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Abstract This paper presents the Negative Binomial-Inverse Gaussian regression model for approximating
the number of claims as an alternative to mixed Poisson regression models that have been widely used in
various disciplines including actuarial applications. The Negative Binomial-Inverse Gaussian regression
model can be considered as a plausible model for highly dispersed claim count data and this is the first
time that it is used in a statistical or actuarial context. The main achievement is that we propose a quite
simple Expectation-Maximization type algorithm for maximum likelihood estimation of the model. Finally,
a real data application using motor insurance data is examined and both the a priori and a posteriori, or
Bonus-Malus, premium rates resulting from the Negative Binomial-Inverse Gaussian model are calculated
via the net premium principle and compared to those determined by the Negative Binomial Type I and the
Poisson-Inverse Gaussian regression models that have been traditionally used for a priori and a posteriori
ratemaking.

Keywords Negative Binomial-Inverse Gaussian Regression Model · EM Algorithm · Motor Third Party
Liability Insurance · Ratemaking

1 Introduction

In a highly competitive insurance market, in order to avoid lapses, a major challenge of the ratemaking
process is the measurement and design of fair tariff structures that will match the premium rates to the
risks as closely as possible and also to the rating structures used by competitors. Traditionally, a dual
approach to ratemaking was adopted by actuaries who developed both a priori ratemaking schemes and a
posteriori ratemaking mechanisms or Bonus-Malus Systems (BMSs). The former process relies on the use
of claim frequency and severity generalized linear models (GLMs) for computing the a priori premiums.
References for a priori ratemaking include, for example, Dean, Lawless and Willmot (1989), Haberman and
Renshaw (1996), Denuit and Lang (2004), Yip and Yau (2005), Boucher et al. (2007), Denuit et al. (2007)
de Jong and Heller (2008), Kaas et al. (2008), Frees (2010, Section 18.3) and Tzougas et al. (2015). The
latter process uses additional information about the claim frequency history of the policyholders to calculate
the a posteriori, or Bonus Malus, premium rates in way which readjusts the previous a priori premiums,
making the price discrimination even more fair and reasonable. There is a large amount of literature on
BMSs and for a detailed description of these systems the interested reader can refer to the seminal work
of Lemaire (1995). Further references for BMSs include, among others, Trembley (1992), Picech (1994),
Pinquet (1997 and 1998), Dionne and Vanasse (1989 and 1992), Frangos and Vrontos (2001), Brouhns et
al. (2003), Gómez-Déniz et al. (2014), Denuit et al. (2007), Boucher et al. (2008), Lemaire et al. (2015 and
2016) and Tzougas et al. (2014 and 2018).

Let us now discuss our motivation behind this study. As is well known, mixed Poisson regression models
have been widely used in Motor Third Party Liability (MTPL) insurance settings for approximating claim
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frequency primarily due to the lack of algebraic problems appearing when one attempts to maximize their
nonlinear log-likelihood function. In particular, the Negative Binomial Type I (NBI) and Poisson-Inverse
Gaussian (PIG) models have been the most popular choices because of the conjugacy, in a Bayesian sense,
between the Gamma and Inverse Gaussian priors, or mixing, distributions respectively and the Poisson
distribution, which facilitates maximum likelihood (ML) estimation and a Bayesian approach towards
updating mean frequency estimates.

However, regardless of the statistical and mathematical convenience of mixed Poisson models, there is no
guarantee that individual overdispersion and variation in claim propensity have precisely the distributional
forms implied by the members of the mixed Poisson family. Moreover, taking into account that according
to a 2016 report by Insurance Europe, motor insurance totalled 132bn Euros in premiums in 2015 (see,
Insurance Europe, 2017), it becomes clear that an important task of actuaries is to be able to innovate in
designing a priori and a posteriori ratemaking mechanisms by constructing more representative probabilistic
models for the distribution of the number of claims based on a sound statistical basis that can capture
important aspects of real insurance portfolios, enabling the actuary to apply premiums to insured risks in
a fair and equitable manner. Otherwise, the concept of adverse selection could undermine the solvency of
the company.

The aim of the present work is to propose the Negative Binomial-Inverse Gaussian (NBIG) regression
model as a competitive alternative to mixed Poisson regression models. The NBIG distribution has thick
tails and can be considered as a candidate model for highly dispersed claim count data. A first derivation
of the Negative Binomial-Inverse Gaussian distribution can be found in Gómez-Déniz et al. (2008), who
considered some estimation methods for both the univariate and multivariate case, gave an excellent account
of statistical methods connected to both cases and also proposed their use in an actuarial context. Also, it
should be noted that in the actuarial literature, so far, only very few mixed Negative Binomial distributions
and regression models have been studied in depth. In particular, the Negative Binomial-Pareto distribution
(see, Klugman et al., 1998, Shengwang et al.,1999 and Gómez-Déniz and Vázquez, 2003), the Negative
Binomial- Beta regression model (see, Boucher et al. 2008), the Negative Binomial-Gamma (see, Gençtürk
and Yiğiter, 2016) and the Negative Binomial-Lindley distribution (see, Zamani and Ismail, 2010 and
Gómez-Déniz and Caldeŕın, 2017) were used in an actuarial context. However, this is the first time that
the Negative Binomial-Inverse Gaussian model with a regression component is used in a statistical or an
actuarial setting. One of the main obstacles for using the Negative Binomial-Inverse Gaussian distribution
for the case with covariates is that its log-likelihood is complicated and hence its maximization needs a
special effort. In particular, compared to the classical Negative Binomial regression model, there is no
analytical form for the distribution of the number of claims if the random effect term, which follows the
Inverse Gaussian distribution, is marginalized out. As a result, ML estimation of the Negative Binomial-
Inverse Gaussian regression model is less straightforward to calculate.

The contribution of this paper is that it illustrates that ML estimation of the NBIG regression model
can be accomplished relatively easily via an Expectation Maximization (EM) type algorithm which can
address situations where the mixing distribution, such as the Inverse Gaussian, is not conjugate to the
Negative Binomial distribution. Furthermore, the a priori and the a posteriori, or Bonus-Malus, premium
rates resulting from the new model, which does not have a probability mass function (pmf) in closed form,
are calculated via the law of total expectation and the use of numerical approximation and compared to
those resulting from the NBI and PIG models, that have been widely used for actuarial purposes.

The layout of the paper is as follows: Section 2 presents the derivation of the NBIG regression model.
Section 3 fully describes the ML estimation through the EM algorithm. Section 4 contains an application
to a data set concerning car insurance claims at fault. Finally, some further issues are examined in Section
5 and concluding remarks can be found in Section 6.

2 The Negative Binomial-Inverse Gaussian Regression Model

Consider a policyholder i whose number of claims, denoted as ki, are independent and suppose that xi
is the vector of individual characteristics or characteristics of the car related to the ith insured person,
i = 1, ..., n, which represent different a priori rating variables. The Negative Binomial-Inverse Gaussian
regression model can be constructed as follows.

Assume that ki|xi, λi follows the Negative Binomial (NB) distribution with probability mass function
(pmf) given by

P (ki|xi, λi) =
Γ (ki + σ)

ki!Γ (σ)

(
λiεi

σ + λiεi

)ki
(

σ

σ + λiεi

)σ
, (1)

for ki = 0, 1, 2, 3, ..., with λi > 0, σ > 0, where εi = exp
(
xTi β

)
and where β is the vector of the

regression coefficients. The mean and the variance of ki|xi, λi are given by
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E (ki|xi, λi) = exp
(
xTi β + log(λi)

)
(2)

and

V ar (ki|xi, λi) = exp
(
xTi β + log(λi)

)[
1 +

exp
(
xTi β + log(λi)

)
σ

]
. (3)

Note that the scale parameter σ governs the responsiveness of overdispersion to the mean number of
claims. The larger is σ, the smaller is the degree of overdispersion. In the limit, as σ approaches infinity,
P (ki|xi, λi) tends to a Poisson distribution with mean exp

(
xTi β + log(λi)

)
.

Let us know assume that λi follows an Inverse Gaussian (IG) distribution with probability density
function (pdf) given by

f (λi) =
γ√
2π

exp
(
γ2
)
λ
− 3

2
i exp

[
−1

2

(
γ2

λi
+ γ2λi

)]
, (4)

where γ > 0 with mean E(λi) = 1 and variance V ar(λi) = 1
γ2 . The Inverse Gaussian prior distribution

which is given by Eq. (4) has to have a unit mean in order for the model to be estimable, otherwise
identifiability issues may arise. Under this restriction, the overdispersion relative to the simple exponential
distribution is 1

γ2 . Thus, if γ tends to infinity, this distribution can be reduced to the exponential distri-
bution. More details about the Inverse Gaussian distribution which is a special case of the more general
family of generalized Inverse Gaussian distributions can be found in Jørgensen (1982). Note also that there
are several different parameterizations of the Inverse Gaussian distribution (see, Seshadri, 1993).

Considering the assumptions of the model, i.e. Eq. (1) and Eq. (4), the distribution of ki will be a
Negative Binomial-Inverse Gaussian (NBIG) distribution with parameters exp

(
xTi β

)
, σ, γ and pmf1

P (ki|xi) =

∞∫
0

P (ki|xi, λi) f (λi) dλi. (5)

Unfortunately, the last integral cannot be simplified but it can be computed via numerical integration.
Also, using the laws of total expectation and total variance and the moments of the NB distribution one
can easily find that the mean and the variance of ki|xi are given by

E (ki|xi) = Eλi
[E (ki|xi, λi)]] = exp

(
xTi β

)
Eλi

[λi] = exp
(
xTi β

)
(6)

and

V ar (ki|xi) = Eλi
[V ar (ki|xi, λi)] + V arλi

[E (ki|xi, λi)]

= E (ki|xi) + E2 (ki|xi)
(

1 + σ + γ2

σγ2

)
. (7)

3 The EM Algorithm for the Negative Binomial-Inverse Gaussian Regression Model

In this section we describe how an EM type algorithm can be used to facilitate the ML estimation of the
model. Let (ki,xi), i = 1, ..., n, be a sample of independent observations, where ki is the response and xi
is a vector of covariate information. Also, consider that the data are produced according to the Negative
Binomial-Inverse Gaussian model. Then, the log-likelihood can be written as

l (φ) =
n∑
i=1

log (P (ki|xi)) , (8)

where φ = (γ, σ, β) is the vector of the parameters and where P (ki|xi) is the pmf of Negative Binomial-
Inverse Gaussian distribution, which is given by Eq. (5). The EM algorithm (see, Dempster et al. 1977
and McLachlan and Krishnan, 2007) is a very useful algorithm for ML estimation for data arising from
mixtures, since the mixing operation can be considered as producing missing data. In our case the missing
data are simply the realizations of the unobserved mixing parameter λi for the ith observation. Thus, if

1 Note that the NBIG distribution given in Eq. (5) is different from the one used in Gómez-Deniz et al. (2008), who
considered the case without covariate information.
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one augments the unobserved data λi to the observed data (ki,xi), for i = 1, ..., n, then the complete data
log-likelihood takes the form

lc (φ) =
n∑
i=1

log (P (ki|xi, λi)) +
n∑
i=1

log (f (λi|γ)) , (9)

where P (ki|xi, λi) is the pmf of Negative Binomial distribution, which is given by Eq. (1), and where
f (λi|γ) denotes the pdf of the mixing distribution, the Inverse Gaussian distribution, which is given by
Eq. (4).

Maximization of the above function with respect to the vector of parameters φ is not easy. Fortunately,
the following mixture derivation of the model can be used to achieve ML estimation via an EM type
algorithm

ki ∼ Poisson (ϑi) ,

ϑi ∼ Gamma

(
σ,

σ

λiεi

)
λi ∼ Inverse Gaussian (γ) . (10)

Also, let us assume that P (ki|ϑi) = e−ϑiϑki
i /ki! is the pmf of the Poisson distribution, g (ϑi|β, σ, λi) =

ϑσ−1
i exp(− σ

λiεi
ϑi)
(

σ
λiεi

)σ
/Γ (σ) is the pdf of the Gamma distribution and f (λi|γ) is the pdf of the Inverse

Gaussian distribution with unit mean. Then, using the mixture representation in (10) the complete data
log-likelihood can be expressed as

lc (φ) ∝
n∑
i=1

log (g (ϑi|β, σ, λi)) +
n∑
i=1

log (f (λi|γ)) . (11)

The regression coefficients β and the parameter σ are involved in the first term and the parameter γ is
involved in the second term of Eq. (11), which correspond to the log-likelihoods of the Gamma and Inverse
Gaussian components respectively.

The conditional expectation of the complete data log-likelihood is given by

Q
(
φ;φ(r)

)
≡ Eλi

(
lc (φ) |ki,xi, φ(r)

)
∝ Eλi

[
n∑
i=1

log
(
g
(
ϑi|β(r), σ(r), λi

))]
+ Eλi

[
n∑
i=1

log
(
f
(
λi|γ(r)

))]
, (12)

where φ(r) =
(
γ(r), σ(r), β(r)

)
is the estimate of φ in the E-step of our EM algorithm. In what follows,

in the E-step we present a result that gives us the conditional expectations of some functions of the
unobserved data λi which are involved in Eq. (12), while the M-step, consists in maximizing the Q−function
with respect to φ. We call attention to the fact that for maximizing the log-likelihood of the Inverse
Gaussian variate it is well known (see, for instance, Karlis, 2001) that we need to compute the conditional

expectations Eλi
(λi|ki,xi, φ) and Eλi

(
1
λi
|ki,xi, φ

)
which correspond to the sufficient statistics for γ. On

the other hand, it is easy to see that Eλi

[
Eϑi

(
ϑi

λiεi
|ki,xi, φ

)]
and Eλi

[
Eϑi

(
log
(
ϑi

λiεi

)
|ki,xi, φ

)]
have to

be calculated for maximizing the log-likelihood of the Gamma variate with respect to β and σ. Note also

that if ki ∼ Poisson(ϑi) distribution and ϑi ∼ Gamma
(
σ, σ

λiεi

)
distribution then the posterior distribution

of ϑi|ki,xi, σ, β is a Gamma
(
ki + σ, σ

λiεi
+ 1
)

distribution. Thus, we have that

Eϑi

(
ϑi
λiεi
|ki,xi, φ

)
=

ki + σ

λiεi + σ
(13)

and

Eϑi

(
log

(
ϑi
λiεi

)
|ki,xi, φ

)
= Ψ (ki + σ)− log (λiεi + σ) , (14)

where Ψ (·) denotes the digamma function. These conditional expectations will be very useful for im-
plementing the E-step of the EM algorithm. The EM type algorithm for the NBIG regression model can
be formally described as follows.
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E-Step:

– Given the values of the parameters after the rth iteration, calculate for all i = 1, 2, ..., n, the pseudo-
values

w1,i = Eλi

(
λi|ki,xi, φ(r)

)
=

∞∫
0

λiP (ki|xi, λi) f (λi) dλi

∞∫
0

P (ki|xi, λi) f (λi) dλi

, (15)

w2,i = Eλi

(
1

λi
|ki,xi, φ(r)

)
=

∞∫
0

1
λi
P (ki|xi, λi) f (λi) dλi

∞∫
0

P (ki|xi, λi) f (λi) dλi

, (16)

w3,i = Eλi

(
1(

λiεi + σ(r)
) |ki,xi, φ(r)

)
=

∞∫
0

1

(λiεi+σ(r))
P (ki|xi, λi) f (λi) dλi

∞∫
0

P (ki|xi, λi) f (λi) dλi

, (17)

w4,i = Eλi

(
log
(
λiεi + σ(r)

)
|ki,xi, φ(r)

)
=

∞∫
0

log
(
λiεi + σ(r)

)
P (ki|xi, λi) f (λi) dλi

∞∫
0

P (ki|xi, λi) f (λi) dλi

. (18)

– Using Eqs (13, 14, 17 and 18 ) we also have that

s1,i = Eλi

[
Eϑi

(
ϑi
λiεi
|ki,xi, φ(r)

)]
=
(
ki + σ(r)

)
w3,i (19)

and

s2,i = Eλi

[
Eϑi

(
log

(
ϑi
λiεi

)
|ki,xi, φ(r)

)]
= Ψ

(
ki + σ(r)

)
− w4,i. (20)

Clearly the expectations involved in the E-step of the algorithm do not have closed form expressions and thus
numerical approximations are needed. Specifically, Eqs (15, 16, 17 and 18) can be evaluated numerically.
Alternatively, a Monte Carlo approach is also possible using a rejection algorithm. The latter case leads to
variants of the EM algorithm such as the Monte Carlo EM (MCEM) algorithm (see, for instance, Booth
and Hobert, 1999, Booth et al., 2001 and Karlis, 2005) which do not require knowledge of the pmf P (ki|xi)
but is suffices to be able to simulate from the posterior density f (λi|ki,xi, φ) .

M-step:

– The Newton-Raphson algorithm is employed to obtain ML estimates of the elements of β. Taking the
necessary derivatives of Q

(
φ;φ(r)

)
with respect to β we obtain the following results:

g (β) = Eλi

(
∂lc
∂β
|ki,xi, φ

)
= σ

n∑
i=1

(s1,i − 1)xi (21)

and

G (β) = Eλi

(
∂2lc
∂β∂βT

|ki,xi, φ
)

= −σ
n∑
i=1

s1,ixix
T
i = −σXTWX, (22)

where W = diag{s1,i}.
The iterative procedure for the Newton-Raphson algorithm goes as follows:

β(r+1) ≡ β(r) −
[
G
(
β(r)

)]−1
g
(
β(r)

)
. (23)

– Then, update σ with the one step ahead Newton iteration

σ(r+1) = σ(r) −
Ψ
(
σ(r)

)
+ s̄1 − s̄2 − log

(
σ(r)

)
− 1

Ψ3

(
σ(r)

)
− 1

σ(r)

, (24)

where Ψ3 (·) denotes the trigamma function.
– Finally, update γ with

γ(r+1) = (w̄1 + w̄2 − 2)−
1
2 . (25)

– Note also that when the regression component of the model is limited to a constant β0 one obtains
E (ki|xi) = exp (β0) = µ and thus this EM type algorithm can be employed for the ML estimation of
the ‘univariate’, without regression component, model.
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4 Numerical Illustration

The data were kindly provided by a major insurance company operating in Greece and concern a MTPL
insurance portfolio observed for 3.5 years (from April 2013 up to October 2016). Only policyholders with
complete records, i.e. with availability of all the explanatory variables under consideration were considered.
There were 146129 observations that met our criteria. Response variable is the number of claims at fault
registered for each insured vehicle in the data set and the a priori rating variables we employ are: the size
of the city (CS) where the policyholders live, the age of their car (AC) and the horsepower (HP) of their
car.

– The variable CS consists of three categories of policyholders, those who live in a: C1= ”small city”, C2
= ”middle sized city” and C3 = ”large city”.

– The variable AC consists of three categories of cars, those of age: C1 = ”between 0 to 8 years”, C2 =
”between 8 to 16 years” and C3 = ”greater than 16 years”.

– The variable HP consists of three categories of cars, those with a HP: C1 = ”0-1400 cc”, C2 = ”1400-1800
cc”, C3 = ”greater than 1800 cc”.

Table 1 contains some standard descriptive statistics for claim counts along with the number of observa-
tions in each category of the three explanatory variables. Furthermore, Figure 1 displays the corresponding
to the explanatory variables descriptive histograms, giving us a flavour of the range of their values.

Table 1 Descriptive Statistics of Claim Counts - Size of the Different Categories of the Explanatory Variables

statistic value
Age of the

car (AC)
Horsepower of

the car (HP)
Size of the

city (CS)

# observations 146129 C1: 83927 C1: 55219 C1: 18106
Minimum 0 C2: 25188 C2: 29547 C2: 20021
Median 0 C3: 37014 C3: 61363 C3: 108002
Mean 0.4029 - - -

Variance 0.5811 - - -
Maximum 12 - - -

0−8 8−16 >16

Age of the Car in Years

0

20000

40000

60000

80000

0−1400 cc 1400−1800 cc >1800 cc

Horsepower of the car

0

10000

20000

30000

40000

50000

60000

Small Middle Large

Size of the City

0
20

00
0

40
00

0
60

00
0

80
00

0

Figure 1. Descriptive Histograms for the Explanatory Variables

Finally, Table 2 presents a summary of the effects of the covariates on claim counts for 27 different
risk classes, which can be formed by dividing the portfolio into clusters defined by the combinations of the
characteristics of the policyholders and their cars based on all 146129 observations. In particular, Table 2
shows the percentage of observations with claim counts equal to 0, 1, 2, 3 and higher than or equal to 4 for
each of the 27 groups of policyholders.
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Table 2 Summary Statistics of the Claim frequencies of the Different Risk Classes Determined by the Combination of the
Explanatory Variables

Age of the car: C1
Horsepower of the Car: C1

Age of the car: C1
Horsepower of the Car: C2

Age of the car: C1
Horsepower of the Car: C3

Size of the City: Size of the City: Size of the City:
Counts C1 C2 C3 C1 C2 C3 C1 C2 C3

0 69.72 67.28 63.61 70.47 70.01 65.37 69.69 65.85 61.80
1 21.82 24.25 26.47 20.98 20.32 24.39 21.31 24.87 27.90
2 5.96 5.82 6.95 5.67 6.12 6.89 5.84 6.91 7.38
3 1.81 1.86 2.06 2.10 2.33 2.20 2.08 1.62 2.07

≥ 4 0.69 0.79 0.91 0.78 1.22 1.15 1.08 0.75 0.85

Age of the car: C2
Horsepower of the Car: C1

Age of the car: C2
Horsepower of the Car: C2

Age of the car: C2
Horsepower of the Car: C3

Size of the City: Size of the City: Size of the City:
Counts C1 C2 C3 C1 C2 C3 C1 C2 C3

0 78.49 76.79 74.51 81.68 79.88 76.46 78.31 77.61 74.70
1 17.31 19.22 20.29 13.35 14.79 17.33 17.05 16.82 19.19
2 3.23 2.84 4.02 2.48 3.55 4.43 3.55 4.16 4.65
3 0.79 0.74 0.89 1.55 1.18 1.38 0.68 0.97 1.05

≥ 4 0.18 0.41 0.29 0.94 0.60 0.40 0.41 0.44 0.41

Age of the car: C3
Horsepower of the Car: C1

Age of the car: C3
Horsepower of the Car: C2

Age of the car: C3
Horsepower of the Car: C3

Size of the City: Size of the City: Size of the City:
Counts C1 C2 C3 C1 C2 C3 C1 C2 C3

0 74.61 71.77 69.40 74.75 74.89 69.21 73.37 70.20 67.11
1 16.83 19.78 20.58 17.97 16.45 21.44 18.24 21.41 23.34
2 5.79 5.94 7.03 4.28 5.41 6.46 5.64 6.00 6.52
3 1.97 1.66 1.94 2.00 1.95 1.75 1.83 1.52 2.06

≥ 4 0.80 0.85 1.05 1.00 1.30 1.14 0.92 0.87 0.97

In what follows we compare the fit the Negative Binomial-Inverse Gaussian (NBIG) distribution/regression
model with the traditional Negative Binomial Type I (NBI) and Poisson-Inverse Gaussian (PIG) distri-
butions/regression models taken, for instance, from Dionne and Vanasse (1989 and 1992) and Trembley
(1992) and Tzougas et al. (2017) respectively.

4.1 Modelling Results

This subsection describes the modelling results of the NBI, PIG and NBIG distributions/regression models
that have been applied to model claim frequency2. The ML estimators of the parameters for the frequency
distributions are presented in Table 3.

Table 3 Results of the Fitted NBI, PIG and NBIG Distributions

NBI PIG NBIG

µ µ µ
0.4029 0.4029 0.4029

σ σ σ
1.0285 1.1045 1.9695

- - γ
- - 1.5878

Let us now consider the NBI, PIG and NBIG regression models for approximating the number of claims.
Table 4 reports our findings with respect to the aforementioned claim frequency regression models3.

2 Note that the location and scale parameters of the NBI and PIG models are denoted by µ and σ respectively.
3 Note that all the explanatory variables and the parameters of the models are statistically significant at a 5% threshold.



8 G. Tzougas et al.

Table 4 Results of the Fitted NBI, PIG and NBIG Regression Models

NBI PIG NBIG

Variable Coeff. β Variable Coeff. β Variable Coeff. β
Intercept -0.8602 Intercept -0.8605 Intercept -0.8600

CS CS CS
C2 0.0659 C2 0.0672 C2 0.0674
C3 0.1784 C3 0.1782 C3 0.1796
AC AC AC
C2 -0.4518 C2 -0.4537 C2 -0.4521
C3 -0.1131 C3 -0.1124 C3 -0.1127
HP HP HP
C2 -0.0030 C2 -0.0024 C2 -0.0058
C3 0.0434 C3 0.0400 C3 0.0400

Variable Variable Variable
σ 0.9867 σ 1.0579 σ 2.0659

- - - Variable
- - - γ 1.6066

Finally, we rely on normalized quantile residuals (see, Dunn and Smyth, 1996) as an exploratory
graphical device for investigating the adequacy of the fit of the competing NBI, PIG and NBIG distributions.
For these discrete response distributions, the normalized randomized quantile residuals are defined as r̂i =
Φ−1 (ui) , where Φ−1 is the inverse cumulative distribution function of a standard Normal distribution and

where ui is defined as a random value from the uniform distribution on the interval
[
Fi(xi − 1|ϑ̂), Fi(xi|ϑ̂)

]
,

where Fi is the cumulative distribution function estimated for the ith individual and where ϑ̂ contains all
estimated model parameters and xi is the corresponding observation. The model fit can be evaluated by
means of usual quantile-quantile plots. Specifically, if the data indeed follow the assumed distribution, then
the residual on the quantile-quantile plot will fall approximately on a straight line. Figure 2 shows the
normalized (random) quantiles for the NBI, PIG and NBIG claim frequency regression models.

Figure 2. Normalized Quantiles for the NBI, PIG and NBIG Regression Models

From Figure 2 we observe that the residuals of the NBI, PIG and NBIG claim frequency models are very
close to the diagonal and indicate a very good fit to the distribution of the claim frequencies.

4.2 Models Comparison

In this subsection we compare the fit of the NBI, PIG and NBIG models for the observed claim frequencies
in the MTPL insurance portfolio we analyzed earlier employing Global Deviance (DEV), Akaike information
criterion (AIC)4, the Schwartz Bayesian criterion (SBC) and the Vuong test (see Vuong, 1989). The models
were also calibrated with respect to the Consistent Akaike Information Criteria (CAIC), which was proposed
by Bozdogan (1987) and can compensate for the overestimating nature of AIC. Table 5 (Panels A and B)
reports our results for the different claim frequency distributions/regression models. Overall, from Panels
A and B we observe that the best fit is given by the NBIG distribution/regression model.

4 We also used we used three fourths of the data set to estimate the parameters of the models and the remaining one
fourth was used to test the out-of-sample prediction accuracy of the models. As expected, our findings were consistent with
those provided by the AIC criterion. For more details, refer to Stone (1977) who showed that AIC and leave-one out cross
validation are asymptotically equivalent.
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Table 5 Models Comparison

Panel A: Based on Global Deviance, AIC, SBC and CAIC

Distributions Regression Models

Model df AIC SBC CAIC Model df Global Deviance AIC SBC CAIC
NBI 2 232009 232029 232031 NBI 8 230966 230982 231061 231069
PIG 2 231935 231955 231957 PIG 8 230879 230895 230974 230982
NBIG 3 231795 231825 231828 NBIG 9 230735 230753 230842 230851

Panel B: Based on Vuong test

Distributions Regression Models

Model 1 Model 2
Vuong Test

Statistic
p-value Decision Model 1 Model 2

Vuong Test
Statistic

p-value Decision

PIG NBI -3.15 0.00 PIG NBI PIG 77.03 0.00 NBI
PIG NBIG -2.90 0.00 NBIG NBIG NBI -6.12 0.00 NBIG

4.3 Calculation of the A Priori Premiums

In this subsection, based on the use of the net premium calculation principle, we analyze the differences be-
tween the claim frequency regression models through the mean of the number of claims of the policyholders
who belong to the 27 different risk classes, which are determined by the relevant a priori characteristics.
Note that in the case of the NBIG model, which does not have a pmf in closed form, the estimated expected
annual claim frequency for each risk class was calculated in Eq. (6) using the law of total expectation. The a
priori premium rates resulting from the NBI, PIG and NBIG models are presented in Table 6. For example,
the expected claim frequency for a policyholder who lives in a small city and has a car that belongs to AC
category 1 and HP category 1, i.e. for the reference class, is equal to 0.1209, 0.1208 and 0.1209, while the
expected claim frequency for an insured who lives in a large city and has a car with similar characteristics,
i.e. for risk class 3, is equal to 0.1445, 0.1444 and 0.1447 in the case of the NBI, PIG and NBIG model
respectively. Moreover, we observe that the group of policyholders with the lowest expected claim frequency
are those who live in a small city and have a car that belongs to AC category 2 and HP category 2, i.e.
risk class 13. On the other hand, the group of policyholders with the highest expected claim frequency are
those who live in a large city and have a car that belongs to AC category 1 and HP category 3, i.e. risk
class 9.

Table 6 A Priori Premium Rates, Claim Frequency Regression Models

Risk Class NBI PIG NBIG

1 ACC1, HPC1, CSC1 0.1209 0.1208 0.1209
2 ACC1, HPC1, CSC2 0.1291 0.1292 0.1293
3 ACC1, HPC1, CSC3 0.1445 0.1444 0.1447
4 ACC1, HPC2, CSC1 0.1205 0.1206 0.1202
5 ACC1, HPC2, CSC2 0.1287 0.1289 0.1286
6 ACC1, HPC2, CSC3 0.1441 0.1441 0.1438
7 ACC1, HPC3, CSC1 0.1262 0.1258 0.1258
8 ACC1, HPC3, CSC2 0.1348 0.1345 0.1346
9 ACC1, HPC3, CSC3 0.1509 0.1503 0.1506
10 ACC2, HPC1, CSC1 0.0769 0.0768 0.0769
11 ACC2, HPC1, CSC2 0.0822 0.0821 0.0823
12 ACC2, HPC1, CSC3 0.0920 0.0917 0.0921
13 ACC2, HPC2, CSC1 0.0767 0.0766 0.0765
14 ACC2, HPC2, CSC2 0.0819 0.0819 0.0818
15 ACC2, HPC2, CSC3 0.0917 0.0915 0.0915
16 ACC2, HPC3, CSC1 0.0804 0.0799 0.0801
17 ACC2, HPC3, CSC2 0.0858 0.0855 0.0857
18 ACC2, HPC3, CSC3 0.0960 0.0955 0.0958
19 ACC3, HPC1, CSC1 0.1080 0.1080 0.1080
20 ACC3, HPC1, CSC2 0.1153 0.1155 0.1156
21 ACC3, HPC1, CSC3 0.1291 0.1291 0.1293
22 ACC3, HPC2, CSC1 0.1076 0.1077 0.1074
23 ACC3, HPC2, CSC2 0.1150 0.1152 0.1149
24 ACC3, HPC2, CSC3 0.1287 0.1288 0.1285
25 ACC3, HPC3, CSC1 0.1127 0.1124 0.1124
26 ACC3, HPC3, CSC2 0.1204 0.1202 0.1203
27 ACC3, HPC3, CSC3 0.1348 0.1343 0.1345

Overall, as expected, Table 6 shows that small differences lie in the a priori premiums resulting from
these models when the net premium principle is used because, as is well known, in this case only the location
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parameters of the models, which are modelled using the same covariate information, affect the estimation of
the premium rates. However, when the a posteriori correction is going to be calculated we will observe that,
compared to the BMS provided by mixed Poisson regression models, the NBIG model will show much less
extreme relative a posteriori, or Bonus-Malus premiums for policyholders with some claim experience. This
can be explained by the fact that the NBIG regression model has the potential to capture more efficiently
the stylized characteristics of the data. In particular, given the estimate of the parameter σ of the NBIG
model, which is the same parameter that appears in Eq. (1) of the Negative Binomial distribution, we
can assess the extent of overdispersion for the claim distribution of an individual policyholder with any
given mean claim rate. The NBIG model assumes that individual claim experience will be overdispersed
relative to a Poisson model and the overdispersion is larger for policyholders with larger mean claim rates.
Consequently, this situation affects the calculation of the a posteriori or Bonus-Malus premium rates. Thus,
the employment of the new model, which also provided a better fit than the other two competing mixed
Poisson models, is beneficial for the insurance company because it can provide the actuary with alternative
pricing strategies in addition to those already existing in ratemaking literature.

4.4 Calculation of the A Posteriori Premiums

In this subsection we examine how the NBIG model responds to claim experience. Consider a policyholder

i with claim history k1i , ..., k
t
i and x1i , ..., x

t+1
i characteristics and denote by K =

t∑
j=1

kji the total number

of claims that they had. The problem is to determine at the renewal of the policy the expected claim
frequency λt+1

i of the policyholder i for the period t+ 1 given the observation of the reported accidents in
the preceding t periods and observable characteristics in the preceding t+1 periods and the current period.
We use Bayes theorem to derive the posterior distribution of λt+1

i , given those claim and characteristics
records, as follows

f
(
λt+1
i |k1i , ..., kti ;x1i , ..., xt+1

i

)
=

t∏
j=1

P (ki|xi, λi) f
(
λt+1
i

)
∞∫
0

P (ki|xi, λi) f
(
λt+1
i

)
dλt+1
i

, (26)

where P (ki|xi, λi) is the pmf of the Negative Binomial distribution, which is given by Eq. (1), and
where f

(
λt+1
i

)
is the pdf of the Inverse Gaussian prior distribution which is given by Eq. (4). Using the

quadratic loss function and the net premium principle, one can find that the optimal estimator of λt+1
i is

the mean of the posterior structure function given by

E
(
λt+1
i |k1i , ..., kti ;x1i , ..., xt+1

i

)
=

∞∫
0

λt+1
i f

(
λt+1
i |k1i , ..., kti ;x1i , ..., xt+1

i

)
dλt+1
i , (27)

The expectation in Eq. (27) does not have a closed form expression. However, it can be easily com-
puted based on either numerical integration or a Monte Carlo approach since both schemes do not require
knowledge of the pdf of the posterior distribution of λt+1

i .
Based on the aforementioned methodology, we compute the Bonus-Malus premium rates resulting from

the NBIG model based only on the number of individual claims, i.e. the a posteriori criteria, and based
both on the number of individual claims and the characteristics of the policyholder and the automobile,
i.e. the a priori criteria. When both criteria are considered, we examine a group of policyholders who share
the following common characteristics: We consider that the policyholder i lives in a large city and has a car
between 0 to 8 years old with HP between 0-1400 cc. The premium rates will be divided by the premium
when t = 0, i.e. we calculate the relative premiums, since we are interested in the differences between
various classes and the results are presented so that the premium for a new policyholder is 100. Tables
7 and 8 show comparable relative premiums for the NBI, PIG and NBIG distributions/regression models
respectively, assuming that the number of claims ranges from 0 to 4 and the age of the policy is up to 5
years. From both of tables 7 and 8 we observe that if the policyholder i has a claim free year, the premium
rates reduce, whereas if they have one or more claims, the premium rates increase, resulting in bonus or
malus respectively. Furthermore, as expected, both of these tables show that for policyholders with some
claim experience the NBIG model provides lower relative premiums rates than those resulting from both
mixed Poisson models. As was previously mentioned, this difference between the NBIG model and the NBI
and PIG models can be attributed to the fact the NBIG model assumes that the individual claims follow the
overdispersed Negative Binomial distribution whereas, in contrast, both the NBI and PIG models assume
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that the individual claims follow a Poisson distribution, which does not allow for overdispersion. Thus,
lower relative Bonus-Malus premiums are more likely under the NBIG distribution/regression model than
those under one based on a mixed Poisson distribution/regression model. For example, from Table 7 we
see that policyholders who had four claims over the third year of observation will have to pay a malus of
277.37%, 355.37% and 136.94% of the basic premium, while those who had four claims over the fifth year of
observation will have to pay a malus of 221.24%, 256.88% and 115.19% of the basic premium in the case of
the NBI, PIG and NBIG distributions respectively. Furthermore, from Table 8 when both the a priori and
the a posteriori criteria are considered, we see, for instance, that policyholders had four claims over the third
year of observation will have to pay a malus of 246.48%, 303.69% and 122.90% of the basic premium and
those who had four claims over the fifth year of observation will have to pay a malus of 188.80%, 209.91%
and 99.77% of the basic premium in the case of the NBI, PIG and NBIG regression models respectively.
Overall, it is worth mentioning that the Bonus-Malus premium rates which are presented in Table 8 provide
a more complete picture to the actuary since since they consider all the important a priori and a posteriori
information for the number of claims of each policyholder in order to estimate their risk of having an
accident and thus they permit the differentiation of the premiums for various number of claims based on
the expected claim frequency of each policyholder as this is estimated both from the a priori and the a
posteriori classification criteria.

Table 7 A Posteriori, or Bonus-Malus, Premium Rates, Claim Frequency Distributions

NBI

Year Number of Claims k
t 0 1 2 3 4
0 100.00 0.00 0.00 0.00 0.00
1 89.4145 181.3762 273.3380 365.2998 457.2615
2 80.8555 164.0145 247.1734 330.3324 413.4914
3 73.7920 149.6862 225.5804 301.4745 377.3687
4 67.8634 137.6602 207.4569 277.2536 347.0504
5 62.8166 127.4228 192.0290 256.6352 321.2414

PIG

Year Number of Claims k
t 0 1 2 3 4
0 100.00 0.00 0.00 0.00 0.00
1 89.2901 177.3503 309.1353 466.0915 633.5270
2 81.4178 154.6349 262.5190 391.3363 529.4585
3 75.3173 137.9733 229.0824 338.0425 455.3728
4 70.4102 125.1677 203.8802 298.1039 399.9333
5 66.3521 114.9796 184.1729 267.0425 356.8794

NBIG

Year Number of Claims k
t 0 1 2 3 4
0 100.00 0.00 0.00 0.00 0.00
1 96.0443 129.5972 170.1744 215.6181 263.6407
2 92.4986 123.8452 161.7446 204.3245 249.5761
3 89.2996 118.6957 154.2130 194.2249 236.9355
4 86.3963 114.0578 147.4467 185.1409 225.5256
5 83.7473 109.8579 141.3367 176.9333 215.1931
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Table 8 A Posteriori, or Bonus-Malus, Premium Rates, Claim Frequency Regression Models

NBI

Year Number of Claims k
t 0 1 2 3 4
0 100.00 0.00 0.00 0.00 0.00
1 87.5220 173.8774 260.2327 346.5881 432.9434
2 77.8126 154.5880 231.3633 308.1387 384.9140
3 70.0423 139.1510 208.2596 277.3683 346.4769
4 63.6830 126.5171 189.3512 252.1853 315.0194
5 58.3823 115.9864 173.5905 231.1946 288.7987

PIG

Year Number of Claims k
t 0 1 2 3 4
0 100.00 0.00 0.00 0.00 0.00
1 87.5187 168.5516 288.5418 431.7100 584.9724
2 78.7834 144.4478 239.9623 354.1874 477.1743
3 72.2310 127.4270 206.5314 301.2413 403.6909
4 67.0815 114.6879 182.0555 262.7493 350.3711
5 62.8966 104.7483 163.3217 233.4806 309.9055

NBIG

Year Number of Claims k
t 0 1 2 3 4
0 100.00 0.00 0.00 0.00 0.00
1 95.2674 127.0983 165.1884 207.5591 252.1951
2 91.1096 120.5022 155.6831 194.9866 236.6477
3 87.4240 114.7025 147.3403 183.9234 222.8985
4 84.1309 109.5625 139.9645 174.1277 210.6809
5 81.1677 104.9742 133.4002 165.4031 199.7682

5 Other Topics

5.1 Computational Aspects

The EM algorithm described in Section 3 was used to estimate both the NBIG distribution and regression
model. The model, both for the case with and the case without covariate information, converged after
quite a few iterations using a rather strict criterion. In particular, we iterated between the E-step and
the M-step until the relative change in log-likelihood, which is given by Eq. (8), between two successive
iterations was smaller than 10−12. We also emphasize that for this model the choice of initial values for
both the vector of the regression coefficients β and the scale parameter σ needed special attention because
the M-step is in fact a Newton-Raphson iteration and one may obtain inadmissible values if the starting
values are bad. Good starting values for β and σ were obtained by fitting the simple negative binomial
regression. Additionally, to ensure that the global maximum had been obtained and the algorithm had not
been trapped in a local maximum, we checked with many initial values for the parameter γ of the Inverse
Gaussian mixing distribution, but for all cases we converged on the same solution. Furthermore, standard
errors were obtained relatively easily using the standard approach of Louis (1982). All computing was made
using the statistical computing environment language R. The NBIG regression model needed more time than
the NBIG distribution because the numerical evaluation of the integrals for the case with covariates is more
computationally time consuming than for the case without covariates. However, it took less than 3 minutes
on an Intel Duo 2Ghz processor. Finally, ML estimation of both NBI and PIG distributions/regression
models, for which the definition of a density function in closed form is feasible, was straightforward by
using standard statistical packages in R.

5.2 An Extended Version of the Model

Finally, as is well known, claim count data sets, often include a high presence of zeros. The high percentage
of zero values motivates the use of zero-inflated models which can provide a parsimonious yet powerful way
to handle data sets that contain a large number of zeros. See, for instance, Cohen (1966), Lambert (1992),
Yip and Yau (2005), Boucher et al. (2007), Denuit et al. (2007), Tzougas et al. (2015) and Gómez-Déniz
and Caldeŕın-Ojeda (2016). Thus, an interesting possible line of further research would be to consider the
Zero-inflated version of the proposed model, namely the Negative Binomial-Inverse Gaussian (ZINBIG)
regression model. The ZINBIG distribution can arise as follows:
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P (ki = k|xi) =

{
π + (1− π)P (k = 0|xi)
(1− π)P (k|xi) , if k > 0,

(28)

where 0 < π ≤ 1, for ki, i = 1, ...n, is the response, where P (ki|xi) is the pmf of Negative Binomial-
Inverse Gaussian distribution, which is given by Eq. (5), and where xi is a vector of covariate information.
Note also that the ZINBIG model is in fact a finite mixture model since assumes that the data are a mixture
of two distributions: a degenerate distribution for the zero case and a standard count distribution. Thus,
one can fit this general model without special effort using standard techniques for finite mixtures (see,
Bohning, 1999).

6 Conclusions

The main purpose of this paper was to propose an EM scheme that reduces the computational burden for
ML estimation in the NBIG regression model. The NBIG regression model extends the commonly used
specification that assumes that the number of claims is distributed according to a mixed Poisson regression
model, which was widely accepted for a priori and a posteriori ratemaking.

The NBIG distribution can be considered as a plausible model for overdispersed claim count data and
thus is suitable for application, not only in insurance settings, but also in other fields where this phenomenon
is present, as it is likely to capture its influence to a good approximation. Also, we compared the a priori
and a posteriori premium rates determined by the NBIG model to those derived by the NBI and PIG
models respectively that have been widely used for modelling claim count data.

Furthermore, it should be noted that the novel EM type algorithm we developed was based on the
Poisson-Gamma-Inverse Gaussian triple mixture representation of the NBIG model, and did not require
knowledge of its pmf, which could not be written in closed form. Thus, it is obvious that the ML estima-
tion framework we proposed has the considerable mathematical flexibility for fitting other mixed Negative
Binomial regression models stemming from several other mixing distributions. Moreover, the data augmen-
tation which was used in the paper to derive the EM algorithm can be the basis for constructing Bayesian
estimation methods proceeding along similar lines as Zhou et al. (2012) and Geedipally et al. (2012) who
considered the Lognormal and Gamma mixed Negative Binomial and the Negative Binomial-Lindley re-
gression models respectively for analyzing count data.

Finally, in a forthcoming paper bivariate mixed Negative Binomial regression models will be employed
to design merit rating plans in accordance with the a priori ratemaking structure of the insurance company,
extending the setup of Bermúdez and Karlis (2011 and 2017) who used bivariate mixed Poisson regression
models to make an a priori and a posteriori ratemaking.
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26. Gómez-Déniz, E., and E. Caldeŕın-Ojeda (2016). ”The Mixture Poisson Exponential–Inverse Gaussian Regression

Model: An application in Health Services.” Metodoloski Zvezki 13.2 : 71.
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