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THE TWO-POINT FANO AND IDEAL BINARY CLUTTERS

AHMAD ABDI AND BERTRAND GUENIN

ABSTRACT. Let F be a binary clutter. We prove that if F is non-ideal, then either F or its blocker b(F) has one of

L7,O5,LC7 as a minor. L7 is the non-ideal clutter of the lines of the Fano plane, O5 is the non-ideal clutter of odd

circuits of the complete graph K5, and the two-point Fano LC7 is the ideal clutter whose sets are the lines, and their

complements, of the Fano plane that contain exactly one of two fixed points. In fact, we prove the following stronger

statement: if F is a minimally non-ideal binary clutter different from L7,O5, b(O5), then through every element,

either F or b(F) has a two-point Fano minor.

1. INTRODUCTION

Let E be a finite set. A clutter F over ground set E(F) := E is a family of subsets of E, where no subset is

contained in another. We say that F is binary if the symmetric difference of any odd number of sets in F contains

a set of F. We say that F is ideal if the polyhedron

Q(F) :=
{

x ∈ RE
+ :

∑

(xe : e ∈ C) ≥ 1 C ∈ F
}

has only integral extreme points; otherwise it is non-ideal. When is a binary clutter ideal? We will be studying

this question.

Let us describe some examples of ideal and non-ideal binary clutters. Given a graph G and distinct vertices

s, t, the clutter of st-paths of G over the edge-set is binary. An immediate consequence of Menger’s theorem [12],

as well as Ford and Fulkerson’s theorem [6], is that this binary clutter is ideal [3]. The clutter of lines of the Fano

plane

L7 :=
{

{1, 2, 6}, {1, 4, 7}, {1, 3, 5}, {2, 5, 7}, {2, 3, 4}, {3, 6, 7}, {4, 5, 6}
}

is binary, and it is non-ideal as
(

1

3
, 1

3
, . . . , 1

3

)

is an extreme point of Q(L7). (See Figure 1.) The clutter of odd

circuits of K5 over its ten edges, denoted O5, is also binary, and it is non-ideal as
(

1

3
, 1

3
, . . . , 1

3

)

is an extreme

point of Q(O5).

We say that two clutters are isomorphic if relabeling the ground set of one yields the other. There are two

fundamental clutter operations that preserve being binary and ideal, let us describe them. The blocker of F,

denoted b(F), is another clutter over the same ground set whose sets are the (inclusionwise) minimal sets in

{B ⊆ E : B∩C 6= ∅ ∀C ∈ F}. It is well-known that b(b(F)) = F [5]. We may therefore call F, b(F) a blocking

pair. A clutter F is binary if, and only if, |B ∩ C| is odd for all B ∈ b(F) and C ∈ F [9]. Hence, if F is binary,
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Figure 1. The Fano plane

then so is b(F). Lehman’s Width-Length Inequality shows that if F is ideal, then so is b(F) [10]. In particular,

since L7 and O5 are non-ideal, then so are b(L7) = L7 and b(O5). Let I, J be disjoint subsets of E. Denote by

F \ I/J the clutter over E − (I ∪ J) of minimal sets of {C − J : C ∈ F, C ∩ I = ∅}.1 We say that F \ I/J ,

and any clutter isomorphic to it, is a minor of F obtained after deleting I and contracting J . If I ∪ J 6= ∅, then

F \ I/J is a proper minor of F. It is well-known that b(F \ I/J) = b(F)/I \ J [16]. If a clutter is binary, then

so is every minor of it, and if a clutter is ideal, then so is every minor of it [17].

Let F be a binary clutter. Regrouping what we discussed, if F or b(F) has one of L7,O5 as a minor, then it is

non-ideal. Seymour [17] (page 200) conjectures the converse is also true:

The flowing conjecture. Let F be a non-ideal binary clutter. Then F or b(F) has one of L7,O5 as a minor.

The two-point Fano clutter, denoted by LC7, is the clutter over ground set {1, . . . , 7} whose sets are the lines,

and their complements, of the Fano plane that intersect {1, 4} exactly once, i.e.

LC7 =
{

{1, 2, 6}, {3, 4, 5, 7}, {1, 3, 5}, {2, 4, 6, 7}, {2, 3, 4}, {1, 5, 6, 7}, {4, 5, 6}, {1, 2, 3, 7}
}

.

(Notice that changing the two points 1, 4 yields an isomorphic clutter.) It can be readily checked that LC7 is

binary and ideal. In this paper, we prove the following weakening of the flowing conjecture:

Theorem 1. Let F be a non-ideal binary clutter. Then F or b(F) has one of L7,O5,LC7 as a minor.

What makes this result attractive is its relatively simple proof. The techniques used in the proof give hope of

– and pave the way for – resolving the flowing conjecture. An interesting feature of the proof is the interplay

between the clutter F and its blocker b(F); if we fail to find one of the desired minors in the clutter, we switch

to the blocker and find a desired minor there. Theorem 1 is a consequence of a stronger result stated in the next

section.

2. PRELIMINARIES AND THE MAIN THEOREM

2.1. Minimally non-ideal binary clutters. A clutter is minimally non-ideal (mni) if it is non-ideal and every

proper minor of it is ideal. Notice that every non-ideal clutter has an mni minor, and if a clutter is mni, then so

1Given sets A,B we denote by A−B the set {a ∈ A : a /∈ B} and, for element a, we write A− a instead of A− {a}.
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is its blocker. Justified by this observation, instead of working with non-ideal binary clutters, we will work with

mni binary clutters. The three clutters L7,O5, b(O5) are mni, and the flowing conjecture predicts that these are

the only mni binary clutters. We will need the following result of the authors:

Theorem 2 ([1]). L7,O5 are the only mni binary clutters with a set of size 3.

We will also need the following intermediate result of Alfred Lehman on mni clutters, stated only for binary

clutters. Let F be a clutter over ground set E. Denote by F̄ the clutter of minimum size sets of F. Denote by

M(F) the 0 − 1 matrix whose columns are labeled by E and whose rows are the incidence vectors of the sets

of F. For an integer r ≥ 1, a square 0−1 matrix is r-regular if every row and every column has precisely r ones.

Theorem 3 ([11, 15, 2]). Let F be an mni binary clutter where n := |E(F)|, and let K := b(F). Then

(1) M(F̄) and M(K̄) are square and non-singular matrices,

(2) M(F̄) is r-regular and M(K̄) is s-regular, for some integers r ≥ 3 and s ≥ 3 such that rs− n is even and

rs− n ≥ 2,

(3) after possibly permuting the rows of M(K̄), we have that

M(F̄)M(K̄)⊤ = J + (rs− n)I = M(K̄)⊤M(F̄).

Here, J denotes the all-ones matrix, and I the identity matrix. Given a ground set E and a set C ⊆ E, denote

by χC ⊆ {0, 1}E the incidence vector of C. We will make use of the following corollary:

Corollary 4. Let F be an mni binary clutter. Then the following statements hold:

(1) For C1, C2 ∈ F̄, the only sets of F contained in C1 ∪ C2 are C1, C2 ([7, 8]).

(2) Choose C1, C2, C3 ∈ F̄ and e ∈ E(F) such that C1 ∩ C2 = C2 ∩ C3 = C3 ∩ C1 = {e}. If C,C ′ are sets

of F such that C ∪ C ′ ⊆ C1 ∪ C2 ∪ C3 and C ∩ C ′ ⊆ {e}, then {C,C ′} = {Ci, Cj} for some distinct

i, j ∈ {1, 2, 3}.

Proof. Denote by r the minimum size of a set in F. (1) Take a set C ∈ F such that C ⊆ C1 ∪ C2. Since F is

binary, C1△C2△C contains another set C ′ of F. Then

2r = |C1|+ |C2| = |C1 ∩ C2|+ |C1 ∪ C2| ≥ |C ∩ C ′|+ |C ∪ C ′| = |C|+ |C ′| ≥ 2r,

so equality must hold throughout. In particular, C,C ′ ∈ F̄ and χC1
+ χC2

= χC + χC′ . Since M(F) is non-

singular by Theorem 3 (1), we get that {C,C ′} = {C1, C2}. (2) As F is binary, C1△C2△C3△C△C ′ contains

another set C ′′ of F. Notice that C ′′ ∩ C ⊆ {e} and C ′′ ∩ C ′ ⊆ {e}. If k many of C,C ′, C ′′ contain e, then

3r − 3 = |(C1 ∪ C2 ∪ C3)− e| ≥ |(C ∪ C ′ ∪ C ′′)− e| = |C|+ |C ′|+ |C ′′| − k ≥ 3r − k,

implying in turn that k = 3 and equality must hold throughout. In particular, C,C ′, C ′′ ∈ F̄ and χC1
+ χC2

+

χC3
= χC + χC′ + χC′′ , so as M(F̄) is non-singular, we get that {C1, C2, C3} = {C,C ′, C ′′}. �
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2.2. Signed matroids. All matroids considered in this paper are binary; we follow the notation used in Ox-

ley [14]. Let M be a matroid over ground set E. Recall that a circuit is a minimal dependent set of M and

a cocircuit is a minimal dependent set of the dual M⋆. A cycle is the symmetric difference of circuits, and a

cocycle is the symmetric difference of cocircuits. It is well-known that a nonempty cycle is a disjoint union of

circuits ([14], Theorem 9.1.2). Let Σ ⊆ E. The pair (M,Σ) is called a signed matroid over ground set E. An

odd circuit of (M,Σ) is a circuit C of M such that |C ∩ Σ| is odd.

Proposition 5 ([9, 13], also see [4]). The clutter of odd circuits of a signed matroid is binary. Conversely, a

binary clutter is the clutter of odd circuits of a signed matroid.

A representation of a binary clutter F is a signed matroid whose clutter of odd circuits is F. By the preceding

proposition, every binary clutter has a representation. For instance, L7 is represented as
(

F7, E(F7)
)

, where

F7 is the Fano matroid. A signature of (M,Σ) is any subset of the form Σ△D, where D is a cocycle of M ;

to resign is to replace (M,Σ) by (M,Σ△D). Notice that resigning does not change the family of odd cycles.

We say that two signed matroids are isomorphic if one can be obtained from the other after a relabeling of the

ground set and a resigning.

Remark 6. Take an arbitrary element ω of F7. Then (F7, E(F7)− ω) represents LC7.

Proof. Suppose that E(F7) = {1, . . . , 7}. By the symmetry between the elements of E(F7), we may assume

that ω = 7. Consider the following representation of F7,





1 0 0 0 1 1 1

0 1 0 1 0 1 1

0 0 1 1 1 0 1





where the columns are labeled 1, . . . , 7 from left to right. Since {2, 3, 5, 6} is a cocycle of F7, (F7, {1, . . . , 6})

is isomorphic to (F7, {1, . . . , 6}△{2, 3, 5, 6}) = (F7, {1, 4}). It can be readily checked that the odd circuits of

(F7, {1, 4}) are precisely the sets of LC7, thereby proving the remark. �

Proposition 7 ([9, 13], also see [8]). In a signed matroid, the clutter of minimal signatures is the blocker of the

clutter of odd circuits.

Let I, J be disjoint subsets of E. The minor (M,Σ) \ I/J obtained after deleting I and contracting J is the

signed matroid defined as follows: if J contains an odd circuit, then (M,Σ)\I/J := (M \I/J, ∅), and if J does

not contain an odd circuit, then there is a signature Σ′ of (M,Σ) disjoint from J by the preceding proposition,

and we let (M,Σ) \ I/J := (M \ I/J,Σ′ − I). Observe that minors are defined up to resigning.

Proposition 8 ([13], also see [4]). Let F be a binary clutter represented as (M,Σ), and take disjoint I, J ⊆

E(F). Then F \ I/J is represented as (M,Σ) \ I/J .

2.3. Hubs and the main theorem. Let (M,Σ) be a signed matroid, and take e ∈ E(M). An e-hub of (M,Σ)

is a triple (C1, C2, C3) satisfying the following conditions:
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(h1) C1, C2, C3 are odd circuits such that, for distinct i, j ∈ {1, 2, 3}, Ci ∩ Cj = {e},

(h2) for distinct i, j ∈ {1, 2, 3}, the only nonempty cycles contained in Ci ∪ Cj are Ci, Cj , Ci△Cj ,

(h3) a cycle contained in C1 ∪ C2 ∪ C3 is odd if and only if it contains e.

A strict e-hub is an e-hub (C1, C2, C3) such that the following holds:

(h4) if C,C ′ are odd cycles contained in C1 ∪ C2 ∪ C3 such that C ∩ C ′ = {e}, then for some distinct

i, j ∈ {1, 2, 3}, {C,C ′} = {Ci, Cj}.

Given I ⊆ E, denote by M |I the minor M \ (E − I), and by (M,Σ)|I the minor (M,Σ) \ (E − I). The

following is the main result of the paper:

Theorem 9. Let F,K be a blocking pair of mni binary clutters over ground set E, neither of which has a set of

size 3. Let (M,Σ) represent F and let (N,Γ) represent K. Then, for a given e ∈ E, the following statements

hold:

(1) (M,Σ) has a strict e-hub (C1, C2, C3) and (N,Γ) has a strict e-hub (B1, B2, B3) where for i, j ∈ {1, 2, 3},

|Ci ∩Bj |

{

≥ 3 if i = j

= 1 if i 6= j,

(2) either M |(C1 ∪ C2 ∪ C3) or N |(B1 ∪B2 ∪B3) is non-graphic,

(3) if M |(C1∪C2∪C3) is non-graphic, then (M,Σ) \ I/J ∼= (F7, E(F7)−ω) for some disjoint I, J ⊆ E− e,

and similarly,

if N |(B1 ∪B2 ∪B3) is non-graphic, then (N,Γ) \ I/J ∼= (F7, E(F7)−ω) for some disjoint I, J ⊆ E− e.

In particular, for each e ∈ E, either F or K has a two-point Fano minor going through e.

Given this result, let us prove Theorem 1:

Proof of Theorem 1. Let F be a non-ideal binary clutter, let F′ be an mni minor of F, and let K′ := b(F′). If F′

has a set of size 3, then by Theorem 2, F′ ∼= L7 or O5. If K′ has a set of size 3, then by Theorem 2, K′ ∼= L7

or O5. Thus, if one of F′,K′ has a set of size 3, then either F or b(F) has one of L7,O5 as a minor. We may

therefore assume that neither F′ nor K′ has a set of size 3. Let (M,Σ) represent F′ and let (N,Γ) represent K′,

whose existence are guaranteed by Proposition 5. It then follows from Theorem 9 (2)-(3) that either (M,Σ) or

(N,Γ) has an (F7, E(F7) − ω) minor. By Remark 6 and Proposition 8, we see that either F′ or K′ has an LC7

minor, implying in turn that either F or b(F) has an LC7 minor, as required. �

Before proving Theorem 9, let us say a few words about our proof in particular and our strategy for tackling

the flowing conjecture in general. Starting with an mni binary clutter F and its representation (M,Σ), we pick

an arbitrary element e and identify a local structure around it, namely a strict e-hub. Our idea is to build an

excluded minor on top of the local structure, by carefully adding elements from outside the strict e-hub. This

idea is certainly not a new one; the second author used it to prove the flowing conjecture when M is a graphic

matroid [7]. However, this approach does not always lead to structure resembling any of the excluded minors. To

overcome this shortcoming, we introduce a new idea. We switch to the blocker b(F) and its representation (N,Γ).

There we identify a strict e-hub, one that is tied to the original e-hub in (M,Σ). We then repeat our attempt, this
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time in (N,Γ). Theorem 9 shows an implementation of this new idea, and how it can be incorporated with the

old one. Clearly our approach has its limitations, but we firmly believe that a final resolution (or refutation) of

the flowing conjecture would build on these two ideas.

In the remainder of this paper, we prove Theorem 9.

3. PROOF OF THEOREM 9 PART (1)

Let F,K be blocking mni binary clutters over ground set E, neither of which has a set of size 3. By Theorem 3,

there are integers r ≥ 4 and s ≥ 4 such that M(F̄) is r-regular, M(K̄) is s-regular, and after possibly permuting

the rows of M(K̄), M(F̄)M(K̄)⊤ = J+(rs−n)I = M(K̄)⊤M(F̄). Thus, there is a labeling F̄ = {C1, . . . , Cn}

and K̄ = {B1, . . . , Bn} so that, for all i, j ∈ {1, . . . , n},

(⋆) |Ci ∩Bj | =

{

rs− n+ 1 if i = j

1 if i 6= j

and for all g, h ∈ E,

(⋄) |{i ∈ {1, . . . , n} : g ∈ Ci, h ∈ Bi}| =

{

rs− n+ 1 if g = h

1 if g 6= h.

Take an element e ∈ E. Since rs− n ≥ 2, we may assume by (⋄) that e ∈ Ci ∩Bi for i ∈ {1, 2, 3}. Recall that

(M,Σ) represents F and that (N,Γ) represents K. We will show that (C1, C2, C3) is a strict e-hub of (M,Σ).

1. C1, C2, C3 are odd circuits of (M,Σ) such that, for distinct i, j ∈ {1, 2, 3}, Ci ∩ Cj = {e}, i.e. (h1) holds.

Subproof. By definition, C1, C2, C3 are odd circuits of (M,Σ). To see C1 ∩ C2 = {e}, notice that if f ∈

(C1 ∩ C2)− e, then {1, 2} ⊆ {i ∈ {1, . . . , n} : f ∈ Ci, e ∈ Bi}, which cannot be the case as the latter set has

size 1 by (⋄). Similarly, C2 ∩ C3 = C3 ∩ C1 = {e}. ♦

2. For distinct i, j ∈ {1, 2, 3}, the only nonempty cycles of M contained in Ci ∪Cj are Ci, Cj , Ci△Cj , so (h2)

holds.

Subproof. By symmetry, we may only analyze the cycles of M contained in C1 ∪ C2. By Corollary 4 (1), the

only odd circuits of (M,Σ) contained in C1 ∪ C2 are C1, C2.

We first show that C1, C2 are the only odd cycles of (M,Σ) in C1 ∪ C2. Suppose otherwise. Let A be an

odd cycle different from C1, C2. Write C as the disjoint union of circuits A1, . . . , Ak for some k ≥ 2. Since

|Σ ∩ A| =
∑k

i=1
|Σ ∩ Ai| and |Σ ∩ A| is odd, we may assume that |Σ ∩ A1| is odd, so A1 ∈ {C1, C2}, and we

may assume that A1 = C1. But then A2 ⊆ C2 − e, a contradiction as both A2, C2 are circuits of M .

Let C be a nonempty cycle of M contained in C1 ∪ C2. If C is an odd cycle of (M,Σ), then as we just

showed, C ∈ {C1, C2}. Otherwise, C is an even cycle, so C△C1 is an odd cycle, so C△C1 ∈ {C1, C2},

implying in turn that C = C1△C2, as required. ♦

3. A cycle of (M,Σ) contained in C1 ∪ C2 ∪ C3 uses e if and only if it contains e, so (h3) holds.
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Subproof. Since s ≥ 4 and M(K̄) is s-regular, there is a B ∈ K̄ − {B1, B2, B3} such that e ∈ B. Then, for

each i ∈ {1, 2, 3}, |B ∩ Ci| = 1 by (⋆), so B ∩ (C1 ∪ C2 ∪ C3) = {e}. It follows from Proposition 7 that B

is a signature of (M,Σ). Thus, if C is an odd cycle of (M,Σ) contained in C1 ∪ C2 ∪ C3, then |C ∩ B| is odd

and therefore nonzero, so e ∈ C. So every odd cycle contained in C1 ∪ C2 ∪ C3 contains e. Thus, if C is an

even cycle contained in C1 ∪ C2 ∪ C3, then C△C1 is an odd cycle contained in C1 ∪ C2 ∪ C3, so e ∈ C△C1,

implying in turn that e /∈ C. So every even cycle contained in C1 ∪ C2 ∪ C3 excludes e, thereby proving the

claim. ♦

4. If C,C ′ are odd cycles of (M,Σ) contained in C1 ∪C2 ∪C3 such that C ∩C ′ = {e}, then for some distinct

i, j ∈ {1, 2, 3}, {C,C ′} = {Ci, Cj}, so (h4) holds.

Subproof. Let D,D′ be odd circuits contained in C,C ′, respectively. It follows from Corollary 4 (2) that, for

some distinct i, j ∈ {1, 2, 3}, {D,D′} = {Ci, Cj}. Since there is no even cycle contained in (C1 ∪C2 ∪C3)−

(Ci△Cj), it follows that D = C and D′ = C ′, and the claim follows. ♦

Hence, (C1, C2, C3) is a strict e-hub of (M,Σ). Similarly, (B1, B2, B3) is a strict e-hub of (N,Γ). This finishes

the proof of Theorem 9 part (1). �

4. HYPERGRAPHS, THE TRIFOLD, AND GRAPHIC HUBS

Let M be a binary matroid over ground set E. By definition, the cycles of M form a linear space modulo 2, so

there is a 0−1 matrix A such that the incidence vectors of the cycles in M are
{

x ∈ {0, 1}E : Ax ≡ 0 (mod 2)
}

.

The matrix A is referred to as a representation of M . Notice that elementary row operations modulo 2 applied

to A yield another representation, and if a ∈ {0, 1}E belongs to the row space of A modulo 2, then

(

A

a⊤

)

is

also a representation. A hypergraphic representation of M is a representation where every column has an even

number of ones. If a⊤ is the sum of the rows of A modulo 2, then

(

A

a⊤

)

is a hypergraphic representation. In

particular, a binary matroid always has a hypergraphic representation.

A hypergraph is a pair G = (V,E), where V is a finite set of vertices and E is a family of even subsets

of V , called edges. Note that if A is a hypergraphic representation of M , then A may be thought of as a

hypergraph whose vertices are labeled by the rows and whose edges are labeled by the columns. For instance,

the Fano matroid F7 may be represented as a hypergraph on vertices {1, . . . , 4} and edges
{

T ⊆ {1, . . . , 4} :

|T | ∈ {2, 4}
}

. Denote by S8 the binary matroid represented as the hypergraph displayed in Figure 2, which

has vertices {1, . . . , 5} and edges {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {2, 3, 4, 5}. Label γ :=

{2, 3, 4, 5} ∈ E(S8). A trifold is any signed matroid isomorphic to
(

S8, E(S8)− γ
)

.

Remark 10. A trifold has an (F7, E(F7)) minor.

Proof. Observe that S8/γ ∼= F7, implying in turn that (S8, E(S8)− γ)/γ ∼= (F7, E(F7)). �

Given a hypergraph G = (V,E) and F ⊆ E, let oddG(F ) := △(e : e ∈ F ) ⊆ V . Observe that oddG(F ) is

an even subset of V . We will make use of the following remark throughout the paper:
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1 2

34

1 2

4

3

5

Figure 2. The hypergraph on the left represents F7, and the one on the right represents S8. Line segments represent

edges of size 2, and square vertices form the edges of size 4.

Remark 11. Let M be a binary matroid over ground set E ∪{e}, where M \ e is represented by the hypergraph

G = (V,E). If for some F ⊆ E, F ∪ {e} is a cycle of M , then the hypergraph on vertices V and edges

E ∪ {oddG(F )} represents M .

Recall that a binary matroid is graphic if it can be represented by a graph. We will also need the following:

Proposition 12. Take a signed matroid (M,Σ), e ∈ E(M) and an e-hub (C1, C2, C3). Then there is a signature

Σ′ such that Σ′ ∩ (C1 ∪ C2 ∪ C3) = {e}. Moreover, the following statements are equivalent:

(i) M |(C1 ∪ C2 ∪ C3) is graphic,

(ii) C1, C2, C3, C1△C2△C3 are the only odd cycles contained in C1 ∪ C2 ∪ C3.

Proof. By (h3), (C1 ∪C2 ∪C3)− e does not have an odd circuit, so its complement intersects every odd circuit.

Thus, by Proposition 7, there is a minimal signature Σ′ contained in the complement of (C1 ∪C2 ∪C3)− e, and

as Σ′ ∩ C1 6= ∅, it follows that Σ′ ∩ (C1 ∪ C2 ∪ C3) = {e}, as required.

(i) ⇒ (ii): Let G = (V,C1 ∪C2 ∪C3) be a graph representing M |(C1 ∪C2 ∪C3). Then by (h1), C1, C2, C3

are circuits of G that are pairwise edge-disjoint except at e. In fact, it follows from (h2) that C1, C2, C3 are

pairwise vertex-disjoint except at the ends of e. Clearly, C1, C2, C3, C1△C2△C3 are the only cycles con-

tained in C1 ∪ C2 ∪ C3 that use e. Therefore, since Σ′ ∩ (C1 ∪ C2 ∪ C3) = {e}, it follows immediately that

C1, C2, C3, C1△C2△C3 are the only odd cycles contained in C1 ∪ C2 ∪ C3.

(ii) ⇒ (i): We claim that ∅, C1△C2, C2△C3, C3△C1 are the only even cycles contained in C1 ∪ C2 ∪

C3. To this end, let C ⊆ C1 ∪ C2 ∪ C3 be an even cycle. Then C△C1 is an odd cycle, so it is one of

C1, C2, C3, C1△C2△C3, implying in turn that C is one of ∅, C1△C2, C1△C3, C2△C3, as claimed. Thus,

{

∅, C1, C2, C3, C1△C2, C2△C3, C3△C1, C1△C2△C3

}

are the only cycles contained in C1 ∪ C2 ∪ C3. It is now clear that M |(C1 ∪ C2 ∪ C3) may be represented by a

graph G = (V,C1 ∪ C2 ∪ C3), where C1, C2, C3 are circuits of G that are pairwise vertex-disjoint except at e.

In particular, M |(C1 ∪ C2 ∪ C3) is graphic. �
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5. PROOF OF THEOREM 9 PART (2)

Let F,K be blocking mni binary clutters over ground set E, neither of which has a set of size 3. Recall that

(M,Σ) represents F and that (N,Γ) represents K. Take an element e ∈ E. By Theorem 9 part (1), (M,Σ) has

a (strict) e-hub (C1, C2, C3) and (N,Γ) has a (strict) e-hub (B1, B2, B3), where for i, j ∈ {1, 2, 3},

|Ci ∩Bj |

{

≥ 3 if i = j

= 1 if i 6= j.

We need to show that either M |(C1 ∪ C2 ∪ C3) or N |(B1 ∪ B2 ∪ B3) is non-graphic. By Proposition 12,

after a possible resigning of (M,Σ), we may assume that Σ ∩ (C1 ∪ C2 ∪ C3) = {e}. Notice further that by

Proposition 7, the odd circuits of (N,Γ) are (minimal) signatures of (M,Σ).

Suppose for a contradiction that both M |(C1 ∪ C2 ∪ C3) and N |(B1 ∪ B2 ∪ B3) are graphic. Since the

latter is graphic, it follows from Proposition 12 that B1, B2, B3 are the only odd circuits of (N,Γ) contained in

B1 ∪B2 ∪B3. In other words, the only sets of K contained in B1 ∪B2 ∪B3 are B1, B2, B3.

1. There is an odd circuit C of (M,Σ) such that e /∈ C and, for each i ∈ {1, 2, 3}, C ∩Bi ⊆ Ci.

Subproof. Let B be the union of (B1 ∪B2 ∪B3)− (C1 ∪ C2 ∪ C3) and {e}. Since B1 ∩ C1 6= {e}, it follows

that B1 6⊆ B. Similarly, B2 6⊆ B and B3 6⊆ B. Thus, since the only sets of K contained in B1 ∪ B2 ∪ B3 are

B1, B2, B3, we get that B does not contain a set of K = b(F). In other words, there is a set C ∈ F such that

C ∩ B = ∅. By definition, C is an odd circuit of (M,Σ). Clearly, e /∈ C. Consider the intersection C ∩ B1.

Since C ∩ B = ∅, it follows that C ∩ B1 ⊆ C1 ∪ C2 ∪ C3. Moreover, as B1 ∩ C2 = B1 ∩ C3 = {e}, we see

that C ∩B1 ⊆ C1. Similarly, C ∩B2 ⊆ C2 and C ∩B3 ⊆ C3. ♦

Since e /∈ C, we get that C ∩ Σ ⊆ C − (C1 ∪ C2 ∪ C3), and as C is odd, it follows that C 6⊆ C1 ∪ C2 ∪ C3.

2. (M,Σ)|(C1 ∪ C2 ∪ C3 ∪ C) has a trifold minor.

Subproof. Let S be a minimal subset of C − (C1 ∪ C2 ∪ C3) such that

(m1) M |(C1 ∪ C2 ∪ C3 ∪ S) has a cycle containing S,

(m2) |S ∩ Σ| is odd.

Note that S is well-defined, since C − (C1 ∪ C2 ∪ C3) satisfies both (m1)-(m2). Let

(M ′,Σ′) := (M,Σ)|(C1 ∪ C2 ∪ C3 ∪ S).

We claim that the elements of S are in series in M ′. Suppose otherwise. Then there is a cycle D of M ′ such that

S ∩D is a nonempty and proper subset of S. Notice that (m1) is satisfied by both S ∩D (because of cycle D)

and S −D (because of cycle D△C ′, where C ′ is a cycle of M |(C1 ∪ C2 ∪ C3 ∪ S) containing S). However,

one of S ∩D,S −D also satisfies (m2), thereby contradicting the minimality of S. Thus, the elements of S are

in series in M ′. In particular, after a possible resigning, we may assume that Σ′ ∩ (C1 ∪C2 ∪C3 ∪ S) = {e, f}

for some element f ∈ S. Let

(M ′′, {e, f}) := (M ′,Σ′)/(S − f).

Notice that
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(⋆) B1 ∩ C1 is a signature for (M ′′, {e, f}).

To see this, note that B1 is a signature for (M,Σ), and by our choice of C, we have B1 ∩ (C1 ∪C2 ∪C3 ∪C) =

B1 ∩C1. This means that B1 ∩C1 is a signature for (M ′,Σ′). Since (B1 ∩C1)∩S = ∅, it follows that B1 ∩C1

is also a signature for (M ′′, {e, f}).

We have M ′′ \f = M ′/(S−f)\f = M ′ \S = M |(C1∪C2∪C3), where the second equality follows from

the fact that the elements of M ′ in S are in series. Since M |(C1∪C2∪C3) is graphic, M ′′\f can be represented

as a graph G = (V,C1 ∪ C2 ∪ C3). It follows from (h2) that the circuits C1, C2, C3 are pairwise vertex-disjoint

except at the ends of e = {x, y} ⊆ V . By (m1), M |(C1 ∪ C2 ∪ C3 ∪ S) has a cycle containing S, so M ′′ has

a cycle P ∪ {f}, for some P ⊆ C1 ∪ C2 ∪ C3. By replacing P by P△C1, if necessary, we may assume that

e /∈ P . For each i ∈ {1, 2, 3}, let Pi := P ∩Ci and Qi := Ci− (Pi∪{e}). After possibly rearranging the edges

of G within each series class Ci − e, we may assume that each Pi is a path that starts from x. It follows from

Remark 11 that M ′′ is represented as the hypergraph on vertices V and edges C1 ∪ C2 ∪ C3 ∪ {oddG(P )}. We

may therefore label f = oddG(P ), and represent M ′′ with the following hypergraph

P1

P2

P3

e

Q1

Q2

Q3

where f consists of the square vertices. We claim that P1 6= ∅ and Q1 6= ∅. Since (P ∪ {f}) ∩ {e, f} = {f},

it follows that P ∪ {f} is an odd cycle of (M ′′, {e, f}). Thus, since B1 ∩C1 is a signature for (M ′′, {e, f}) by

(⋆), we get that (P ∪ {f}) ∩ (B1 ∩ C1) has odd size. However,

(P ∪ {f}) ∩ (B1 ∩ C1) = P1 ∩B1,

so P1 contains an odd number of edges in B1, thus P1 6= ∅. Since B1 has an even number of edges in C1 − e,

this means that Q1 also picks an odd number of edges in B1, so Q1 6= ∅. Similarly, for each i ∈ {1, 2, 3}, Pi 6= ∅

and Qi 6= ∅, so there are pi ∈ Pi and qi ∈ Qi. Since {e, p1, p2, p3, q1, q2, q3} is a signature for (M ′′, {e, f}),

we see that

(M ′′, {e, f}) ∼= (M ′′, {e, p1, p2, p3, q1, q2, q3}).

Observe however that the right signed matroid has a trifold minor, obtained after contracting each Ci−{e, pi, qi}.

As a result, (M,Σ)|(C1 ∪ C2 ∪ C3 ∪ C) has a trifold minor. ♦

However, by Remark 10, a trifold has an (F7, E(F7)) minor, so (M,Σ) has an (F7, E(F7)) minor. As a conse-

quence, Proposition 8 implies that F has an L7 minor. Since F is mni, we must have that F ∼= L7, but F has no

set of size 3, a contradiction. This finishes the proof of Theorem 9 part (2). �
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6. NON-GRAPHIC STRICT HUBS

In this section, we prove two results needed for the proof of Theorem 9 part (3).

Proposition 13. Take a signed matroid (M,Σ), e ∈ E(M) and a strict e-hub (C1, C2, C3) such that M |(C1 ∪

C2 ∪ C3) is non-graphic. Then there exist I ⊆ C3 − e and distinct g1, g2 ∈ (C3 − I)− e where

(1) (C1, C2, C3 − I) is an e-hub of (M,Σ)/I ,

(2) (M/I)|
(

C1 ∪ C2 ∪ {gi}
)

has a circuit containing gi, for each i ∈ {1, 2},

(3) (M/I)|
(

C1 ∪ C2 ∪ {g1, g2}
)

is non-graphic.

Proof. By Proposition 12, after a possible resigning, we may assume that Σ ∩ (C1 ∪ C2 ∪ C3) = {e}.

1. Let I be a maximal subset of C3 − e such that every cycle of M |(C1 ∪ C2 ∪ I) is disjoint from I . Then the

following statements hold:

(i) (C1, C2, C3 − I) is an e-hub of (M,Σ)/I ,

(ii) for each g ∈ (C3 − I)− e, (M/I)|
(

C1 ∪ C2 ∪ {g}
)

has a cycle containing g,

(iii) (M/I)|(C1 ∪ C2 ∪ (C3 − I)) is non-graphic.

Subproof. Let (M ′,Σ) := (M,Σ)/I and C ′

3 := C3 − I (note, Σ ∩ I = ∅). (i) Since I ⊆ C3 − e and e ∈ C ′

3,

we get that C ′

3 is an odd circuit of (M ′,Σ), and by our choice of I , we see that C1, C2 are still odd circuits of

(M ′,Σ). Moreover, C1 ∩ C2 = C2 ∩ C ′

3 = C ′

3 ∩ C1 = {e}, so (h1) holds. Our choice of I also implies that

the only nonempty cycles contained in C1 ∪C2 are C1, C2, C1△C2, and since I ⊆ C3 − e, we get that the only

nonempty cycles in Ci∪C
′

3 are Ci, C
′

3, Ci△C ′

3, for i ∈ {1, 2}, so (h2) holds. Lastly, as Σ∩(C1∪C2∪C
′

3) = {e},

every odd cycle of (M ′,Σ) contained in C1 ∪ C2 ∪ C ′

3 uses e, so (h3) holds. Thus, (C1, C2, C
′

3) is an e-hub

of (M ′,Σ). (ii) follows immediately from our maximal choice of I . (iii) By Proposition 12, it is sufficient to

provide an odd cycle of (M ′,Σ)|(C1∪C2∪C
′

3) distinct from C1, C2, C
′

3, C1△C2△C ′

3. Since M |(C1∪C2∪C3)

is non-graphic, the same proposition implies the existence of an odd cycle C of (M,Σ)|(C1∪C2∪C3) different

from C1, C2, C3, C1△C2△C3. Then e ∈ C. Notice that by (h2), {e} ( C ∩ C1 ( C1; for if {e} = C ∩ C1

then C ∈ {C2, C3}, and if C ∩ C1 = C1, then C△C1 ∈ {∅, C2△C3}, neither of which are the case. Let

C ′ := C − I . Observe that C ′ is an odd cycle of (M ′,Σ)|(C1 ∪ C2 ∪ C ′

3) with C ′ ∩ C1 = C ∩ C1, so

{e} ( C ′ ∩C1 ( C1, implying in turn that C ′ is different from C1, C2, C
′

3, C1△C2△C ′

3. Thus, Proposition 12

implies that M ′|(C1 ∪ C2 ∪ C ′

3) is non-graphic, as required. ♦

2. Let I be a maximal subset of C3 − e such that every cycle of M |(C1 ∪ C2 ∪ I) is disjoint from I . Then there

exist h1, h2 ∈ (C3 − I)− e such that one of the following statements holds:

• (M/I)|(C1 ∪ C2 ∪ {h1, h2}) is non-graphic, or

• (M/I)|(C1 ∪C2 ∪ {h1, h2}) has cycles D1, D2 where D1 ∩ {h1, h2} = {h1}, D2 ∩ {h1, h2} = {h2}

and D1 ∩D2 = {e}.

Subproof. Let (M ′, {e}) := (M,Σ)|(C1 ∪ C2 ∪ C3)/I and C ′

3 := C3 − I . By Claim 1, M ′ is non-graphic

and (C1, C2, C
′

3) is an e-hub of (M ′, {e}). Take an element g ∈ C ′

3 − e. Claim 1 also tells us that there is a
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cycle Dg of M ′|(C1 ∪ C2 ∪ {g}) using g, where after possibly replacing Dg by Dg△C1, we may assume that

e /∈ Dg . Notice that Dg△C1△C2 is another cycle of M ′|(C1 ∪C2 ∪{g}) using g that excludes e. We will refer

to Dg − g and (Dg△C1△C2) − g as the outer joins of g. Note that each outer join intersects both C1 and C2,

as (M ′, {e}) is an e-hub and therefore satisfies (h2). We have defined two outer joins for each g ∈ C ′

3 − e. Pick

h1 ∈ C ′

3 − e so that one of its outer joins, call it Jh1
, is minimal among all the defined outer joins.

For each g ∈ C ′

3 − {e, h1}, pick an arbitrary outer join Jg of g. We claim that

(⋆) △
(

Jg : g ∈ C ′

3 − e
)

= C1 − e or C2 − e.

Each Dg is a cycle so △
(

Dg : g ∈ C ′

3 − e
)

is a cycle of M ′, implying in turn that

C ′

3△
[

△
(

Dg : g ∈ C ′

3 − e
)]

= {e} ∪
[

△
(

Dg − g : g ∈ C ′

3 − e
)]

is a cycle of M ′ contained in C1 ∪ C2, so by (h2), △
(

Dg − g : g ∈ C ′

3 − e
)

is either C1 − e or C2 − e. Since

△
(

Jg : g ∈ C ′

3 − e
)

is either △
(

Dg − g : g ∈ C ′

3 − e
)

or (C1△C2)△
[

△
(

Dg − g : g ∈ C ′

3 − e
)]

, (⋆) follows.

Let a ∈ Jh1
∩ C1 and b ∈ Jh1

∩ C2. Since (⋆) holds, there is an h2 ∈ C ′

3 − e such that |Jh2
∩ {a, b}| = 1.

We claim that h1, h2 are the desired elements. If M ′|(C1 ∪ C2 ∪ {h1, h2}) is non-graphic, then we are done.

Otherwise, there is a graph G = (V,C1 ∪ C2 ∪ {h1, h2}) representing M ′|(C1 ∪ C2 ∪ {h1, h2}). By (h2), the

circuits C1, C2 are pairwise vertex-disjoint except at the ends of e. Notice that Jh1
, Jh2

are paths contained in

C1△C2. The minimality of Jh1
implies that Jh2

6⊆ Jh1
and Jh2

△C1△C2 6⊆ Jh1
, and since {a, b} ⊆ Jh1

while

|Jh2
∩ {a, b}| = 1, we see that Jh1

, Jh2
are crossing paths:

Jh1
∩ Jh2

6= ∅, Jh1
− Jh2

6= ∅, Jh2
− Jh1

6= ∅, and Jh1
∪ Jh2

6= C1△C2.

If Jh2
∩ {a, b} = {b}, let D1 := Dh1

△C1 and D2 := Dh2
△C2, and otherwise, let D1 := Dh1

△C1 and

D2 := Dh2
△C1. Notice that D1 ∩ {h1, h2} = {h1}, D2 ∩ {h1, h2} = {h2}, and as the two paths Jh1

, Jh2
are

crossing, it follows that D1 ∩D2 = {e}, as required. ♦

Now let I be a maximal subset of C3 − e such that every cycle of M |(C1 ∪ C2 ∪ I) is disjoint from I . If

there are elements g1, g2 ∈ C3 − I such that (M/I)|(C1 ∪ C2 ∪ {g1, g2}) is non-graphic, then (1)-(3) hold by

Claim 1 (i)-(ii), and we are done. Otherwise, by Claim 2, there are elements h1, h2 ∈ (C3 − I) − e such that

(M/I)|(C1 ∪ C2 ∪ {h1, h2}) has cycles D1, D2 where D1 ∩ {h1, h2} = {h1}, D2 ∩ {h1, h2} = {h2} and

D1 ∩ D2 = {e}. In particular, (M/I)|(C1 ∪ C2 ∪ {h1, h2}) is graphic, and can be represented as the graph

H = (V,C1 ∪C2 ∪ {h1, h2}) displayed below where C1 = {e} ∪P1 ∪Q1 ∪R1 and C2 = {e} ∪P2 ∪Q2 ∪R2

h1 h2
e

P1

Q1

R1 R2

Q2

P2

are vertex-disjoint except at the ends of e, D1 = {e, h1} ∪ P1 ∪ R2 and D2 = {e, h2} ∪ {P2, R1}. Since

(C1, C2, C
′

3) is an e-hub of (M,Σ)/I , we get from (h2) that, for i ∈ {1, 2}, Pi, Qi, Ri 6= ∅.
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For i ∈ {1, 2}, let D′

i be a cycle of M such that Di ⊆ D′

i ⊆ Di ∪ I; as D′

i ∩ Σ = {e}, D′

i is an odd cycle

of (M,Σ). Note further, for i ∈ {1, 2}, that D′

i is different from C1, C2, C3. Thus, since (C1, C2, C3) is a strict

e-hub of (M,Σ) and therefore satisfies (h4), we must have that {e} ( D′

1 ∩ D′

2. Because D1 ∩ D2 = {e},

there is an element f ∈ I such that {e, f} ⊆ D′

1 ∩ D′

2. Consider now the minor (M,Σ)/(I − f); note that

D1 ∪ {f} and D2 ∪ {f} are odd cycles of this signed matroid. We may represent M/(I − f) as a hypergraph

G = (V ∪ {w}, C1 ∪ C2 ∪ {h1, h2, f}) obtained from H by adding a vertex w, displayed below

h2 f

w

eQ1

R1 R2

Q2

P1 P2

where the square vertices form the edge h1, as D1 ∪ {f} = {e, h1, f} ∪ P1 ∪R2 is a cycle of M/(I − f). Now

let J := I△{f, h2}. Observe that (M/J)|(C1 ∪ C2 ∪ {f, h1}) is non-graphic, as it has an F7 minor obtained

after contracting P1 ∪R2 and contracting each of Q1, R1, P2, Q2 to a single edge. Observe further that

(⋄) J is a maximal subset of C3−e such that every cycle of M |(C1∪C2∪J) is disjoint from J .

Let us first show that every cycle of M |(C1 ∪ C2 ∪ J) is disjoint from J . Suppose otherwise. Then there is a

cycle C of M |(C1 ∪ C2 ∪ J) such that C ∩ J 6= ∅. By our choice of I , h2 ∈ C. But then C△D′

2 is a cycle of

M |(C1 ∪ C2 ∪ I) containing f ∈ I , a contradiction. Thus, every cycle of M |(C1 ∪ C2 ∪ J) is disjoint from J .

To see maximality, take g ∈ (C3 − J)− e. If g = f , then D′

2 is a cycle of M |(C1 ∪ C2 ∪ J ∪ {g}) containing

g. Otherwise, g 6= f , so there is a cycle C of M |(C1 ∪ C2 ∪ I ∪ {g}) containing g. If f /∈ C, then C is also a

cycle of M |(C1 ∪C2 ∪ J ∪ {g}) containing g, and if f ∈ C, then C△D′

2 is a cycle of M |(C1 ∪C2 ∪ J ∪ {g})

containing g. Thus, (⋄) holds. Hence, by Claim 1 (i)-(ii), we get that J and {f, h1} satisfy (1)-(3). This finishes

the proof of Proposition 13. �

Let us define two signed matroids, displayed in Figure 3. Take a hypergraph G = (V,E) where V =

{x, y, s1, s2, t}. If

E =
{

{x, y}, {y, s1}, {s1, t}, {t, x}, {x, s2}, {s2, y}, {s1, s2}, {t, s2}, {t, x, s1, s2}
}

,

we say that G is a Type I hypergraph, and if

E =
{

{x, y}, {y, s1}, {s1, t}, {t, x}, {x, s2}, {s2, y}, {s1, s2}, {t, y}, {t, x, y, s1}
}

,

we say that G is a Type II hypergraph. Let Σ :=
{

{x, y}, {s1, s2}
}

⊆ E. Given that M is the matroid

represented by the Type I hypergraph (respectively, Type II hypergraph), we refer to (M,Σ) as the Type I signed

matroid (respectively, Type II signed matroid). (The careful reader will notice that the Type I and Type II signed

matroids are isomorphic.)

Remark 14. The Type I and Type II signed matroids have (F7, E(F7)) as a minor.
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s1 s2 s2s1

x x

y y

t t

Figure 3. The left signed hypergraph represents the Type I signed matroid, while the right one represents the Type

II signed matroid. In each signed hypergraph, the square vertices form the edge of size 4, and the two bold edges

form the signature.

Proof. For the Type I signed matroid, note that the minor obtained after deleting edge {x, s2} and contracting

edge {x, y} is isomorphic to (F7, E(F7)). As for the Type II signed matroid, the minor obtained after deleting

edge {y, s1} and contracting edge {s1, s2} is isomorphic to (F7, E(F7)). �

7. PROOF OF THEOREM 9 PART (3)

Let F,K be blocking mni clutters over ground set E, neither of which has a set of size 3, where (M,Σ)

represents F and (N,Γ) represents K. By Theorem 9 part (1), (M,Σ) has a strict e-hub (C1, C2, C3) and (N,Γ)

has a strict e-hub (B1, B2, B3) such that, for i, j ∈ {1, 2, 3},

|Ci ∩Bj |

{

≥ 3 if i = j

= 1 if i 6= j.

Assume further that M |(C1 ∪ C2 ∪ C3) is non-graphic. We need to show that (M,Σ) has an (F7, E(F7) − ω)

minor going through e. By Proposition 12, after a possible resigning, we may assume that Σ∩ (C1∪C2∪C3) =

{e}. By Proposition 13, there exist I ⊆ C3 − e and distinct g1, g2 ∈ (C3 − I)− e where

(1) (C1, C2, C3 − I) is an e-hub of (M,Σ)/I ,

(2) (M/I)|
(

C1 ∪ C2 ∪ {gi}
)

has a circuit Di containing gi, for each i ∈ {1, 2},

(3) (M/I)|
(

C1 ∪ C2 ∪ {g1, g2}
)

is non-graphic.

For each i ∈ {1, 2}, after possibly replacing Di by Di△C1, we may assume that e /∈ Di; as (C1, C2, C3 − I) is

an e-hub of (M,Σ)/I , it follows from (h2) that Di ∩C1 6= ∅ and Di ∩C2 6= ∅. Notice that, for each i ∈ {1, 2},

Bi ∩ I = ∅, so Bi is a signature of (M,Σ)/I .

1. There exists an odd circuit C of (M,Σ)/I such that e /∈ C and, for each i ∈ {1, 2}, C ∩Bi ⊆ Ci.

Subproof. Let B be the union of {e} and (B1 ∪ B2) − (C1 ∪ C2). Since B1 ∩ C1 6= {e} and B2 ∩ C2 6= {e},

it follows that B1 6⊆ B and B2 6⊆ B. Since (B1, B2, B3) is an e-hub of (N,Γ), it follows from (h2) that B1, B2

are the only odd circuits of (N,Γ) contained in B1 ∪ B2, implying in turn that B1, B2 are the only sets of K

contained in B1 ∪ B2. As a result, B does not contain any set of K = b(F), so there is a set C ′ ∈ F such that

C ′∩B = ∅. Observe that C ′ is an odd circuit of (M,Σ) such that e /∈ C ′ and, for each i ∈ {1, 2}, C ′∩Bi ⊆ Ci.

Note that C ′ − I is an odd cycle of (M,Σ)/I , so it contains an odd circuit C, which is the desired set. ♦

Let (M ′,Σ) := (M,Σ)/I . Let S be a minimal subset of C − (C1 ∪ C2) such that
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(m1) M ′|(C1 ∪ C2 ∪ S) has a cycle containing S,

(m2) |S ∩ Σ| is odd.

Note that S is well-defined as C − (C1 ∪ C2) satisfies (m1)-(m2).

2. S ∩ {g1, g2} = ∅, and the elements of S are in series in M ′|(C1 ∪ C2 ∪ {g1, g2} ∪ S).

Subproof. If g1 ∈ S, then S − g1 satisfies (m1) (given that D is a cycle of M ′|(C1 ∪ C2 ∪ S) containing S,

D△D1 is a cycle of M ′|(C1 ∪ C2 ∪ (S − g1)) containing S − g1) and (m2) (as g1 /∈ Σ), which is not the case

by the minimality of S. Thus, g1 /∈ S and similarly, g2 /∈ S. Suppose for a contradiction that the elements of S

are not in series in M ′|(C1 ∪C2 ∪ {g1, g2} ∪ S). Then there is a cycle D of M ′|(C1 ∪C2 ∪ {g1, g2} ∪ S) such

that S ∩D is a nonempty and proper subset of S. After possibly replacing D by D△D1, we may assume that

g1 /∈ D, and after possibly replacing D by D△D2, we may assume that g2 /∈ D. Notice now that both S ∩D

and S −D satisfy (m1), and one of them satisfies (m2), thereby contradicting the minimality of S. This finishes

the proof of the claim. ♦

Thus, there exists a signature Σ′ of (M ′,Σ) such that Σ′ ∩ (C1 ∪ C2 ∪ {g1, g2} ∪ S) = {e, f}, for some

f ∈ S. Consider the minor

(M ′′, {e, f}) := (M ′,Σ′)|(C1 ∪ C2 ∪ {g1, g2} ∪ S)/(S − f).

For each i ∈ {1, 2}, our choice of C implies that Bi ∩ S = ∅, so Bi ∩ (C1 ∪ C2 ∪ {g1, g2}) = Bi ∩ Ci is a

signature of (M ′′, {e, f}).

3. Up to rearranging edges within series classes, there is a unique graph G = (V,C1 ∪C2 ∪ {f}) representing

M ′′ \ {g1, g2}, where

• e = {x, y} and f = {s1, s2} for distinct vertices x, y, s1, s2,

• V (C1) ∪ V (C2) = V , V (C1) ∩ V (C2) = {x, y}, s1 ∈ V (C1) and s2 ∈ V (C2),

• if Pi (respectively, Qi) is the path in Ci − e with ends si, x (respectively, si, y), then Pi (respectively,

Qi) contains an odd number of edges of Bi.

s1 s2

P2

Q2Q1

P1

x

y

e

f

Subproof. Since (C1, C2, C3 − I) is an e-hub of (M ′,Σ) and M ′|(C1 ∪ C2) = M ′′|(C1 ∪ C2), it follows from

(h2) that ∅, C1, C2, C1△C2 are the only cycles of M ′′ contained in C1 ∪ C2. Thus, M ′′|(C1 ∪ C2) can be

represented as a graph H = (V,C1∪C2) where C1, C2 are circuits vertex-disjoint except at the ends of e. Write

e = {x, y}, and note that V (C1) ∪ V (C2) = V and V (C1) ∩ V (C2) = {x, y}. By (m1), there is a cycle D of

M ′′|(C1 ∪ C2 ∪ {f}) containing f . After replacing D by D△C1, if necessary, we may assume that e /∈ D. In

particular, D is an odd cycle of (M ′′, {e, f}). Thus, D contains an odd number of edges of signature Bi ∩ Ci,
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for each i ∈ {1, 2}. After rearranging the edges of H in series classes C1 − e, C2 − e, we may assume that

D − f is a path in C1 ∪ C2 using vertex y. Let {s1, s2} := oddH(D − f) for s1 ∈ V (C1) and s2 ∈ V (C2). By

Remark 11, M ′′|(C1 ∪ C2 ∪ {f}) is represented as the graph G = (V,C1 ∪ C2 ∪ {f}), where f = {s1, s2}.

Write D = Q1 ∪ Q2 ∪ {f}, C1 − e = P1 ∪ Q1 and C2 − e = P2 ∪ Q2. Then, for i ∈ {1, 2}, Pi and Qi each

contain an odd number edges of Bi, so in particular, Pi 6= ∅ and Qi 6= ∅. Thus, x, y, s1, s2 are distinct vertices of

G. It is easily seen that, up to rearranging the edges within series classes, G is the unique graphic representation

of M ′′|(C1 ∪ C2 ∪ {f}). ♦

4. For each g ∈ {g1, g2, f}, if M ′′ \ g is non-graphic, then it has an F7 minor obtained after contracting some

elements of C1△C2.

Subproof. We leave this as an easy exercise for the reader. ♦

5. If M ′′ \ gi is graphic for each i ∈ {1, 2}, then (M ′′, {e, f}) has an (F7, E(F7)) minor.

Subproof. Suppose M ′′ \ gi is graphic for each i ∈ {1, 2}. Then there is a graph G1 = (V,C1 ∪ C2 ∪ {f, g1})

representing M ′′ \ g2. By the uniqueness of G from Claim 3, we may assume that G1 \ g1 = G. Recall that

D1 is a circuit of G containing g1 such that D1 ∩ {e, f} = ∅. Thus, D1 is an even cycle of (M ′′, {e, f}),

implying in turn that D1 contains an even number of edges of Bi ∩Ci, for each i ∈ {1, 2}. Thus, assuming that

g1 = {t1, t2} for t1 ∈ V (C1) and t2 ∈ V (C2), then t1 6= s1 and t2 6= s2. Moreover, as D1 ∩ C1 6= ∅ and

D1 ∩ C2 6= ∅, it follows that t1 /∈ {x, y} and t2 /∈ {x, y}. As a result, the distinct vertices x, y, s1, s2, t1, t2

break the circuit C1△C2 into 6 nonempty paths, which are series classes of M ′′|(C1 ∪ C2 ∪ {f, g1}). Recall

that D2 is a circuit of M ′′|(C1 ∪ C2 ∪ {g2}) containing g2 such that e /∈ D2. Let J := D2 − g2 ⊆ C1△C2.

After rearranging the edges of G1 within the mentioned 6 series classes, if necessary, we may assume that J

is the union of at most 3 paths. Thus, |oddG1
(J)| ≤ 6. By Remark 11, M ′′ is represented as the hypergraph

H2 = (V,C1∪C2∪{f, g1, g2}), where g2 = oddG1
(J). Since M ′′\f = M ′|(C1∪C2∪{g1, g2}) is non-graphic

by (3), it follows that |g2| ∈ {4, 6}. In the case analysis below, in various ways we will take advantage of the fact

that M ′′ \ g1 is graphic and therefore has no F7 minor. (For instance, if g2 picks an odd number of vertices in

each of V (P1)−{x, s1}, V (P2)−{x, s2}, V (Q1)−{y, s1}, V (Q2)−{y, s2}, then M ′′ \ g2 has an F7 minor.)

Case 1: |g2| = 4. Write g2 = {z1, z2, z3, z4}. As M ′′ \ g1 has no F7 minor, two vertices of g2 belong to one

of V (P1) − x, V (P2) − x, V (Q1) − y, V (Q2) − y. By symmetry, we may assume that z1, z2 ∈ V (P1) − x.

Once again, as M ′′ \ g1 has no F7 minor, either

(i) z3 ∈ V (P1) and z4 ∈ V (C2)− {x, y}, or

(ii) z3, z4 ∈ V (P2)− x.

Suppose in the first case that (i) holds. We may assume that z2 lies strictly between z1, z3. Then H2 \ g1 is

displayed as the figure below,



THE TWO-POINT FANO AND IDEAL BINARY CLUTTERS 17

z1

z2
z3

z4

s1
s2

x

y

e

f

where z1, z3, z4 can move as indicated by the arrows. As M ′′ \ f is non-graphic by (3), it follows that t1

lies strictly between z1, z3. Observe now that (M ′′, {e, f}) has the Type I signed matroid as a minor, so by

Remark 14, (M ′′, {e, f}) has an (F7, E(F7)) minor.

Suppose in the remaining case that (ii) holds. We may assume that z2, z3 lie between z1 and z4. Then H2 \ g1

is displayed as

z1

z2 z3 z4

s1
s2

x

e

f

y

where z1, z4 can move as indicated by the arrows. Denote by P ′

1 ⊆ C1 − e the path between z2, x, and by

P ′

2 ⊆ C2−e the path between z3, x. Since M ′′ \f is non-graphic, it follows from Claim 4 that either M ′′ \f/P ′

1

or M ′′ \ f/P ′

2 has an F7 minor. By symmetry, we may assume that M ′′ \ f/P ′

2 has an F7 minor, implying in

particular that M ′′ \ f/P ′

2 is non-graphic. A similar argument as in (i) now tells us that (M ′′, {e, f})/P ′

2 has an

(F7, E(F7)) minor.

Case 2: |g2| = 6. Write g2 = {z1, z2, z3, z4, z5, z6}. Since M ′′ \ g1 has no F7 minor, one of the following

statements holds, up to relabeling P1, Q1, P2, Q2 and relabeling z1, . . . , z6:

(i) z1, z2, z3, z4, z5 ∈ V (P1) and z6 ∈ V (C2)− {x, y},

(ii) z1, z2, z3, z4, z5, z6 ∈ V (P1) ∪ V (P2),

(iii) z1, z2, z3 ∈ V (P1) and z4, z5, z6 ∈ V (Q2).

If (i) or (ii) hold, then the edges of G1 can be rearranged within its 6 series classes in C1△C2 so as to bring the

size of g2 = oddG1
(J) down to 4, so by Case 1, (M ′′, {e, f}) has an (F7, E(F7)) minor. Otherwise, (iii) holds.

We may assume that s1, z1, z2, z3, x, s2, z4, z5, z6, y appear in this cyclic order on C1△C2. We may therefore

display H2 \ g1 as
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z1

z2 z3

z4
z5z6

s1
s2

x

e

f

y

where z1, z3, z4, z6 can move as indicated by the arrows. Let us analyze where the ends t1, t2 of g1 lie on

C1△C2. If the edges of G1 can be rearranged within its 6 series classes in C1△C2 so as to bring the size of

g2 = oddG1
(J) down to 4, then by Case 1, (M ′′, {e, f}) has an (F7, E(F7)) minor. Otherwise, t1 lies strictly

between z1, z3 and t2 lies strictly between z4, z6. Since M ′′ \ f is non-graphic, we have

(z2, z3, z5, z6) 6= (t1, x, t2, y).

(For if not, the current representation of M ′′ \ f , displayed in the left figure below,

z1
z4

z1

z4z3
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z6
<latexit sha1_base64="/YzfVOisTgLPbPBkejA11tXGzIk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E6GG/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPvoleuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVT236t2dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AEWUI2n</latexit><latexit sha1_base64="/YzfVOisTgLPbPBkejA11tXGzIk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E6GG/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPvoleuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVT236t2dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AEWUI2n</latexit><latexit sha1_base64="/YzfVOisTgLPbPBkejA11tXGzIk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E6GG/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPvoleuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVT236t2dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AEWUI2n</latexit><latexit sha1_base64="/YzfVOisTgLPbPBkejA11tXGzIk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E6GG/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPvoleuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVT236t2dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AEWUI2n</latexit>

g1
<latexit sha1_base64="vYlRR5bK7+qTPNu8h1Ef5DWC7AI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbSbp0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SjmaToxzSSPOSMGis9RANvUK25dXcOskq8gtSgQHNQ/eoPE5bFKA0TVOue56bGz6kynAmcVvqZxpSyMY2wZ6mkMWo/n586JWdWGZIwUbakIXP190ROY60ncWA7Y2pGetmbif95vcyE137OZZoZlGyxKMwEMQmZ/U2GXCEzYmIJZYrbWwkbUUWZselUbAje8surpH1R99y6d39Za9wUcZThBE7hHDy4ggbcQRNawCCCZ3iFN0c4L86787FoLTnFzDH8gfP5A/G7jY8=</latexit><latexit sha1_base64="vYlRR5bK7+qTPNu8h1Ef5DWC7AI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbSbp0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SjmaToxzSSPOSMGis9RANvUK25dXcOskq8gtSgQHNQ/eoPE5bFKA0TVOue56bGz6kynAmcVvqZxpSyMY2wZ6mkMWo/n586JWdWGZIwUbakIXP190ROY60ncWA7Y2pGetmbif95vcyE137OZZoZlGyxKMwEMQmZ/U2GXCEzYmIJZYrbWwkbUUWZselUbAje8surpH1R99y6d39Za9wUcZThBE7hHDy4ggbcQRNawCCCZ3iFN0c4L86787FoLTnFzDH8gfP5A/G7jY8=</latexit><latexit sha1_base64="vYlRR5bK7+qTPNu8h1Ef5DWC7AI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbSbp0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SjmaToxzSSPOSMGis9RANvUK25dXcOskq8gtSgQHNQ/eoPE5bFKA0TVOue56bGz6kynAmcVvqZxpSyMY2wZ6mkMWo/n586JWdWGZIwUbakIXP190ROY60ncWA7Y2pGetmbif95vcyE137OZZoZlGyxKMwEMQmZ/U2GXCEzYmIJZYrbWwkbUUWZselUbAje8surpH1R99y6d39Za9wUcZThBE7hHDy4ggbcQRNawCCCZ3iFN0c4L86787FoLTnFzDH8gfP5A/G7jY8=</latexit><latexit sha1_base64="vYlRR5bK7+qTPNu8h1Ef5DWC7AI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbSbp0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SjmaToxzSSPOSMGis9RANvUK25dXcOskq8gtSgQHNQ/eoPE5bFKA0TVOue56bGz6kynAmcVvqZxpSyMY2wZ6mkMWo/n586JWdWGZIwUbakIXP190ROY60ncWA7Y2pGetmbif95vcyE137OZZoZlGyxKMwEMQmZ/U2GXCEzYmIJZYrbWwkbUUWZselUbAje8surpH1R99y6d39Za9wUcZThBE7hHDy4ggbcQRNawCCCZ3iFN0c4L86787FoLTnFzDH8gfP5A/G7jY8=</latexit>

g1
<latexit sha1_base64="vYlRR5bK7+qTPNu8h1Ef5DWC7AI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbSbp0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SjmaToxzSSPOSMGis9RANvUK25dXcOskq8gtSgQHNQ/eoPE5bFKA0TVOue56bGz6kynAmcVvqZxpSyMY2wZ6mkMWo/n586JWdWGZIwUbakIXP190ROY60ncWA7Y2pGetmbif95vcyE137OZZoZlGyxKMwEMQmZ/U2GXCEzYmIJZYrbWwkbUUWZselUbAje8surpH1R99y6d39Za9wUcZThBE7hHDy4ggbcQRNawCCCZ3iFN0c4L86787FoLTnFzDH8gfP5A/G7jY8=</latexit><latexit sha1_base64="vYlRR5bK7+qTPNu8h1Ef5DWC7AI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbSbp0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SjmaToxzSSPOSMGis9RANvUK25dXcOskq8gtSgQHNQ/eoPE5bFKA0TVOue56bGz6kynAmcVvqZxpSyMY2wZ6mkMWo/n586JWdWGZIwUbakIXP190ROY60ncWA7Y2pGetmbif95vcyE137OZZoZlGyxKMwEMQmZ/U2GXCEzYmIJZYrbWwkbUUWZselUbAje8surpH1R99y6d39Za9wUcZThBE7hHDy4ggbcQRNawCCCZ3iFN0c4L86787FoLTnFzDH8gfP5A/G7jY8=</latexit><latexit sha1_base64="vYlRR5bK7+qTPNu8h1Ef5DWC7AI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbSbp0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SjmaToxzSSPOSMGis9RANvUK25dXcOskq8gtSgQHNQ/eoPE5bFKA0TVOue56bGz6kynAmcVvqZxpSyMY2wZ6mkMWo/n586JWdWGZIwUbakIXP190ROY60ncWA7Y2pGetmbif95vcyE137OZZoZlGyxKMwEMQmZ/U2GXCEzYmIJZYrbWwkbUUWZselUbAje8surpH1R99y6d39Za9wUcZThBE7hHDy4ggbcQRNawCCCZ3iFN0c4L86787FoLTnFzDH8gfP5A/G7jY8=</latexit><latexit sha1_base64="vYlRR5bK7+qTPNu8h1Ef5DWC7AI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbSbp0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SjmaToxzSSPOSMGis9RANvUK25dXcOskq8gtSgQHNQ/eoPE5bFKA0TVOue56bGz6kynAmcVvqZxpSyMY2wZ6mkMWo/n586JWdWGZIwUbakIXP190ROY60ncWA7Y2pGetmbif95vcyE137OZZoZlGyxKMwEMQmZ/U2GXCEzYmIJZYrbWwkbUUWZselUbAje8surpH1R99y6d39Za9wUcZThBE7hHDy4ggbcQRNawCCCZ3iFN0c4L86787FoLTnFzDH8gfP5A/G7jY8=</latexit>

g2
<latexit sha1_base64="yh0qm7WaE59MB6XFPVowDMmLFZU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGi/YA2lM12ki7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIphi2WiER1A6pRcIktw43AbqqQxoHATjC+nfmdJ1SaJ/LRTFL0YxpJHnJGjZUeokF9UKm6NXcOskq8glShQHNQ+eoPE5bFKA0TVOue56bGz6kynAmclvuZxpSyMY2wZ6mkMWo/n586JedWGZIwUbakIXP190ROY60ncWA7Y2pGetmbif95vcyE137OZZoZlGyxKMwEMQmZ/U2GXCEzYmIJZYrbWwkbUUWZsemUbQje8surpF2veW7Nu7+sNm6KOEpwCmdwAR5cQQPuoAktYBDBM7zCmyOcF+fd+Vi0rjnFzAn8gfP5A/M/jZA=</latexit><latexit sha1_base64="yh0qm7WaE59MB6XFPVowDMmLFZU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGi/YA2lM12ki7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIphi2WiER1A6pRcIktw43AbqqQxoHATjC+nfmdJ1SaJ/LRTFL0YxpJHnJGjZUeokF9UKm6NXcOskq8glShQHNQ+eoPE5bFKA0TVOue56bGz6kynAmclvuZxpSyMY2wZ6mkMWo/n586JedWGZIwUbakIXP190ROY60ncWA7Y2pGetmbif95vcyE137OZZoZlGyxKMwEMQmZ/U2GXCEzYmIJZYrbWwkbUUWZsemUbQje8surpF2veW7Nu7+sNm6KOEpwCmdwAR5cQQPuoAktYBDBM7zCmyOcF+fd+Vi0rjnFzAn8gfP5A/M/jZA=</latexit><latexit sha1_base64="yh0qm7WaE59MB6XFPVowDMmLFZU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGi/YA2lM12ki7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIphi2WiER1A6pRcIktw43AbqqQxoHATjC+nfmdJ1SaJ/LRTFL0YxpJHnJGjZUeokF9UKm6NXcOskq8glShQHNQ+eoPE5bFKA0TVOue56bGz6kynAmclvuZxpSyMY2wZ6mkMWo/n586JedWGZIwUbakIXP190ROY60ncWA7Y2pGetmbif95vcyE137OZZoZlGyxKMwEMQmZ/U2GXCEzYmIJZYrbWwkbUUWZsemUbQje8surpF2veW7Nu7+sNm6KOEpwCmdwAR5cQQPuoAktYBDBM7zCmyOcF+fd+Vi0rjnFzAn8gfP5A/M/jZA=</latexit><latexit sha1_base64="yh0qm7WaE59MB6XFPVowDMmLFZU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGi/YA2lM12ki7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIphi2WiER1A6pRcIktw43AbqqQxoHATjC+nfmdJ1SaJ/LRTFL0YxpJHnJGjZUeokF9UKm6NXcOskq8glShQHNQ+eoPE5bFKA0TVOue56bGz6kynAmclvuZxpSyMY2wZ6mkMWo/n586JedWGZIwUbakIXP190ROY60ncWA7Y2pGetmbif95vcyE137OZZoZlGyxKMwEMQmZ/U2GXCEzYmIJZYrbWwkbUUWZsemUbQje8surpF2veW7Nu7+sNm6KOEpwCmdwAR5cQQPuoAktYBDBM7zCmyOcF+fd+Vi0rjnFzAn8gfP5A/M/jZA=</latexit>

can be replaced by the graphic representation, displayed in the right figure above.) By symmetry, we may assume

that (z5, z6) 6= (t2, y). If z6 6= y, then

z1

z2 = t1 z3

z4

z5 = t2z6

(M ′′, {e, f}) has the Type I signed matroid as a minor (obtained after contracting the z4z6-path in C2 − e and

contracting all but one element from each series class), so by Remark 14, (M ′′, {e, f}) has an (F7, E(F7))

minor. Otherwise, z5 6= t2. In this case, (M ′′, {e, f}) has one of the following as a minor:

z1

z2 = t1 z3

z4

z5z6

z1

z2 = t1 z3

z4

z5z6
t2

t2
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The signed matroid displayed on the left has the Type I signed matroid as a minor (obtained after contracting the

z4t2- and z5z6-paths in C2 − e and contracting all but one element from each series class), so by Remark 14, it

has an (F7, E(F7)) minor. The signed matroid displayed on the right, on the other hand, has the Type II signed

matroid as a minor (obtained after contracting the z4z5- and t2z6-paths in C2 − e and contracting all but one

element from each series class), so by Remark 14, it has an (F7, E(F7)) minor. We have shown that in both

cases, (M ′′, {e, f}) has an (F7, E(F7)) minor, thereby finishing the proof of the claim. ♦

Assume that M ′′ \ gi is graphic for each i ∈ {1, 2}. Then by the preceding claim, (M ′′, {e, f}) has an

(F7, E(F7)) minor, implying in turn that (M,Σ) has an (F7, E(F7)) minor. So by Proposition 8, F has an

L7 minor, and since F is mni, this means F ∼= L7, which cannot be as F has no set of size 3. Hence, by symme-

try, we may assume that M ′′ \ g2 is non-graphic. Thus, by Claims 3 and 4, we see that there exists I ⊆ C1△C2

such that M ′′\g2/I ∼= F7. Then (M ′′, {e, f})\g2/I ∼= (F7, E(F7)−ω), and so (M,Σ) has an (F7, E(F7)−ω)

minor going through e, as required. This finishes the proof of Theorem 9 part (3). �
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