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Abstract

This paper is concerned with presenting the Exponential-Lognormal regression model as a compet-
itive alternative to the Pareto, or Exponential-Inverse Gamma, regression model that has been used
in a wide range of areas, including insurance ratemaking. This is the �rst time that the Exponential-
Lognormal regression model is used in a statistical or actuarial context. The main contribution of the
study is that we illustrate how maximum likelihood (ML) estimation of the Exponential-Lognormal
regression model, which does not have a density in closed form, can be accomplished relatively easily
via an Expectation Maximization (EM) type algorithm. A real data application based on motor
insurance data is examined in order to emphasize the versatility of the proposed algorithm. Finally,
assuming that the number of claims is distributed according to the classic Negative Binomial and
Poisson-Inverse Gaussian regression models, both the a priori and a posteriori, or Bonus-Malus, pre-
mium rates resulting from the Exponential-Lognormal regression model are calculated via the net
premium principle and compared to those determined by the Pareto regression model that has been
traditionally used for modelling claim sizes.
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1 Introduction

The Pareto distribution, which was discovered by Vilfredo Pareto (1848-1923), while he was studying
distributions for modelling income in Switzerland, has been widely used for modelling heavy-tailed phe-
nomena which appear frequently in a plethora of di¤erent scienti�c �elds such as sociology, economics,
physics and seismology among others. In actuarial science, where quantifying the risk posed by the more
risky types of insurance has often been an imperative task for actuaries, the Pareto distribution and its
generalization, namely the Generalized Pareto distribution (GP), which has been used in the context of
Extreme Value Theory (EVT), see, for example, Embrechts, Klüppelberg & Mikosch (1997), are the most
popular heavy-tailed models which have been employed by actuaries for e¤ectively modelling extreme
losses which may have low frequencies but usually represent the biggest part of the indemnities paid
by insurance companies. For instance, the economic losses from natural catastrophes in 2017 hit the
second-highest level ever recorded, see Munich Re (2017). However, the Pareto distribution, similarly
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to any other claim size distribution, has both merits and demerits. In what follows we provide a thor-
ough discussion about the advantages and limitations of a special case of the GP distribution, the two
parameter Pareto, or Exponential-Inverse Gamma, density with a regression structure, henceforth called
the Pareto regression model, when it is used for premium determination in Motor Third Party Liability
(MTPL) insurance which is the main focus of the present study.
As far as MTPL insurance is concerned, traditionally, a dual approach to ratemaking has been

adopted by actuaries who developed both a priori ratemaking schemes and a posteriori ratemaking
mechanisms or Bonus-Malus Systems (BMSs). The former process relies on the use of claim frequency
and severity generalized linear models (GLMs) for computing the a priori premiums. References for a
priori ratemaking include, for example, Haberman & Renshaw (1996), Denuit & Lang (2004), Boucher,
Denuit & Guillen (2007), De Jong & Heller (2008), Kaas et al. (2008), Frees (2010) and Tzougas, Vrontos
& Frangos (2015). The latter process uses information about the claim frequency and severity history
of the policyholders to calculate a posteriori, or Bonus-Malus, premium rates in a way which takes into
account the a posterior criteria, i.e. all the factors that could not be identi�ed, measured and introduced
in the previous a priori tari¤. An excellent account of BMSs can be found in Lemaire (1995). Further
references for BMSs include, among many others, Trembley (1992), Picech (1994), Pinquet (1997 and
1998), Brouhns et al. (2003), Mert & Saykan (2005), Gómez-Déniz, Sarabia & Calderín-Ojeda (2008),
Gómez-Déniz, Hernández-Bastida & Fernández-Sánchez (2014), Ni, Constantinescu & Pantelous (2014),
Ni et al. (2014), Santi, Purnaba & Mangku (2016), Karlis, Tzougas & Frangos (2018) and Gómez-Déniz
& Calderín-Ojeda (2018). Furthermore, a basic interest of actuarial literature research is the design of
BMSs for the number and costs of claims based on both the a priori and a posterior criteria, making the
price discrimination even more fair and reasonable. Nevertheless, since the seminal work of Dionne &
Vanasse (1989, 1992), who employed the Negative Binomial Type I (NBI), or Poisson-Gamma, regression
model for constructing a BMSs by updating the posterior mean claim frequency based on explanatory
variables for claim counts, the steady march of methodological innovation has mainly focused on deriving
BMSs with a frequency component based on alternative count regression models to the NBI, such as the
Poisson-Inverse Gaussian (PIG) regression model, which has also been a traditional choice, see Denuit
et al. (2007), Boucher, Denuit & Guillen (2008), Tzougas & Frangos (2014) and Tzougas, Hoon & Lim
(2018) among many others, while, unlike the case without covariates, the severity component has been
largely ignored even if it is critical in the ratemaking process. Speci�cally, to the best of our knowledge,
only the Pareto regression model1 has been used so far for deriving BMS by updating the posterior
mean claim severity based on covariate information for claim sizes, see, for instance, Frangos & Vrontos
(2001), Mahmoudvand & Hassani (2009) and Tzougas, Vrontos & Frangos (2014 and 2018). The main
advantage of the Pareto model lies in the conjugacy, in a Bayesian sense, between the Inverse Gamma
prior, or mixing, distribution and the Exponential distribution, which facilitates maximum likelihood
(ML) estimation and a Bayesian approach towards calculating a posteriori, or Bonus-Malus, premiums.
However, regardless of the statistical and mathematical convenience of conjugancy, there is no guarantee
that variation in claim sizes has precisely the distributional forms implied by the Pareto model. In
particular, a serious drawback of the Pareto model is that it is among the most heavy-tailed claim
severity models and hence not �exible enough to adequately cover the behavior of claims with moderate
sizes. Thus, if very few observations are available in the tail area, meaning that claims with large amounts
are so rare that their numerical impact is low, then an inappropriate imposition of the Pareto model
may lead to biased estimates for moderate claim costs. Moreover, even if large claims have a signi�cant
contribution to the overall portfolio risk, as empirical evidence has shown, claims with moderate severities
usually constitute the largest proportion of MTPL data and hence may also lead to substantial losses.
More importantly, unless the assumption that the actual claim size distribution is a Pareto is valid, then
due to its very heavy-tailed character, the Pareto model can be ill-suited for pricing risks since it will
result in a severe penalization of policyholders with moderate claim costs. Nevertheless, unlike large
claims that will always be reported to the company, only moderate claims are subject to the bonus-
hunger phenomenon. Consequently, this situation can lead to huge �nancial impacts for the insurance
company since in those BMSs resulting from the Pareto model for claim severities it is very likely that
moderate claim costs will be defrayed by the policyholders themselves and hence the insurer will have a

1Note that the Pareto response distribution can also be derived as a mixture of the Exponential distribution with
Gamma mixing weights. However, the Exponential-Inverse Gamma mixture representation of the Pareto is preferred for
ratemaking purposes. Speci�cally, the latter parameterization assumes that the mean is an explicit parameter of the Pareto
distribution. This allows easier interpretation when the mean is modelled in terms of explanatory variables and provides a
framework for analyzing the extent to which a priori and a posteriori ratings interact. The Exponential-Lognormal model
we consider in this study is derived in a similar way by using a Lognormal mixing distribution instead of the Inverse Gamma
one.
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false appreciation of the real risks they are taking. Furthermore, taking into consideration that according
to the latest report of Insurance Europe, in 2014 MTPL remained the most widely purchased non-life
product in the European Union, accounting for 27.3% of non-life business, see Insurance Europe (2016),
it becomes clear that the bonus-hunger phenomenon requires an accurate modelling for moderate claim
amounts based on representative distributions for the claim sizes data that have the potential to capture
more e¢ ciently their stylized characteristics and thus determine the appropriate level of premiums.
The aim of the present work is to propose the Exponential-Lognormal (ELN) regression model as a

competitive alternative to the Pareto regression model. The ELN model can be considered as a prominent
candidate for MTLP claim severity data due to the following academic and practical reasons. Firstly, it is
desirable to construct some distributions similar in nature to the Pareto distribution which can adequately
capture the tail of claim size data, since large size claims generally a¤ect liability coverages. The ELN
distribution has the heavy-tailed property since, as is well known, mixing tends to produce heavy-tailed
distributions, see, for example, Halliwell (2013). For instance, similarly to the Pareto distribution, the
ELN distribution can more adequately model the tail of the claim size data when compared to the
Gamma distribution which has been very often used in the literature for modelling moderate claims, see
Klugman, Panjer & Willmot (2012) and Denuit et al. (2007). Secondly, the advantage that the ELN
distribution enjoys over the more heavy-tailed Pareto distribution is that it has a more promising shape
for moderate claims. This e¤ect is most notable when the a posteriori correction for claim amounts is
calculated since the ELN model can enable the actuary to calculate a fair increment in the a posteriori, or
Bonus-Malus, premiums that must be paid to cover all the expenses caused by a large number of medium
size claims hitting the portfolio, alleviating thus the bonus-hunger phenomenon. We will investigate the
right tail behavior of the ELN distribution and compare it to that of the Gamma and Pareto distributions
based on the set up of Wang (1998) who proposed the use of the right tail index for classifying claim
severity distributions by their right tail behavior without referring to higher moments.
At this point, we would also like to call attention to the fact that unlike the vast pricing literature

on mixed Poisson models for claims counts, the study of mixed Exponential models stemming from
continuous mixing distributions which can be used for describing claim size heterogeneity and for de-
riving ratemaking mechanisms for claim costs, still remains a largely uncharted territory. In particular,
regarding the case without covariates, except for the Pareto distribution the only other mixed Expo-
nential distribution that has been used in an a posteriori ratemaking context so far is the Weibull, or
Exponential-Lévy (Stable 1/2) distribution, which was studied in depth by Ni, Constantinescu & Pan-
telous (2014) who gave an excellent account of its statistical properties, putting special emphasis on its
ability to �t moderate size claims well, and demonstrated how Bonus-Malus premiums can be derived
based on the Bayesian approach. Furthermore, Ni et al. (2014) calculated the a posteriori correction for
claim sizes by using a hybrid structure which was based on the Weibull distribution for modelling medium
sized claims and the Pareto distribution for modelling larger ones. Additionally, the Exponential-Inverse
Gaussian (EIG) distribution, which is also less heavy-tailed than the Pareto model and can apt for mod-
erate claim costs, was presented by Bhattacharya & Kumar (1986), who used it for reliability purposes,
while Hesselager, Wang & Willmot (1998) proposed a di¤erent parameterization of the distribution and
Frangos & Karlis (2004) considered the case with covariates by allowing a regression speci�cation in the
function for the mean parameter of the EIG distribution. However, this is the �rst time that the ELN
model is used in a statistical or actuarial setting for the cases with and without covariate information
because, due to the complexity of its log-likelihood, direct maximization is di¢ cult and has not been
addressed in the literature so far. In particular there is no analytical form for the distribution of the
cost of claims if the random e¤ect variable, which follows the Lognormal distribution, is marginalized
out. As a result, ML estimation of the Exponential-Lognormal regression model is not straightforward
to calculate and requires a special e¤ort.
The main achievement of this study is that we propose a relatively simple Expectation-Maximization

(EM) type algorithm for maximum likelihood (ML) estimation of the ELN regression model. The ML
estimation framework we consider is based on the inherent latent structure of mixed Exponential models
and is particularly useful for situations where the mixing distribution, such as the Lognormal, is not
conjugate to the Exponential distribution. Furthermore, using the Negative Binomial Type I (NBI)
and the Poisson-Inverse Gaussian (PIG) regression models for claim counts, both the a priori and a
posteriori, or Bonus-Malus, premium rates resulting from the new model are calculated via the law of
total expectation and the use of numerical approximation, and are compared to those determined by the
Pareto model that has been widely used for modelling claim severity.
The rest of this paper proceeds as follows: Section 2 presents the derivation of the ELN regression

model. Section 3 fully describes the ML estimation through the EM algorithm. Section 4 contains an

3



application to a data set concerning car insurance claims at fault. Finally, concluding remarks can be
found in Section 5.

2 The Exponential-Lognormal Regression Model

The Exponential-Lognormal (ELN) regression model which is considered in this study can be described
as follows. Assume that the individual claim costs, yi, arising from a policyholder i; i = 1; :::; n are
independent and identically distributed (iid) random variables according to an Exponential distribution
with probability density function (pdf) given by

f (yijxi; zi) =
e
� yi
�izi

�izi
; (1)

where yi > 0 and zi > 0, with �i = exp
�
xTi �

�
; where xi is the vector of covariate information regarding

individual characteristics and characteristics of the vehicle related to the ith insured person and where
� is the is the vector of the regression coe¢ cients.
The mean and the variance of yijxi; zi are given by

E(yijxi; z) = exp
�
xTi � + log (zi)

�
and (2)

V ar(yijxi; z) =
�
exp

�
xTi � + log (zi)

��2
: (3)

Let us now assume that zi follows a Lognormal distribution with pdf given by

g (zi) =
1p
2��zi

exp

264�
�
log (zi) +

�2

2

�2
2�2

375 ; (4)

with � > 0; where E(zi) = 1 ensures the identi�ability of the model and where V ar(zi) = exp
�
�2
�
� 1;

for i = 1; ::::; n.
Considering the assumptions of the model, i.e. Eqs (1 and 4), it is easy to see that the resulting

distribution of yijxi is the Exponential-Lognormal (ELN) distribution with pdf

f (yijxi) =
1Z
0

e
� yi
�izi

�izi

exp

"
�
�
log(zi)+

�2

2

�2
2�2

#
p
2��zi

dzi: (5)

Unfortunately, the above integral cannot be simpli�ed but it can be computed via numerical integra-
tion.
Finally, based on the laws of total expectation and total variance and the moments of the Exponential

distribution, one can easily see that the mean and the variance of yijxi are given by

E (yijxi) = Ezi [E (yijzi)] = exp
�
xTi �

�
Ezi [zi] = �i (6)

and

V ar (yijxi) = Ezi [V ar (yijzi)] + V arzi [E (yijzi)]
= �2i

�
2 exp

�
�2
�
� 1
�
: (7)

3 The EM Algorithm for ML Estimation of the Exponential-

Lognormal Regression Model

In this Section we describe how an EM type algorithm can be used to facilitate the ML estimation of
the ELN regression model. Let (yi;xi), i = 1; :::; n; be a sample of independent observations, where yi
is the claim severity and where xi is the vector of covariate information. Also, consider that the data
are produced according to the ELN model. Then, the log-likelihood can be written as
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l (�) =
nX
i=1

log (f (yijxi)) ; (8)

where � = (�;�) is the vector of the parameters and where f (yijxi) is the pdf of the ELN model, which
is given by Eq. (5). Maximization of the above function with respect to the vector of parameters � is
not easy because the pdf of the model does not exist in closed form and hence � cannot be estimated
via traditional numerical maximization methods, such as, for instance, the Newton-Raphson algorithm.
Fortunately, ML estimation of the model can be achieved in easy manner via an EM type algorithm.
The EM algorithm (see, Dempster, Laird & Rubin, 1977 and McLachlan & Krishnan, 2007) is suitable
for mixed Exponential models since their stochastic mixture representation involving a non-observable
random variable, denoted by zi herein, can be considered to produce missing data. In particular, if one
augments the unobserved data zi to the observed data (yi;xi), for i = 1; :::; n, then the complete data
log-likelihood factorizes into two parts

lc (�) =
nX
i=1

�
� yi
�izi

� log (�i)� log (zi)
�
+

nX
i=1

264�1
2
log (2�)� log (�)� log (zi)�

�
log (zi) +

�2

2

�2
2�2

375 ; (9)

for i = 1; :::n. The regression coe¢ cients � are involved in the �rst term and the parameter � is involved
in the second term of Eq. (9) which correspond to the log-likelihoods of the Exponential and Lognormal
distributions respectively.
The conditional expectation of the complete data log-likelihood is proportional to

Q
�
�;�(r)

�
� Ezi

�
lc (�) jyi;xi;�(r)

�
/

/
nX
i=1

24�yiEzi
h
1
zi
jyi;xi;�(r)

i
�
(r)
i

� log
�
�
(r)
i

�35+
nX
i=1

264�Ezi
h
(log (zi))

2 jyi;xi;�(r)
i

2
�
�(r)

�2 �

�
�(r)

�2
8

� log
�
�(r)

�375 ; (10)

where �(r) is the estimate of � at the rth iteration in the E-step of our EM type algorithm. In what

follows, the expectations Ezi
h
1
zi
jyi;xi;�(r)

i
and Ezi

h
(log (zi))

2 jyi;xi;�(r)
i
have to be calculated for

implementing the E-step of the algorithm, while the M-step involves maximizing the Q�function with
respect to �: The EM type algorithm for the ELN regression model can be formally described as follows.

� E-Step: Given the current estimates, say �(r); taken from the rth iteration, calculate for all i =
1; :::; n, the pseudo-values

w1;i = Ezi

�
1

zi
jyi;xi;�(r)

�

=

1Z
0

1
zi
e

� yi

�
(r)
i

zi

�
(r)
i zi

exp

266664�
0B@log(zi)+ (�(r))

2

2

1CA
2

2(�(r))
2

377775
p
2��(r)zi

dzi

1Z
0

e

� yi

�
(r)
i

zi

�
(r)
i zi

exp

266664�
0B@log(zi)+ (�(r))

2

2

1CA
2

2(�(r))
2

377775
p
2��(r)zi

dzi

(11)
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and

w2;i = Ezi

h
(log (zi))

2 jyi;xi;�(r)
i

=

1Z
0

(log (zi))
2 e

� yi

�
(r)
i

zi

�
(r)
i zi

exp

266664�
0B@log(zi)+ (�(r))

2

2

1CA
2

2(�(r))
2

377775
p
2��(r)zi

dzi

1Z
0

e

� yi

�
(r)
i

zi

�
(r)
i zi

exp

266664�
0B@log(zi)+ (�(r))

2

2

1CA
2

2(�(r))
2

377775
p
2��(r)zi

dzi

; (12)

Clearly the expectations involved in the E-step of the algorithm do not have closed form expressions
and thus numerical approximations are needed. Speci�cally, Eqs (11 and 12) can be evaluated
numerically. Alternatively, a Monte Carlo approach can also be used based on a rejection algorithm.
The latter case leads to variants of the EM algorithm such as the Monte Carlo EM (MCEM)
algorithm (see, for instance, Booth & Hobert, 1999 and Booth, Hobert & Jank, 2001) which do not
require knowledge of the pdf f (yijxi) but it is su¢ cient to be able to simulate from the posterior
density g (zijyi;xi;�), where g (zi) in our case is the pdf of the Lognormal mixing distribution,
which is given by Eq. (4).

� M-Step: In the M-Step, the pseudo-values w1;i and w2;i from the E-Step can be used to maximize
the Q�function.

�Firstly, the Newton-Raphson algorithm is employed to obtain ML estimates of the elements
of �. Taking the necessary derivatives of the Q�function with respect to � we obtain the
following results:

h (�) =
@Q
�
�;�(r)

�
@�

=

nX
i=1

 
yi

�
(r)
i

w1;i � 1
!
xi (13)

and

H (�) =
@2Q

�
�;�(r)

�
@�@�T

=
nX
i=1

 
� yi

�
(r)
i

w1;i

!
xix

T
i = X

TWX; (14)

for i = 1; :::; n , whereW = diagf� yi

�
(r)
i

w1;ig and where w1;i is given by Eq. (11).

The Newton-Raphson iterative procedure for obtaining ML estimates of the elements of �
goes as follows:

�(r+1) � �(r) �
h
H
�
�(r)

�i�1
h
�
�(r)

�
: (15)

� Secondly, update � with

�(r+1) �
q
2
�p
1 + �w2 � 1

�
; (16)

where �w2 =

nP
i=1

w2;i

n and where w2;i is given by Eq. (12).

� Note also that when the regression component of the model is limited to a constant �0 one ob-
tains E (yijxi) = exp

�
xTi �0

�
= � and thus this EM type algorithm can be employed for the ML

estimation of the univariate, without a regression component, model.
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4 Numerical Illustration

In this paper, we worked with a sample of data that were kindly provided by a major insurance company
operating in Greece and concern a motor third party liability (MTPL) insurance portfolio observed over
3 years. In our sample we considered only policyholders with complete records, i.e. with availability
of all a priori rating variables that correspond to their characteristics, including the characteristics of
their car. Response variables are the number of claims at fault reported to the company and the loss
corresponding to each claim made. The sample comprises 9986 policies which met our criteria. The
available a priori rating variables we employ are: the Bonus-Malus (BM) class of the policyholders, the
horsepower (HP) of their car and the size of the city (CS) where they live.

� This BMS has 20 classes and the transition rules are described as follows: Each claim free year is
rewarded by one class discount and each accident in a given year is penalized by one class. The
variable BM class divides the classes of the current Greek BMS into four categories of drivers, those
who belong to BM classes: C1= "Class 1- Class 2", C2 = "Class 3 - Class 5", C3 = "Class 6- Class
9" and C4 = "Class 10- Class 20".

� The variable HP consists of three categories of cars, those with a HP: C1 = "0-1400 cc", C2 =
"1400-1800 cc" and C3 = "greater than 1800 cc".

� The variable CS consists of three categories of policyholders, those who live in a: C1 = "large city",
C2 = "middle sized city" and C3= "small city".

Furthermore, since in this study we focus on the claim severity component, in Table 1 we present
some standard descriptive statistics for claim severities along with the number of observations in each
category of the three explanatory variables.

Table 1: Descriptive statistics of claim severities - size of the di¤erent categories of the explanatory
variables.

Statistic
Claim

Severities
Bonus-Malus

Category (BM)
Horsepower of
the car (HP)

Size of the
city (CS)

Minimum 55.4 C1: 6709 C1: 4252 C1: 4942
Median 1931 C2: 1393 C2: 2037 C2: 2539
Mean 2685. 8 C3: 1168 C3: 3697 C3: 2505

Maximum 141432 C4: 716 - -

Additionally, Figure 1 displays the corresponding to the explanatory variables descriptive histograms,
giving us an indication of the range of their values.

Figure 1. Descriptive histograms for the explanatory variables.
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Finally, Table 2 presents a summary of the e¤ects of the covariates on claim severities for 36 di¤erent
risk classes, which can be formed by dividing the portfolio into clusters de�ned by the combinations of
the characteristics of the policyholders and their cars based on all 9986 observations. In particular, Table
2 depicts the percentage of observations with claim sizes less than 2500 euros, higher than or equal to
2500 euros and less than 3500 euros, higher than or equal to 3500 euros and less than 4500 euros, and
higher than or equal to 4500 euros for each of the 36 groups of policyholders.

Table 2: Summary statistics of the claim severities of the di¤erent risk classes determined by the com-
bination of the explanatory variables.

Risk
Explanatory
Variables Claim Severity y

Class BM HP CS y < 2500 2500 � y < 3500 3500 � y < 4500 y � 4500
1 C1 C1 C1 75:80 8:52 8:68 7:00
2 C1 C1 C2 74:96 5:63 11:26 8:15
3 C1 C1 C3 76:70 7:52 8:19 7:59
4 C1 C2 C1 70:37 8:15 9:63 11:85
5 C1 C2 C2 68:39 7:69 11:19 12:73
6 C1 C2 C3 72:45 8:67 9:44 9:44
7 C1 C3 C1 74:52 7:81 10:31 7:36
8 C1 C3 C2 69:94 9:17 11:71 9:18
9 C1 C3 C3 73:33 7:97 10:11 8:59
10 C2 C1 C1 77:44 11:28 8:27 3:01
11 C2 C1 C2 77:85 4:70 10:74 6:71
12 C2 C1 C3 76:95 10:48 7:78 4:79
13 C2 C2 C1 67:86 3:57 21:43 7:14
14 C2 C2 C2 69:81 7:55 10:06 12:58
15 C2 C2 C3 72:45 8:16 10:20 9:19
16 C2 C3 C1 79:78 8:20 6:01 6:01
17 C2 C3 C2 70:59 11:76 8:82 8:83
18 C2 C3 C3 76:03 4:55 9:92 9:50
19 C3 C1 C1 78:81 6:78 5:93 8:47
20 C3 C1 C2 76:24 2:97 11:88 8:91
21 C3 C1 C3 72:89 9:89 8:79 8:42
22 C3 C2 C1 77:78 8:33 5:56 8:33
23 C3 C2 C2 70:73 9:76 9:75 9:76
24 C3 C2 C3 71:43 3:30 9:89 15:38
25 C3 C3 C1 76:16 6:62 11:92 5:30
26 C3 C3 C2 73:21 3:57 8:93 14:29
27 C3 C3 C3 79:28 6:31 4:05 10:36
28 C4 C1 C1 80:00 10:00 7:14 2:86
29 C4 C1 C2 80:88 1:48 11:76 5:88
30 C4 C1 C3 79:10 3:95 12:99 3:96
31 C4 C2 C1 66:67 8:33 16:67 8:33
32 C4 C2 C2 65:33 10:67 13:33 10:67
33 C4 C2 C3 65:96 6:38 12:77 14:89
34 C4 C3 C1 82:00 6:00 8:00 4:00
35 C4 C3 C2 78:38 5:41 5:41 10:80
36 C4 C3 C3 73:28 7:63 9:92 9:17

In the following subsections we �t the Negative Binomial Type I (NBI) and Poisson-Inverse Gaussian
(PIG) distributions on the number of claims, and the Exponential-Lognormal (ELN) and Pareto distri-
butions on claim sizes. Moreover, we will compare the two aforementioned claim severity distributions
with the Generalized Beta of the second kind (GB2) distribution, which has been used in an abundance
of actuarial settings for accommodating the long-tailed nature of claim sizes. Furthermore, regression
components are introduced in their mean parameters and all the risk classifying characteristics presented
above are included so as to use all the available information in the estimation of the claim frequency and
severity distributions. Additionally, the a priori and a posteriori, or Bonus-Malus, premium rates result-
ing from the combinations of the NBI and PIG claim frequency distributions/regression models with the
Pareto and ELN distributions/regression models will be calculated via the net premium principle with
independence between the claim frequency and severity components assumed2 .

2Note that the Bounus-Malus premium rates calculated according to the net premium principle based only on the a
posteriori criteria are obtained if the regression components of the NBI, PIG, Pareto and ELN regression models are limited
to constants.
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� Because we will be comparing the ELN distribution/regression model with the Pareto and GB2
distributions/regression models, we give below some rudimentary facts concerning the latter two.

�The Pareto model, taken for instance from Frangos & Vrontos (2001) and Mahmoudvand &
Hassani (2009) can be constructed as follows. Following a similar approach, as in the case
of the ELN model, consider that yijxi; zi; for i = 1; :::; n, is distributed according to the
Exponential distribution with mean �izi, where yi > 0, where �i = exp

�
xTi �

�
, where xi is

the vector of covariate information regarding individual characteristics and characteristics of
the car related to the ith insured person and � is the vector of the regression coe¢ cients, and
where zi > 0 is a continuous random variable which follows an Inverse Gamma distribution
with pdf

g (zi) =

1
(��1) exp

�
� (��1)

zi

�
�

zi
��1

��+1
� (�)

; (17)

with � > 2 and mean E(zi) = 1. Then, the resulting distribution of yijxi is a Pareto
distribution with pdf given by

f (yijxi) = �
[(�� 1)�i]

�

[yi + (�� 1)�i]
�+1

: (18)

The mean and the variance of the Pareto distribution are given by

E (yijxi) = �i and V ar (yijxi) =
[(�� 1)�i]

2

�� 1

�
2

�� 2 �
1

�� 1

�
: (19)

�Regarding the GB2 distribution, it should be noted that many heavy-tailed distributions can
be written as special or limiting cases of the GB2, see, for instance, McDonald & Xu (1995).
However, despite the prominence of the GB2 distribution in �tting heavy-tailed data, relatively
few applications use the GB2 in a regression context. Further details of the GB2 regression
model can be found, for instance, in Frees & Valdez (2008), Frees, Derrig & Meyers (2014a)
and Calderín-Ojeda, Fergusson & Wu (2017). Herein we use a simple speci�cation of the
GB2, see Rigby & Stasinopoulos (2009), which has as a special case the Pareto model given
by Eq. (18) and allows us to parameterize the location parameter, �i; in terms of covariates,
i.e. �i = exp

�
xTi �

�
; for i = 1; ::; n. The pdf of the GB2 distribution is de�ned by

f (yijxi) = j�j y���1i

8<:���i B (�; �)
"
1 +

�
yi
�i

��#�+�9=;
�1

=
� (� + �)

� (�) � (�)

�
�
yi
�i

���
yi

�
1 +

�
yi
�i

����+� ; (20)

for yi > 0, where �1 < � <1, � > 0 and � > 0, see also McDonald & Xu (1995), Eq. (2.7),
and where

B (�; �) =

1Z
0

x��1 (1� x)��1 dx = � (�) � (�)

� (� + �)
; (21)

is the Beta function.
The �rst and the second moment of the GB2 distribution are given by

E (yijxi) =
�iB

�
� + 1

� ; � �
1
�

�
B (�; �)

; for� � < 1

�
< � (22)

and
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E
�
y2i jxi

�
=
�2iB

�
� + 2

� ; � �
2
�

�
B (�; �)

; for� � < 2

�
< �; (23)

see McDonald (1996). Hence, the variance of the GB2 distribution can be easily calculated
using Eqs (22 and 23).

� Furthermore, the NBI and PIG claim frequency models can be derived as follows. Consider a
policyholder i whose number of claims, denoted as ki, with ki = 0; 1; 2; 3; :::, are independent and
suppose that �i is the vector of individual characteristics and characteristics of the car related to
the ith insured person, i = 1; :::; n, which represent di¤erent a priori rating variables. We assume
that given a continuous random variable ui > 0 with pdf � (ui) de�ned on R+; kij�i; ui follows
the Poisson distribution with mean �iui; where �i = exp

�
�Ti b

�
and where b is the vector of the

regression coe¢ cients. Then, the unconditional distribution of ki is a mixed Poisson distribution.
The following are well-known results applied to the above situation, see, for example, Dionne &
Vanasse (1989 and 1992), Boucher, Denuit & Guillen (2007 and 2008) and Tzougas, Vrontos &
Frangos (2018). We consider that E(ui) = 1 as this ensures the identi�ability of the model.

� Let ui follow a Gamma distribution with pdf given by

� (ui) =
u
1
��1
i

1
�

1
� exp

�
�ui
�

�
�
�
1
�

� ; (24)

where � > 0. Parameterization (24) ensures that E(ui) = 1:
Under this assumption the distribution of kij�i becomes a NBI distribution, with probability
mass function (pmf) given by

P (kij�i) =
�
�
ki +

1
�

�
ki!�

�
1
�

� �
��i

1 + ��i

�ki � 1

1 + ��i

� 1
�

: (25)

The mean and the variance of the NBI distribution are given by

E(kij�i) = �i and V ar(kij�i) = �i + �2i�: (26)

� Let ui follow a Inverse Gaussian distribution with pdf given by

� (ui) =
1p
2��u3i

exp

�
� 1

2�ui
(ui � 1)2

�
; (27)

where � > 0. Parameterization (27) also ensures that E(ui) = 1. Then, the distribution of
kij�i becomes a PIG distribution, with pmf given by

P (kij�i) =
�
2a

�

� 1
2 �kii e

1
�Kki� 1

2
(a)

(a�)
ki ki!

; (28)

where a2 = ��2 + 2�i
� and where

K� (!) =

1Z
0

x��1 exp

�
�1
2
!

�
x+

1

x

��
dx; (29)

is the modi�ed Bessel function of the third kind of order � with argument !.
The mean and the variance of the PIG distribution are given by

E(kij�i) = �i and V ar(kij�i) = �i + �2i�: (30)

� Finally, note that when the regression component in each of the aforementioned claim severity
and frequency regression models is limited to a constant, one obtains the univariate, without a
regression component, models.
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4.1 Modelling Results

This subsection presents the modelling results of the ELN distribution/regression model and the tra-
ditional NBI, PIG, GB2 and Pareto distributions/regression models. The EM algorithm described in
Section 3 was used to estimate both the ELN distribution and regression model. The model, for both
the cases with and without covariate information, converged after a few iterations using a rather strict
stopping criterion. In particular, we iterated between the E-step and the M-step until the relative change
in log-likelihood, which is given by Eq. (8), between two successive iterations was smaller than 10�12.
We also emphasize that for this model the choice of initial values for both the vector of the regression
coe¢ cients � and the parameter � of the Lognormal mixing distribution needed special attention be-
cause one may obtain inadmissible values if the starting values are bad. Good starting values for � were
obtained by �tting the exponential regression model. Also, a good initial value for � was feasible by
calculating V ar (yijxi) based on all observations, i = 1; :::; n; in our data set and solving Eq. (7) with
respect to � > 0. Additionally, to ensure that the global maximum had been obtained and the algorithm
had not been trapped in a local maximum, we checked with many initial values for �, but for all cases
we converged on the same solution. Furthermore, standard errors were obtained using the standard ap-
proach of Louis (1982). All computing was done using the statistical computing environment language
R. Additionally, ML estimation of the NBI, PIG, GB2 and Pareto distributions/regression models, for
which the de�nition of a log-likelihood function in closed form is feasible, was straightforward by using
standard statistical packages in R, such as the GAMLSS package. For more details on the GAMLSS
package, see Stasinopoulos, Rigby & Akantziliotou (2008). Finally, the computational time requirements
of the ELN distribution/regression model were compared to those of the over-simplistic Exponential
distribution/regression model. As anticipated, the Exponential distribution/regression model compared
favorably to the ELN distribution/regression model in terms of computing times required for ML esti-
mation since both the cases took fewer than 10 seconds of CPU time. Nevertheless, taking into account
that there were 9986 policies in the sample of MTPL data that was examined in this study, that we used
a rather strict stopping criterion for EM iterations and that the expectations involved at the E-step of
the algorithm do not have closed form expressions, the CPU times of the EM algorithm used for ML
estimation of both the ELN distribution and the ELN regression model can be characterized as modest.
In particular, the ML estimation of the ELN regression model was more chronologically demanding than
that of the ELN distribution because the numerical evaluation of the integrals at the E-step for the case
with covariates is more computationally time consuming than for the case without covariates. However,
both cases took less than 2 minutes of CPU time. Finally, it should be mentioned that the trade-o¤
between CPU time requirements and the e¢ ciency of the ELN regression model for approximating claim
costs in our sample and for deriving ratemaking mechanisms is sifted in favour of the latter two. In
particular, regardless of the very low CPU time required for ML estimation of the Exponential model,
the assumption of an Exponential response distribution is inadequate both for modelling the tail of the
claim severity and for ratemaking purposes since �rstly this model cannot e¤ectively capture the tail
of the claim size distribution and secondly all the possible important factors, such as reaction times
and aggressive driving behavior, etc., which to a great extent reveal the riskiness of the insureds, but
are either unmeasurable or unobservable, cannot be integrated into the model as it can only take into
account covariate information of the policyholder and/or their car. As a result, heterogeneity may still
be observed in tari¤ cells despite the use of many classi�cation variables. On the contrary, as far as
the ELN regression model is concerned, �rstly, as illustrated later in this subsection, it has an upper
tail which can su¢ ciently �t large claims in our sample and secondly, as was previously shown, it allows
us to correct for this unobserved heterogeneity since it was constructed by assuming that yijxi; zi; for
i = 1; :::; n, is distributed according to the Exponential distribution with mean �izi, where yi > 0, where
�i = exp

�
xTi �

�
, and where the risk parameter zi > 0; which represents the risk proneness of policyholder

i, i.e. unknown risk characteristics of the policyholder having a signi�cant impact on the occurrence of
claims, was regarded as a random variable that is distributed according to the Lognormal distribution,
see Eqs (1 and 4).
The ML estimates of the parameters and the corresponding standard errors in parentheses for the

NBI, PIG, GB2, Pareto and ELN distributions are presented in Panel A of Table 3, while Panel B of
Table 3 reports our �ndings with respect to the NBI, PIG, GB2, Pareto and ELN regression models.
.
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Furthermore, we rely on normalized quantile residuals3 , see Dunn and Smyth (1996), as an exploratory
graphical device for investigating the adequacy of the �t of the competing NBI and PIG models for claim
frequencies and GB2, Pareto and ELN models for the claim severities. Also, for comparison purposes,
we �tted the simple Exponential regression model, which obviously has a thinner tail than the GB2,
Pareto and ELN models�and included the corresponding plot. For continuous response distributions,
the normalized (randomized) quantile residuals are de�ned as r̂i = ��1 (wi) ; where ��1 is the inverse
cumulative distribution function of a standard Normal distribution and where wi = Fi(yij�̂), where Fi is
the cumulative distribution function estimated for the ith individual, yi is the corresponding observation
and �̂ contains all estimated model parameters. For discrete response distributions, the aforementioned
de�nition is extended and wi is de�ned as a random value from the uniform distribution on the intervalh
Fi(yi � 1j�̂); Fi(yij�̂)

i
: In both cases, the model �t can be evaluated by means of usual quantile-quantile

plots. Speci�cally, if the data indeed follow the assumed distribution, then the residual on the quantile-
quantile plot will fall approximately on a straight line. Figure 2 shows the normalized (random) quantiles
for the NBI, PIG, Exponential, GB2, Pareto and ELN regression models. From Figure 2 we see that
the residuals of the NBI and PIG models are very close to the diagonal and indicate a very good �t to
the distribution of the claim frequencies. Also, regarding claim severities, the residuals indicate that the
GB2, Pareto and ELN models are better assumptions than the Exponential model since the residuals
of the former three are very close to the diagonal and indicate a very good �t to the distribution of the
claim sizes, while the sample quantiles of the Exponential model greater than 2 are signi�cantly higher
than the theoretical quantiles and thus, as expected, the Exponential model does not capture the tail of
the claim size distribution which corresponds to signi�cantly large claim sizes.

3Note that the deviance residuals have also been traditionally utilized to examine goodness of �t of generalized linear
models (GLMs). Moreover, Pierce and Schafer (1986) indicated that the deviance residuals should be more nearly normal
than the Pearson residuals. However, the deviance residuals cannot be guaranteed to be closely normal when the data
are highly dispersed relative to the mean and their distribution is mostly skewed. As was mentioned in Dunn and Smyth
(1996), normalized quantile residuals remedy the above-mentioned problem of the deviance residuals. Furthermore, the
only information needed for computing normalized quantile residuals is knowing the cumulative distribution function of
the response variable, which makes calculation much easier than deviance residuals, which might be challenging to de�ne
in more complex models. Finally, the randomized quantile residuals can be also applied for model diagnosis when the
response variable does not belong to the GLM family of models.
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Figure 2. Normalized quantiles for the NBI, PIG, Exponential, GB2, Pareto and ELN regression models.

Additionally, in what follows, we will investigate the behavior of the ELN distribution at large claim
sizes and compare it to that of the Gamma and Pareto distributions. In particular we will present a
ranking of these claim severity distributions by the right tail index4 which is a risk measure for right tail
deviation that was suggested by Wang (1998). The right tail index is de�ned as

d (Y ) =

1Z
0

p
SY (t)dt

E (Y )
� 1; (31)

where SY (t) = P (Y � t) ; is the survival function, or the decumulative distribution function (ddf),
of Y:
Figure 3 displays three plots of the right tail index, d (Y ), as a function of the variance for the

Gamma, Pareto and ELN distributions respectively. The parameters were chosen so that the Gamma,
Pareto and ELN distributions have a unit mean, i.e. E (Y ) = 1, and varying variance, V ar (Y ), taking
on the same values for all densities. From Figure 3, we observe that the ranking of all models in terms
of their right tail index values is consistent with what was discussed in Section 1. Speci�cally, the right

4Note also that the residuals and the right tail index for the ELN model which does not have a pdf in closed form can
be accurately computed based on numerical integration methods.

14



tail index ranks the Pareto distribution as having a fatter tail than ELN distribution, which in turn has
a fatter tail than the Gamma distribution.

Figure 3. Plot of the right tail index as a function of the variance for the Gamma, Pareto and

ELN distributions with unit mean.

Finally, the empirical estimator of the right tail index, d̂ (Y ), which was considered by Jones & Zitikis
(2003) can be calculated as

d̂ (Y ) =
nX
i=1

ci
Y(i)
�Y
; (32)

where Y(i) is the i� th ordered observation of the sample Y1; :::; Yn and where the coe¢ cients ci are
given by

ci =

s�
n� i
n

�
+

s�
n� i+ 1

n

�
� 1

n
; (33)

for i = 1; :::; n.
Regarding our data set, the value which we obtained for the empirical estimator of the right tail

index is d̂ (Y ) = 1:362 while the ELN distribution has a right tail index d (Y ) = 1:217 which is close
to the empirical result. Nevertheless, since for smaller data sets the empirical approach can lead to an
underestimation of d (Y ) it makes sense to build a parametric bootstrap two-sided con�dence interval (CI)
for d̂ (Y ) : Given our data, we generated B = 100000 bootstrap samples of size 9986 and we calculated
the 95% bootstrap-based CI for d̂ (Y ) to be (1:113; 1:560). The value 1:217 is included in this CI and
hence this is an additional indicator that the ELN distribution is able to e¤ectively model the right tail
of the data.

4.2 Models Comparison

Thus far, we have the NBI, PIG and GB2, Pareto and ELN competing distributions/regression models
for the claim frequency and severity component respectively. Consequently, to di¤erentiate between
these models, this subsection compares them so as to select the best for each case, employing the Global
Deviance (DEV), Akaike information criterion (AIC) and the Schwarz Bayesian Criterion (SBC) which
are classic hypothesis/speci�cation tests. The (�tted) Global Deviance is de�ned as

DEV = �2l̂
�
�̂
�
; (34)
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where l̂ is the maximum of the log-likelihood and �̂ is the estimated parameter vector of the model.
Furthermore, the AIC is given by

AIC = DEV + 2� df (35)

and the SBC is given by

SBC = DEV + log (n)� df ; (36)

where df are the degrees of freedom, that is, the number of �tted parameters in the model and n is the
number of observations in the sample.
It should be noted that special emphasis should be placed on the comparison of the NBI distrib-

ution/regression model with the PIG distribution/regression model and the comparison of the Pareto
distribution/regression model with the ELN distribution/regression model since their stochastic mixture
representation, see Sections 2 and 4, enables the use of a Bayesian approach towards deriving a poste-
riori, or Bonus-Malus, ratemaking mechanisms for the number and the cost of claims. Moreover, in a
posteriori ratemaking it is of crucial importance to the actuary to have interpretable results in order
to re�ne their a priori risk classi�cation and restore fairness by using a premium structure that can be
su¢ ciently explained to policyholders and regulators. Therefore, while the GB2 model is also included
in this subsection for the sake of comparison with the two mixed Exponential models, in the following
subsections we will limit our analyses only to the NBI, PIG, Pareto and ELN distributions/regression
models since the di¤erences between those models will produce di¤erent a posteriori, or Bonus-Malus,
premiums. Note also that since the NBI and PIG models for the frequency component and the Pareto
and ELN models for the severity component have the same number of parameters, it is su¢ cient to
examine the respective log-likelihoods. The resulting Global Deviance, AIC and SBC values for the NBI,
PIG, Pareto and ELN models are given in Table 4 (Panels A and B). As is well known, a commonly
used rule-of-thumb states that a model signi�cantly outperforms a competitor if the di¤erence in their
log-likelihoods exceeds �ve, corresponding to a di¤erence in their AIC values of more than ten and to
a di¤erence in their SBC values of more than 5, see Burnham & Anderson (2002) and Raftery (1995)
respectively. This means here that, as can be seen from Panels A and B, as far as claim frequencies
are concerned, the best �t is given by the PIG distribution/regression model, while regarding the claim
severities, the ELN distribution/regression model is superior to the Pareto distribution/regression model.
Finally, Table 4 (Panels A and B) also includes the Deviance, AIC and SBC values for the GB2 model.

Our �ndings suggest that with respect to the AIC (see Panels A and B) and the Global Deviance (see
Panel B) test results, the �t provided by the GB2 distribution/regression model is only marginally better
than the �t given by the ELN distribution/regression model, which has fewer parameters. However, when
the SBC test is used, we observe a slight superiority of the ELN distribution/regression model vs the
GB2 distribution/regression model. The di¤erence in the outcome of the AIC and SBC tests for the
GB2 and ELN distributions/regression models is understandable because, as has been mentioned on
several occasions in the applied statistical literature, the AIC may fail to choose the most parsimonious
model because the AIC function is largely based on the deviance function, whereas the BIC penalizes
model complexity, i.e. the number of parameters, more heavily. In particular, as it can be seen from Eqs
(35 and 36), only the penalty term di¤ers between each formula, while the goodness of �t parts remain
the same. Therefore, in this case the BIC favours the more parsimonious ELN distribution/regression
model since in the BIC the penalty for additional parameters is stronger than that of the AIC. Of
course, for other data sets the GB2 distribution/regression model, which has more parameters, may
perform better than both the Pareto and ELN distributions/regression models. In such cases, if we
knew that the actual distribution is a GB2, we would prefer to �t a GB2 instead of a mixed exponential
model. Nevertheless, before using any distribution for carrying out di¤erent tasks, such as setting the
appropriate level of premiums, reserves and reinsurance, its appropriateness for modelling claims data
should always be investigated. In the case of the GB2 distribution, if the data set is large, even if
the GB2 provides parameter estimates with small standard errors, these estimates may be signi�cantly
biased if the assumption that the distribution is a GB2 is not valid. Moreover, if the data set is small, the
parameter estimates of the GB2 distribution can be unstable, as for instance was reported in Calderín-
Ojeda, Fergusson & Wu (2017). In particular, Calderín-Ojeda, Fergusson & Wu (2017) developed a
novel EM algorithm for ML estimation of the parameters of the heavy-tailed Double Pareto-Lognormal
(DPLN) regression model. As was discussed in Reed & Jorgensen (2004), the DPLN model exhibits
Paretian behavior in both tails, among other theoretical properties, and hence can be considered as a
valid alternative to other parametric heavy-tailed models such as the GB2 model. With this in mind,
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Calderín-Ojeda, Fergusson & Wu (2017) compared the performance of the DPLN distribution with the
GB2 distribution and reported that regarding small sample sizes the standard errors of the parameter
estimates of the DPLN distribution are noticeably smaller, highlighting the consistency of the parameter
estimation for the DPLN distribution and its advantage over the GB2 distribution in this case.

Table 4: Global Deviance, AIC and SBC values for the NBI, PIG, GB2, Pareto and ELN models.
Panel A: Distributions Panel B: Regression Models

Model df AIC SBC Model df DEV AIC SBC
NBI 2 17021:61 17036:03 NBI 9 16949:97 16967:97 17032:86
PIG 2 16963:01 16977:43 PIG 9 16878:27 16896:27 16961:15
GB2 4 176167:20 176196 GB2 11 176108 176130 176209:30
Pareto 2 176518 176532:40 Pareto 9 176485:40 176503:40 176568:30
ELN 2 176173 176187:40 ELN 9 176120:80 176138:80 176203:70

4.3 Calculation of the A Priori Premiums

In this subsection, based on the use of the net premium calculation principle, we analyze the di¤erences
between the Pareto and ELN claim severity regression models through the mean of the cost of claims
of the policyholders who belong to the 36 di¤erent risk classes, which are determined by the relevant
a priori characteristics. In particular, E(yijxi); for i = 1; :::; n; forms the basis of the premium for
each risk class. Note that in the case of the ELN model, which does not have a pdf in closed form, the
estimated expected annual claim severity for each risk class was calculated in Eq. (6) using the law of total
expectation. Additionally, we calculate the a priori premiums that must be paid by all the di¤erent groups
of policyholders based on the combinations of the NBI and PIG regression models for approximating claim
frequency and the two competing claim severity regression models. Speci�cally, assuming independence
between the claim frequency and severity components, the premium rates calculated according to net
premium principle are given by E(kij�i)�E(yijxi); for i = 1; :::; n, in the case of the ELN, Pareto, NBI
and PIG regression models, see Eqs (6, 19, 26 and 30) respectively.
The results are summarized in Table 5. At this point we should emphasize that if the ratemaking

exercise is only based on the number of claims at fault, regardless of their severity, which is usually the
case encountered in the literature, this over-simpli�cation can be regarded as problematic since it can
limit any insights one can get into the extent to which certain explanatory variables can predict insurance
outcomes as these can signi�cantly di¤er between the number and the costs of claims. The key idea is
that both the a priori and a posteriori corrections should aim at creating tari¤ cells as homogeneous as
possible by integrating the severity of the claims since this can improve ratemaking by providing a more
complete picture to the actuary about the extent to which the amounts of premiums vary according to
observable characteristics of policyholders and their cars. For instance, from Table 5 we observe that
the premium payment for a policyholder who belongs to the �rst BM category, lives in a large city and
has a car with HP between 0-1400 cc, i.e. for the reference class, is equal to 2557:30 and 2497:14 euros,
while another insured who belongs to the same BM category, has a car with similar characteristics and
lives in a small city, i.e. risk class 3, has to pay a higher premium equal to 2668:06 and 2629:11 euros
in the case of the Pareto and ELN models respectively. However, when the number of claims is also
taken into consideration, the premium payment for the �rst individual we described before, i.e. for the
reference class, reduces to 1290:27 and 1259:92 euros in the case of the NBI-Pareto and NBI-ELN models
respectively, and to 1289:88 and 1259:54 euros in the case of the PIG-Pareto and PIG-ELN models
respectively, and hence is now higher than the premium required to be paid by the second individual
we described before, i.e. for risk class 3, which goes down to 846:50 and 834:14 euros in the case of the
NBI-Pareto and NBI-ELN models respectively, and to 820:41 and to 808:43 euros in the case of the PIG-
Pareto and PIG-ELN models respectively. Moreover, we observe that regarding all combinations of both
claim frequency models with the two corresponding claim severity models, the group of policyholders
with the lowest expected claim severity are those who belong to the second BM category, live in a large
city and have a car with HP between 0-1400 cc, i.e. risk class 10, whereas the group of insureds with the
highest expected claim severity are those who belong to the third BM category, live in a middle sized
city and have a car with HP between 1400-1800 cc, i.e. risk class 23. On the other hand, when claim
frequencies are also taken into account, the lowest premium payment is required by those insureds who
belong to the second BM category, live in a small city and have a car with HP between 0-1400 cc, i.e.
risk class 12, whereas the highest premium payment is required by those policyholders who belong to

17



the �rst BM category, live in a large city and have a car with HP greater than 1800 cc, i.e. risk class 7.

Table 5: A priori premium rates, NBI, Pareto, PIG and ELN regression models.

Risk
Explanatory
Variables

A Priori Premiums

Class BM HP CS Pareto ELN NBI-Pareto NBI-ELN PIG-Pareto PIG-ELN

1 C1 C1 C1 2557:30 2497:14 1290:27 1259:92 1289:88 1259:54
2 C1 C1 C2 2767:52 2740:79 1178:87 1167:48 1174:51 1163:16
3 C1 C1 C3 2668:06 2629:11 846:50 834:14 820:41 808:43
4 C1 C2 C1 2805:98 2726:84 1424:40 1384:23 1424:97 1384:78
5 C1 C2 C2 3036:64 2992:91 1301:42 1282:67 1297:52 1278:83
6 C1 C2 C3 2927:51 2870:96 934:50 916:44 906:33 888:82
7 C1 C3 C1 2667:53 2663:24 1441:02 1438:71 1441:45 1439:14
8 C1 C3 C2 2886:81 2923:10 1316:60 1333:15 1312:53 1329:02
9 C1 C3 C3 2783:07 2803:99 945:40 952:51 916:82 923:71
10 C2 C1 C1 2458:75 2394:91 1148:04 1118:23 1149:18 1119:35
11 C2 C1 C2 2660:87 2628:58 1048:91 1036:18 1046:40 1033:70
12 C2 C1 C3 2565:24 2521:48 753:18 740:33 730:92 718:45
13 C2 C2 C1 2697:84 2615:21 1267:38 1228:56 1269:54 1230:65
14 C2 C2 C2 2919:62 2870:38 1157:95 1138:42 1155:99 1136:49
15 C2 C2 C3 2814:69 2753:42 831:48 813:38 807:47 789:89
16 C2 C3 C1 2564:73 2554:21 1282:17 1276:91 1284:22 1278:96
17 C2 C3 C2 2775:56 2803:43 1171:46 1183:23 1169:36 1181:10
18 C2 C3 C3 2675:81 2689:20 841:18 845:39 816:81 820:90
19 C3 C1 C1 2687:08 2636:74 1170:06 1148:14 1169:47 1147:57
20 C3 C1 C2 2907:96 2894:02 1069:03 1063:90 1064:87 1059:76
21 C3 C1 C3 2803:45 2776:09 767:63 760:14 743:83 736:57
22 C3 C2 C1 2948:37 2879:29 1291:69 1261:43 1291:95 1261:68
23 C3 C2 C2 3190:74 3160:23 1180:16 1168:88 1176:39 1165:14
24 C3 C2 C3 3076:07 3031:46 847:43 835:14 821:73 809:81
25 C3 C3 C1 2802:90 2812:14 1306:76 1311:07 1306:89 1311:20
26 C3 C3 C2 3033:31 3086:52 1193:93 1214:88 1190:00 1210:88
27 C3 C3 C3 2924:3 2960:76 857:32 868:01 831:23 841:60
28 C4 C1 C1 2504:41 2450:87 1215:13 1189:16 1212:46 1186:54
29 C4 C1 C2 2710:28 2690:01 1110:21 1101:91 1104:01 1095:76
30 C4 C1 C3 2612:88 2580:40 797:20 787:29 771:17 761:58
31 C4 C2 C1 2747:94 2676:33 1341:45 1306:49 1339:44 1304:53
32 C4 C2 C2 2973:84 2937:46 1225:63 1210:63 1219:64 1204:72
33 C4 C2 C3 2866:96 2817:77 880:08 864:97 851:93 837:31
34 C4 C3 C1 2612:36 2613:90 1357:10 1357:91 1354:93 1355:74
35 C4 C3 C2 2827:10 2868:95 1239:93 1258:28 1233:74 1252:00
36 C4 C3 C3 2725:50 2752:05 890:34 899:02 861:79 870:18

Overall, as expected, Table 5 shows that small di¤erences lie in the a priori premiums resulting from
the Pareto and ELN claim severity models and also in those determined by their combinations with the
NBI and PIG claim frequency models because, as is well known, in this case only the mean parameters
of the Pareto and ELN models, which are modelled using the same covariate information, a¤ect the
estimation of the premium rates. However, on the path towards actuarial relevance where the Bayesian
view will be taken to calculate the severity of the a posteriori corrections, it is the value of the dispersion
parameter of the Lognormal mixing distribution that will consequently a¤ect the calculation of the a
posteriori, or Bonus-Malus, premium rates. In particular, as was previously mentioned, the ELN model
which is less heavy-tailed than the Pareto model will show much less extreme relative a posteriori, or
Bonus-Malus, premiums for policyholders with some claim experience.
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4.4 Calculation of the A Posteriori Premiums

In this subsection, we examine how the ELN model responds to claim experience. Consider a policyholder
i who was observed for t years of their presence in the portfolio with claim frequency history k1i ; :::; k

t
i and

denote by yji;k the loss incurred from their claim k for the period j; for i = 1; :::; n and j = 1; :::; t. Then,
the information we have for their claim size history will be in the form of a vector y1i;1; :::; y

t
i;kti

and the

total amount of their claims will be equal to
tX

j=1

kjiX
k=1

yji;k: The problem is to determine at the renewal of

the policy the expected claim severity of the policyholder i for the period t+1 given the observation of the
reported accidents in the preceding t periods and observable characteristics in the preceding t+1 periods
and the current period. Applying Bayes theorem, one can �nd that the pdf of the posterior distribution
of zt+1i ; given claim size records y1i;1; :::; y

t
i;kti

and x1i ; :::; x
t+1
i individual characteristics records, is given

by
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where f
�
yj
i;kti
jxi; zi

�
is the pdf of the Exponential distribution, which is given by Eq. (1), and where

g
�
zt+1i

�
is the pdf of the Lognormal prior distribution5 which is given by Eq. (4). Using the quadratic

loss function and the net premium principle, one can �nd that the mean of the posterior structure
function given by6
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The expectation in Eq. (38) does not have a closed form expression. However, it can be easily
computed based on either numerical integration or a Monte Carlo approach since neither scheme requires
knowledge of the pdf of the posterior distribution of zt+1i .
Based on the aforementioned methodology, we compute the a posteriori, or Bonus-Malus, premium

rates resulting from the ELN model based only on di¤erent claim costs, i.e. the a posteriori criteria,
and based both on di¤erent claim costs and the characteristics of the policyholder and the automobile,
i.e. the a priori criteria. When both criteria are considered, we examine a group of policyholders who
share the following common characteristics: We consider that the policyholder i belongs to the �rst BM
category, lives in a large city and has a car with HP between 0-1400 cc. The premium rates will be
divided by the premium when t = 0; i.e. we calculate the relative premiums, since we are interested
in the di¤erences between various classes and the results are presented so that the premium for a new
policyholder is 100. Table 6 (Panels A and B) shows comparable relative premiums for the Pareto and
ELN distributions/regression models respectively, assuming that the cost of one claim in the �rst year of
observation ranges from 1000 euros to 20000 euros. Table 6 (Panels A and B) shows that when the claim
size increases the premium rates also increase. Furthermore, we observe that while for very small claim
sizes up to 2000 euros the bonuses awarded by the ELN and Pareto distributions/regression models are
almost indistinguishable, in all other cases, as expected, the less heavy-tailed ELN distribution/regression
model in general penalizes policyholders who reported claims with moderate amounts signi�cantly less
severely than the Pareto distribution/regression model. For example, from Panel A, when only the a
priori criteria are considered, we see that policyholders who had one claim size of 12000 euros in the
�rst year will have to pay a malus of 65:94% and 31:75% of the basic premium, while those who had one

5Note that in the case of the Pareto model g
�
zt+1i

�
is the pdf of the Inverse Gamma prior distribution which is given

by Eq. (17).
6Note also that, for the sake of brevity, we have not included the Bonus-Malus premium functions resulting from the

traditional NBI, PIG and Pareto models. Those functions can be easily computed in closed form based on the methodology
presented, for instance, in Dionne & Vanasse (1989 and 1992), Frangos & Vrontos (2001), Mahmoudvand & Hassani (2009)
and Tzougas, Vrontos & Frangos (2014 and 2018) respectively. Note also that, the Bounus-Malus premium rates calculated
according to the net premium principle based only on the a posteriori criteria are obtained if the regression components of
the ELN, Pareto, NBI and PIG regression models, see Eqs (5, 18, 25 and 28), are limited to constants.
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claim size of 15000 euros in the �rst year will have to pay a malus of 87:27% and 40:62% of the basic
premium in the case of the Pareto and ELN distributions respectively. Additionally, from Panel B when
both the a priori and the a posteriori criteria are considered, we see, for instance, that policyholders who
had one claim size of 14000 euros in the �rst year will have to pay a malus of 86:28% and 39:88% of the
basic premium, while those who had one claim size of 17000 euros in the �rst year will have to pay a
malus of 108:90% and 48:79% of the basic premium in the case of the Pareto and ELN regression models
respectively.

Table 6: A posteriori, or Bonus-Malus, premium rates, Pareto and ELN distributions/regression models.

Panel A: Distributions Panel B: Regression Models

Claim Severity Pareto ELN Claim Severity Pareto ELN
1000 87:73 93:84 1000 88:26 94:29
2000 94:84 97:84 2000 95:80 98:46
3000 101:95 101:68 3000 103:34 102:46
4000 109:06 105:39 4000 110:88 106:32
5000 116:17 108:98 5000 118:42 110:06
6000 123:28 112:46 6000 125:96 113:68
7000 130:39 115:86 7000 133:50 117:21
8000 137:50 119:17 8000 141:04 120:65
9000 144:61 122:41 9000 148:58 124:01
10000 151:72 125:59 10000 156:12 127:31
11000 158:83 128:70 11000 163:66 130:54
12000 165:94 131:75 12000 171:20 133:70
13000 173:05 134:75 13000 178:74 136:82
14000 180:16 137:71 14000 186:28 139:88
15000 187:27 140:62 15000 193:82 142:89
16000 194:38 143:48 16000 201:36 145:86
17000 201:49 146:31 17000 208:90 148:79
18000 208:60 149:10 18000 216:44 151:68
19000 215:71 151:85 19000 223:98 154:53
20000 222:82 154:57 20000 231:52 157:35

Let us now compute the BMSs with a frequency and a severity component using the net premium
calculation principle. As far as the claim frequency component is concerned, similarly to the severity
component, employing a Bayesian approach and using the quadratic error loss function, one can easily
see that the Bonus-Malus premium rates are given by the posterior7 mean E

�
ut+1i jk1i ; :::; kti ;�1i ; :::; �t+1i

�
;

where �1i ; :::; �
t+1
i is the vector of individual characteristics. In what follows, based on the NBI and PIG

distributions/regression models and the Pareto and ELN distributions/regression models for approximat-
ing the number and the cost of claims respectively, the relative premiums resulting from those systems are
calculated via the product of the posterior mean claim frequency and the posterior mean claim severity,

i.e. E
�
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�
, assuming that the accumulative

claim severities range from 1000 euros to 20000 euros when the age of the policy is up to j = 2 years. Ta-
bles 7 and 8 summarize our �ndings with respect to the a posteriori criteria in the case of the NBI-Pareto
and NBI-ELN and PIG-Pareto and PIG-ELN distributions respectively. Also,Tables 9 and 10 present
our results with respect to both the a priori and a posteriori criteria in the case of the NBI-Pareto and
NBI-ELN and PIG-Pareto and PIG-ELN regression models respectively. Note that for the BMSs derived
based on both criteria, since the explanatory variable BM category varies substantially depending on
the number of claims of policyholder i for year j, the explicit claim frequency history determines the
calculation of the premium rates resulting from the NBI, PIG, Pareto and ELN regression models and
not just the total number of claims K, as in the case when only the a posteriori criteria are considered
or when the policyholder is observed for a single year and both criteria are taken into account. Due to
the aforementioned reason, in the examples presented in Tables 9 and 10, we consider two cases in which
we specify the exact order of the claim frequency history in order to derive the relative premiums that

7Note that ut+1i follows the Gamma prior distribution which is given by Eq. (24) in the case of the NBI model.
Note also that ut+1i follows the Inverse Gaussian prior distribution which is given by Eq. (27) in the case of the PIG

model.
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must be paid by the same insured we described before when only the severity component was examined.
Speci�cally, we assume that the speci�c policyholder has either reported one claim in the �rst year and
another claim in the subsequent year, i.e. k1i = 1; k

2
i = 1; thus K = 2 at j = 2; or that they have made

one claim in the �rst year and two claims in the subsequent year, i.e. k1i = 1; k
2
i = 2; hence K = 3 at

j = 2. In what follows we discuss our �ndings. Firstly, from all Tables 7, 8, 9 and 10 we observe that the
systems resulting from the NBI-Pareto, NBI-ELN, PIG-Pareto and PIG-ELN distributions/regression
models are fair since if the total accumulated number of claims K is kept constant the premium reduces
over time while it increases proportionally to the total claim severity, whereas if time and the total claim
size are �xed the premium increases when the total claim frequency increases. Secondly, for very small
accumulative claim costs, speci�cally from 1000 up to 5000 euros in both in the �rst and the second
year of observation, when only the a posteriori criteria are considered, see Tables 7 and 8, and from
1000 up to 5000 euros and from 1000 up to 7000 euros in the �rst and the second year of observation
respectively, when both criteria are taken into account, see Tables 9 and 10, we observe that the BMSs
resulting from the NBI-ELN and PIG-ELN models punish slightly more those policyholders who had
more than one claim in a given year than the systems determined by the NBI-Pareto and PIG-Pareto
models respectively. On the contrary, those individuals who had only a single small claim in a given year
of a cost which is equal to the total cost of those with more than one claim are, in the majority of cases,
penalized slightly more under the BMSs provided by the NBI-Pareto and PIG-Pareto models. Those
two observations imply that, regarding those claims with very small amounts, the ELN model generally
puts more emphasis on the frequency component and hence distributes their burden among insureds in
a more fair and equitable manner than the Pareto model. For instance, from Table 7, when j = 1, we
see that policyholders who had one claim size of 4000 euros will have to pay a malus of 94:61% and
88:06% of the basic premium, while those who had two claims with total size amounting to 4000 euros
will have to pay a malus of 144:75% and 157:13% of the basic premium in the case of the NBI-Pareto and
NBI-ELN distributions respectively. From Table 7, when j = 2, we observe that policyholders who had
one claim size of 4000 euros will have to pay a malus of 75: 26% and 69:36% of the basic premium, while
those who had two claims with total size equal to 4000 euros will have to pay a malus of 120:43% and
131: 58% of the basic premium in the case of the NBI-Pareto and NBI-ELN distributions respectively.
From Table 8, when j = 1, we see that policyholders who had one claim size of 4000 euros will have to
pay a malus of 90:02% and 83:62% of the basic premium, while those who had two claims with total
size amounting to 4000 euros will have to pay a malus of 175:42% and 189:35% of the basic premium
in the case of the PIG-Pareto and PIG-ELN distributions respectively. From Table 8, when j = 2, we
observe that policyholders who had one claim size of 4000 euros will have to pay a malus of 65% and
59:43% of the basic premium, while those who had two claims with total size equal to 4000 euros will
have to pay a malus of 132:69% and 144:46% of the basic premium in the case of the PIG-Pareto and
PIG-ELN distributions respectively. From Table 9, when j = 1, we see that policyholders who had one
claim size of 5000 euros will have to pay a malus of 103:16% and 88:82% of the basic premium, while
those who had two claims with total size equal to 5000 euros in the �rst year will have to pay a malus
of 128:93% and 130:69% of the basic premium in the case of the NBI-Pareto and NBI-ELN regression
models respectively. From Table 9, when j = 2, we observe that policyholders who had claim frequency
history k1i = 1; k2i = 1 (i.e. total number of claims K = 2 at j = 2) and the total size of their claims
amounts to 7000 euros will have to pay a malus of 131:49% and 121: 07% of the basic premium, while
those who had claim frequency history k1i = 1; k

2
i = 2 (i.e. total number of claims K = 3 at j = 2) and

the total size of their claims amounts to 7000 euros will have to pay a malus of 164:96% and 170:98%
of the basic premium, in the case of the NBI-Pareto and NBI-ELN regression models respectively. From
Table 10, when j = 1, we see that policyholders who had one claim size of 5000 euros will have to pay
a malus of 87:98% and 74:71% of the basic premium, while those who had two claims with total size
equal to 5000 euros in the �rst year will have to pay a malus of 135:12% and 136:92% of the basic
premium in the case of the PIG-Pareto and PIG-ELN regression models respectively. From Table 10,
when j = 2, we observe that policyholders who had claim frequency history k1i = 1; k2i = 1 (i.e. total
number of claims K = 2 at j = 2) and the total size of their claims amounts to 7000 euros will have to
pay a malus of 108:76% and 99:36% of the basic premium, while those who had claim frequency history
k1i = 1; k

2
i = 2 (i.e. total number of claims K = 3 at j = 2) and the total size of their claims amounts

to 7000 euros will have to pay a malus of 157:25% and 163:10% of the basic premium, in the case of the
PIG-Pareto and PIG-ELN regression models respectively. Finally, similarly to the results presented in
the Table 6, in every other case, Tables 7, 8, 9 and 10 show that the BMSs resulting from the NBI-ELN
and PIG-ELN distributions/regression models penalize policyholders with moderate costs considerably
less severely than the systems determined by the NBI-Pareto and PIG-Pareto distributions/regression
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models. For example, from Table 7, when j = 1, we see that policyholders who had K = 1 claim size
of 14000 euros will have to pay a malus of 221:48% and 145:73% of the basic premium, while those who
had K = 2 claims with total size amounting to 14000 euros will have to pay a malus of 304:31% and
241:97% of the basic premium in the case of the NBI-Pareto and NBI-ELN distributions respectively.
From Table 7, when j = 2, we observe that policyholders who had K = 1 claim size of 17000 euros
will have to pay a malus of 223:79% and 135:12% of the basic premium, while those who had K = 2
claims with total size equal to 17000 euros will have to pay a malus of 307:26% and 228:24% of the basic
premium in the case of the NBI-Pareto and NBI-ELN distributions respectively. From Table 8, when
j = 1, we see that policyholders who had K = 1 claim size of 14000 euros will have to pay a malus of
213:89% and 139:93% of the basic premium, while those who had K = 2 claims with total size amounting
to 14000 euros will have to pay a malus of 354:98% and 284:83% of the basic premium in the case of
the PIG-Pareto and PIG-ELN distributions respectively. From Table 8, when j = 2, we observe that
policyholders who had K = 1 claim size of 17000 euros will have to pay a malus of 204:81% and 121:34%
of the basic premium, while those who had K = 2 claims with total size equal to 17000 euros will have to
pay a malus of 329:91% and 246:49% of the basic premium in the case of the PIG-Pareto and PIG-ELN
distributions respectively. From Table 9, when j = 1, we see that policyholders who had K = 1 claim
size of 15000 euros will have to pay a malus of 232:52% and 145:14% of the basic premium, while those
who had K = 2 claims with total size equal to 15000 euros in the �rst year will have to pay a malus
of 278:63% and 206:21% of the basic premium in the case of the NBI-Pareto and NBI-ELN regression
models respectively. From Table 9, when j = 2, we observe that policyholders who had claim frequency
history k1i = 1; k2i = 1 (i.e. total number of claims K = 2 at j = 2) and the total size of their claims
amounts to 18000 euros will have to pay a malus of 278:73% and 191:82% of the basic premium, while
those who had claim frequency history k1i = 1; k

2
i = 2 (i.e. total number of claims K = 3 at j = 2) and

the total size of their claims amounts to 18000 euros will have to pay a malus of 333:51% and 262:86%
of the basic premium, in the case of the NBI-Pareto and NBI-ELN respectively. From Table 10, when
j = 1, we see that policyholders who had K = 1 claim size of 15000 euros will have to pay a malus of
207:67% and 126:82% of the basic premium, while those who had K = 2 claims with total size equal to
15000 euros in the �rst year will have to pay a malus of 288:86% and 214:48% of the basic premium in
the case of the PIG-Pareto and PIG-ELN regression models respectively. From Table 10, when j = 2, we
observe that policyholders who had claim frequency history k1i = 1; k

2
i = 1 (i.e. total number of claims

K = 2 at j = 2) and the total size of their claims amounts to 18000 euros will have to pay a malus of
241:53% and 163:15% of the basic premium, while those who had claim frequency history k1i = 1; k

2
i = 2

(i.e. total number of claims K = 3 at j = 2) and the total size of their claims amounts to 18000 euros
will have to pay a malus of 320:90% and 252:30% of the basic premium, in the case of the PIG-Pareto
and PIG-ELN respectively.
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Table 7: A posteriori, or Bonus-Malus, premium rates, NBI, Pareto and ELN distributions.
Year j = 1 NBI-Pareto NBI-ELN Year j = 2 NBI-Pareto NBI-ELN

Claim Fr.n
Claim Sev.

K = 1 K = 2 K = 1 K = 2
Claim Fr.n
Claim Sev.

K = 1 K = 2 K = 1 K = 2

1000 156:55 196:88 167:45 226:51 1000 140: 98 177: 32 150: 80 204:00
2000 169:23 212:85 174:59 237:15 2000 152: 41 191: 70 157: 23 213: 58
3000 181:92 228:79 181:44 247:33 3000 163: 83 206: 05 163: 40 222: 75
4000 194:61 244:75 188:06 257:13 4000 175: 26 220: 43 169: 36 231: 58
5000 207:29 260:69 194:46 266:59 5000 186: 69 234: 79 175: 13 240: 10
6000 219:98 276:66 200:67 275:78 6000 198: 11 249: 17 180: 72 248: 37
7000 232:67 292:63 206:74 284:72 7000 209: 54 263: 55 186: 19 256: 43
8000 245:36 308:57 212:65 293:43 8000 220: 96 277: 91 191: 51 264: 27
9000 258:04 324:53 218:43 301:92 9000 232: 39 292: 29 196: 71 271: 92
10000 270:73 340:47 224:10 310:25 10000 243: 81 306: 64 201: 82 279: 43
11000 283:42 356:44 229:65 318:40 11000 255: 24 321: 20 206: 82 286: 76
12000 296:10 372:41 235:09 326:41 12000 266: 67 335: 40 211: 72 293: 98
13000 308:79 388:35 240:45 334:26 13000 278: 09 349: 76 216: 54 301: 05
14000 321:48 404:31 245:73 341:97 14000 289: 52 364: 14 221: 30 307: 99
15000 334:16 420:25 250:93 349:58 15000 300: 94 378: 50 225: 98 314: 85
16000 346:85 436:22 256:03 357:08 16000 312: 37 392: 88 230: 57 321: 60
17000 359:54 452:19 261:08 364:45 17000 323: 79 407: 26 235: 12 328: 24
18000 372:23 468:13 266:05 371:74 18000 335: 22 421: 61 239: 60 334: 80
19000 384:91 484:10 270:96 378:94 19000 346: 65 435: 99 244: 02 341: 29
20000 397:60 500:04 275:81 386:04 20000 358: 07 450: 35 248: 39 347: 68

Table 8: A posteriori, or Bonus-Malus, premium rates, PIG, Pareto and ELN distributions.
Year j = 1 PIG-Pareto PIG-ELN Year j = 2 PIG-Pareto PIG-ELN

Claim Fr.n
Claim Sev.

K = 1 K = 2 K = 1 K = 2
Claim Fr.n
Claim Sev.

K = 1 K = 2 K = 1 K = 2

1000 152:85 221:55 163:50 254:89 1000 132:72 187:18 141:96 215:35
2000 165:24 239:52 170:47 266:86 2000 143:47 202:36 148:01 225:46
3000 177:63 257:46 177:16 278:32 3000 154:23 217:51 153:82 235:14
4000 190:02 275:42 183:62 289:35 4000 165:00 232:69 159:43 244:46
5000 202:40 293:36 189:88 300:00 5000 175:74 247:85 164:86 253:45
6000 214:79 311:33 195:94 310:33 6000 186:50 263:03 170:13 262:19
7000 227:18 329:30 201:86 320:40 7000 197:25 278:21 175:27 270:70
8000 239:57 347:23 207:63 330:20 8000 208:01 293:36 180:28 278:97
9000 251:95 365:20 213:27 339:76 9000 218:77 308:54 185:18 287:05
10000 264:34 383:14 218:82 349:13 10000 229:52 323:70 190:00 294:97
11000 276:73 401:11 224:23 358:30 11000 240:28 338:88 194:70 302:71
12000 289:12 419:07 229:55 367:31 12000 251:03 354:06 199:31 310:33
13000 301:51 437:01 234:77 376:14 13000 261:79 369:21 203:85 317:79
14000 313:89 454:98 239:93 384:83 14000 272:55 384:39 208:33 325:12
15000 326:28 472:92 245:00 393:39 15000 283:30 399:55 212:73 332:36
16000 338:67 490:88 250:00 401:83 16000 294:06 414:73 217:06 339:49
17000 351:06 508:85 254:92 410:12 17000 304:81 429:91 221:34 346:49
18000 363:44 526:79 259:78 418:32 18000 315:57 445:06 225:56 353:42
19000 375:83 544:76 264:57 426:43 19000 326:33 460:24 229:72 360:27
20000 388:22 562:69 269:31 434:42 20000 337:08 475:40 233:83 367:02
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Table 9: A posteriori, or Bonus-Malus, premium rates, NBI, Pareto and ELN regression models.
Year j = 1 NBI-Pareto NBI-ELN Year j = 2 NBI-Pareto NBI-ELN

Claim Fr.n
Claim Sev.

K = 1 K = 2 K = 1 K = 2
Claim Fr.n
Claim Sev.

k1i = 1;
k2i = 1

k1i = 1;
k2i = 2

k1i = 1;
k2i = 1

k1i = 1;
k2i = 2

1000 151:42 169:04 161:76 193:96 1000 151:16 173: 02 173: 44 208: 56
2000 164:35 184:01 168:92 203:74 2000 164:55 188: 34 182: 19 220: 10
3000 177:29 199:00 175:78 213:07 3000 177:95 203: 66 190: 53 231: 06
4000 190:23 213:97 182:40 222:04 4000 191:33 218: 98 198: 56 241: 56
5000 203:16 228:93 188:82 230:69 5000 204:72 234: 32 206: 29 251: 70
6000 216:10 243:90 195:03 239:07 6000 218:10 249: 64 213: 78 261: 49
7000 229:03 258:87 201:09 247:22 7000 231:49 264: 96 221: 07 270: 98
8000 241:97 273:83 206:99 255:15 8000 244: 87 280: 27 228: 16 280: 22
9000 254:90 288:80 212:75 262:89 9000 258: 25 295: 59 235: 09 289: 23
10000 267:84 303:77 218:41 270:47 10000 271: 64 310: 91 241: 86 298: 04
11000 280:78 318:74 223:95 277:88 11000 285: 02 326: 23 248: 49 306: 66
12000 293:71 333:73 229:38 285:15 12000 298: 43 341: 57 254: 99 315: 10
13000 306:65 348:69 234:73 292:28 13000 311: 81 356: 89 261: 37 323: 38
14000 319:58 363:66 239:98 299:32 14000 325: 19 372: 21 267: 66 331: 52
15000 332:52 378:63 245:14 306:21 15000 338: 58 112: 26 273: 82 339: 55
16000 345:45 393:59 250:24 313:00 16000 351: 96 402: 84 279: 90 347: 43
17000 358:39 408:56 255:26 319:71 17000 365: 35 418: 16 285: 89 355: 20
18000 371:32 423:53 260:22 326:34 18000 378: 73 433: 51 291: 82 362: 86
19000 384:26 438:50 265:11 332:85 19000 392: 11 448: 82 297: 64 370: 43
20000 397:20 453:46 269:95 339:29 20000 405: 50 464: 14 303: 40 377: 90

Table 10: A posteriori, or Bonus-Malus, premium rates, PIG, Pareto and ELN regression models.
Year j = 1 PIG-Pareto PIG-ELN Year j = 2 PIG-Pareto PIG-ELN

Claim Fr.n
Claim Sev.

K = 1 K = 2 K = 1 K = 2
Claim Fr.n
Claim Sev.

k1i = 1;
k2i = 1

k1i = 1;
k2i = 2

k1i = 1;
k2i = 1

k1i = 1;
k2i = 2

1000 140.10 173.61 149.68 199.20 1000 136.32 168.00 156.41 202.49
2000 152.07 188.98 156.30 209.24 2000 148.39 182.86 164.30 213.70
3000 164.04 204.38 162.65 218.83 3000 160.48 197.74 171.82 224.34
4000 176.01 219.75 168.77 228.04 4000 172.53 212.61 179.06 234.53
5000 187.98 235.12 174.71 236.92 5000 184.62 227.51 186.03 244.37
6000 199.95 250.49 180.46 245.53 6000 196.67 242.38 192.78 253.89
7000 211.92 265.86 186.06 253.90 7000 208.76 257.25 199.36 263.10
8000 223.89 281.24 191.52 262.05 8000 220.81 272.10 205.74 272.07
9000 235.86 296.61 196.85 270.00 9000 232.88 287.00 212.01 280.82
10000 247.82 311.98 202.09 277.78 10000 244.97 301.87 218.10 289.37
11000 259.79 327.35 207.22 285.39 11000 257.02 316.74 224.08 297.74
12000 271.76 342.75 212.24 292.86 12000 269.13 331.61 229.94 305.91
13000 283.73 358.12 217.19 300.18 13000 281.18 346.51 235.71 313.95
14000 295.70 373.49 222.05 307.41 14000 293.25 361.38 241.38 321.88
15000 307.67 388.86 226.82 314.48 15000 305.32 109.00 246.92 329.67
16000 319.64 404.23 231.54 321.46 16000 317.39 391.10 252.42 337.32
17000 331.61 419.60 236.19 328.35 17000 329.46 405.97 257.80 344.87
18000 343.58 434.97 240.78 335.16 18000 341.53 420.90 263.15 352.30
19000 355.55 450.35 245.30 341.85 19000 353.60 435.74 268.40 359.63
20000 367.51 465.72 249.78 348.46 20000 365.67 450.61 273.60 366.90

Overall, as was illustrated in Tables 6, 7, 8, 9 and 10, it is reasonable to agree that in MTPL data
sets like the one used in this study, where moderate observations constitute the largest proportion of our
sample, whereas large observations have very low frequencies, under the Pareto model it is very likely
that policyholders will bear the cost of claims themselves because of the growth in premium payments,
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while the employment of the new model is bene�cial for the insurance company as it can enable them
to adopt a generally more mild pricing strategy for policyholders who reported a large number of claims
with moderate severities, leading to a discouragement of the bonus-hunger phenomenon.

5 Conclusions

The main purpose of this paper was to propose an EM type algorithm that reduces the computational
burden for ML estimation in the ELN regression model. The ELN regression model extends the commonly
used speci�cation that assumes that claims costs are distributed according to the Pareto regression model
which was widely accepted for designing merit rating plans in accordance with the a priori ratemaking
structure of the insurance company. The ELN model has just the appropriate level of generality for
deriving both a priori and a posteriori ratemaking mechanisms since while its upper tail can su¢ ciently
�t large size claims, the ELN model can be considered as a candidate model for approximating moderate
claim severities with high frequencies. Furthermore, the ELN regression model is suitable for application
not only in insurance ratemaking but also in survival analysis since, as is well known, all the distribu-
tions with decreasing failure rate can be retrieved as mixtures of the exponential distribution, see, for
instance, Proschan (1963) and Barlow & Proschan (1975). Additionally, it should be noted that the
novel EM type algorithm we developed in this study was based on the mixture representation of the
ELN model, and did not require knowledge of its pdf, which could not be written in closed form, while it
is computationally parsimonious and can avoid over�ow problems which may occur via other numerical
maximization schemes. Therefore, it is obvious that the ML estimation scheme we presented has the
considerable mathematical �exibility for �tting an abundance of mixed Exponential regression models
stemming from several other mixing distributions which are not conjugate to the Exponential.
A interesting possible line of further research would be to go through the ratemaking exercise based

on generalizations of the proposed model such as a �nite mixture of the ELN model and two component
mixture models, where the �rst component distribution is the ELN and the second component model can
be a di¤erent more or less heavy-tailed claim severity distribution providing thus alternative options to
the insurer when they are deciding on their pricing strategies, see Tzougas, Vrontos & Frangos (2014) and
Ni et al. (2014) and Tzougas, Vrontos & Frangos (2018) respectively. The log-likelihood function of the
general models can be maximized without special e¤ort using standard techniques for �nite mixtures, see
Bohning (1999). Finally, the data augmentation which was used in the paper to derive the EM algorithm
can be the basis for constructing Bayesian estimation methods, including functional forms other than
the linear proceeding along similar lines as Klein et al. (2014) in which Bayesian generalized additive
models for location, scale and shape claim frequency models were employed for nonlife ratemaking and
risk management.
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