-packing clutters [9].) We will prove the following characterization:

Theorem 7. A 2-resistant set is strictly polar if, and only if, it has no R1,1, R2,1, R5 restriction.

S is strictly non-polar if it is not polar, but every proper restriction is polar. Notice that a set is strictly polar

if, and only if, it has no strictly non-polar set as a restriction. Examples of strictly non-polar sets include the sets

R1,1, R2,1, R5 [3]. As an application of Theorem 5, we will prove that up to isomorphism, these three sets are

the only 2-resistant strictly non-polar sets, thereby proving Theorem 7. We will need the following result:
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R1,1 R2,1 R5

e4

e5

Figure 3: The 2-resistant strictly non-polar sets.

Theorem 8 ([3]). Up to isomorphism, R1,1, R2,1, R5 are the only strictly non-polar sets where every infeasible

point has at most two infeasible neighbors.

We will also need the following two lemmas:

Lemma 9. Take an integer n ≥ 5 and a set S ⊆ {0, 1}n, where every infeasible point has at most two infeasible

neighbors. Then |S| ≥ 2n−1.

Proof. Let us proceed by induction on n ≥ 5. The base case is the crux of the proof, as the induction step

is straightforward. Assume that n = 5. Suppose for a contradiction that |S| ≤ 15. For i, j ∈ {0, 1}, let

Sij ⊆ {0, 1}3 be the restriction of S obtained after i-restricting coordinate 4 and j-restricting coordinate 5. As

|S| ≤ 15, we may assume after a possible relabeling and twisting of coordinates 4, 5 that |S00| + |S10| ≤ 7

and |S00| ≤ 3. Since every infeasible point of S00 has at most two infeasible neighbors, it follows that S00

has antipodal points. Thus, as |S00| ≤ 3, we may assume after a possible twisting of coordinates 1, 2, 3 that

{000, 111} ⊆ S00 ⊆ {000, 111, 110}. Since

(?) every infeasible point of S has at most two infeasible neighbors,

it follows that {001, 101, 011} ⊆ S10. If S00 = {000, 111}, then {001, 101, 011, 100, 010, 110} ⊆ S10,

which is not possible because |S00| + |S10| ≤ 7. As a result, S00 = {000, 111, 110}. This implies that

3 ≤ |S10| ≤ 4, and together with (?), we see that in fact S10 = {001, 101, 011, 110}. It now follows from (?)

that {100, 010, 001, 101, 011} ⊆ S01 and {000, 100, 010} ⊆ S11, implying in turn that |S01| + |S11| ≥ 8. Our

contrary assumption implies that |S| = 15 and S01 = {100, 010, 001, 101, 011} and S11 = {000, 100, 010}.
But then the infeasible point 11111 of S has 5 infeasible neighbors, contradicting (?). This proves the base case

n = 5. For the induction step, assume that n ≥ 6. For i ∈ {0, 1}, let Si ⊆ {0, 1}n−1 be the i-restriction

of S over coordinate n; note that every infeasible component of Si has maximum degree at most two. By the

induction hypothesis, |S| = |S0|+ |S1| ≥ 2n−2 + 2n−2 = 2n−1, thereby completing the induction step.

Lemma 10. Take an integer n ≥ 5 and a nonempty set S ⊆ {0, 1}n, where every infeasible component is a sub-

hypercube or has maximum degree at most two. If S has no R1,1 restriction and one of its infeasible components

is a sub-hypercube of rank at least 3, then
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• |S| ≥ 2n−1, and

• if |S| = 2n−1, then S is either a sub-hypercube of rank n− 1 or the union of antipodal sub-hypercubes of

rank n− 2.

Proof. We will prove this by induction on n ≥ 5.

Consider first the base case n = 5 is clear. For i, j ∈ {0, 1}, let Sij ⊆ {0, 1}3 be the restriction of S

obtained after i-restricting coordinate 4 and j-restricting coordinate 5. After a possible twisting and relabeling

of the coordinates, we may assume that S00 = ∅. If S10 = ∅, then S =
{
x ∈ {0, 1}5 : x5 = 1

}
, so S is a

sub-hypercube of rank 4. Similarly, if S01 = ∅, then S is a sub-hypercube of rank 4. Otherwise, S10 = S01 =

{0, 1}3, so |S| ≥ 16. Moreover, if equality holds, then S =
{
x ∈ {0, 1}5 : x4 = x5

}
, so S is the union of

antipodal hypercubes of rank 3. This proves the base case.

For the induction step, assume that n ≥ 6. For i ∈ {0, 1}, let Si ⊆ {0, 1}n−1 be the i-restriction of S over

coordinate n. If one of S0, S1 is empty, then the other one must be {0, 1}n−1, so S is a sub-hypercube of rank

n− 1 and the induction step is complete. We may therefore assume that S0, S1 are nonempty.

Assume in the first case that S has an infeasible sub-hypercube of rank≥ 4 active in, say, direction en; that is,

the infeasible sub-hypercube intersects both {x : xn = 0} and {x : xn = 1}. Then both S0, S1 have infeasible

sub-hypercubes of rank ≥ 3. Thus by the induction hypothesis, |S0| ≥ 2n−2 and |S1| ≥ 2n−2, implying in turn

that |S| = |S0| + |S1| ≥ 2n−1. Assume next that |S| = 2n−1. Then |S0| = |S1| = 2n−2. By the induction

hypothesis, one of the following cases holds:

• S0 is a sub-hypercube of rank n − 2 ≥ 4: In this case, we may assume that S ∩ {x : xn = 0} = {x :

xn−1 = xn = 0}. Since every infeasible component of S is a sub-hypercube or has maximum degree at

most two, the sub-hypercube {x : xn−1 = 0, xn = 1} is either totally feasible or totally infeasible. Since

|S1| = 2n−2, it follows that S ∩ {x : xn = 1} is either

{x : xn−1 = 0, xn = 1} or {x : xn−1 = xn = 1}.

Thus, S is either a sub-hypercube of rank n− 1 or the union of antipodal sub-hypercubes of rank n− 2.

• S1 is the union of two antipodal sub-hypercubes of rank n − 3 ≥ 3: In this case, we may assume that

S ∩ {x : xn = 0} = {x : xn−2 = xn−1, xn = 0}. Since every infeasible component of S is a sub-

hypercube or has maximum degree at most two, and |S1| = 2n−2, it follows that S ∩ {x : xn = 1} is

either

{x : xn−2 = xn−1, xn = 1} or {x : xn−2 + xn−1 = 1, xn = 1}.

However, since S has no R1,1 restriction, the latter is not possible. Thus, S = {x : xn−2 = xn−1}, so S

is the union of antipodal sub-hypercubes of rank n− 2.

Thus, S is either a sub-hypercube of rank n− 1 or the union of antipodal sub-hypercubes of rank n− 2, thereby

completing the induction step in this case.
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Assume in the remaining case that every infeasible component of S has maximum degree at most two or is

a cube (i.e. a sub-hypercube of rank 3). By assumption, one of the infeasible components is a cube, which we

may assume is contained in S0. By the induction hypothesis, |S0| ≥ 2n−2 and if equality holds, then S0 is either

a sub-hypercube of rank n − 2 or the union of antipodal sub-hypercubes of rank n − 3. If S1 has an infeasible

component that is a cube, then the induction hypothesis implies that |S1| ≥ 2n−2, and if not, S1 has maximum

degree at most two, so by Lemma 9, |S1| ≥ 2n−2. Either way, |S1| ≥ 2n−2, so |S| = |S0| + |S1| ≥ 2n−1. We

claim that equality does not hold. Suppose for a contradiction that |S| = 2n−1. Then |S0| = |S1| = 2n−2. So

S0 is either a sub-hypercube of rank n− 2 ≥ 4 or the union of antipodal sub-hypercubes of rank n− 3 ≥ 3. As

S has no infeasible sub-hypercube of rank ≥ 4, it follows that n = 6 and S0 is the union of antipodal cubes, say

S ∩ {x : x6 = 0} = {x : x4 = x5, x6 = 0},

and so

S ∩ {x : x6 = 1} = {x : x4 + x5 = 1, x6 = 1}

as |S1| = 2n−2. But then S has an R1,1 restriction, a contradiction to our assumption. This completes the

induction step.

We are now ready the following characterization:

Theorem 11. Up to isomorphism, R1,1, R2,1, R5 are the only 2-resistant strictly non-polar sets.

Proof. We know that R1,1, R2,1, R5 are strictly non-polar sets, and since their infeasible components have max-

imum degree at most two, they are 2-resistant by Theorem 5. To prove that they are up to isomorphism the

only 2-resistant strictly non-polar sets, pick an integer n ≥ 1 and a 2-resistant set S ⊆ {0, 1}n without an

R1,1, R2,1, R5 restriction. It suffices to show that S is polar. By Theorem 5, every infeasible component is a

sub-hypercube or has maximum degree at most two. If S has maximum degree at most two, then by Theorem 8,

S is polar. Otherwise, S has an infeasible sub-hypercube of rank at least 3. If n = 4 or S = ∅, then S is

clearly polar. Otherwise, n ≥ 5 and S 6= ∅. By Lemma 10, |S| ≥ 2n−1; if equality holds, then S is either a

sub-hypercube or the union of antipodal sub-hypercubes, so S is clearly polar. Otherwise, |S| > 2n−1, implying

in particular that there are antipodal feasible points, so S is polar, as required.

Theorem 7 follows as an immediate consequence.

For the fourth and final application of Theorem 5, take an integer k ≥ 1. We say that S is k-resistant if S∪X
has no P3, S3 minor, for every subset X ⊆ {0, 1}n of cardinality at most k.

Theorem 12. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Then for any integer k ≥ 3, S is k-resistant if, and

only if, every infeasible component of S has maximum degree at most two.

Proof. (⇐) Assume that every infeasible component of S has maximum degree at most two. Take an integer

k ≥ 3. To prove that S is k-resistant, let X be a subset of {0, 1}n of cardinality at most k. Then every infeasible

component of S ∪X also has maximum degree at most two, so by Theorem 5, S has no P3, S3 minor. Thus, S
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is k-resistant. (⇒) Assume that S is k-resistant. In particular, S is 2-resistant by Theorem 5, so every infeasible

component of S is a sub-hypercube or has maximum degree at most two. Notice however that S cannot have an

infeasible component that is a sub-hypercube of rank at least 3, for if not, then S∪X would have a P3 restriction

for some X ⊆ {0, 1}n − S of cardinality 3, which is not possible as S is 3-resistant. Thus, every infeasible

component of S has maximum degree at most two.

In particular, R1,1, R2,1, R5 are k-resistant for any integer k ≥ 3, so

Corollary 13. For an integer k ≥ 3, a k-resistant set is strictly polar if, and only if, it has no R1,1, R2,1, R5

restriction.

What about 1-resistant sets? It turns out that these sets, simply referred to as resistant sets, form a very rich

class of cube-ideal sets and are much more complex than k-resistant sets for any integer k ≥ 2. These sets are

studied in detail in [2].
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