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Abstract

The dimension of a graph G is the smallest d for which its vertices can be embedded in d-
dimensional Euclidean space in the sense that the distances between endpoints of edges equal
1 (but there may be other unit distances). Answering a question of Erdős and Simonovits
[Ars Combin. 9 (1980) 229–246], we show that any graph with less than

(
d+2
2

)
edges has

dimension at most d. Improving their result, we prove that the dimension of a graph with
maximum degree d is at most d. We show the following Ramsey result: if each edge of
the complete graph on 2d vertices is coloured red or blue, then either the red graph or the
blue graph can be embedded in Euclidean d-space. We also derive analogous results for
embeddings of graphs into the (d− 1)-dimensional sphere of radius 1/

√
2.
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1 Introduction

Definition 1. A graph G = (V,E) is a unit-distance graph in Euclidean space Rd, if V ⊂ Rd
and

E ⊆ {(x, y) : x, y ∈ V, |x− y| = 1} .

(Note that we do not require the edge set of a unit distance graph to contain all unit-distance
pairs.) We say that a graph G is realizable in a subset X of Rd, if there exists a unit distance
graph G′ in Rd on a set of vertices X0 ⊂ X, which is isomorphic to G. We will use this notion
for X = Rd and for X = Sd−1, where Sd−1 is the sphere of radius 1/

√
2 with center in the origin.

Erdős, Harary and Tutte [EHT65] introduced the concept of Euclidean dimension dimG of
a graph G.

Definition 2. The Euclidean dimension dimG (spherical dimension dimS G) of a graph G is
equal to the smallest integer k such that G is realizable in Rk (on Sk−1 ⊂ Rk).

Erdős and Simonovits [ES80] showed that if G has maximum degree d then dimG ≤
dimS G ≤ d+ 2. In Theorem 1 we improve this result.
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Theorem 1. Let d ≥ 1 and let G = (V,E) be a graph with maximum degree d. Then G is a
unit distance graph in Rd except if d = 3 and G contains K3,3.

We also show the following simple result.

Proposition 2. Let d ≥ 2. Any graph G = (V,E) with maximum degree d − 1 has spherical
dimension at most d.

Definition 3. Let f(d) denote the least number for which there is a graph with f(d) edges
that is not realizable in Rd.

There are some natural upper bounds on f(d). It is well known that Kd+2 is not realizable
in Rd (see also Lemma 14), hence f(d) ≤

(
d+2
2

)
. It is also well known that K3,3 cannot be

realized in R3 (since three unit spheres in R3 intersect in at most two points), which gives
f(3) ≤ 9 <

(
3+2
2

)
. In [ES80], Erdős and Simonovits asked if f(d) =

(
d+2
2

)
for d > 3. House

[Hou13] proved that f(3) = 9, and that K3,3 is the only graph with 9 edges that can not be
realized in R3. Chaffee and Noble [CN16] showed that f(4) =

(
4+2
2

)
= 15, and there are only

two graphs, K6 and K3,3,1, with 15 edges that can not be realized in R4 as a unit distance graph.
Recently, they showed [CN17] that f(5) =

(
5+2
2

)
= 21, and that K7 is the only graph with 21

edges that cannot be realized in R5 as a unit distance graph. We answer the above-mentioned
question of Erdős and Simonovits as part of the following result.

Theorem 3. Let d > 3. Any graph G with less than
(
d+2
2

)
edges can be realized in Rd. If G

moreover does not contain Kd+2 −K3 or Kd+1, then it can be realized in Sd−1.

It is necessary to forbid Kd+2−K3 and Kd+1 in the second statement of the above theorem
as they cannot be realized in Sd−1; see Lemma 14.

Ramsey-type questions about unit distance graphs have been studied by Kupavskii, Raig-
orodskii and Titova [KRT13] and by Alon and Kupavskii [AK14]. In [AK14] the first of the
following quantities was introduced.

Definition 4. Let fD(s) denote the smallest possible d, such that for any graph G on s vertices,
either G or its complement G can be realized as a unit distance graph in Rd. Similarly, we define
fSD(s) to be the smallest possible d, such that for any graph G on s vertices, either G or its
complement G can be realized as a unit distance graph in Sd−1.

In [AK14] it is shown that fD(s) = (12 + o(1))s. We determine the exact value of fSD(s)
and give almost sharp bounds on fD(s).

Theorem 4. For any d, s ≥ 1, fSD(s) = d(s+ 1)/2e and d(s− 1)/2e ≤ fD(s) ≤ ds/2e.

2 Maximum degree

We use the following lemma of Lovász in the proofs of the results on bounded maximum degrees.

Lemma 5 ([Lov66]). Let G = (V,E) be a graph with maximum degree k and let k1, . . . , kα be
non-negative integers such that k1+· · ·+kα = k−α+1. Then there is a partition V = V1∪· · ·∪Vα
of the vertex set into α parts such that the maximum degree in G[Vi] is at most ki, i = 1, . . . , α.

The proof of Proposition 2 is a simple induction.
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Proof of Proposition 2. The proof is by induction on d. For d = 2 and d = 3 the theorem is easy
to verify. Let V = V1 ∪V2 be a partition as in Lemma 5 for α = 2, k1 = bd−22 c, and k2 = dd−22 e.
Then by the induction hypothesis, G[Vi] can be represented on a Ski in Rki+1. Represent G[V1]
and G[V2] on Sk1 and Sk2 in orthogonal subspaces of dimension k1 + 1 and k2 + 1, respectively.
Since the distance between any point in Sk1 and any point in Sk2 is 1, and both spheres are
subspheres of Sd−1, we obtain a representation of G in Sd−1.

In the proof of Theorem 1 we use Lemma 6, which is a strengthening of a special case of
Lemma 5, and Proposition 7, which gives an embedding of cycles in sufficiently general position
on the 2-sphere.

Lemma 6. Let d ≥ 4 and let G = (V,E) be a graph with maximum degree at most d.
If d is even, then there is a partition V = V1 ∪ · · · ∪ Vd/2 such that the maximum degree

of G[Vi] is at most 1 for 1 ≤ i < d/2, the maximum degree of G[Vd/2] is at most 2, and any
v ∈ Vd/2 of degree 2 in G[Vd/2] has exactly 2 neighbours in each Vi.

If d is odd, then there is a partition V = V1∪ · · · ∪V(d−1)/2 such that the maximum degree of
G[Vi] is at most 1 for 1 ≤ i < (d−3)/2, the maximum degree of G[V(d−3)/2] and G[V(d−1)/2] is at
most 2, any degree 2 vertex in G[V(d−3)/2] has exactly 2 neighbours in each Vi for i ≤ (d− 5)/2
and exactly 3 neighbours in V(d−1)/2, and any degree 2 vertex of G[V(d−1)/2] has at least 2
neighbours in each Vi for i ≤ (d− 3)/2 and at most 3 neighbours in V(d−3)/2.

Proof. d is even: Let V = V1 ∪ · · · ∪ Vd/2 be a partition for which
∑d/2

i=1 e(G[Vi]) is minimal,
where e(G[Vi]) denotes the number of edges in G[Vi]. For such a partition, each v ∈ Vi is joined
to at most 2 vertices in Vi, otherwise we could move v into some other part Vj to decrease the
sum of the e(G[Vi]). Similarly, any v ∈ Vi joined to exactly 2 other vertices in Vi has exactly
2 neighbours in each Vj . Hence we can move each degree 2 vertex of G[Vi] one by one to Vd/2

without changing
∑d/2

i=1 e(G[Vi]), thus preserving the above two properties.

d is odd: Let V = V1 ∪ · · · ∪ V(d−1)/2 be a partition for which
∑(d−1)/2

i=1 e(G[Vi]) is minimal.
Again, for such a partition each v ∈ Vi is joined to at most 2 vertices in Vi. If v ∈ Vi is joined
to exactly 2 other vertices in Vi, then it has at most 3 neighbours in one of the Vj ’s and exactly
2 neighbours in all the others. So we can move each degree 2 vertex of G[Vi] one by one to

V(d−3)/2 or to V(d−1)/2, keeping
∑d/2

i=1 e(G[Vi]) unchanged. To obtain the final partition, we move
the degree 2 vertices of G[V(d−3)/2] to V(d−1)/2, except for those with 3 neighbours in V(d−1)/2.
Finally, note that a vertex of degree 2 in G[V(d−1)/2] is joined to at least 2 vertices in each Vi
(i ≤ (d− 3)/2), hence is joined to at most 3 vertices in V(d−3)/2.

The following proposition states that paths and cycles can be realized on S2 in sufficiently
general position. Note that when a 4-cycle is realized on S2, there is always a pair of non-adjacent
points that are diametrically opposite on the sphere.

Proposition 7. Any graph with maximum degree 2 can be realized on S2 such that the following
two properties hold:

1. For no 3 distinct vertices a, b, and c, does there exist a vertex at distance 1 from all three.

2. No 4 vertices are on a circle, unless the 4 vertices consist of two pairs of diametrically
opposite points coming from two distinct 4-cycles.

In the proof we use ideas from the correction [LSS00] to the paper [LSS89] of Lovász,
Saks and Schrijver. Let G = (V,E) be a (d − 1)-degenerate graph, and label its vertices as
V = {v1, . . . , vn} such that | {vj : j < i and vivj ∈ E} | ≤ d − 1 for all i. We realize G in Sd−1
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using a random process. For any linear subspace A of Rd of dimension at least 1, there is a unique
probability measure on the subsphereA∩Sd−1 that is invariant under orthogonal transformations
of A, namely the Haar measure µA. Given the Haar measure µ on Sd−1, µA on A ∩ Sd−1 can
be obtained as the pushforward of µ by the normalized projection π̃A : Sd−1 \ A⊥ → A ∩ Sd−1
given by π̃A(x) = (

√
2|πA(x)|)−1πA(x), where πA : Rd → A is the orthogonal projection onto A.

We now embed G as follows. We first choose u1 distributed uniformly from Sd−1 (that
is, according to µ). Then for each i = 2, . . . , n, we do the following sequentially. Let Li =
span {uj : j < i and vivj ∈ E}, and choose ui uniformly from L⊥i ∩ Sd−1 (according to µL⊥i

)

and independently of {uj : j < i}.
Since each Li has dimension at most d− 1, this process is well defined. If G has maximum

degree at most d− 1, then for any permutation σ of [n], the ordering (vσ(1), . . . , vσ(n)) has the
property that |

{
vσ(j) : j < i and vσ(i)vσ(j) ∈ E

}
| ≤ d− 1 for all i, and we can follow the above

random process to embed G, thus obtaining a probability distribution νσ on the collection of
realizations of G in Sd−1. As pointed out in [LSS00], for different σ we may obtain different
probability distributions νσ. Nevertheless, as shown in [LSS00], under a certain condition on
G, any two such measures are equivalent, that is, they have the same sets of measure 0, or
equivalently, the same sets of measure 1. We say that an event A holds almost surely (a.s.)
with respect to some probability distribution if it holds with probability 1.

Lemma 8 ([LSS00]). For any graph G = (V,E) that does not contain a complete bipartite
graph on d + 1 vertices, for any two permutations σ and τ of {1, . . . , n}, the distributions νσ
and ντ are equivalent.

This lemma is used in [LSS00] to show that under the same condition, the above random
process gives a realization of the graph such that the points are in general position almost surely.

Theorem 9 ([LSS00, LSS89]). For any graph G = (V,E) that does not contain a complete
bipartite graph on d+ 1 vertices, the above random process gives a realization of G such that for
any set of at most d vertices of G, the embedded points are linearly independent.

We now apply Lemma 8 and Theorem 9 to prove Proposition 7.

Proof of Proposition 7. Observe that G is a disjoint union of paths and cycles. If we remove
a vertex from each 4-cycle, we obtain a graph G′ = (V ′, E′) with V ′ = {v1, . . . , vn} ⊆ V that
does not contain a complete bipartite graph on 4 vertices (that is, a 4-cycle or K1,3). Take a
random realization of G′ as described above, and then add back the removed vertices as follows.
If a was removed from the cycle avivjvk with this cyclic order, then embed a as the point −vj
opposite vj . We also denote a by −vj . We claim that this realization satisfies the conditions of
the proposition almost surely.

We want to avoid certain configurations on some small number of vertices. By Lemma 8 it
is always enough to show that if we start with these few vertices then almost surely they do not
form a prohibited configuration.

First we have to see that after adding back the removed vertices, we have a unit distance
realization of G almost surely. By Theorem 9, we have a realization of G′ almost surely, and
for any c with neighbours b and d, we have that b 6= ±d a.s. and that no point is diametrically
opposite c. By adding back a = −c, we then also have b and d at distance 1 from a.

Suppose next that some vertex v is at distance 1 to a, b, and c. If any of these vertices are
in V \ V ′, we may replace them by their diametrically opposite point which is in V , and we
still have that v is at distance 1 to a, b, and c, and v, a, b, c ∈ V ′. Since v is not adjacent to
all three in G′, we may assume without loss of generality that va /∈ E′. If we then randomly
embed G′ using an ordering that starts with v and a, we obtain a.s. that |v − a| 6= 1, which
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is a contradiction (by Lemma 8). Therefore, no vertex of G is at distance 1 to three distinct
vertices of G.

We next show that no 4 distinct vertices w1, w2, w3, w4 ∈ V of G will be realized on a
circle a.s., where wi = εivi for some εi ∈ {±1} and vi ∈ V ′, i = 1, 2, 3, 4, unless we have
w1 = −w2 and w3 = −w4 after relabelling. Suppose first that v1, v2, v3, v4 are distinct, and let
H := G[v1, v2, v3, v4] and H ′ = G[w1, w2, w3, w4]. Note that vi 7→ wi is an isomorphism from H
to H ′. Since G does not contain a 4-cycle or K1,3, dH(vi) ≤ 1 for some 1 = 1, 2, 3, 4. Without
loss of generality, dH(v4) = dH′(w4) ≤ 1, and if dH(v4) = 1, then v3v4 ∈ E′. Then dimL⊥4 ≥ 2,
and it follows that after choosing u3, the fourth point u4 and −u4 will a.s. not be on the circle
through εu1, ε2u2, ε3u3, since the great circle of S2 orthogonal to u3 intersects each of the 8
circles through any of ±u1, ±u2, ±u3 in at most 2 points.

Next suppose that v1, v2, v3, v4 consist of exactly 3 distinct vertices, say with w3 = v3 = v4
and w4 = −v3 = −v4. Since u1, u2, u3 are linearly independent a.s., none of the 8 triples
{ε1u1, ε2u2, ε3u3} where (ε1, ε2, ε3) ∈ {±1}3, lie on a great circle a.s., hence w4 is not on the
circle through w1, w2, w3 a.s.

The only remaining case is where v1, v2, v3, v4 consist of exactly 2 distinct vertices, say with
w1 = −w2 = v1 and w3 = −w4 = v2. It follows that w1 and w2 are embedded as opposite points
on S2, and w3 and w4 are too.

Proof of Theorem 1. For d = 1 and d = 2, the theorem is trivial. For d = 3, we use Proposition 7
as follows. First we remove vertices of degree 3 in G from V one by one. Let W ⊂ V be the
set of removed vertices. Each w ∈ W has exactly 3 neighbours in V , W is an independent set
of G, and the maximum degree in G[V \W ] is at most 2. Now we represent G[V \W ] on S2 as
in Proposition 7. Finally, we embed the removed vertices in W one by one as follows. For any
circle on S2, there are exactly 2 points at distance 1 from the circle. (They are not necessarily
on the sphere.) For any w ∈ W , we choose one of these two points determined by the circle
through the 3 neighbours of w. It remains to show that there are at most 2 vertices in W that
determine the same circle. First note that at most 2 vertices in W can have the same set of
neighbours, because G does not have K3,3 as a component. Also, if w1 ∈ W and w2 ∈ W have
different sets of neighbours, then their neighbours span different circles on S2. Otherwise, if the
neighbours of w1 and w2 lie on the same circle C, then by Proposition 7, w1 and w2 have a
common neighbour v on C that lies on a 4-cycle in G[V \W ], so v will have degree 4 in G, a
contradiction.

For d > 3 we consider two cases depending on the parity of d.

Case 1: d is even. Let V = V1 ∪ · · · ∪ Vd/2 be a partition as in Lemma 6. Remove vertices
of degree 2 in G[Vd/2] from Vd/2 until the maximum degree of each remaining vertex in Vd/2 is
at most 1 in G[Vd/2]. Let W ⊂ Vd/2 be the set of removed vertices. Then W is an independent
set of G, any w ∈W has exactly 2 neighbours in Vd/2, and the maximum degree of a vertex in
G[Vd/2 \W ] is at most 1. Hence G[V \W ] = G[V1∪· · ·∪V(d/2)−1∪(Vd/2 \W )] can be represented

on Sd−1 as follows. As G[Vi] for 1 ≤ i < d/2 and G[Vd/2 \W ] have maximum degree 1, they can

be realized on circles of radius 1/
√

2 and centre the origin o in pairwise orthogonal 2-dimensional
subspaces of Rd. We can also ensure that no two vertices are diametrically opposite on a circle.

Then we add the vertices of W one by one to this embedding. Each vertex w ∈W has exactly
2 neighbours on each circle, so the set N(w) of d neighbours of w span an affine hyperplane
H not passing through o, hence they lie on a subsphere of Sd−1 of radius less than 1/

√
2. It

follows that there are exactly 2 points in Rd \ Sd−1 at distance 1 from N(w), both on the line
through o orthogonal to H. We choose one of these points to embed w.

It remains to show that there are at most two w ∈ W that determine the same subsphere,
and that two different subspheres determine disjoint pairs of points at distance 1. There are no
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3 vertices in W with the same set of neighbours, since the maximum degree in Vd/2 is at most 2.
If some two vertices w1 and w2 from W have different sets of neighbours N(w1) 6= N(w2), then
they have different pairs of neighbours on at least one of the orthogonal circles, so the affine
hyperplanes H1 and H2 spanned by N(w1) and N(w2) are different. If H1 and H2 are parallel,
then the two subspheres H1 ∩ Sd−1 and H2 ∩ Sd−1 have different radii, and the pair of points at
distance 1 from H1 ∩ Sd−1 are disjoint from the pair of points at distance 1 from H2 ∩ Sd−1. If
H1 and H2 are not parallel, the pairs of points at distance 1 from H1∩Sd−1 and from H2∩Sd−1
lie on different lines through o (and none can equal o), and so are also disjoint. Therefore, all
points from W can be placed.

Case 2: d is odd. Let V = V1 ∪ · · · ∪ V(d−3)/2 ∪ V(d−1)/2 be a partition as in Lemma 6.

First we embed V \ V(d−3)/2 = V1 ∪ · · · ∪ V(d−5)/2 ∪ V(d−1)/2 on Sd−3 as follows. As each G[Vi]
for 1 ≤ i ≤ (d− 5)/2 has maximum degree 1, the G[Vi] can be realized on circles of radius
1/
√

2 and with centre in the origin o in pairwise orthogonal 2-dimensional subspaces of Rd. We
can also ensure that from V1 ∪ · · · ∪ V(d−5)/2 no two vertices are diametrically opposite on a
circle. Since the maximum degree of G[V(d−1)/2] is at most 2, V(d−1)/2 can be embedded on a

2-sphere S of radius 1/
√

2 and centre o in a subspace orthogonal to the subspace spanned by
= V1 ∪ · · · ∪ V(d−5)/2, as described in Proposition 7. We will denote by C the circle of radius

1/
√

2 and with centre o in the plane orthogonal to the subspace spanned by Sd−3.
Before treating the general case, we show that we can add V(d−3)/2 to the embedding,

assuming that V(d−1)/2 is embedded in S in general position in the sense that no four points of
V(d−1)/2 lie on the same circle and no three points of V(d−1)/2 lie on a great circle of S. With this
assumption, embedding V(d−3)/2 is very similar to the embedding of Vd/2 in the even case. First
we find an independent set W ⊆ V(d−3)/2 such that the maximum degree of G[V(d−3)/2 \W ] is at
most 1, and each w ∈ W has exactly two neighbours in V(d−3)/2. Then we embed V(d−3)/2 \W
on C such that no two vertices are in opposite positions. Note that V \ W is embedded in
Sd−1. Finally, we embed the vertices of W one by one. Each vertex w ∈ W has exactly two
neighbours in Vi for 1 ≤ i ≤ (d− 3)/2 and three neighbours in V(d−1)/2. By the general position
assumption the affine hyperplane spanned by the set of neighbours N(w) of w does not contain
the origin. Thus there are exactly 2 points in Rd \ Sd−1 at distance 1 from N(w). We choose
one of these points to embed w. An argument similar to the one that was used in the even case
shows that there are at most two w ∈W that determine the same hyperplane, and two different
hyperplanes determine disjoint pairs of points.

We now turn to the general case. As before, we would like to choose an independent set
W ⊆ V(d−3)/2 such that the maximum degree of G[V(d−3)/2 \W ] is at most 1 and each w ∈ W
has exactly two neighbours in V(d−3)/2. However, this is not enough: Note that if V(d−1)/2
is not in general position, then it is possible that there is a vertex w ∈ V(d−3)/2 for which
N1(w) := N(w) ∩ V(d−1)/2 spans a great circle on S. Hence the points that are at distance 1
from N(w) are the poles of the circle spanned by N1(w) on S. In addition, in this case the
points that are at distance 1 from N(w) are determined by N1(w). Thus if for w1, w2 ∈ W we
have N(w1) 6= N(w2) but N1(w1) and N1(w2) span the same great circle on S, then the pair of
points where w1 and w2 can be embedded, are the same. Thus, we have to impose some more
properties on the independent subset W .

Recall that V(d−1)/2 is embedded on the 2-sphere S as in Proposition 7. Therefore, three
vertices a, b, c ∈ V(d−1)/2 can only span a great circle if two of them are opposite vertices of a
4-cycle that are embedded in antipodal points. We assign an ordered triple (a, b, c) to a, b, c if
they span a great circle with a and b being antipodal. By the properties of the embedding of
V(d−1)/2 on S, we have that (a, b, c) and (e, f, g) span the same great circle if and only if one of
the following two statements hold.
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1. {a, b} = {e, f}, c = g, and no vertex from V(d−1)/2 is embedded in the point antipodal
to c = g. (That is, c = g is not part of a pair of opposite vertices of a 4-cycle that was
embedded in an antipodal pair.)

2. {a, b, c, e, f, g} = {h, i, j, k} consist of two pairs of points {h, i} and {j, k} that are opposite
vertices of two 4-cycles.

If for w1, w2 ∈ V(d−3)/2, N1(w1) and N1(w2) are as in the first statement, they span the
same great circle if and only if N1(w1) = N1(w2) = {a, b, c}. Since a and b have degree 2 in
G[V(d−1)/2], by Lemma 6 they are each joined to at most 3 vertices in V(d−3)/2, hence there are
at most three vertices w1, w2, w3 ∈ V(d−3)/2 for which N1(w1) = N1(w2) = N1(w3) = {a, b, c}.
We will call such a triple {w1, w2, w3} a conflicting triple.

If for w1, w2 ∈ V(d−3)/2, N1(w1) and N1(w2) are as in the second statement, they span the
same great circle in S if and only if N1(w1), N1(w2) ⊆ {h, i, j, k}. Again, by Lemma 6, any
vertex from {h, i, j, k} has at most three neighbours in V(d−3)/2, and so there are at most four
vertices w1, w2, w3, w4 ∈ V(d−3)/2 for which N1(w1), N1(w2), N1(w3), N1(w4) ⊆ {h, i, j, k}. If
there are 4 such vertices we will call them a conflicting 4-tuple, while if there are 3, we will also
call them a conflicting triple.

We will also call both a conflicting triple and a conflicting 4-tuple a conflicting set. Note that
any two different conflicting sets are disjoint. Recall that by the properties of the embedding
of V(d−1)/2 given by Proposition 7, if three vertices on S span a great circle, no vertex from
V(d−1)/2 is embedded in the poles of this circle. It follows that it is sufficient for an embedding
to find W ⊆ V(d−3)/2 with the following properties.

1. W is an independent set.

2. If w ∈ W , then w has exactly two neighbours in V(d−3)/2 (in order for w to have exactly
3 neighbours in V(d−1)/2).

3. V(d−3)/2 \W can be embedded on C, such that if a, b ∈ V(d−3)/2 \W are neighbours of
some w ∈W , then a and b are not in opposite positions (in order to guarantee that if for
w1, w2 ∈W the neighbour sets N1(w1) and N1(w2) span different circles, then N(w1) and
N(w2) define different hyperplanes.)

4. W contains at most two points of any conflicting set (in order to guarantee that the
neighbours of at most two vertices from W can define the same hyperplane).

Once we find such W , we can proceed as in the particular case considered above. In the
remaining part of the proof we construct such W .

Note that the connected components of G[V(d−3)/2] are paths and cycles. We embed paths
of length at most 3 and cycles of length 4 on C. Let H be the set of the remaining connected
components of G[V(d−3)/2]. It is easy to see the following:

Proposition 10. Let H ∈ H be a cycle of length not equal to 4 or a path of length at least 4.
Then V (H) can be partitioned into sets AH and BH , so that:

1. H[BH ] is a matching containing only vertices of degree 2 in H (that is, not containing
endpoints of P ).

2. For any maximal independent set W ′ ⊂ BH the graph H[AH ∪W ′] has connected compo-
nents of size ≤ 4.
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Proof. Such a partition is very easy to achieve — simply choose the edges in BH “greedily”, in
the path case starting from a vertex next to the endpoint of a path.

For each H ∈ H we denote the partition given by Lemma 10 as V (H) = AH∪BH , and select
a maximal independent WH from each BH , H ∈ H, in a specific way to be explained below,
and put W :=

⋃
H∈HWH . First, let us verify that for any choice of W , we can make sure that

the properties 1–3 are satisfied. First, clearly, W is an independent set. Second, by the choice
of B in each component H ∈ H, each vertex in W has degree 2. Third, since each connected
component of H \W , H ∈ H′, has size at most 4, it can be realized on the circle C such that
vertices from different connected components are not in opposite position. Thus, if w ∈W has
neighbours in different connected components of H \W , then the property 3 is satisfied for w.
If both neighbours of w are in the same component of H \W , then H is a cycle of length 3 or
5, and H \W = H \ {w} is a path of length 1 or 3. In both cases the neighbours of w form an
angle of π/2 and thus are not in opposite positions.

To conclude the proof, it remains to choose W in such a way that property 4 is also satisfied.
Recall that G[M ] is a matching, where M :=

⋃
H∈HBH , and W ⊂M has exactly 1 vertex from

each edge of G[M ]. The vertices from M may belong to several conflicting sets, but, since
different conflicting sets are disjoint, each vertex belongs to at most one of them.

We add some new edges to G[M ] to obtain G′ as follows. For each conflicting triple, we
add an edge between two of its vertices that were not connected before, and for each conflicting
4-tuple we add two vertex disjoint edges that connect two-two of its vertices that were not
connected before. It is clear that finding such edges is possible. Moreover, the added set of
edges forms a matching. Thus, the graph G′ is a union of two matchings, and therefore does not
have odd cycles. Hence, G′ is bipartite, and it has an independent set W which contains exactly
one vertex from each edge in G′. This is the desired independent set, since no independent set
in G′ intersects a conflicting group in more than two vertices.

3 Number of edges

A graph G = (V,E) is called k-degenerate if any subgraph of G has a vertex of degree at most
k.

Lemma 11. Let d ≥ 2 and let x be a vertex of degree at most d− 2 in a graph G. If G− x can
be realized on Sd−1 as a unit distance graph, then G can also be represented on Sd−1.

Proof. The neighbours of x span a linear subspace of dimension at most d − 2, so there is a
great circle from which to choose x.

Corollary 12. Any (d− 2)-degenerate graph has spherical dimension at most d.

The above corollary also follows from the proof of Proposition 2 in [ES80].
In the proof of Theorem 3 we need the following well-known lemma.

Lemma 13. If the complement of a graph H on d+ k vertices has a matching of size k, then
H can be realized on Sd−1. In particular, the graph of the d-dimensional cross-polytope can be
realized on Sd−1.

Proof. Let v1, . . . , vd+k be the vertices ofH, labelled so that vi is not joined to vd+i (i = 1, . . . , k).
Let vectors e1, e2, . . . , ed ∈ Sd−1 form an orthogonal basis. Map vi to ei and vd+i to −ei
(i = 1, . . . , k). This is the desired realization: ei is at distance 1 from ±ej whenever j 6= i.

8



Proof of Theorem 3. Define g(2) = 3, g(3) = 8 and g(d) =
(
d+2
2

)
− 1 for d ≥ 4. We show by

induction on d ≥ 2 that if G = (V,E) has at most g(d) edges, then G can be embedded in Rd,
and if G furthermore does not contain Kd+1 or Kd+2 − K3, then G can be embedded in the
sphere Sd−1 of radius 1/

√
2. This is easy to verify for d = 2. From now on, assume that d ≥ 3,

and that the statement is true for dimension d− 1.
Remove vertices of degree at most d−2 one by one from G until this is not possible anymore.

If nothing remains, Corollary 12 gives that G can be embedded in Sd−1. Thus, without loss of
generality, a subgraph H of minimum degree at least d − 1 remains. We first show that if H
contains Kd+1 or Kd+2 −K3, then G can be embedded in Rd.

Suppose thatH containsKd+2−K3. ThenH cannot have more than d+2 vertices, otherwise,
since each vertex of H has degree at least d−1, |E(H)| ≥

(
d+2
2

)
−3+d−1 > g(d), a contradiction.

Therefore, H is contained in Kd+2− e, which can be embedded in Rd as two regular d-simplices
with a common facet. Note that this embedding has diameter

√
2 + 2/d < 2. There are at

most two edges of G that are not in H. Then the degrees of the vertices in V (G) \ V (H) are at
most 2, so they can easily be embedded in Rd.

Suppose next that H contains Kd+1 but not Kd+2 − K3. If H has more than one vertex
outside Kd+1, then |E(H)| ≥

(
d+1
2

)
+ d − 1 + d − 2 > g(d), a contradiction. If H has a vertex

outside Kd+1, then this vertex is joined to at least d− 1 vertices of Kd+1, and it follows that H
contains Kd+2−K3, a contradiction. Therefore, H = Kd+1. There are at most g(d)−

(
d+1
2

)
≤ d

edges between V (H) and V (G) \ V (H). Therefore, some v ∈ H is not joined to any vertex
outside H. Then H − v = Kd can be embedded in Sd−1, hence by Lemma 11, G − v can be
embedded in Sd−1. Since v is only joined to the d vertices in V (H − v), we can embed it in
Rd \ Sd−1 so that it has distance 1 to all its neighbours.

We may now assume that H does not contain Kd+1 or Kd+2 −K3. It will be sufficient to
show in this case that H can be embedded in Sd−1, as it then follows by Lemma 11 that G can
also be embedded in Sd−1.

If H has at most d+ 1 vertices, then H is a proper subgraph of Kd+1, and we are done by
Lemma 13.

Suppose next that H has d+ 2 vertices. Then the complement H has maximum degree at
most 2. If H does not have two independent edges, then its edges are contained in a K3, and
H contains Kd+2 −K3, a contradiction. Therefore, H has two independent edges, and we are
done by Lemma 13.

Thus without loss of generality, H has at least d+ 3 vertices. Let v be a vertex of maximum
degree in H. If v is adjacent to all other vertices of H, then v has degree at least d+ 2, hence
|E(H − v)| ≤ g(d)− (d+ 2) ≤ g(d− 1), and, since H does not contain Kd+1 or Kd+2 −K3, the
graph H − v does not contain Kd or Kd+1−K3. Therefore, by induction, H − v is embeddable
in a subsphere Sd−2. We then embed v as a point on Sd−1 orthogonal to this Sd−2.

Thus without loss of generality, each vertex v of maximum degree ∆ has a non-neighbour w.
We may also assume that ∆ ≥ d, otherwise Proposition 2 gives that H is embeddable in Sd−1.
Then |E(H − v−w)| ≤ g(d)−∆− (d− 1) ≤ g(d)− d− (d− 1) ≤ g(d− 1). By induction, either
H − v − w is embeddable in Sd−1 ∩ H, where H is a hyperplane passing through the origin,
and then v and w can be embedded as the two points on Sd−1 orthogonal to H, or H − v − w
contains a Kd or a Kd+1 −K3.

Case 1: For any v of maximum degree and any w that is non-adjacent to v, H − v − w
contains a d-clique K. Since H does not contain Kd+1, v has a non-neighbour x in K. Then
H − v − x contains another d-clique K ′. If K and K ′ intersect in at most d − 2 vertices, then
K ∪ K ′ has at least

(
d+2
2

)
− 4 edges, hence |E(H)| ≥ d +

(
d+2
2

)
− 4 > g(d), a contradiction.

Therefore, K and K ′ intersect in exactly d − 1 vertices, and K ∪ K ′ has at least
(
d+1
2

)
− 1

edges. Since H has at least d + 3 vertices, there exists a vertex y 6= v not in K ∪ K ′. Then
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|E(H)| ≥ deg(v) + deg(y)− 1 +
(
d+1
2

)
− 1 ≥ d+ (d− 1)− 1 +

(
d+1
2

)
− 1 > g(d), a contradiction.

Case 2: Some vertex v ∈ H of maximum degree ∆ ≥ d has a non-neighbour w such that
H − v − w contains a Kd+1 −K3. Then |E(H)| ≥ ∆ + deg(w) +

(
d+1
2

)
− 3 ≥ g(d). Since also

|E(H) ≤ g(d), it follows that H − v − w = Kd+1 −K3, v has degree ∆ = d, and w has degree
d − 1. Let v1, v2, v3 be the pairwise non-adjacent vertices in H − v − w. If v is joined to at
most 2 of the vi and w is joined to at most 1 of the vi, i = 1, 2, 3, then the components of
H[v, w, v1, v2, v3] are paths of length at most 3, hence can be realized on a great circle C of
Sd−1, and the remaining Kd−2 can be realized on the subsphere orthogonal to C. Otherwise,
either v is joined to all of v1, v2, v3, or w is joined to at least two of them. Note that v has a
non-neighbour other than w in H, and w has at least 2 non-neighbours other than v in H. It
follows that there are two different vertices w1, w2 ∈ V (H) \ {v, w} such that vw1 and ww2 are
non-adjacent pairs and |{w1, w2} ∩ {v1, v2, v3}| ≤ 1. Thus, we can find three disjoint pairs of
non-adjacent vertices in H and apply Lemma 13.

4 Ramsey results

Lemma 14. The graphs Kd+2 and Kd+3 − K3 cannot be embedded in Rd. The graphs Kd+1

and Kd+2 −K3 cannot be embedded in Sd−1.

Proof. Embeddability 1n Sd−1 reduces to statements about orthonormal vectors, since Sd−1 has
radius 1/

√
2, hence the endpoints of an edge of a unit-distance graph on Sd−1 are orthogonal

when viewed as unit vectors. It is then immediate that Kd+1 cannot be realized in Sd−1.
We next show by induction on d that G = Kd+2−K3 cannot be realized on a sphere of any

radius in Rd. This is easy to see for d = 1 and 2. For d ≥ 3, choose a v ∈ G that is joined to all
other vertices. Then G − v is contained in the intersection of the sphere with the unit sphere
centered at v. This gives an embedding of Kd+1 −K3 in a subsphere on a hyperplane of Rd,
which contradicts the induction hypothesis.

This also implies that Kd+3 −K3 cannot be embedded in Rd.
Suppose that Kn+1 can be embedded in Rd. Without loss of generality, we then have unit

vectors v1, . . . , vn such that the distance between any two vi is 1. It then follows from the
identity

∑n
i=1

∑n
j=1 λiλj‖vi − vj‖2 = 2(

∑n
i=1 λi)

∑n
i=1 λi‖vi‖2 − 2‖

∑n
i=1 λivi‖2 that v1, . . . , vn

are linearly independent, hence n ≤ d.

Proof of Theorem 4. Consider the graph G on 2d vertices which is a union of a Kd+1 and d− 1
isolated vertices. Then G contains Kd+1 and G contains Kd+2 −K3. By Lemma 14, neither of
these graphs can be embedded in Sd−1. It follows that fSD(s) ≥ d(s+ 1)/2e.

To prove fSD(s) ≤ d(s + 1)/2e, we show that if the edges of the complete graph on 2d − 1
vertices are coloured with red and blue, then either the graph spanned by the red (denoted by
Gr) or the graph spanned by the blue edges (denoted by Gb) can be embedded on Sd−1.

The proof is by induction on d. It is easy for d = 1, 2. For d > 2: If the maximum degree
of Gr or Gb is at most d− 1, we are done by Proposition 2. So we may assume that there are
two vertices, vr and vb, of degree at least d in Gr and Gb respectively. By the induction we may
assume that Gr[V − vr − vb] is realizable on Sd−2. If the edge vrvb is blue, we put vr and vb in
the poles of the (d− 2)-sphere on which Gr[V − vr− vb] is embedded. Otherwise vb has at most
d − 3 neighbours in Gr[V − vr]. In this case we first add vb on the (d − 2)-sphere (on which
Gr[V − vr − vb] is embedded), and then we can put vr in one of the poles of the (d− 2)-sphere.

To obtain the lower bound on fD(s)d(s− 1)/2e, consider the graph G which is the union of
Kd+2 and d isolated vertices. Then G contains Kd+2 and G contains Kd+3 − K3. Neither of
these can be embedded in Rd by Lemma 14.
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To prove fD(s) ≤ ds/2e, we show that if the edges of the graph on 2d vertices are coloured
with red and blue, then either Gr or Gb can be embedded in Rd. For any vertex v ∈ V we have
dGr(v)+dGb

(v) = 2d−1, so either dGr ≤ d−1 or dGb
≤ d−1. Hence we may assume that there

are at most d vertices that have degree larger than d − 1 in Gr. Let W be the set of vertices
v ∈ V with dGr(v) ≤ d − 1. |V \W | ≤ d, so we can embed Gr(V ) on Sd−1. Then we add the
vertices of W to this embedding one by one as follows. If w ∈W has a neighbour in W , then it
has at most d− 2 neighbours in V \W , thus we remove it from W and embed it on Sd−1. We
repeat this until W is an independent set. Now for each vertex w ∈W there is at least a circle
(which is not necessarily contained in Sd−1) in which we can embed w, so we embed them one
by one.

5 Additional questions

In Theorem 1 we proved that any graph with maximum degree d can be embedded in Rd unless
d = 3 and G has K3,3 as a component. We suspect that a slightly stronger statement holds.

Problem 1. Is it true that for d > 3 any graph with maximum degree d, except Kd+1, has
spherical dimension at most d?

This is false for d = 3: the 3-cube (even the 3-cube with a vertex removed) cannot be
embedded on S2; neither can the graphs on the vertices a1, . . . , an, b1, . . . , bn with edge set
{aibj : j = i− 1, i, i+ 1 mod n} where n ≥ 3 odd.

The lower and upper bound on fD(s) in Theorem 4 are very close, but it still does not give
the exact value of fD(s). We conjecture that the lower bound is sharp.

Problem 2. Is it true that for any graph G on 2d + 1 vertices, either G or G has dimension
at most d?
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