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THE MINIMALLY NON-IDEAL BINARY CLUTTERS WITH A TRIANGLE

AHMAD ABDI AND BERTRAND GUENIN

ABSTRACT. It is proved that the lines of the Fano plane and the odd circuits of K5 constitute the only minimally

non-ideal binary clutters that have a triangle.

1. INTRODUCTION

A clutter F over a finite ground set E(F) is a family of subsets of E(F) where no subset is contained in

another one. We say that R ⊆ E(F) is a cover of F if, for all S ∈ F, S ∩ R 6= ∅. The blocker b(F) of F is

the clutter, over the same ground set, of all (inclusion-wise) minimal covers of F. It is well known that for any

clutter F, b(b(F)) = F [5, 9]. We say that F is binary if, for all S ∈ F and R ∈ b(F), |S ∩ R| is odd. By

definition, if a clutter is binary, then so is its blocker. Take disjoint subsets I, J ⊆ E(F). Then F/I \ J denotes

the clutter over ground set E(F)− (I ∪ J) that consists of the minimal sets in {S − I : S ∈ F, S ∩ J = ∅}.1 We

say that F/I \ J is a minor of F; it is a proper minor if I ∪ J 6= ∅. It can be readily checked that if F is binary,

then so are all its minors [18]. We say clutters F1 and F2 are isomorphic, and denote it by F1
∼= F2, if relabeling

the ground set of F1 yields F2.

Denote by L7 the clutter of the lines of the Fano plane, that is,

L7
∼=

{

{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {3, 4, 6}, {3, 5, 7}, {2, 5, 6}, {2, 4, 7}
}

.

It can be readily checked that L7 = b(L7) and that L7 is binary. A cycle in a graph is a non-empty edge subset

where every vertex is incident with an even number of the edges, and a circuit is a minimal cycle. Denote by O5

the clutter, over ground set E(K5), of odd circuits of the complete graph K5. The two clutters O5, b(O5) are

also binary.

A clutter F is ideal if the polyhedron
{

x ∈ R
E(F)
+ : x(S) ≥ 1 ∀S ∈ F

}

has only integral extreme points. If a

clutter is ideal, then so are all its minors [19]. A clutter is minimally non-ideal (mni) if it is not ideal and every

proper minor is ideal. For instance, the three clutters L7,O5 and b(O5) are mni. Notice that every non-ideal

clutter has an mni clutter as a minor. Seymour ([19], page 200) proposed in 1977 the following conjecture:

The f -flowing conjecture. L7,O5 and b(O5) are the only mni binary clutters.

Date: August 15, 2018.

This work is supported by NSERC CGS and Discovery grants and by U.S. Office of Naval Research grants under award numbers

N00014-15-1-2171 and N00014-18-1-2078.

1Given sets A,B we denote by A−B the set {a ∈ A : a /∈ B} and, for element a, we write A− a instead of A− {a}.
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2 AHMAD ABDI AND BERTRAND GUENIN

A triangle in clutter F is a set S ∈ F such that |S| = 3. Observe that both L7 and O5 have triangles. As

b(b(O5)) = O5, the f -flowing conjecture implies immediately the following:

The weak f -flowing conjecture. If F is an mni binary clutter, then F or b(F) has a triangle.

The following is the main result of the paper:

Theorem 1. L7 and O5 are the only mni binary clutters that have a triangle.

In other words we prove that the weak f -flowing conjecture implies the f -flowing conjecture. Our proof requires

a change of frameworks from binary clutters to binary matroids, in turn allowing us to take advantage of a wide

array of machinery. Before delving into the proof, let us say a few words about our result. In another paper [1],

we use Theorem 1 to prove that if F is an mni binary clutter that is different from L7,O5, b(O5), then through

every element of E(F), one of F, b(F) has a “two-point Fano minor”. This consequence provides yet another

compelling evidence in support of the f -flowing conjecture.

1.1. Review of existing results. All matroids considered in this paper are binary, and a basic knowledge of

these matroids is assumed; we follow for the most part the notation used in Oxley [13] (second edition). Take

a matroid M over ground set E(M). Recall that a circuit is a minimal dependent set of M and a cocircuit is

a minimal dependent set of the dual M⋆. A cycle is the symmetric difference of circuits, and a cocycle is the

symmetric difference of cocircuits. It is well-known that a nonempty cycle is a disjoint union of circuits ([13],

Theorem 9.1.2). Let Σ ⊆ E(M). The pair (M,Σ) is called a signed matroid. A subset Γ ⊆ E(M) is a signature

of (M,Σ) if Σ△Γ is a cocycle of M . Observe that the symmetric difference of an odd number of signatures is

another signature. For a signature Γ, the operation of replacing (M,Σ) by (M,Γ) is called resigning. A subset

S ⊆ E(M) is said to be odd (resp. even) if |S ∩ Σ| is odd (resp. even). An element f ∈ E(M) is odd (resp.

even) if {f} is odd (resp. even). Observe that resigning a signed matroid preserves the parity of every cycle.

Signed matroids are key objects as they represent binary clutters:

Proposition 2 ([9, 12], also see [4, 7]). A clutter F is binary if, and only if, the sets of F are the odd circuits of

a signed matroid. Moreover, assuming F is the clutter of odd circuits of a signed matroid, then b(F) is precisely

the clutter of minimal signatures.

Take disjoint subsets I, J ⊆ E(M). If I contains an odd circuit, we define (M,Σ)/I \ J := (M/I \ J, ∅).

Otherwise, by Proposition 2, there is a signature Σ′ that is disjoint from I , and we define (M,Σ)/I \ J :=

(M/I \ J,Σ′ − J). We call (M,Σ)/I \ J a minor of (M,Σ). Notice that minors are invariant under resigning.

We have the following relation between minors of binary clutters and minors of signed matroids:

Remark 3 (see [4]). Let F be a binary clutter represented as the signed matroid (M,Σ). Take disjoint subsets

I, J ⊆ E(F). Then F/I \ J is represented as the signed matroid (M,Σ)/I \ J .

We denote by F7 the Fano matroid. The lines of the Fano plane L7 is represented as the signed matroid

(F7, E(F7)). The following is an implicit result of Cornuéjols and Guenin [4], pages 349-350:
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Theorem 4. Let F be an mni binary clutter represented as the signed matroid (M,Σ). If M has no F7 minor,

then F ∼= O5 or F ∼= b(O5).

It seems very difficult to use Theorem 4 to prove Theorem 1, as the existence of an F7 minor in M does not imply

– and is in fact far from – the existence of an (F7, E(F7)) minor in (M,Σ). However, the proof of Theorem 4

relies on three tools, two of which are essential for us. The first of the three is Seymour’s characterization of

regular matroids [16], which will be of no use for us. Let us explain the other two tools.

Let M be a matroid whose rank function is r : 2E(M) → {0, 1, 2, . . .}. The connectivity function λM :

2E(M) → {0, 1, 2, . . .} is defined, for each X ⊆ E(M), as λM (X) := r(X) + r(X̄) − r(E(M)).2 Take an

integer k ≥ 1. We say that X ⊆ E(M) is k-separating if λM (X) ≤ k − 1. A k-separation is a pair (X, X̄),

where X is k-separating and min{|X|, |X̄|} ≥ k. We say M is (k+1)-connected if, for each r ∈ [k], M has no

r-separation.3 A matroid is internally 4-connected if it is 3-connected, and for every 3-separation (X, X̄), either

|X| = 3 or |X̄| = 3. The second tool for proving Theorem 4 is the following:

Theorem 5 (Cornuéjols and Guenin [4], Remark 5.3, Propositions 6.1 and 7.1). Let F be an mni binary clutter

represented as the signed matroid (M,Σ). Then M is internally 4-connected.

For a graph G, cycle(G) will denote the cycle matroid of G, i.e. the matroid whose cycles are exactly the

cycles of the graph G. Then by definition, O5 is represented as the signed matroid (cycle(K5) , E(K5)). The

third tool used to prove Theorem 4 is the following:

Theorem 6 (Guenin [6], also see Schrijver [15]). Let F be an mni binary clutter represented as the signed

matroid (M,Σ). If M is graphic, then F ∼= O5.

We will make use of Theorems 5 and 6 in the proof of our main result, Theorem 1. In the next section we

sketch the proof, and give an outline of the remainder of the paper.

2. A PROOF SKETCH OF THE MAIN RESULT

Take a matroid M . For R ⊆ E(M), we write M |R := M \ (E(M)−R). We say that {e1, . . . , e6} ⊆ E(M)

is an induced K4 of M if M |{e1, . . . , e6} is isomorphic to cycle(K4).

2.1. The clutter theoretic part. Let F be an mni binary clutter with a triangle. By Proposition 2, F can be

represented as a signed matroid. By using a seminal result of Lehman on mni clutters, we find a suitable

representation of F to work with:

Theorem 7. Let F be an mni binary clutter with a triangle. Then F is the clutter of odd circuits of a signed

matroid (M,E(M)) where the following statements hold:

(a) M is internally 4-connected (Theorem 5),

(b) every element in E(M) is contained in exactly three triangles of M ,

2X̄ := E(M)−X

3[k] := {1, . . . , k}
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(c) if |E(M)| ≤ 12, then F ∼= L7 or F ∼= O5,

(d) if M is graphic, then F ∼= O5 (Theorem 6),

(e) if M has an induced K4, then F ∼= L7 or F ∼= O5.

The proof of this theorem is provided in §3. After this point, we abandon the clutter F and work solely with the

signed matroid (M,E(M)). We will show the following structural result that might be of interest independently

of the main result:

Theorem 8. Let M be an internally 4-connected binary matroid where every element is contained in exactly

three triangles. Then at least one of the following statements holds:

(i) |E(M)| ≤ 11,

(ii) M is graphic,

(iii) M has an induced K4, or

(iv) the signed matroid (M,E(M)) has (F7, E(F7)) as a minor.

We will sketch the proof of this theorem shortly. Notice however that Theorem 1 is an immediate consequence

of these two results:

Proof of Theorem 1. Let F be an mni binary clutter with a triangle. By Theorem 7, F is represented as a signed

matroid (M,E(M)), where M is an internally 4-connected matroid and every element is contained in exactly

three triangles. If either |E(M)| ≤ 12, M is graphic, or M has an induced K4, then by Theorem 7 (c)-(e),

F ∼= L7 or F ∼= O5. Otherwise, by Theorem 8, the signed matroid (M,E(M)) has (F7, E(F7)) as a minor, so

the mni F has the non-ideal L7 as a minor by Remark 3, implying in turn that F ∼= L7, thereby finishing the

proof. �

2.2. The matroid theoretic part. We now sketch the proof of Theorem 8. Let M be a matroid where the

following assumptions hold:

Common hypotheses

(h1) M is an internally 4-connected matroid,

(h2) every element in E(M) is contained in exactly three triangles of M .

Since M is internally 4-connected, M is a simple (and cosimple) matroid. In particular, the three triangles

containing an element are otherwise pairwise disjoint. Take an element Ω ∈ E(M). Denote the three triangles

of M containing Ω by {Ω, f, f ′}, {Ω, g, g′}, {Ω, h, h′}. Since M is simple, M/Ω does not have a loop, and

{f, f ′}, {g, g′}, {h, h′} are the non-trivial parallel classes of M/Ω. It follows that the simplification si(M/Ω) is

obtained from M/Ω by deleting one element from each one of {f, f ′}, {g, g′}, {h, h′}. If f, g, h are the elements

left in si(M/Ω), we write Λ(Ω) := {f, g, h}. Notice that Λ(Ω) is defined up to swapping f, f ′ (resp. g, g′ and

h, h′).

The proof of Theorem 8 relies on the following four propositions, as well as two theorems not done by us:
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Proposition 9. Suppose (h1)-(h2) hold and let Ω ∈ E(M). If Λ(Ω) is a cocycle of si(M/Ω), then M has an

induced K4.

Proof. Suppose that Λ(Ω) is a cocycle of si(M/Ω). Denote by {Ω, f, f ′}, {Ω, g, g′}, {Ω, h, h′} the triangles

of M containing Ω where Λ(Ω) = {f, g, h}. Since {f, g, h} is a cocycle of si(M/Ω), D := {f, f ′, g, g′, h, h′}

is a cocycle of M/Ω and hence of M . As f is in three triangles of M , it is contained in a triangle C that

is different from {Ω, f, f ′}. Since D is a cocycle, |C ∩ D| is even, and because f ∈ C ∩ D, we have that

|C ∩ D| = 2. Moreover, C ∩ D 6= {f, f ′}, for otherwise C△{f, f ′,Ω} would be a cycle of cardinality two,

which cannot be the case as M is simple. Hence, we may assume that C ∩D = {f, g} or C ∩D = {f, g′}. In

either case, C ∪ {Ω, f, f ′, g, g′} is an induced K4 of M , as required. �

To prove the next proposition, we need a few definitions that will help us represent matroids that are one

deletion away from being graphic. A graft is a pair (G, T ), where G is a graph and T ⊆ V (G) is of even

cardinality. Vertices in T are called terminals. Take a subset J ⊆ E(G). Denote by odd(J) ⊆ V (G) the

vertices incident with an odd number of non-loop edges in J . If odd(J) = T , then we call J a T -join. Start

with the vertex-edge incidence matrix of G, and add the vertex-incidence vector of T as a column; call this

matrix A. Let M be the (binary) matroid whose binary representation is A, and denote by t the element of M

corresponding to column T . Then C ⊆ E(M) is a cycle of M if, and only if, one of the following holds:

• t /∈ C and C is a cycle of G,

• t ∈ C and C − t is a T -join of G.

We call M the graft matroid of (G, T ). By convention, t will always be the element of M corresponding to the

terminals T . Notice that if |T | ≤ 2, then the graft matroid of (G, T ) is graphic. The next folklore remark states

that graft matroids are precisely those matroids that are one deletion away from being graphic (see for instance

[13], Lemma 10.3.8):

Remark 10. Take a binary matroid M and an element t ∈ E(M) such that M \ t = cycle(G), for some

graph G. If C is a cycle of M containing t, then M is the graft matroid of the graft (G, odd(C − t)), where t is

the element of M corresponding to the terminals of the graft.

We are now ready to prove the next proposition:

Proposition 11. Suppose (h1)-(h2) hold and let Ω ∈ E(M). If M \ Ω is graphic, then M is graphic or has an

induced K4.

Proof. Suppose M \Ω is graphic. By Remark 10, there is a graft (G, T ) whose graft matroid is M , where t = Ω.

If |T | ≤ 2, then M is graphic, so we are done. Otherwise, |T | ≥ 4. Denote the three triangles of M containing

Ω by {Ω, f, f ′}, {Ω, g, g′}, {Ω, h, h′}. Then {f, f ′}, {g, g′} and {h, h′} are T -joins of G. This implies that

|T | = 4 and that each of {f, f ′}, {g, g′}, {h, h′} matches the four vertices of T . Since M is simple, we see that

G does not have parallel edges. As a result, {f, f ′, g, g′, h, h′} is an induced K4 of M , as required. �

The following proposition is proved in §5.4.
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Proposition 12. Suppose (h1)-(h2) hold and let Ω ∈ E(M). If Λ(Ω) is contained in a circuit of si(M/Ω), then

either M has an induced K4 or (M,E(M)) has (F7, E(F7)) as a minor.

The following proposition is proved in §7.

Proposition 13. Suppose (h1)-(h2) hold and let e1, e2, e3, e4 be distinct elements of M such that, for every

i ∈ [4], si(M/ei) is internally 4-connected and is the cycle matroid of a graph where the three edges of Λ(ei)

are incident with the same vertex. Then either |E(M)| ≤ 11, or there is an element Ω ∈ E(M) such that M \Ω

is graphic.

We will also need the following result of Seymour [20] that characterizes, under appropriate connectivity

conditions, when three distinct elements of a matroid are contained in a circuit:

Theorem 14. Let M be an internally 4-connected binary matroid, and let f, g, h be distinct elements. Then at

least one of the following statements holds:

(a) {f, g, h} is contained in a circuit of M ,

(b) {f, g, h} is a cocycle of M , or

(c) M is the cycle matroid of a graph where edges f, g, h are incident with the same vertex.

The following result of Chun and Oxley [3] on internally 4-connected matroids is the last needed ingredient:

Theorem 15. Let M be an internally 4-connected binary matroid where every element is in exactly three trian-

gles. Then there exist distinct elements e1, e2, e3, e4 ∈ E(M) such that, for each j ∈ [4], si(M/ej) is internally

4-connected.

We are now ready to prove Theorem 8:

Proof of Theorem 8. Suppose (h1)-(h2) hold. By Theorem 15, there exist distinct elements e1, e2, e3, e4 of M

such that, for each j ∈ [4], si(M/ej) is internally 4-connected. For j ∈ [4],

• if Λ(ej) is contained in a circuit of si(M/ej), then by Proposition 12, either M has an induced K4 and

so (iii) holds, or (M,E(M)) has (F7, E(F7)) as a minor and so (iv) holds,

• if Λ(ej) is a cocycle of si(M/ej), then by Proposition 9, M has an induced K4, so (iii) holds.

Otherwise, it follows from Theorem 14 that, for each j ∈ [4], si(M/ej) is the cycle matroid of a graph where the

three edges in Λ(ej) are incident with the same vertex. By Proposition 13, either |E(M)| ≤ 11 and so (i) holds,

or there is an element Ω ∈ E(M) such that M \Ω is graphic. By Proposition 11, either M is graphic and so (ii)

holds, or M has an induced K4 and so (iii) holds. In all cases, one of (i)-(iv) holds, and so we are done. �

2.3. Outline of the paper. In §3 we review Lehman’s theorem on mni clutters and prove Theorem 7. In §4

we introduce signed grafts and present two instances that have (F7, E(F7)) as a minor. In §5 we leverage these

results to prove Proposition 12. In §6 we introduce even cycle matroids and prove several relevant results, which

in turn lead to a proof of Proposition 13 in §7.
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3. LEHMAN AND THEOREM 7

Let F be a clutter. We denote by M(F) the 0, 1 matrix whose columns are indexed by E(F) and whose rows

are the incidence vectors of the sets in F. The clutter of the minimum cardinality sets in F is denoted by F̄. For

an integer k ≥ 1, a 0, 1 matrix is k-regular if each row and each column has exactly k ones. Lehman [10] (see

Seymour [17]) proved a structural result on mni clutters; we only need the binary version of his result:

Theorem 16. Let F be an mni binary clutter. Then K := b(F) is also mni, and the following statements hold:

(a) M(F̄) and M(K̄) are square matrices,

(b) for some integers r ≥ 3 and s ≥ 3, M(F̄) is r-regular and M(K̄) is s-regular,

(c) for n := |E(F)|, rs− n is an even integer such that 2 ≤ rs− n ≤ min{r − 1, s− 1}, and

(d) after possibly rearranging the rows of M(K̄), we have

M(F̄)M(K̄)⊤ = J + (rs− n)I.

Here, J is the all-ones matrix and I is the identity matrix.

Notice that if F is an mni binary clutter with a triangle, then r = 3 and 3s − n = 2. The following is therefore

an easy consequence (see for instance [11]):

Remark 17. Let F be an mni binary clutter with a triangle, and let K := b(F). Denote by s the minimum

cardinality of a set in K. Then,

(a) if s = 3 then F ∼= L7, and

(b) if s = 4 then F ∼= O5.

Bridges and Ryser [2] showed that the two matrices satisfying the equation in (d) commute:

Theorem 18. Take square 0, 1 matrices A,B such that for some integer d ≥ 1, AB = J+dI . Then AB = BA.

We are now ready to prove Theorem 7:

Proof of Theorem 7. Let F be an mni binary clutter with a triangle, and set n := |E(F)|. Let K := b(F) and

denote by s the minimum cardinality of a set in K. By Theorem 16, after possibly rearranging the rows of M(K̄),

(⋆) r = 3 and s ≥ 3 and 3s− n = 2 and M(F̄)M(K̄)⊤ = J + 2I.

Note further that F̄ is precisely the clutter of the triangles of F, and since M(F̄) is 3-regular, every element of

E(F) is contained in exactly 3 triangles of F. Label the rows of M(F̄) as S1, . . . , Sn ∈ F̄, and the rows of M(K̄)

as R1, . . . , Rn ∈ K̄. Then the last equation implies, for all i, j ∈ [n], that

|Si ∩Rj | =







3 if i = j,

1 if i 6= j.

For each i ∈ [n], we say that Si and Ri are mates of one another. Thus, a triangle of F is contained in its mate,

and it intersects all the other triangle mates exactly once.
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1. Take an element e ∈ E(F), denote by S, S′, S′′ the triangles of F containing e, and by R,R′, R′′ their

respective mates in K̄. Then

• R ∩R′ = R′ ∩R′′ = R′′ ∩R = {e},

• R ∪R′ ∪R′′ = E(F), and

• S ∩ S′ = S′ ∩ S′′ = S′′ ∩ S = {e}.

Subproof. It follows from (⋆) and Theorem 18 that M(K̄)⊤M(F̄) = J +2I . Denote by ce the column of M(F̄)

corresponding to e. Then the matrix equation implies that M(K̄)⊤ce = (J + 2I)e, where (J + 2I)e is the eth

column of J+2I . As M(F̄) is 3-regular, ce has exactly 3 ones, implying in turn that three rows of M(K̄), which

are the incidence vectors of R,R′, R′′, add up to (J + 2I)e, thereby implying the first and second lines. Since

S ⊆ R, S′ ⊆ R′ and S′′ ⊆ R′′, the third line follows. ♦

Since F is a binary clutter, we get from Proposition 2 that F is the clutter of odd circuits of a signed matroid

(M,Σ).

2. E(M) is a signature of (M,Σ).

Subproof. Take e ∈ E(F) and let R,R′, R′′ be the mates of the triangles of F containing e. Since R,R′, R′′

belong to b(F), they are signatures of (M,Σ) by Proposition 2. So their symmetric difference R△R′△R′′ is

also a signature. However, (1) implies that R△R′△R′′ = E(M), so E(M) is a signature. ♦

Thus, F is the clutter of odd circuits of the signed matroid (M,E(M)). It follows from Theorem 5 that M is

internally 4-connected, so (a) holds.

3. Every element of E(M) is contained in exactly 3 triangles of M , so (b) holds.

Subproof. Since F is the clutter of odd circuits of (M,E(M)), the triangles of F are precisely the triangles of M .

Since every element of E(F) is contained in exactly 3 triangles of F, the claim follows. ♦

4. If |E(M)| ≤ 12, then F ∼= L7 or F ∼= O5, so (c) holds.

Subproof. By (⋆), 3s − 2 = n = |E(F)| = |E(M)| ≤ 12 and s ≥ 3, so s ∈ {3, 4} and by Remark 17, we get

that F ∼= L7 or F ∼= O5. ♦

It follows from Theorem 6 that if M is graphic, then F ∼= O5, so (d) holds. It remains to prove (e). To this end,

assume that M has an induced K4, that is, there are elements e1, . . . , e6 ∈ E(M) such that M |{e1, . . . , e6} ∼=

cycle(K4). As the triangles of M are precisely the triangles of F, we may assume that S1, S2, S3, S4 are the four

triangles of M |{e1, . . . , e6}.

5. For all distinct i, j ∈ [4], Ri ∩Rj ⊆ {e1, . . . , e6}.

Subproof. As Si, Sj are distinct triangles of K4, there is an e ∈ {e1, . . . , e6} such that Si ∩ Sj = {e}. It now

follows from (1) that Ri ∩Rj = {e} ⊆ {e1, . . . , e6}. ♦
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6. For all i ∈ [4], Ri ∩ {e1, . . . , e6} = Si and |Ri − {e1, . . . , e6}| = s− 3.

Subproof. Since Ri is the mate of Si, we have Si ⊆ Ri. As Ri intersects every other triangle exactly once, and

|Si ∩ Sj | = 1 for each j ∈ [4]− i, we get that Ri ∩ {e1, . . . , e6} = Si and so |Ri − {e1, . . . , e6}| = s− 3. ♦

Putting (5) and (6) together, we get that |E(M)| ≥ 6 + 4(s − 3). From (⋆) we have that s ≥ 3, and also that

|E(M)| = |E(F)| = n = 3s − 2, so 3s − 2 ≥ 6 + 4(s − 3), implying in turn that s ∈ {3, 4}. It now follows

Remark 17 that F ∼= L7 or F ∼= O5, thereby proving (e). This finishes the proof of Theorem 7. �

4. QUADRUMS AND TRIFOLDS

4.1. Representations of the Fano matroid. A plain quadrum is the graft (K4, V (K4)). A plain trifold is the

graft for which the graph has vertex set [5] and edges {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, and the

terminals are {2, 3, 4, 5}. Drawings of the plain quadrum and the plain trifold are given in Figure 1.

Figure 1. Left: plain quadrum, right: plain trifold. Square vertices are terminals.

Remark 19. Let (G, T ) be a graft, and N its graft matroid. Then the following statements hold:

(a) if (G, T ) is a plain quadrum, then N ∼= F7,

(b) if (G, T ) is a plain trifold, then N/t ∼= F7.

Proof. Notice that a matroid is determined by the set of its circuits. (a) Consider Figure 2 (a). We assign t and

each edge of the plain quadrum to an element of F7. It now suffices to observe that the circuits of N correspond

to the circuits of F7, i.e. to the lines and the line complements of the Fano plane. (b) Consider Figure 2 (b). We

assign each edge of the plain trifold to an element of F7. Observe that the circuits of N/t, which are the circuits

and T -joins of G, correspond to the circuits of F7. �

4.2. Signed grafts: quadrums and trifolds. A signed graft is a triple (G, T,Γ), where (G, T ) is a graft and

Γ ⊆ E(G) ∪ {t}. Note that we assign parity to each edge as well as to the set of terminals.

A quadrum is the signed graft (G, T,Γ) where (G, T ) is a plain quadrum and Γ = E(G) ∪ {t}. A super

quadrum is the signed graft displayed in Figure 3 (a) which is obtained as follows: start with a plain quadrum,

take a set S of four edges that contain a triangle, the element t and the two edges outside S can have either

parities, and replace each edge of S by a pair of parallel edges of distinct parities.

A trifold is the signed graft (G, T,Γ) where (G, T ) is a plain trifold and Γ = E(G). A super trifold is the

signed graft displayed in Figure 3 (b) which is obtained as follows: start with a plain trifold, take two triangles
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t

2 6

3 75

4

7

6
4

53

2

1

2 6

3 75

4

1

23

4

56

7

(a)

(b)

T

T

Figure 2. The Fano matroid in disguise. Square vertices are terminals.

and the two edges S disjoint from them, the edges outside S are odd, replace each edge of S by a pair of parallel

edges of distinct parities, and element t can have either parities.

v3

v1

v2

v4 v2 v3

v4 v5

v1

(a) (b)

e1 e2

e3
e4e5

e6

e7

e8

e9 e10
e1

e2
e3 e4

e5

e6
e7 e8

e9

Figure 3. (a) Super quadrum, (b) super trifold. Square vertices are terminals. Bold edges are odd. Thin edges are

even. Dashed edges can be either odd or even. In (a) and (b), t can be odd or even.

4.3. Finding an (F7, E(F7)) minor. Let G be a graph. For a vertex v ∈ V (G), we denote by δG(v) the set

of non-loop edges of G that are incident with v. Take a signed graft (G, T,Γ) and a terminal v ∈ T . Let

B := δG(v) ∪ {t}. We say that (G, T,Γ△B) is obtained from (G, T,Γ) by resigning on the terminal v.

Remark 20. Let (G, T,Γ) be a signed graft, and N the graft matroid of (G, T ). If (G, T,Γ′) is obtained from

(G, T,Γ) by resigning on a terminal, then Γ′ is a signature of the signed matroid (N,Γ).

Proof. It suffices to show that, for each terminal v ∈ T , the set B := δG(v)∪{t} is a cocycle of N . To this end,

let C be a cycle of N . If t /∈ C, then C is a cycle of G, and so |C ∩ B| = |C ∩ δG(v)| even. Otherwise, t ∈ C
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and C − t is a T -join of G. Since v ∈ T , |(C − t) ∩ δG(v)| must be odd, implying in turn that |C ∩B| is even.

In both cases, for every cycle C of N , |C ∩B| is even, which means that B is a cocycle of N . �

Proposition 21. Let (G, T,Γ) be a signed graft, and N the graft matroid of (G, T ). If (G, T,Γ) is a quadrum,

a super quadrum, a trifold, or a super trifold, then (N,Γ) has (F7, E(F7)) as a minor.

Proof. Case 1: (G, T,Γ) is a quadrum. By definition, (G, T ) is a plain quadrum and Γ = E(N). Remark 19

states that N ∼= F7. Hence, (N,Γ) ∼= (F7, E(F7)). Case 2: (G, T,Γ) is a super quadrum. Label the vertices and

edges of G as in Figure 3 (a). After possibly resigning on terminals v2, v3, v4, we may assume by Remark 20

that Γ = {e1, e3, e5, e7, e9, e10, t}. Let (N ′,Γ) := (N,Γ) \ {e2, e4, e6, e8} and G′ := G \ {e2, e4, e6, e8}.

Then N ′ is the graft matroid of (G′, T ), and (G′, T,Γ) is a quadrum. It therefore follows from Case 1 that

(N,Γ) \ {e2, e4, e6, e8} = (N ′,Γ) ∼= (F7, E(F7)). Case 3: (G, T,Γ) is a trifold. By definition, (G, T ) is a

plain trifold and Γ = E(N)−t. Remark 19 states that N/t ∼= F7, implying in turn that (N,Γ)/t ∼= (F7, E(F7)).

Case 4: (G, T,Γ) is a super trifold. Label the vertices and edges of G as in Figure 3 (b). After possibly

resigning on terminal v1, we may assume by Remark 20 that Γ = {e1, e2, e3, e4, e5, e6, e9}. Let (N ′,Γ) :=

(N,Γ) \ {e7, e8} and G′ := G \ {e7, e8}. Then N ′ is the graft matroid of (G′, T ), and (G′, T,Γ) is a trifold. It

therefore follows from Case 3 that (N,Γ) \ {e7, e8}/t = (N ′,Γ)/t ∼= (F7, E(F7)). �

5. PROPOSITION 12

5.1. Starting the proof. Suppose (h1)-(h2) hold, that is, M is an internally 4-connected matroid where every

element is in exactly three triangles. Let Ω ∈ E(M). We would like to show that if Λ(Ω) is contained in a

circuit of si(M/Ω), then either M has an induced K4 or (M,E(M)) has an (F7, E(F7)) minor. Let us make

the following assumptions:

Further hypotheses/notations

(h3) Ω ∈ E(M) is contained in the triangles {Ω, f, f ′}, {Ω, g, g′}, {Ω, h, h′} where Λ(Ω) = {f, g, h},

(h4) MΩ := M/Ω \ {f ′, g′, h′} and (MΩ,ΣΩ) := (M,E(M))/Ω \ {f ′, g′, h′},

(h5) C is a circuit in MΩ of minimum cardinality that contains {f, g, h},

(h6) M does not have an induced K4.

Note that MΩ = si(M/Ω). We leave the following as an easy exercise for the reader:

Remark 22. Take a binary matroid N , an element e ∈ E(N), and a subset D ⊆ E(N). Then the following

statements hold:

(a) if D is a circuit of N/e, then exactly one of D,D ∪ {e} is a circuit of N ,

(b) if D is a cycle of N/e, then at least one of D,D ∪ {e} is a cycle of N ,

(c) if D is a cycle of N and e ∈ D, then D − e is a cycle of N/e, and

(d) if D is a cycle of N and e /∈ D, then D is a cycle of N/e.

A key milestone in the proof is the proposition below:
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Proposition 23. Suppose (h1)-(h6) hold. Let D be a circuit of MΩ containing {f, g, h}. Then,

(a) the elements of D − {f, g, h} are in series in M |(D ∪ {f ′, g′, h′,Ω}),

(b) D−{f, g, h} 6= ∅, and for each t ∈ D−{f, g, h}, M |
(

D∪{f ′, g′, h′,Ω}
)

/(D−{f, g, h, t}) is the graft

matroid of a plain trifold,4 and

(c) if |D| is odd, then (M,E(M)) has an (F7, E(F7)) minor.

Proof. Let M ′ := M |(D ∪ {f ′, g′, h′,Ω}).

(a) Note that M ′/Ω consists of the circuit D together with elements f ′, g′, h′. Since {f, f ′}, {g, g′}, {h, h′}

are parallel classes of M ′/Ω, it follows that the elements of D−{f, g, h} are in series in M ′/Ω, so they are also

in series in M ′. (b) If {f, g, h} or {f, g, h,Ω} is a circuit of M , then {Ω, f, f ′, g, g′, h} would be an induced K4

of M , which cannot occur by (h6). Hence, neither {f, g, h} nor {f, g, h,Ω} is a circuit of M – this has two

consequences. (1) Since one of D,D ∪ {Ω} is a circuit of M by Remark 22 (a), we get that D 6= {f, g, h}.

(2) The set {f, g, h,Ω} is independent in the matroid M , and this in turn implies that M |{f, f ′, g, g′, h, h′,Ω}

is the cycle matroid of the graph G displayed below on vertices {v1, v2, v3, v4, v5} and edges

Ω = {v4, v5}, f = {v1, v4}, f
′ = {v1, v5}, g = {v2, v4}, g

′ = {v2, v5}, h = {v3, v4}, h
′ = {v3, v5}.

f

g

h

f 0

g0
h0

Ω

v2 v3

v4 v5

v1

Let t ∈ D − {f, g, h} and

N := M ′/(D − {f, g, h, t}).

By (a), the elements of D − {f, g, h} are in series in M ′, so M ′/(D − {f, g, h, t}) \ t = M ′ \ (D − {f, g, h}),

implying in turn that N \ t = M |{f, f ′, g, g′, h, h′,Ω} = cycle(G). It therefore follows from Remark 10 that,

for some T ⊆ V (G) of even cardinality, N is the graft matroid of the graft (G, T ). Since one of D,D∪{Ω} is a

circuit of M by Remark 22 (a), it follows that one of {f, g, h, t}, {f, g, h, t,Ω} is a circuit of N , implying in turn

that one of {f, g, h}, {f, g, h,Ω} is a T -join of G. This means that T = {v1, v2, v3, v4} or T = {v1, v2, v3, v5}.

Either way, we see that (G, T ) is a plain trifold. (c) Assume that |D| is odd. Let Γ := {Ω, f, f ′, g, g′, h, h′}.

Notice that (G, T,Γ) is a trifold. Thus, by Proposition 21, (N,Γ) has an (F7, E(F7)) minor. It therefore

suffices to show that (N,Γ) is a minor of (M ′, E(M ′)), which itself is a minor of (M,E(M)). Since |D| is

odd, D − {f, g, h} has an even number of elements, all of which are in series in M ′ by (a), so D − {f, g, h}

is a cocycle of M ′. As a result, E(M ′)△(D − {f, g, h}) = Γ is a signature of (M ′, E(M ′)). However,

(M ′,Γ)/(D − {f, g, h, t}) = (N,Γ), so (N,Γ) is a minor of (M ′, E(M ′)), as required. �

4M |I/J is short-hand notation for (M |I)/J .
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We may therefore make the following assumption:

Further hypotheses

(h7) every circuit of MΩ containing {f, g, h} has even cardinality.

In particular, in (h5), |C| is even and so C − {f, g, h} 6= ∅. Let S be a triangle of MΩ containing an element of

C − {f, g, h}. We say that S is an f -splitting triangle if either S ∩ {f, g, h} = {f} or the following statements

hold:

• |S ∩ C| = 1, and

• S△C is the union of two disjoint circuits of MΩ, one of which contains f and the other contains g, h.

Similarly, we can define g-splitting and h-splitting triangles.

Corollary 24. Suppose (h1)-(h7) hold. Then every triangle of MΩ containing an element of C − {f, g, h} is a

splitting triangle.

Proof. Take an element e ∈ C−{f, g, h} and a triangle S of MΩ such that e ∈ S. Notice that |S∩{f, g, h}| ≤ 1.

So if S ∩ {f, g, h} 6= ∅, then S is a splitting triangle. We may therefore assume that S ∩ {f, g, h} = ∅. Clearly,

1 ≤ |S ∩C| ≤ 2. Note that |S ∩C| = 1; for if not, then S△C would be an odd-length circuit of MΩ containing

{f, g, h}, which cannot occur by (h7). Consider now the odd-length cycle S△C, which is either a circuit or the

disjoint union of two circuits. However, it follows from (h7) that S△C is the union of two disjoint circuits, both

of which contain must contain elements from {f, g, h} by (h5). This implies that R is a splitting triangle. �

The rest of this section is organized as follows: we will show that

• unless (M,E(M)) has an (F7, E(F7)) minor, every element of C − {f, g, h} is in three otherwise

disjoint triangles of MΩ, one of which is f -splitting, the second one is g-splitting, and the third one is

h-splitting (§5.3),

• the circuit C, together with its splitting triangles, gives rise to a so-called Type I or a Type II configura-

tion in (MΩ,ΣΩ) (§5.4),

• a Type I configuration gives a super trifold minor in (M,E(M)), and a Type II configuration gives a

super quadrum minor in (M,E(M)) (§5.2),

and by Proposition 21, the last step leads to an (F7, E(F7)) minor, thereby finishing the proof of Proposition 12.

5.2. Type I and Type II configurations. In MΩ, take an element p ∈ E(MΩ)−C that is spanned by C. Then

C∪{p} contains exactly three circuits, one of which is C, the other two contain p and their symmetric difference

is C. We say that p is an f -splitting element if there is a circuit in C ∪ {p} that contains f and none of g, h.

Observe that if S is an f -splitting triangle, then each element of S − C is f -splitting. Similarly, we can define

g-splitting and h-splitting elements. If p is e-splitting, for some e ∈ {f, g, h}, we denote by Θ(p) the circuit

contained in C ∪ {p} such that Θ(p) ∩ {f, g, h} = {e}.

In this subsection, we identify two configurations of splitting elements and show that their presence implies

the existence of a super trifold or super quadrum minor in (M,E(M)).
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We say {p1, p2} ⊆ E(MΩ) is a Type I configuration if the following statements hold:

• p1 and p2 are distinct e-splitting elements, for some e ∈ {f, g, h},

• C −
(

Θ(p1) ∪Θ(p2) ∪ {f, g, h}
)

6= ∅,

• Θ(p1)△Θ(p2) is an odd cycle of (MΩ,ΣΩ),

• |Θ(p1) | and |Θ(p2) | are odd.

(In particular, p1, p2 belong to E(MΩ)−C and are spanned by C.) We will show that a Type I configuration leads

to a super trifold in (M,E(M)). To prove this, however, we need an ingredient. Recall that by Remark 22 (a), if

D is a circuit of M/Ω, then exactly one of D,D∪{Ω} is a circuit of M ; the following proposition characterizes

when D is the circuit in M :

Remark 25. Suppose (h1)-(h7) hold. Let D be a circuit of M/Ω. Then D is a circuit of M if, and only if,

the parity of |D| is equal to the parity of D in (M,E(M))/Ω. In particular, if D is a circuit of MΩ, then the

following statements are equivalent:

(i) D is a circuit of M ,

(ii) |D| and |D ∩ ΣΩ| have the same parity.

Proof. Let D be a circuit of M/Ω. Assume that D is a circuit of M . Then the parity of |D| is equal to the parity

of D in (M,E(M)), which is equal to the parity of D in (M,E(M))/Ω. Conversely, assume that the parity

of |D| is equal to the parity of D in (M,E(M))/Ω. Suppose, for a contradiction, that D is not a circuit of M .

By Remark 22 (a), D ∪ {Ω} is a circuit of M , and moreover, the parity of D ∪ {Ω} in (M,E(M)) is equal

to the parity of D in (M,E(M))/Ω, which by assumption is equal to the parity of |D|. However, the parity of

D ∪ {Ω} in (M,E(M)) is equal to the parity of |D ∪ {Ω}| = |D|+ 1, a contradiction. �

Proposition 26. Suppose (h1)-(h7) hold. If there is a Type I configuration, then (M,E(M)) has (F7, E(F7))

as a minor.

Proof. Assume that there is a Type I configuration {p1, p2}. After possibly interchanging the roles of f, g, h, we

may assume that p1, p2 are f -splitting, and after possibly interchanging the roles of p1, p2, we may assume that

Θ(p1) is an odd circuit and Θ(p2) an even circuit of (MΩ,ΣΩ). Since |Θ(p1) | and |Θ(p2) | are odd, it follows

from Remark 25 that Θ(p1) is an odd circuit of (M,E(M)), and together with Remark 22 (a), that Θ(p2)∪{Ω}

is an even circuit of (M,E(M)). Now take an element t ∈ C −
(

Θ(p1) ∪ Θ(p2) ∪ {f, g, h}
)

. Consider the

following minor of (M,E(M)):

(N,Γ) := (M,E(M))|(C ∪ {f ′, g′, h′,Ω, p1, p2})/(C − {f, g, h, t}).

We will show that (N,Γ) corresponds to a super trifold. By Proposition 23 (b), N \ {p1, p2} is the graft matroid

of a plain trifold; let us represent this plain trifold as a graft (G′, T ) where V (G′) = {v1, v2, v3, v4, v5}, E(G′)

consists of

Ω = {v4, v5}, f = {v1, v4}, f
′ = {v1, v5}, g = {v2, v4}, g

′ = {v2, v5}, h = {v3, v4}, h
′ = {v3, v5},
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and either T = {v1, v2, v3, v4} or T = {v1, v2, v3, v5}. (See below for an illustration.) Since the triangles

{Ω, f, f ′}, {Ω, g, g′}, {Ω, h, h′} are odd in the signed matroid (M,E(M)), they are odd also in the minor

(N,Γ) \ {p1, p2} =
(

N \ {p1, p2},Γ − {p1, p2}
)

. We may therefore assume that {Ω, f, f ′, g, g′, h, h′} ⊆

Γ − {p1, p2}. Notice that we do not know whether or not t belongs to Γ − {p1, p2}. Since Θ(p1) is a circuit

of M containing {f, p1} and all of its other edges belong to C − {f, g, h, t}, it follows that {f, p1} is a circuit

of N . Similarly, since Θ(p2) ∪ {Ω} is a circuit of M containing {f, p2,Ω} and all of its other edges belong to

C − {f, g, h, t}, we get that {f, p2,Ω} is a triangle of N , which in turn implies that {f ′, p2} is a circuit of N .

As a consequence, N is the graft matroid of the graft (G, T ) obtained from (G′, T ) after adding edge p1 parallel

to f , and edge p2 parallel to f ′. Since Θ(p1) is an odd circuit of (M,E(M)), we get that {f, p1} is an odd

circuit of (N,Γ), so p1 /∈ Γ. Similarly, as Θ(p2) ∪ {Ω} is an even circuit of (M,E(M)), we get that {f, p2,Ω}

is an even triangle of (N,Γ), and as {f, f ′,Ω} is an odd triangle, we have that {f ′, p2} is also an odd circuit of

(N,Γ). Hence, p2 /∈ Γ. Therefore, the signed graft (G, T,Γ) is a super trifold.

v2 v3

v4 v5

v1

f

g

h

f 0

g0
h0

Ω

p1 p2

It follows from Proposition 21 that (N,Γ), and therefore (M,E(M)), has an (F7, E(F7)) minor, as desired. �

We say {p1, p
′
1, p2, p3} ⊆ E(MΩ) is a Type II configuration if the following statements hold:

• p1 and p′1 are distinct and e1-splitting, p2 is e2-splitting, and p3 is e3-splitting, for a permutation

e1, e2, e3 of f, g, h,

• Θ(p1) ∩Θ(p′1) ∩Θ(p2) ∩Θ(p3) 6= ∅,

• Θ(p1)△Θ(p′1) is an odd cycle of (MΩ,ΣΩ).

(In particular, p1, p
′
1, p2, p3 belong to E(MΩ)−C and are spanned by C.) We will show that a Type II configu-

ration leads to a super quadrum in (M,E(M))/Ω, and therefore, in (M,E(M)):

Proposition 27. Suppose (h1)-(h7) hold. If there is a Type II configuration, then (M,E(M)) has (F7, E(F7))

as a minor.

Proof. Assume that there is a Type II configuration {p1, p
′
1, p2, p3}. By symmetry, we may assume that p1, p

′
1

are f -splitting, p2 is g-splitting, and p3 is h-splitting. Take an element t ∈ Θ(p1) ∩ Θ(p′1) ∩ Θ(p2) ∩ Θ(p3).

Observe that (M ′,Σ′) := (M,E(M))/Ω is obtained from (MΩ,ΣΩ) after adding elements f ′, g′, h′ parallel of

different parity to f, g, h, respectively. Consider now the minor

(N,Γ) := (M ′,Σ′)|
(

C ∪ {p1, p
′
1, p2, p3}

)

/
(

C − {f, g, h, t}
)

.



16 AHMAD ABDI AND BERTRAND GUENIN

We will show that (N,Γ) corresponds to a super quadrum.

Since C is a circuit of M ′, it follows that {f, g, h, t} is a circuit of N . Start with the graft (G′′, T ) on vertices

{v1, v2, v3, v4} and edges f = {v2, v1}, g = {v2, v3}, h = {v2, v4}, where T = {v1, v2, v3, v4}. Note that

N |{f, g, h, t} is the graft matroid of (G′′, T ). Since Θ(p1) is a circuit of MΩ, it is also a circuit of M ′, and as

it contains {f, p1, t} and all of its other edges belong to C − {f, g, h, t}, it follows that {f, p1, t} is a cycle of

N . Similarly, {g, p2, t} and {h, p3, t} are also cycles of N . As a consequence, N |{f, g, h, t, p1, p2, p3} is the

graft matroid of the plain quadrum (G′, T ) obtained from (G′′, T ) after adding p1 = {v3, v4}, p2 = {v4, v1}

and p3 = {v1, v3}.

Notice that N has no loop, because
(

C − {f, g, h, t}
)

∪ {e} contains no circuit of M ′, for each e ∈ E(N).

Therefore, since {f, f ′}, {g, g′}, {h, h′} are odd circuits in (M ′,Σ′), they are also odd circuits in (N,Γ). More-

over, as Θ(p1)△Θ(p′1) is an odd cycle of (MΩ,ΣΩ), it is also an odd cycle of (M ′,Σ′), and because it contains

{p1, p
′
1} and all of its other edges belong to C − {f, g, h, t}, it follows that {p1, p

′
1} is an odd circuit of (N,Γ).

Thus, N is the graft matroid of the graft (G, T ) obtained from (G′, T ) after adding edges f ′, g′, h′, p′1 parallel

to f, g, h, p1, respectively. (See below for an illustration.) Moreover,

|Γ ∩ {f, f ′}| = |Γ ∩ {g, g′}| = |Γ ∩ {h, h′}| = |Γ ∩ {p1, p
′
1}| = 1,

and we do not know whether or not p2, p3, t belong to Γ. This means that (G, T,Γ) is a super quadrum.

f

g h

f 0

g0 h0

p1

p2

v3

v1

v2

v4

p3

p01

From Proposition 21 we get that (N,Γ), and therefore (M,E(M)), has an (F7, E(F7)) minor, as desired. �

5.3. Splitting triangles. Take a signed matroid (N,Γ). For R ⊆ E(N), we write (N,Γ)|R := (N,Γ) \

(E(N) − R). We say that {e1, . . . , e6} is in induced odd K4 of (N,Γ) if N |{e1, . . . , e6} is an induced K4 in

which every triangle is odd in (N,Γ)|{e1, . . . , e6}. A consequence of Remark 25 is the following:

Corollary 28. Suppose (h1)-(h7) hold. Then (M,E(M))/Ω does not have an induced odd K4.

Proof. Suppose, for a contradiction, that {e1, . . . , e6} is an induced odd K4 of (M,E(M))/Ω, whose odd

triangles are {e1, e2, e3}, {e1, e4, e5}, {e2, e4, e6}, {e3, e5, e6}. It then follows from Remark 25 that these are

also triangles of M , implying in turn that {e1, . . . , e6} is an induced K4 of M , thereby contradicting (h6). �

Remark 29. Suppose (h1)-(h7) hold. If S is a triangle of MΩ, then |S ∩ {f, g, h}| ≤ 1.

Proof. Let S be a triangle of MΩ. It follows from Proposition 23 (b) that |S ∩ {f, g, h}| ≤ 2. Suppose, for a

contradiction, that |S ∩ {f, g, h}| = 2. We may assume that S ∩ {f, g, h} = {f, g}. By Remark 22 (a), one
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of S, S ∪ {Ω} is a circuit of M , so one of S, S△{f, f ′} is a triangle of M . But then S ∪ {Ω, f, f ′, g, g′} is an

induced K4 of M , a contradiction to (h6). �

We are now ready to prove the main result of this subsection:

Proposition 30. Suppose (h1)-(h7) hold, and (M,E(M)) does not have (F7, E(F7)) as a minor. Then for every

element e ∈ C−{f, g, h}, there exist triangles Sf , Sg, Sh of MΩ such that Sf ∩Sg = Sg∩Sh = Sh∩Sf = {e},

and for each z ∈ {f, g, h},

• Sz is z-splitting, and

• if Sz ∩ {f, g, h} = ∅, then Sz is odd in (MΩ,ΣΩ).

Proof. Take an element e ∈ C − {f, g, h}. Denote by T1, T2, T3 the three triangles of M containing e, whose

existence is guaranteed by (h2). Recall that T1∩T2 = T2∩T3 = T3∩T1 = {e}. Since e /∈ {Ω, f, f ′, g, g′, h, h′},

Ω /∈ T1 ∪ T2 ∪ T3. Therefore, since M is a simple matroid and M/Ω is a loopless matroid whose non-trivial

parallel classes are precisely {f, f ′}, {g, g′}, {h, h′}, it follows that T1, T2, T3 are also triangles of M/Ω; note

that they are odd triangles of (M,E(M))/Ω. For each i ∈ [3], let Si be the triangle corresponding to Ti in the

simplification MΩ. We will show that, after a relabeling, S1, S2, S3 are the desired three triangles.

1. S1 ∩ S2 = S2 ∩ S3 = S3 ∩ S1 = {e}. Moreover, for each i ∈ [3], Si is a splitting triangle, and if

Si ∩ {f, g, h} = ∅, then Si is odd in (MΩ,ΣΩ).

Subproof. Suppose, for a contradiction, that {e} ( S1 ∩ S2. Since {e} = T1 ∩ T2, we may assume that

f ∈ S1 ∩ S2, f ∈ T1 and f ′ ∈ T2. However, since {f, f ′,Ω} is a triangle of M , it follows that T1 ∪ T2 ∪ {Ω} is

an induced K4 of M , a contradiction to (h6). Thus, S1∩S2 = {e} and similarly, S2∩S3 = S3∩S1 = {e}. Take

an index i ∈ [3]. Clearly, if Si ∩ {f, g, h} = ∅, then Si = Ti and therefore Si is an odd triangle of (MΩ,ΣΩ).

Moreover, since e ∈ Si, we get from Corollary 24 that Si is a splitting triangle. ♦

It therefore suffices to show that no two of S1, S2, S3 split the same element of {f, g, h}. Suppose, for a

contradiction, that S1, S2 are f -splitting. Since these triangles are f -splitting, it follows that S1 ∩ {g, h} =

S2 ∩ {g, h} = ∅, and by (1), S1 ∩ S2 = {e}.

Fix an index i ∈ [2]. Let us carefully label the elements of Si − e. If f ∈ Si, then let pi := f and qi the

element in Si − {e, f}. Otherwise, f /∈ Si. Because Si is f -splitting, Si ∩ C = {e} and Si△C is the union of

two disjoint circuits of MΩ. That is, the elements of Si − {e} are f -splitting, and for a labeling pi, qi of these

elements, Si△C is the disjoint union of Θ(pi) and C△Θ(qi).

Since MΩ is a simple matroid, when f /∈ {p1, p2}, we get that Θ(p1)− p1 6= Θ(p2)− p2. We may therefore

assume that f 6= p2 and, if f 6= p1, (Θ(p2)− p2)− (Θ(p1)− p1) 6= ∅.

2. MΩ|
(

C ∪ {p1, q1, p2, q2}
)

is the cycle matroid of a simple graph G described as follows: for some integers

n, k such that n− 2 ≥ k ≥ 3,

• V (G) = {v1, . . . , vn},

• C =
{

{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}
}

,
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• e = {v1, v2}, p1 = {v2, vk}, q1 = {v1, vk}, p2 = {v2, vk+1}, q2 = {v1, vk+1}, and

• f ∈
{

{v2, v3}, . . . , {vk−1, vk}
}

and g, h ∈
{

{vk+1, vk+2}, . . . , {vn−1, vn}, {vn, v1}
}

.

v1v2

vk

vk+1

e

e0

p1

p2

q2

q1

vn

Figure 4. An illustration of graph G, where the edges in C are bold.

Subproof. Let n := |C|. Clearly, MΩ|C is the cycle matroid of the simple graph G1 on vertices {v1, . . . , vn}

whose edges are {v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}. We assume that e = {v1, v2} and the edges of

Θ(q1) − q1 appear consecutively on the graph circuit. Then there is an integer k ≥ 3 such that Θ(q1) − q1 =
{

{v1, v2}, {v2, v3}, . . . , {vk−1, vk}
}

. Note that f ∈
{

{v2, v3}, . . . , {vk−1, vk}
}

, and f = p1 if and only if

k = 3.

Let G2 be the graph obtained from G1 after adding the edge q1 = {v1, vk}, and if k > 3, the edge p1 =

{v2, vk}. (For k = 3, the edge p1 = {v2, vk} is already present in G1.) Note that MΩ|
(

C ∪ {p1, q1}
)

is

the cycle matroid of the simple graph G2. Consider the set Θ(p2) − p2. As f ∈ Θ(p2), we have (Θ(p2) −

p2) ∩
{

{v2, v3}, . . . , {vk−1, vk}
}

6= ∅, and as (Θ(p2) − p2) − (Θ(p1) − p1) 6= ∅ when k > 3, we have

(Θ(p2)− p2)∩
{

{vk, vk+1}, . . . , {vn−1, vn}, {vn, v1}
}

6= ∅. After possibly rearranging the edges of G2 within

series classes
{

{v2, v3}, . . . , {vk−1, vk}
}

and
{

{vk, vk+1}, . . . , {vn−1, vn}, {vn, v1}
}

, we may assume that the

edges of Θ(p2)− p2 appear consecutively on the circuit C. So there are indices i, j ∈ [n] such that

Θ(p2)− p2 =
{

{vi, vi+1}, . . . , {vj−1, vj}
}

where k − 1 ≥ i ≥ 2 and n− 1 ≥ j ≥ k + 1.

Let G3 be the graph obtained from G2 after adding the edge p2 = {vi, vj}. Note that MΩ|
(

C ∪ {p1, q1, p2}
)

is the cycle matroid of the simple graph G3. We will show that i = 2 and j = k + 1. Consider the following
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circuit of G3:

{p2} ∪
{

{vi, vi+1}, . . . , {vk−1, vk}
}

∪ {q1} ∪
{

{v1, vn}, {vn, vn−1}, . . . , {vj+1, vj}
}

.

This circuit contains edges f, g, h and has n− (i− 1)− (j − k) + 2 many edges. It therefore follows from the

minimality of C in (h5) that n− (i−1)− (j−k)+2 ≥ n, implying in turn that i = 2 and j = k+1. Now let G

be the graph obtained from G3 after adding the edge q2 = {v1, vk+1}. It is clear that MΩ|
(

C ∪ {p1, q1, p2, q2}
)

is the cycle matroid of the simple graph G, which is the desired graph. ♦

By Remark 29, edges g, h do not lie in a triangle of G, so in fact n − 3 ≥ k. Let e′ := {vk, vk+1} ∈ E(G) =

E(MΩ) and note that {e, p1, q1, p2, q2, e
′} is an induced K4 of MΩ. Let

(N,Γ) := (MΩ,ΣΩ)|{e, p1, q1, p2, q2, e
′}.

The triangle S2 = {e, p2, q2}, being disjoint from {f, g, h}, is odd in (N,Γ), and if f 6= p1, then the triangle

S1 = {e, p1, q1} would also be odd in (N,Γ). Since M has no induced K4 by (h6), it follows from Corollary 28

that exactly two of {e, p1, q1}, {e
′, p1, p2}, {e

′, q1, q2} are even in (N,Γ). Thus, if f 6= p1, then {e} is a

signature for (N,Γ), and if f = p1, then one of {e}, {e, f}, {e, q1} is a signature for (N,Γ).

3. f 6= p1.

Subproof. Suppose, for a contradiction, that f = p1. We will show that {p2, q1} is a Type I configuration. Recall

that p2, q1 are f -splitting, and since n− 3 ≥ k, it follows that C −
(

Θ(p2)∪Θ(q1)∪ {f, g, h}
)

6= ∅. Moreover,

|Θ(p2) | = |Θ(q1) | = 3. If {e, q1} is a signature for (N,Γ), then {e, f, q1, p2, q2, e
′}△{f, f ′} is an induced odd

K4 of (M,E(M))/Ω, which cannot occur by Corollary 28. Thus, one of {e}, {e, f} is a signature for (N,Γ).

Either way, we see that Θ(p2)△Θ(q1) is odd cycle of (MΩ,ΣΩ). Thus, {p2, q1} is a Type I configuration. But

then Proposition 26 implies that (M,E(M)) has an (F7, E(F7)) minor, a contradiction to our hypothesis. ♦

Recall that p1, q1, p2, q2 are f -splitting, and since n− 3 ≥ k,

C −
(

Θ(p2) ∪Θ(q1) ∪ {f, g, h}
)

= C −
(

Θ(p1) ∪Θ(q2) ∪ {f, g, h}
)

6= ∅.

We also know that {e} is a signature for (N,Γ). It can be readily seen that if |Θ(p1)−p1| is odd, then {p2, q1} is

a Type I configuration, and otherwise, {p1, q2} is a Type I configuration. Either way, we get from Proposition 26

that (M,E(M)) has an (F7, E(F7)) minor, thereby contradicting our hypothesis. Therefore, S1 and S2 cannot

both be f -splitting. Similarly, no two of S1, S2, S3 split the same element. Among these triangles, let Sf be the

f -splitting one, Sg the g-splitting one, and Sh the h-splitting one. These are the desired triangles, and the proof

of Proposition 30 is finished. �

5.4. Proof of Proposition 12. We may assume that (h1)-(h7) hold. To remind the reader why, assume that (h1)-

(h2), as well as the setup conditions (h3)-(h5), hold. If M has an induced K4, then we are done. Otherwise, (h6)

holds. We will prove that (M,E(M)) has (F7, E(F7)) as a minor, thereby finishing the proof of Proposition 12.

Suppose otherwise. It then follows from Proposition 23 (c) that (h7) holds.
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1. |C| ≥ 6.

Subproof. Suppose otherwise. By (h7), |C| is even. Thus, for some t ∈ E(MΩ), C = {f, g, h, t}. By Propo-

sition 30, there is an h-splitting triangle Sh containing t. Since MΩ does not have parallel elements, it follows

that Sh ∩ {f, g, h} = {h}. As a result, Sh = {t, h, p} where p is an h-splitting element. But then {p, f, g} is a

triangle of MΩ, thereby contradicting Remark 29. ♦

2. There is an f -splitting triangle S where |S ∩ C| = 1 and S is odd in (MΩ,ΣΩ).

Subproof. Suppose otherwise. By (1), there are distinct elements e1, e2, e3 ∈ C − {f, g, h}. Fix an index

i ∈ [3]. Then by Proposition 30 and our contrary assumption, ei is contained in an f -splitting triangle Si

such that Si ∩ C = {ei, f}. By Remark 22 (a), one of Si, Si ∪ {Ω} is a circuit of M , implying in turn that

one of Si, Si△{f, f ′} is a triangle of M . By (h2), f and f ′ are each in exactly 3 triangles of M , a common

one being {Ω, f, f ′}. Hence, it cannot be that each one of S1, S2, S3 is a triangle of M or that each one of

S1△{f, f ′}, S2△{f, f ′}, S3△{f, f ′} is a triangle of M . We may therefore assume that S1, S2△{f, f ′} are

triangles of M . In other words, S1, S2 ∪{Ω} are circuits of M , so by Remark 25, S1 is an odd triangle and S2 is

an even triangle of (MΩ,ΣΩ). Let p1 be the element in S1 − {e1, f} and p2 the element in S2 − {e2, f}. Then

p1, p2 are f -splitting elements for which Θ(p1) = S1 and Θ(p2) = S2. Since e3 ∈ C − (S1 ∪ S2 ∪ {f, g, h}),

it follows that {p1, p2} is a Type I configuration. By Proposition 26, (M,E(M)) has an (F7, E(F7)) minor, a

contradiction. ♦

Write S = {e, p1, p
′
1} where C∩S = {e} and e ∈ Θ(p′1). Note that Θ(p′1)△Θ(p1) = S, so it is an odd cycle of

(MΩ,ΣΩ). As MΩ is simple, there is an element t ∈ Θ(p1)− {f, p1}. Note that t ∈ Θ(p′1). By Proposition 30,

t is contained in a g-splitting triangle S2 and an h-splitting triangle S3. Pick the g-splitting element p2 ∈ S2 for

which t ∈ Θ(p2) and the h-splitting element p3 ∈ S3 for which t ∈ Θ(p3). Then {p1, p
′
1, p2, p3} is a Type II

configuration. By Proposition 27, (M,E(M)) has an (F7, E(F7)) minor, which is a contradiction. This finishes

the proof of Proposition 12. �

6. EVEN CYCLE MATROIDS

In this section, we introduce even cycle matroids, and review/prove some preliminaries needed for the next

and final section of the paper. Let G be a graph and Γ ⊆ E(G). The signed matroid (cycle(G) ,Γ) is identified

as (G,Γ) and is simply referred to as a signed graph. Zaslavsky [23] proved that the even cycles of (G,Γ) are

the cycles of a (binary) matroid that we call the even cycle matroid of (G,Γ) and denote by ecycle(G,Γ). Notice

that every signature of (G,Γ) is a cocycle of ecycle(G,Γ).

Given a graph H and a new edge label e, denote by H + e any graph obtained from H after adding e as a

loop. The following folklore result states that matroids one contraction away from being graphic are even cycle

matroids:

Remark 31. Take a binary matroid M and an element e ∈ E(M) such that M/e = cycle(H), for some

graph H . If Γ is a cocycle of M containing e, then M = ecycle(H + e,Γ).
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Proof. Let Γ be a cocycle of M containing e. Let C ⊆ E(M). We need to show that C is a cycle of M if, and

only if, C is an even cycle of (H + e,Γ). (⇒) Suppose first that C is a cycle of M . Since |C ∩ Γ| is even, it

suffices to show that C is a cycle of H + e. If e ∈ C, then C − e is a cycle of M/e by Remark 22 (c), so it is

also a cycle of H , implying in turn that C is a cycle of H + e. Otherwise, e /∈ C, so C is a cycle of M/e by

Remark 22 (d), implying in turn that C is a cycle of H , and therefore, of H + e. (⇐) Suppose conversely that

C is an even cycle of (H + e,Γ). Assume first that e /∈ C. Then C is a cycle of H , so it is also a cycle of M/e,

implying by Remark 22 (b) that either C or C ∪ {e} is a cycle of M . Since |C ∩ Γ| is even, e ∈ Γ and e /∈ C,

it follows that |(C ∪ {e}) ∩ Γ| is odd, and because Γ is a cocycle of M , C ∪ {e} cannot be a cycle of M . Thus,

C is a cycle of M . Assume in the remaining case that e ∈ C. Then C − e is a cycle of H , so it is also a cycle

of M/e, and thus by Remark 22 (b), one of C − e, C is a cycle of M . Since e ∈ C ∩ Γ and |C ∩ Γ| is even, it

follows that |(C − e) ∩ Γ| is odd. Therefore, because Γ is a cocycle of M , C − e cannot be a cycle of M , and

as a result, C is a cycle of M . �

6.1. Even cycle matroids and connectivity. Let G be a graph. For a subset X ⊆ E(G), we denote by VG(X)

the ends of the edges in X , and by G[X] the subgraph on vertices VG(X) and edges X .

Let (G,Γ) be a signed graph, where G is connected. If (G,Γ) has no odd circuit, then ecycle(G,Γ) =

cycle(G) and therefore, any spanning tree of G is a basis for ecycle(G,Γ). Otherwise, when (G,Γ) has an odd

circuit, T ∪ {e} is a basis for ecycle(G,Γ), where T is a spanning tree of G, and e ∈ E(G) − T is chosen so

that T ∪ {e} contains an odd circuit of (G,Γ).

The next remark describes the connectivity function for even cycle matroids.

Remark 32 ([8]). Let (G,Γ) be a signed graph, where G is connected. Take a non-empty and proper subset

X ⊆ E(G) where both G[X] and G[X̄] are connected. Then

λecycle(G,Γ)(X) ≤ λcycle(G)(X) + 1 =
∣

∣VG(X) ∩ VG(X̄)
∣

∣.

Proof. The equality is a routine exercise (see [13] Lemma 8.1.7 for details). To prove the inequality, let E :=

E(G), M := cycle(G) and M ′ := ecycle(G,Γ). Denote by r, r′ the rank functions of M,M ′, respectively. If

(G,Γ) has no odd circuit, then M = M ′, so r = r′, implying in turn that λM = λM ′ . We may therefore assume

that (G,Γ) has an odd circuit. What we argued above implies that r′(E) = r(E)+1, r′(X) ∈
{

r(X), r(X)+1
}

and r′(X̄) ∈
{

r(X̄), r(X̄) + 1
}

, so

λM ′(X) = r′(X) + r′(X̄)− r′(E) ≤ r(X) + 1 + r(X̄) + 1− r(E)− 1 = λM (X) + 1,

as required. �

A connected graph on at least 3 vertices is 2-connected if it remains connected after deleting any vertex. A

2-connected graph on at least 4 vertices is 3-connected if it remains connected after deleting any pair of vertices.

For a graph G, denote the set of all loops by loops(G). Given a signed graph (G,Γ), denote by si(G,Γ) the

signed graph obtained after deleting all even loops, deleting all odd loops except for one, and deleting all but one
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edge from each class of parallel edges in G of the same parity in (G,Γ). (The odd/even loops of (G,Γ) are the

loops of G that are inside/outside Γ.)

Proposition 33. Let (G,Γ) be a signed graph that has an odd loop e, and let N := ecycle(G,Γ). Assume

further that G is connected. Then,

(a) if N is simple and cosimple, e is the unique loop of G, parallel edges of G have distinct parities in (G,Γ),

and G does not have edges in series,

(b) if N is internally 4-connected and |E(N)| ≥ 8, then G \ e is 3-connected,

(c) si(N) = ecycle(si(G,Γ)),

(d) if si(N) is internally 4-connected and |E(si(N))| ≥ 8, then G \ loops(G) is 3-connected.

Proof. (a) Suppose N is simple and cosimple. Then N has no cycle of size at most 2 and no two elements in

series. In particular, (G,Γ) does not have an even loop or an even cycle of size two, and G does not have two

edges in series. Since e is an odd loop, there cannot be another odd loop. As a result, e is the unique loop of G

and parallel edges of G have distinct parities in (G,Γ). (b) Suppose N is internally 4-connected. In particular,

N is simple and cosimple. Thus, (a) implies that in G, no two edges are in series, e is the unique loop, and

every parallel class has size at most two. Since |E(G \ e)| ≥ 7, we get that G \ e has at least 4 vertices. We

need to show that the connected G \ e is 3-connected. We first show that G \ e is 2-connected. Suppose, for

a contradiction, that there is a non-trivial partition X,Y of E(G \ e) such that |VG\e(X) ∩ VG\e(Y )| = 1.

Since |X| + |Y | ≥ 7, after possibly interchanging the roles of X and Y , we may assume that |X| ≥ 2. Let

X̄ := Y ∪ {e}. Then |X̄| ≥ 2. Assuming the end of e belongs to VG\e(Y ), we see that G,G[X], G[X̄] are

connected (as G is connected). Hence, Remark 32 implies that λN (X) ≤ |VG(X) ∩ VG(X̄)| = 1, so (X, X̄) is

a 2-separation of N , a contradiction as N is 3-connected. It remains to show that G \ e is 3-connected. Suppose,

for a contradiction, that there is a non-trivial partition X,Y of E(G \ e) such that |VG\e(X) ∩ VG\e(Y )| = 2,

|VG\e(X)| ≥ 3 and |VG\e(Y )| ≥ 3. Since G \ e is 2-connected, it follows that (G \ e)[X], (G \ e)[Y ] are

connected, implying in turn that |X| ≥ 2 and |Y | ≥ 2. In fact, since G \ e does not have two edges in series,

we have |X| ≥ 3 and |Y | ≥ 3. Because |X| + |Y | ≥ 7, we may assume that |X| ≥ 4. Let X̄ := Y ∪ {e}.

Then |X̄| ≥ 4. Assuming the end of e belongs to VG\e(Y ), we see that G,G[X], G[X̄] are connected. Thus, by

Remark 32, we get that λN (X) ≤ |VG(X) ∩ VG(X̄)| = 2, so (X, X̄) is a 3-separation of N , a contradiction as

N is internally 4-connected. (c) is immediate. (d) Let (G′,Γ′) := si(G,Γ). We may assume that e is also an odd

loop of (G′,Γ′). By (c), si(N) = ecycle(G′,Γ′), so from (b) we get that G′ \ e is 3-connected. As G is obtained

from G′ by adding loops and edges parallel to existing ones, we get that G \ loops(G) is also 3-connected. �

6.2. Even cycle matroids that are graphic. Here we characterize, under relevant conditions, when an even

cycle matroid is graphic. A complete and technical answer to this problem was obtained by Shih in her PhD

thesis [21] but was never published in a refereed journal – our arguments will not rely on this characterization.

We will need the following seminal result of Whitney [22]:
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Theorem 34. Let G,G′ be graphs over the same edge set such that cycle(G) = cycle(G′). If G \ loops(G) is

3-connected, then G \ loops(G) = G′ \ loops(G′) and loops(G) = loops(G′).

Let (G,Γ) be a signed graph, and take a vertex v ∈ V (G). We say v is a blocking vertex if every non-loop

odd circuit of (G,Γ) uses v. It follows from Proposition 2 that v is a blocking vertex if, and only if, there is a

signature contained in δG(v) ∪ loops(G).

Remark 35. Let (G,Γ) be a signed graph. If (G,Γ) has a blocking vertex, then ecycle(G,Γ) is graphic.

Proof. Let v be a blocking vertex. After possibly resigning, we may assume that Γ ⊆ δv(G) ∪ loops(G). We

may also assume that every odd loop is incident with v and every even loop is incident with another vertex. Let

H be the graph obtained from G after splitting v into vertices v1, v2 such that every edge in δG(v)∩Γ is incident

with v1, every edge in δG(v) − Γ is incident with v2, and every odd loop has ends v1, v2. It can be readily

checked that ecycle(G,Γ) = cycle(H). �

Provided an odd loop and 3-connectedness, we can guarantee the converse also holds:

Proposition 36. Let (G,Γ) be a signed graph that has an odd loop such that G \ loops(G) is 3-connected. If

ecycle(G,Γ) is graphic, then (G,Γ) has a blocking vertex.

Proof. Set E := E(G) and let e ∈ E be an odd loop of (G,Γ). Let H be a graph with edge set E such that

ecycle(G,Γ) = cycle(H). As e is not an even loop of (G,Γ), e is not a loop of H; let v1, v2 be the ends

of e in H . Since the even circuits of (G,Γ) are precisely the circuits of H we have, for C ⊆ E, the following

correspondence:

• C is an odd circuit of (G,Γ) if, and only if, C is a v1v2-path of H ,

• C is an even circuit of (G,Γ) if, and only if, C is a circuit of H .

Let G′ be the graph obtained from H after identifying vertices v1 and v2; call the identified vertex v. Let Γ′ :=

δH(v1). Then the correspondence above implies that cycle(G′) = cycle(G) and ecycle(G′,Γ′) = ecycle(G,Γ).

Since G \ loops(G) is 3-connected, it follows from Theorem 34 that G′ \ loops(G′) = G \ loops(G) and

loops(G) = loops(G′). After changing the ends of the loops of G′, if necessary, we may assume that G′ = G.

Since ecycle(G,Γ′) = ecycle(G,Γ), Γ′ is a signature of (G,Γ) and as Γ′ ⊆ δG(v) ∪ loops(G), we see that v is

a blocking vertex of (G,Γ). �

6.3. Blocking pairs. Let (G,Γ) be a signed graph, which represents the signed matroid (cycle(G) ,Γ). Just like

the signed matroid (cycle(G) ,Γ), we can define minors of the signed graph (G,Γ). Take disjoint I, J ⊆ E(G).

If I contains an odd circuit, we define (G,Γ)/I \ J := (G/I \ J, ∅). Otherwise, by Proposition 2, there is a

signature Γ′ that is disjoint from I , and we define (G,Γ)/I \ J := (G/I \ J,Γ′ − J). We call (G,Γ)/I \ J a

minor of (G,Γ). Notice that minors are invariant under resigning, and since cycle(G) /I \J = cycle(G/I \ J),

the signed graph (G,Γ)/I \ J represents (cycle(G) ,Γ)/I \ J . We also have the following relationship:

Remark 37 ([14], page 21). Take a signed graph (G,Γ) and disjoint I, J ⊆ E(G). Then ecycle(G,Γ) /I \J =

ecycle((G,Γ)/I \ J).



24 AHMAD ABDI AND BERTRAND GUENIN

Take vertices u, v of G. We say u and v form a blocking pair if every non-loop odd circuit of (G,Γ) uses

either u or v. We see from Proposition 2 that u and v form a blocking pair if, and only if, there is a signature

contained in δG(u) ∪ δG(v) ∪ loops(G).

Proposition 38. Let (G,Γ) be a signed graph with an odd loop and without a blocking vertex, and let N :=

ecycle(G,Γ). Assume further that G is connected. If e is a non-loop edge of G such that

• |E(si(N/e))| ≥ 8,

• si(N/e) is internally 4-connected,

• si(N/e) is graphic,

then the ends of e form a blocking pair.

Proof. Let (G′,Γ′) := (G,Γ)/e. By Remark 37, N/e = ecycle(G′,Γ′). Notice that (G′,Γ′) also has an odd

loop and G′ is connected. Therefore, as si(N/e) is internally 4-connected and |E(si(N/e))| ≥ 8, it follows from

Proposition 33 (d) that G′ \ loops(G′) is 3-connected. Since si(N/e) is graphic, so is N/e, and so ecycle(G′,Γ′)

is graphic. Putting these together, we get from Proposition 36 that (G′,Γ′) has a blocking vertex w, that is, every

non-loop odd circuit of (G′,Γ′) uses w. Since (G,Γ) does not have a blocking vertex, w is the vertex in

G′ = G/e obtained after identifying the ends of e in G. Thus, every non-loop odd circuit of (G,Γ) uses one of

the ends of e, implying that the ends of e form a blocking pair of (G,Γ), as required. �

7. PROOF OF PROPOSITION 13

Suppose (h1)-(h2) hold and there are distinct elements e1, e2, e3, e4 of M such that, for each i ∈ [4], si(M/ei)

is internally 4-connected and is the cycle matroid of a graph where the three edges of Λ(ei) are incident with

the same vertex. Assuming |E(M)| ≥ 12, we need to show M is one deletion away from being graphic. Recall

that, for each i ∈ [4], M/ei is a loopless matroid with exactly three non-trivial parallel classes, and these classes

have cardinality two, so |E(si(M/ei))| = |E(M)| − 4 ≥ 12− 4:

1. For each i ∈ [4], |E(si(M/ei))| ≥ 8.

By (h1), M is simple, so we may assume that {e1, e2, e3} is not a triangle of M . Denote the three trian-

gles of M containing e1 by {e1, f, f
′}, {e1, g, g

′}, {e1, h, h
′} where Λ(e1) = {f, g, h}; the existence of these

triangles is guaranteed by (h2). Recall that the non-trivial parallel classes of M/e1 are {f, f ′}, {g, g′}, {h, h′}.

As it is the case for si(M/e1), we know that M/e1 also is the cycle matroid of a graph H where f, g, h are

incident with the same vertex, say v ∈ V (H). Notice that H is a loopless graph with exactly three non-trivial

parallel classes {f, f ′}, {g, g′}, {h, h′}. In particular, v is the only vertex common to any two of f, g, h. Let Γ

be a cocycle of M that contains e1. By Remark 31, M = ecycle(H + e1,Γ). We may assume that H + e1

is connected. Clearly e1 is an odd loop of (H + e1,Γ), and therefore, {f, f ′}, {g, g′}, {h, h′} are odd circuits

of this signed graph. As a result, if (H + e1,Γ) has a blocking vertex, then v must be the one, and if it has a

blocking pair, then v must belong to the pair. If v is a blocking vertex, then M is graphic by Remark 35, and we

are done. Otherwise,
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2. (H + e1,Γ) does not have a blocking vertex.

Consider the two edges e2, e3 of H . Since {e1, e2, e3} is not a triangle of M , edges e2, e3 are not parallel.

Since (1) and (2) hold, we may use Proposition 38 to conclude that, for j ∈ {2, 3}, the ends of ej form a blocking

pair of (H + e1,Γ). In particular, e2 ∩ e3 = {v}. Write e2 = {v, u} and e3 = {v, w}.

3. H \ {u, v, w} is connected.

Subproof. Let H ′ := H/e2 and (H ′+e1,Γ
′) := (H+e1,Γ)/e2. By Remark 37, ecycle(H ′ + e1,Γ

′) = M/e2.

We may assume that H ′ + e1 is connected. Since (1) holds, we may use Proposition 33 (d) to conclude that

H ′ \ loops(H ′) is 3-connected. In particular, if uv is the vertex of H ′ corresponding to the ends of e2, the graph

H ′ \ loops(H ′) \ {uv, w} is connected. As a result, H \ {u, v, w} is connected. ♦

Since {v, u} and {v, w} are blocking pairs, every non-loop odd circuit of (H + e1,Γ) uses either v or both

u,w. As the non-trivial parallel classes of H are incident with v, there is at most one edge with ends u,w.

4. H has an edge Ω with ends u,w, and every non-loop odd circuit of (H + e1,Γ) uses v or the edge Ω.

Subproof. Let C be a non-loop odd circuit C of (H + e1,Γ) such that v /∈ V (C). Then {u,w} ⊆ V (C). It

suffices to show that C contains an edge whose ends are u and w. Suppose otherwise. Let x, y be the two

neighbors of u in H[C] – note x, y ∈ V (H) − {u, v, w} by our contrary assumption. Thus by (3), there is an

xy-path P ⊆ E(H) that is disjoint from {u, v, w}. Consider the two cycles C1 := {u, x} ∪ {u, y} ∪ P and

C2 := C△C1. Since C1 is disjoint from the blocking pair {v, w}, and C2 is disjoint from the blocking pair

{v, u}, it follows that both C1, C2 are even in (H + e1,Γ), implying in turn that C = C1△C2 is also even in

(H + e1,Γ), contradicting our choice of C. ♦

Therefore, (H+e1,Γ)\Ω has v as a blocking vertex. By Remark 37, we have M \Ω = ecycle((H + e1,Γ) \ Ω),

so it follows from Remark 35 that M \ Ω is graphic, as required. �
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