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Abstract

Covariance matrix estimation plays an important role in statistical analysis in many fields, inclu-

ding (but not limited to) portfolio allocation and risk management in finance, graphical modelling and

clustering for genes discovery in bioinformatics, Kalman filtering and factor analysis in economics. In

this paper, we give a selective review of covariance and precision matrix estimation when the matrix

dimension can be diverging with, or even larger than the sample size. Two broad categories of regu-

larization methods are presented. The first category exploits an assumed structure of the covariance

or precision matrix for consistent estimation. The second category shrinks the eigenvalues of a sam-

ple covariance matrix, knowing from random matrix theory that such eigenvalues are biased from the

population counterparts when the matrix dimension grows at the same rate as the sample size.
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1 Introduction

With tremendous technological advancement and increase in computational power over the past decade, it

is easier than ever to obtain and analyse high dimensional data in different areas such as finance, economics,

social science and health science. Various statistical procedures require the population covariance matrix

Σ, or the inverse Ω = Σ−1 called the precision matrix, of a random sample (or stationary time series)

of p-dimensional random vectors X = (x1, . . . ,xn) as input. Assuming that E(xi) = 0 and var(xt) = Σ

for i = 1, . . . , n, the sample covariance matrix is defined as S = n−1XXT, with E(S) = Σ. Despite its

unbiasedness and simplicity, S is a poor estimator for Σ when p is large compared to the sample size n,

in the sense that p/n → c ∈ (0,∞). Marčenko and Pastur (1967) showed that for Σ = Ip, the p × p

identity matrix, the empirical spectral density (ESD) – the distribution of the eigenvalues – of S, does not

converge to a single mass at 1 as we hoped for. Rather, it converges to a wildly different distribution,

what we now called the Marčhenko-Pastur distribution. Moreover, the eigenvectors of S, an important

output from principal component analysis (PCA), can be far away from those of Σ (Johnstone and Lu,

2009, Ledoit and Péché, 2011).

The poor qualities of S lead searchers to look into various regularized covariance or precision matrix es-

timators in different applications. In general, structural assumptions onΣ orΩ are needed for consistent es-

timation. Methods include tapering (Furrer et al., 2006), banding (Bickel and Levina, 2008b), thresholding

(Bickel and Levina, 2008a), penalization (Huang et al., 2006, Lam and Fan, 2009, Ravikumar et al., 2011,

Rothman et al., 2008), modified cholesky decomposition (see 2.6) with regularization (Pan and Mackenzie,

2003, Pourahmadi, 2007, Rothman et al., 2010), graphical lasso (Friedman et al., 2008, Mazumder and Hastie,

2012), low rank plus sparse decomposition (Fan et al., 2008, 2013, Guo et al., 2017), to name but a few.

Depending on applications, banded, sparse or low rank plus sparse assumptions on Σ or Ω can be realistic

and useful in guiding us towards a good regularized estimator.

Another branch of estimators stems from assuming thatΣ does not have diverging eigenvalues as n, p →

∞. Focus is then not on estimators conforming to any structures on Σ, but on shrinking the eigenvalues of

S. When Σ = Ip and p/n → c > 0, the smallest and largest eigenvalues of S are going to max(0, (1−
√
c)2)

and (1 +
√
c)2 respectively (Bai and Yin, 1993). This fact prompts us that shrinking the eigenvalues of

S can be a good idea, especially when p is large compared to n in practice. Although not necessarily

consistent for Σ, shrinkage estimators are well-conditioned, and can improve drastically the performance

of different procedures, such as portfolio allocation for example. In fact, the first shrinkage estimator of

covariance matrix originates from Stein (1975, 1986). Ledoit and Wolf (2004) proposed a linear shrinkage

estimator which shrinks the eigenvalues of S toward the identity matrix. Schäfer and Strimmer (2005)
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used the same shrinkage idea to shrink S to different known target matrices. Won et al. (2013) proposed

an estimator which has the middle portion of the sample eigenvalues unchanged, but the more extreme

eigenvalues winsorized at certain constants. Ledoit and Wolf (2012) proposed a nonlinear shrinkage formula

for shrinking each eigenvalue in S nonlinearly so as to minimize a Frobenius error loss. Abadir et al. (2014)

proposed a model free regularized estimator using a data splitting scheme, which Lam (2016) proved to be a

nonparametric way in achieving the nonlinear shrinkage in Ledoit and Wolf (2012), and gave a theoretically

supported data splitting scheme for asymptotic efficiency. Lam et al. (2017) and Lam and Feng (2018)

used similar ideas to construct well-conditioned integrate volatility matrix estimators for intraday and high

frequency tick-by-tick data respectively, demonstrating theoretically how the minimum variance portfolio

can be benefitted. Donoho et al. (2018) proved that different loss functions can lead to completely different

shrinkage formulae for the sample eigenvalues in a spiked covariance model, and worked out such formulae

for various loss functions. Engle et al. (2017) proposed to use nonlinearly shrinkage technique to construct

a dynamic covariance matrix estimator.

Review of high dimensional covariance matrix estimation has also been done in the past. See two

nice reviews by Cai et al. (2016b) and Fan et al. (2016), with the former focused more on minimax adap-

tive estimations and related theoretical properties and bounds, while the latter focused on regularization

methods leading to consistent estimation, including thresholding, penalized likelihood and factor-based

methods, with discussions on robust estimation as well. The book by Pourahmadi (2013) adds an excellent

account on many recent developments of the field, including shrinkage methods which will be discussed in

this paper as well. Due to limited space, we do not include Bayesian related methods, which is a large field

of study in its own right.

The rest of the paper is organized as follows. In Section 2 we give a selective review on some methods

in structured covariance and precision matrix estimation, followed by shrinkage estimation in Section 3.

2 Structured Covariance Matrix Estimation

We present different estimators categorized by their structural assumptions on Σ or Ω. We denote xki the

ith element of xk, k = 1, . . . , n, i = 1, . . . , p. We use S, where

S = n−1
n∑

k=1

(xk − x̄)(xk − x̄)T, x̄ = n−1
n∑

k=1

xk,

as the sample covariance matrix for the rest of the paper.
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2.1 Receding off-diagonals

If there is a natural order in the elements in xi, for example xi contains spatial or temporal variables,

then it is natural that the off-diagonal elements in Σ = var(xi) are decreasing in magnitude as they are

further from the main diagonal. These are also called bandable covariance matrices, since beyond a certain

off-diagonal, elements are so small that we can regularize by setting the bands of those off-diagonals to

0. With this idea, for Σ = (σij), Bickel and Levina (2008b) introduced the following class of covariance

matrices:

Uα(M0,M) =

{
Σ : max

j

∑
i

{|σij | : |i− j| > k} ≤ Mk−α for all k > 0,

and 0 < M−1
0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ M0

}
, (2.1)

where λmin(·), λmax(·) are the minimum and maximum eigenvalues of a matrix. They then propose to

band the sample covariance matrix S = (sij). Find k with 0 ≤ k < p, the banded estimator is

Σ̂k = Bk(S) := (sij1(|i− j| ≤ k)), (2.2)

where 1(·) is an indicator function. They prove that if k = kn ≍ (n−1log p)−1/(2(α+1)), then uniformly

over the class Uα, for Gaussian or light-tailed data,

∥∥Σ̂kn
−Σ

∥∥ = OP

(( log p

n

)α/(2(α+1)))
=
∥∥Σ̂−1

kn
−Σ−1

∥∥, (2.3)

where
∥∥ ·∥∥ denotes the spectral or L2 norm of a matrix. The notation a ≍ b means a = O(b) and b = O(a).

They also introduce how to band the inverse and provided a parallel theorem, which is connected to banding

the Cholesky factor from a modified Cholesky decomposition of Σ. See their paper for more details, for

instance how to determine k numerically.

Under the assumption of known rate of decay α in the class Uα in (2.1), for Gaussian data, Cai et al.

(2010) proposed a tapering estimator

Σ̌k = Tk(S) :=
(2sij

k
{(k − |i− j|)+ − (k/2− |i− j|)+}

)
,

where (x)+ = max(x, 0). With k ≍ n1/(2α+1), they showed that uniformly over Uα,

∥∥Σ̌k −Σ
∥∥ = OP

(
n−α/(2α+1) +

( log p

n

)1/2)
,
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which is always faster than the rate in (2.3). Moreover, they showed that this rate is minimax optimal over

Uα.

To overcome the impracticality of assuming α is known, Cai and Yuan (2012) proposed to use a block

thresholding scheme to achieve adaptive rate optimal estimation for Gaussian data over the parameter

spaces Uα for all α > 0. For the detailed construction of such blocks, see their paper. With the blocks

constructed, they then propose to threshold each block in S, which has an adaptive level of threshold with

a universal constant needed to be found. They then prove that their block-thresholded estimator Σ̂ has

sup
Σ∈Uα(M0,M)

E
∥∥Σ̂−Σ

∥∥2 ≤ Cmin
{
n−2α/(2α+1) +

log p

n
,
p

n

}

for all α > 0, where C is a positive constant independent of n and p. This estimator is optimally rate

adaptive over Uα for all α > 0.

Bien et al. (2016) argued that directly killing off blocks that are far from the off-diagonal as done in

Cai and Yuan (2012) may not be data-adaptive enough. They proposed to use a hierarchical group lasso

penalty for estimating Σ. Define sm to be the set of all pair of indices corresponding to the p − mth

off-diagonals,i.e.,

sm = {(i, j) : |i− j| = p−m}, m = 1, . . . , p− 1.

For an index set g, define Σg to be a vector of length |g| of the corresponding elements in Σ. Then, with∥∥ · ∥∥
F
denoting the Frobenius norm of a matrix, Bien et al. (2016) proposed to solve

min
Σ

{
1

2

∥∥Σ− S
∥∥2
F
+

p−1∑
ℓ=1

√√√√ ℓ∑
m=1

w2
ℓm

∥∥Σsm

∥∥2}, wℓm =

√
2ℓ

ℓ−m+ 1
, 1 ≤ m ≤ ℓ ≤ p− 1.

They proposed to solve the above penalized hierarchical group lasso problem by solving its dual using the

block coordinate descent. They also proved the Frobenius error rate of convergence as well as operator

norm rate, with the Frobenius error rate being minimax adaptive up to multiplicative logarithmic factors

over a class that generalizes approximate banded and K-banded matrices.

For robust estimation of bandable correlation matrices, Xue and Zou (2014) proposed to use a nonpa-

ranormal model for x, with p monotonically increasing transformations for all p variables in x such that

the resulting vector

f(x) = (f1(x1), . . . , fp(xp)) ∼ N(0,Σf ), (2.4)

where Σf is a correlation matrix. An important observation is that xi and xj are marginally independent

if and only if (Σf )ij = 0, and hence a banded correlation matrix for x should results in a correlation matrix
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of the same banded pattern for Σf . To estimate Σf (not the correlation of x itself), they proposed to use

the Spearman’s rank correlation coefficient r̂ij . The key observation is that this r̂ij is the same for the

(unknown) transformed data since the transformations are all monotonically increasing. In the end, they

used a classical result from Kendall (1948) to arrive at R̂s = (r̂sij), where r̂
s
ij = 2 sin(πr̂ij/6), as a first-step

estimator for Σf , which can be a poor estimator when the dimension p is large. They then proposed to

estimate Σf by the regularization

R̂s
gt = (r̂sijwij)1≤i,j≤p, (2.5)

where wij = 1 for |i− j| ≤ ⌊k/2⌋, wij = 0 for |i− j| > k, and 0 ≤ wij ≤ 1 for ⌊k/2⌋ < |i− j| ≤ k. These

are either tapering or banding weights, where k is chosen by cross-validation. They showed nice theoretical

properties of R̂s
gt as an estimator of Σf .

Another robust estimation is proposed by Chen et al. (2018). Consider independent and identically

distributed data vectors xi from the ϵ-contamination model

Pϵ,Σ,Q = (1− ϵ)PΣ + ϵQ,

where PΣ = N(0,Σ), and Q is any distribution. Essentially, ϵ can be interpreted as the proportion of

“outlying” data, so that the number of “outliers” from PΣ is then nϵ for a sample size of n. To estimate

Σ, they propose the concept of matrix depth which is inspired by the Tukey’s median. The matrix depth

of a positive semi-definite Γ ∈ Rp×p with respect to the distribution P restricted over a subset U ⊂ Sp−1

is defined as

DU (Γ, P ) = inf
u∈U

min{P (|uTx|2 ≤ uTΓu), 1− P (|uTx|2 < uTΓu)}.

Clearly, the maximum value of depth is 1/2 by the above definition. Chen et al. (2018) showed that in

fact, for any U ∈ Sp−1, DU (βΣ, PΣ) = 1/2, where β is such that Φ(
√
β) = 3/4. This inspires the authors

to estimate Σ by

Σ̂ = argmax
Γ∈F

DU (Γ, {xi}ni=1)/β

= argmax
Γ∈F

min
u∈U

min

{
1

n

n∑
i=1

1{|uTxi|2 ≤ uTΓu}, 1− 1

n

n∑
i=1

1{|uTxi|2 < uTΓu}

}
/β,

where F is a matrix class which can impose various structures on Σ for practical estimation. One class

they considered is the bandable class Fk = {Σ ≽ 0 : (Σ)ij = 0 if |i− j| > k}, and they showed for ϵ < 1/5,

0 < δ < 1/2, ∥∥Σ̂−Σ
∥∥2 ≤ C

(
k + log p

n
∨ ϵ2 +

log(1/δ)

n

)
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for some constant C > 0, with Pϵ,Σ,Q-probability at least 1−2δ uniformly over all Q and Σ ∈ Fk such that

Σ has uniformly bounded eigenvalues. These results are also available for sparse covariance estimation,

and can even be extended to elliptical distribution with fat tails.

The topic on bandwidth selection for estimating bandable covariance matrix is also well-studied.

Qiu and Chen (2012) proposed a criterion leading to consistent estimation of the banding parameter,

while both Li and Zou (2016) and Li et al. (2018) analyzed the Stein’s unbiased risk estimation (SURE)

information criterion for a class of bandable covariance matrices, with minimizing such a criterion resulting

in consistent estimation of the tuning parameter. Please refer to these papers for more details of their

methods and theoretical results.

2.2 Sparsity

The assumption of receding off-diagonals in Section 2.1 is a special case of general sparsity of Σ. Sparsity

can also be in the precision matrix Ω, or even in other decomposed components of Σ using appropriate

decompositions. In this section, we only present theoretical properties for covariance and precision matrix

estimators that are not relating to support recovery of Ω, which is the core topic in graphical models for

the next section.

Huang et al. (2006) proposed to use the modified Cholesky decomposition for penalized likelihood

construction. The modified Cholesky decomposition of Σ, with elements uniquely defined, is

TΣTT = D, (2.6)

where D is diagonal, and T is a unit lower-triangular matrix having ones on its diagonal. If x =

(x1, . . . , xp)
T has var(x) = Σ, then (2.6) means that we can always decompose

xt =

t−1∑
j=1

ϕtjxj + ϵt, (2.7)

where −ϕtj is the (t, j)-th element of T for 2 ≤ t ≤ p and j = 1, . . . , t−1. Also, var(ϵ) = diag(σ2
1 , . . . , σ

2
p) =

D, with ϵ = (ϵ1, . . . , ϵp)
T the vector of successive prediction errors. The above means that Tx = ϵ, and

taking variance on both sides we get back (2.6).

The idea of sparsity in the Cholesky factor T in (2.6) comes from that if the elements in the data

vector x are ordered, then in the face of (2.7), ϕtj should be close to 0 as t and j are further apart. With
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(2.6), Huang et al. (2006) proposed to minimize the penalized likelihood

nlog|D|+
n∑

i=1

xiT
TD−1Txi + λp({ϕtj}),

where p(·) is a penalizing function to be set by the user. Selection of λ is by cross-validation and a practical

algorithm is discussed, but no theoretical results on the estimators are given.

Bien and Tibshirani (2011) studied sparse estimation of Σ through

min
Σ≻0

log det(Σ) + tr(SΣ−1) + λ
∥∥P ◦Σ

∥∥
1
.

where P is an arbitrary constant matrix and ◦ is the elementwise multiplication. The choice of P is problem

dependent. They propose a majorization-minimization approach to solving the above, with the idea to

convert solving a non-convex minimization problem to solving a series of simpler convex minimization

problems. See their paper for more details.

Bickel and Levina (2008a) presented a class of sparse covariance matrix,

Cq(c0(p),M,M0) =
{
Σ : σii ≤ M,

p∑
j=1

|σij |q ≤ c0(p), for all i, λmin(Σ) ≥ M0 > 0
}
, (2.8)

where 0 ≤ q < 1. If q = 0, with the convention 00 = 0, it is a class of exactly sparse matrix. The

thresholded matrix estimator is defined as

Tλ(S) := (sij1(|sij | ≥ λ)). (2.9)

They showed that uniformly on Cq, if M ′ is sufficient large and n−1log p = o(1), then

∥∥Tλn
(S)−Σ

∥∥ = OP

(
c0(p)

( log p

n

)(1−q)/2)
=
∥∥(Tλn

(S))−1 −Ω
∥∥, λn = M ′

√
log p

n
.

The above estimator is obtained using a universal threshold λn for all elements in S.

Cai and Liu (2011) proposed to use an adaptive threshold λij for their estimator Σ̂
∗
= (σ̂∗

ij), with

σ̂∗
ij = gλij

(sij), (2.10)

where gλ(·) is a general thresholding function introduced in Rothman et al. (2009). The hard-thresholding
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function used in Bickel and Levina (2008a) is a special case of gλ(·). The adaptive threshold is defined as

λij = δ

√
θ̂ij log p

n
,

where δ is a tuning parameter, and θ̂ij is proposed as

θ̂ij =
1

n

n∑
k=1

[
(xki − x̄i)(xkj − x̄j)− sij

]2
, x̄i =

1

n

n∑
k=1

xki,

which is an estimator of

θij = var[(xi − Exi)(xj − Exj)].

Define a class C∗
q which is larger than Cq in (2.8),

C∗
q =

{
Σ : Σ positive definite, max

i

p∑
j=1

(σiiσjj)
(1−q)/2|σij |q ≤ c0(p)

}
.

Then for δ ≥ 2 and 0 ≤ q < 1, they showed that Σ̂
∗
has a rate of convergence of c0(p)(n

−1log p)(1−q)/2

uniformly over C∗
q , and the data can even have polynomial-type tails.

Although thresholding the Cholesky factor T in the modified Cholesky decomposition in (2.6) guaran-

tees positive definiteness of the estimator, the variables in x does need a certain kind of ordering for (2.7)

to produce a sparse T. At the same time, the estimators in Bickel and Levina (2008b) and Cai and Liu

(2011) may not even be positive semi-definite for finite sample. In the face of this problem, Xue et al.

(2012) proposed an alternating direction algorithm for solving

min
Σ≽ϵIp

1

2

∥∥Σ− S
∥∥2
F
+ λ

∥∥Σ∥∥
1
,

where Σ ≽ ϵIp means that Σ− ϵIp is positive semi-definite, and
∥∥Σ∥∥

1
denotes the sum of absolute values

of Σ.

More recent works on sparse estimation of high dimensional covariance matrix attempt to bridge

patterned sparsity (like bandedness) and non-patterned sparsity. Bien (2019) proposed a graph-guided

banding estimator with global or local bandwidth. The idea is to view a covariance matrix as a linear

combination of matrices with “graph-guided” sparsity patterns. Interested readers are referred to the

respective paper for further details.
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2.3 Graphical model

This is related to the fact that if the data x = (x1, . . . , xp) is Gaussian with Ω = (ωij), then ωij = 0 if and

only if xi is conditionally independent of xj given all the remaining variables in x. In a graph, it means

that xi is only connected to xj through other variables but not directly. In this sense, a sparse graph means

a sparse Ω and vice versa. Hence in graphical models, the most important aspect of an estimator Ω̂ of Ω

is that the connectedness represented in Ω̂ is as close to that in Ω as possible. In mathematical terms, we

want ideally probability 1 for the event ω̂ij = 0 when ωij = 0 and ω̂ij ̸= 0 when ωij ̸= 0 for all i, j. In this

section, theoretical results presented are hence focused on this event with probability going to 1, which

sometimes is termed as graph selection consistency. If papers are only concerned with other consistency

results of Ω̂ such as the Frobenius or spectral norms consistency, they will not be presented in this section.

Suppose X = (x1, . . . ,xn) is a Gaussian random sample with E(xi) = 0 and var(xi) = Σ. In the

paper by Meinshausen and Bühlmann (2006), they proposed to estimate the graph implied by Ω using the

lasso, by regressing the ith variable on the rest of them, for each i, penalized by a tuning parameter λ.

If the estimated coefficient for the jth variable on i, or the estimated coefficient for the i variable on j, is

non-zero, the (i, j)th entry in Ω is estimated as non-zero (they also consider requiring both to be non-zero).

They prove the method to be consistent in estimating the set of zeros in Ω under certain assumptions,

in the sense that for each node of a graph a, defining nea to be the true neighbourhood of a (i.e., set of

variables that are conditionally dependent on a), and n̂e
λ
a the estimated neighbourhood using parameter

λ, then

P (n̂e
λ
a ⊆ nea) = 1−O(exp(−cnϵ)) = P (nea ⊆ n̂e

λ
a),

where c > 0 is a constant, λ has the same order as n−(1−ϵ)/2 for some bounded ϵ.

Yuan and Lin (2007) proposed to solve the following restricted L1 regularized negative log-likelihood

problem:

min
Θ≻0

−log det(Θ) + tr(SΘ) + λ
∥∥Θ∥∥

1
. (2.11)

They considered solving (2.11) by an interior point method called maxdet algorithm in convex maximi-

zation. They also proved a result on the asymptotic distribution of the estimator itself for the above

lasso-type estimator.

For consistent neighbourhood estimation, they proposed to solve for a nonnegative garrote-type esti-

mator Θ̂ by considering

min
Θ≻0

−log det(Θ) + tr(SΘ) + λ
∑
i ̸=j

θij

θ̃ij
,

where Θ̃ is an initial estimator. They consider Θ̃ = S−1, implicitly assuming p < n. With S−1 as the
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initial estimator, and p fixed while n → ∞, they proved that P (θ̂ij = 0) → 1 if ωij = 0, and other elements

of Ω have the same limiting distribution as the maximum likelihood estimator on the true graph structure.

Friedman et al. (2008) proposed an efficient algorithm, called the graphical lasso, to solve (2.11). They

use a framework developed by Banerjee et al. (2008) which considers the dual problem of (2.11) as a start,

and arrive at solving an L1 penalized regression problem.

Since a graphical model needs normality to infer a sparse graph from a sparse Ω, Liu et al. (2009) used

the nonparanormal model in (2.4), and proposed to estimate those transformations fi from data. Then

they replace S in (2.11) by the sample covariance matrix of the transformed data, and use the graphical

lasso to solve for an estimator of Ω, which is in fact an estimator of Ωf = Σ−1
f in the notation of (2.4). The

key observation is that Ωf retains the sparsity pattern of Ω, i.e., sign((Ωf )ij) = sign((Ω)ij), and hence

we can then infer the graph of x. They prove that under certain assumptions, the estimator achieves sign

consistency, in the sense that

P (sign(Ω̂f )ij = sign(Ωf )ij) ≥ 1− o(1), λ ≍

√
log p log2n

n1/2
,

where λ is the penalization parameter used in (2.11).

Lam and Fan (2009) proposed Gaussian penalized quasi-likelihood in the form

q(Ω) = tr(SΩ)− log|Ω|+
∑
i̸=j

pλ(ωij).

This is essentially the same as (2.11) apart from the penalty function being the SCAD penalty introduced in

Fan and Li (2001), which is a nonconvex penalty designed to overcome the general bias problems associated

with the L1 penalty in lasso. The resulting estimator by minimizing q(Ω) with respect to Ω is proved to

be consistent to the true sparse precision matrix in Frobenius norm under certain conditions. Further

theoretical results give rates of convergence and sparsistency – zero elements are estimated as 0 with

probability going to 1. This is not complete graph selection consistency but at least non-existence of

edges in a graph is identified. One highlight of the paper however, is that in using the L1 penalty when

the elements under penalization are in fact large, convergence of estimators (in Frobenius norm) is only

guaranteed when Ω is very sparse. On the other hand, using “unbiased” penalty functions like hard-

thresholding or SCAD, Ω does not need to be as sparse. For detailed rates and algorithm please refer to

the paper itself.

Cai et al. (2011) proposed the constrained L1 minimization for inverse matrix estimation (CLIME),
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which considered the problem

min
∥∥Ω∥∥

1
subject to

∥∥SΩ− Ip
∥∥
max

≤ λn, (2.12)

where
∥∥ · ∥∥

max
denotes the maximum absolute element of a matrix. The above can be decomposed into p

convex optimization problems by solving for Ω column by column, using e.g. linear programming. They

spelt out the rate of convergence of the resulting estimator Ω̂ under spectral, Frobenius and ℓ∞ norms

for both exponential-type and polynomial-type tails for the data as well. Relating to graph selection

consistency, they also proved that under the s0(p)-sparse precision matrix class

U = {Ω : Ω ≻ 0,
∥∥Ω∥∥

1
≤ M, max

1≤i≤p

p∑
j=1

1{ωij ̸= 0} ≤ s0(p)},

the thresholded estimator Tτn(Ω̂) (see (2.9)), where τn ≥ C
√
log p/n for some C > 0, achieves sign

consistency with rate 1 − O(n−δ/8 + p−τ/2) for some constants δ and τ . Cai et al. (2016a) improved

the method to ACLIME, with an adaptive threshold, and proved minimax optimal rate of convergence

uniformly over large classes of approximately sparse precision matrices. They also proposed a thresholded

estimator like Tτn(Ω̂) that achieves graph selection consistency, but is not presented as formal theorem.

Xue and Zou (2012) proposed to use the nonparanormal model (2.4) for x. The technique is the same

as the tapering estimation described before (2.5), so that using the Spearman’s rank correlation coefficient

r̂ij , they first estimate Σf by R̂s = (r̂sij), where r̂sij = 2 sin(πr̂ij/6). Then the sparse Ωf can be estimated

with, e.g., CLIME as in (2.12) with S replaced by R̂s. Theoretical results are given as well, showing that

a properly chosen λ in the CLIME step help achieve sign consistency. See also Liu et al. (2012) which used

the same nonparanormal model idea and proposed estimating Ωf using CLIME as well as Dantzig selector

after obtaining R̂s.

Chandrasekaran et al. (2012) assumed that there are unknown number of latent variables and we

only have the observed data. They proposed to split the precision matrix for the observed variables into a

“sparse minus low rank” representation, and proposed estimators for each of them using a form of penalized

log-likelihood for both. The sparse representation is in fact an estimator for the inverse of covariance of

the observed variables conditional on the latent ones. Theoretical results are also presented. Ma et al.

(2013) proposed to solve the optimization problem in Chandrasekaran et al. (2012) using two alternating

direction methods, with global convergence proved. A more general low rank plus sparse representation

for covariance matrix is presented in the next section.
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2.4 Low rank plus sparse

We focus on covariance structure induced by a factor model in this paper. Ross (1976) introduced the

strict factor model to use a small number of factors to explain a large number of returns. Write

xi = Afi + ϵi, i = 1, . . . , n, (2.13)

where A is a p× r factor loadings matrix, fi is an r×1 vector of factors and ϵi is a vector of (idiosyncratic)

noise. Assuming r to be much smaller than p, the dynamics of the p components in xi can then be

summarized by the dynamics of the small number of factors fi. Assuming uncorrelatedness between fi and

ϵi, the covariance matrix for xi is then

Σ = var(xi) = AΣfA
T +Σϵ, Σf = var(fi), Σϵ = var(ϵi). (2.14)

A strict factor model in Ross (1976) assumes that Σϵ is diagonal. Hence Σ in (2.14) is of a low rank

(AΣfA
T, of rank r) plus sparse (Σϵ) structure. Chamberlain and Rothschild (1983) relaxed the strict

factor model to an approximate one, where Σϵ is sparse rather than diagonal. These papers are not

focused on covariance estimation though.

With known factors, Fan et al. (2008) estimated A using least squares, and Σϵ is estimated using the

estimated residuals ϵ̂i, with diagonalized Σ̂ϵ = n−1
∑n

i=1 diag(ϵ̂iϵ̂
T

i ). Under the prospect of both n, p → ∞,

they established rates of convergence with respective to various loss functions, including Frobenius, spectral,

Stein, and a re-scaled quadratic loss. Still with known factors, Fan et al. (2019) proposed first to estimate

Σz := var[(xT

i , f
T

i )
T] =

 AΣfA
T +Σϵ AΣf

ΣfA
T Σf

 =

 Σ11 Σ12

Σ21 Σ22

 .

Because of potential heavy-tailed distributions for xi and fi, each element in Σz is estimated as

(Σ̂z)ij := argmin
x

n∑
t=1

lα(zitzjt − x), (2.15)

where lα(x) is the Huber loss, defined by

lα(x) =

 2α|x| − α2, |x| > α;

x2, |x| ≤ α.
(2.16)

With Σ̂z, AΣfA
T can be estimated by Σ̂12Σ̂

−1

22 Σ̂21, and Σ̂ϵ can be obtained by diagonalizing or thres-
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holding Σ̂z − Σ̂12Σ̂
−1

22 Σ̂21. An appropriately diverging α results in good properties of the estimators, with

rates of convergence provided.

When the factors are unknown, the asymptotic PCA method is to solve (Bai and Ng, 2002)

min
A,fi

n∑
i=1

∥∥xi −Afi
∥∥2, ATA = Ir.

The (possibly not unique) solution is Â being the first r (column) eigenvectors of S corresponding to the

first r largest eigenvalues, and f̂i = ATyt. The space spanned by the columns in Â is unique though, called

the (estimated) factor loading space. This is asymptotic PCA in the sense that they need p → ∞ in order

for the estimated factor loading space to converge to the true factor loading space, since the effect of Σϵ

can then be diluted as p → ∞ (treated relatively as going to the zero matrix, in a sense). In view of this,

Lam et al. (2011) proposed a “statistical” factor model, where Afi is viewed as signal and ϵi is viewed as

noise, with the key assumption that {ϵi} is a vector white noise. With this, observe that for k > 0, if we

assume Σϵx(k) := cov(ϵt,xt−k) = 0 (e.g., {ϵt} is an innovation series), then

Σx(k) = cov(xt,xt−k) = A(Σx(k)A
T +Σxϵ(k)),

so that the product MK =
∑K

k=1 Σx(k)Σx(k)
T is sandwiched between A and AT. Hence an eigenanalysis

of MK would result in an estimator of A without the need for p → ∞, and we can use the sample

autocovariance matrices for estimating MK . Theoretical results are given in both papers, but they are not

focused on covariance matrix estimation.

Fan et al. (2013) proposed to estimate A using asymptotic PCA as described before, and given r,

estimate the low rank part by

Σ̂R =

r∑
j=1

λ̂j ξ̂j ξ̂
T

j , with Â = (ξ̂1, . . . , ξ̂r), (2.17)

and λ̂j the jth largest eigenvalue of S, which is proved to be a good estimator of λj for Σ for a factor

model, j = 1, . . . , r. Then Σϵ is estimated by thresholding S− Σ̂R. The method is abbreviated as POET.

They proved nice asymptotic properties of the POET estimator and argue that sparseness for Σϵ is more

relaxed than a strict factor model, and is more likely to be satisfied in applications like finance.

To accommodate the possibility of heavy-tailed data, Fan et al. (2018) assumed the data can be ellip-

tically distributed:

x = µ+ ζBU,
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where U is a random vector uniformly distributed on the unit sphere in Rq, ζ is a non-negative scalar

random variable independent of U, and B ∈ Rp×q is deterministic such that Σ = BBT. They showed that

as long as S can be replaced by Σ̂, Â by Γ̂ and λ̂j by η̂j such that

∥∥Σ̂−Σ
∥∥
max

= OP (
√
log p/n) = max

j=1,...,r
|η̂j − λj |λ−1

j ,
∥∥Γ̂−A

∥∥
max

= OP (
√
log p/(np)),

then the POET estimator can be obtained as in (2.17) and the description thereafter, with guaranteed

rates of convergence. To obtain Σ̂ = D̂R̂D̂, where D̂ is the diagonal matrix with the estimated variances,

they proposed to estimate each variances in D̂ similar to the estimator in (2.15) using the Huber loss (2.16)

for an appropriate α (can use the same trick to estimate the mean µ̂ first if µ is not 0). Then they estimate

the correlation matrix R̂ = (r̂ij) by using the Kendall rank correlation r̂
(K)
ij (a.k.a. Kendall’s tau) and the

formula r̂ij = sin(πr̂
(K)
ij /2). The estimator η̂j can then be taken as the leading eigenvalues for Σ̂. For Γ̂,

it would be taken as the eigenvectors from the U -statistic (spatial Kendall’s tau)

2

n(n− 1)

∑
i<j

(xi − xj)(xi − xj)
T∥∥xi − xj

∥∥2 .

The key to why the above statistic works is that the summand can be proved to be independent of the

distribution of ζ.

3 Shrinkage Covariance Matrix Estimation

While structured covariance matrix estimation is very useful in many applications, structural assumptions

on Σ can require prior information on the data or Σ itself that is not available at times. A class of

covariance matrix estimator built on the idea of shrinkage, perhaps first published in Stein (1975), has

the eigenvalues of the sample covariance matrix shrunk explicitly according to a certain formula, while

the eigenvectors are unchanged. Since then there are a number of attempts in shrinkage estimation. For

instance, Daniels and Kass (2001) proposed several Bayesian estimators which shrink the eigenvalues of

the sample covariance matrix, possibly towards a structure. Unfortunately some estimators need MCMC

computations which can be computationally expensive, and some are not guaranteed to be positive semi-

definite. Moreover, asymptotic results are only for fixed p.
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3.1 Linear shrinkage

A major breakthrough comes in the method of linear shrinkage in Ledoit and Wolf (2004). They introduced

an estimator

Σ̂LS = ϕ̂1Ip + ϕ̂2S =
β2

α2 + β2
µIp +

α2

α2 + β2
S, (3.1)

which is the solution to minimizing the expected quadratic loss E
∥∥ϕ1Ip+ϕ2S−Σ

∥∥2
F
with respect to ϕ1, ϕ2,

with µ = tr(S)/p, α2 =
∥∥Σ − µIp

∥∥2
F

and β2 = E
∥∥S − Σ

∥∥2
F
. Simple estimators for µ, α and β are also

proposed and analyzed, with asymptotic framework p/n → c > 0 for some finite constant c. The estimator

cannot be consistent under this framework without further structural assumptions, but optimality under

expected Frobenius loss is proved, while the estimator is always positive definite. Observe that

Σ̂LS = P
( β2

α2 + β2
µIp +

α2

α2 + β2
D
)
PT,

where S = PDPT, with P a matrix of eigenvectors and D = diag(λ1, . . . , λp) the corresponding diagonal

matrix of eigenvalues of S. Hence Σ̂LS retains the eigenvectors but shrinks the eigenvalues of S towards a

constant multiple of Ip. This falls into the so-called rotation-equivariant class of estimators used in Stein

(1975).

The simplicity of Σ̂LS attracted a lot of similar studies. Schäfer and Strimmer (2005) proposed a

number of different target population covariance matrices instead of just a constant multiple of Ip, and

proposed corresponding optimality analyses in minimizing the expected quadratic loss. Warton (2008)

proposed linear shrinkage to shrink the sample correlation matrix towards the identity, and proposed to

use a K-fold cross-validation to estimate the shrinkage parameter.

Recently, Huang and Fryzlewicz (2018) introduced the NOVELIST (“NOVEL Integration of the Sam-

ple and Thresholded covariance estimators”), which combines linear shrinkage and sparse estimators, in

the form

Σ̂nv = (1− δ)S+ δTλ(S),

where Tλ(S) is a thresholded estimator of S with parameter λ introduced in (2.9), and δ controls if Σ̂novelist

is closer to S or the sparse estimator Tλ(S). Compared to (3.1), NOVELIST is a linear shrinkage estimator

with target matrix a sparsely estimated covariance matrix, which can also be replaced by other structured

covariance matrix estimators like the POET introduced in Section 2.4.

With the class of sparse covariance matrix Cq introduced in (2.8), and assuming
∫∞
0

exp(γt)dGj(t) < ∞

for γ on a bounded interval around 0, where Gj is the cumulative distribution function of the jth variable
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of a generic data vector x, they proved that

∥∥Σ̂nv −Σ
∥∥ = OP

(
(1− δ)p

√
log p

n
+ δc0(p)

(
log p

n

)(1−q)/2
)

=
∥∥Σ̂−1

nv −Σ−1
∥∥,

where λ = M ′
√
log p/n for sufficiently large M ′ with log p/n = o(1). If p = o(n) and uTx has Gaussian

tails for all unit vector u, then the above result still holds with p
√
log p replaced by

√
p+ log n on the left

term of the rate. The above rate however is assuming that δ is known. See Huang and Fryzlewicz (2018)

for more details on how to choose λ and δ.

3.2 Nonlinear shrinkage and others

The shrinkage estimator proposed in Stein (1975) is shrinking the sample eigenvalues nonlinearly, but

without a proper loss function associated. Won et al. (2013) proposed to maximize the normal log-likelihood

of the data but impose a condition number constraint on the estimator, resulting in winsorized eigenvalues

while retaining the sample eigenvectors P. The estimator is also proved to have lower entropy loss than S,

but is not proved to be optimally nonlinearly shrunk with respect to such loss.

Nonlinear shrinkage comes with the important parallel development of random matrix theory, which

fast-tracked the study of many other powerful statistical procedures and their corresponding theoretical

analysis. We refer interested readers to two review papers Paul and Aue (2014) and Johnstone and Paul

(2018) for more technical details related to random matrix theory, which will not be covered in the des-

cription of nonlinear shrinkage below.

With respect to minimizing the Frobenius loss
∥∥Σ̂−Σ

∥∥2
F
, Ledoit and Péché (2011) showed that with

a class of rotation-equivariant estimators Σ(D) = PDPT, where P = (p1, . . . ,pp) is the matrix of eigen-

vectors for S and D = diag(d1, . . . , dp) is a diagonal matrix to be determined, the solution is di = pT
i Σpi

for i = 1, . . . , p. It means that if P is used as eigenvectors, it is not necessary that the true eigenvalues are

giving optimality, since di is not converging to the corresponding true eigenvalue when p/n → c > 0. This

also represents an ideal shrinkage formula when Frobenius error is concerned. Under p/n → c > 0 (ex-

cluding c = 1 for technical reasons) and using random matrix theory (mainly the Stieltjes transformation

as a technical tool), Ledoit and Péché (2011) developed explicit formulae for estimating di which involves

the so-called generalized Marčhenko-Pastur equation. Ledoit and Wolf (2012) proposed how to use data

to estimate such a nonlinear transformation, thereby resulting in the nonlinear shrinkage estimator Σ̂NS.

They have proved asymptotic efficiency and convergence of Σ̂NS to the “ideal” estimator of the form

ΣIdeal = Pdiag(PTΣP)PT. (3.2)
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This ideal estimator is the theoretical optimal estimator that minimizes the Frobenius loss. Hence Σ̂NS,

being convergent to ΣIdeal, is asymptotically optimal under the framework p/n → c > 0 with respect to

the class of rotation-equivariant estimators. Ledoit and Wolf (2017) applied Σ̂NS to portfolio allocation

and also developed further a portfolio allocation strategy using a mean target return. Engle et al. (2017)

implement Σ̂NS into its dynamic conditional correlation framework, such that the updating equation of

the dynamic correlation matrix is based on the large estimated correlation matrix derived from Σ̂NS.

Abadir et al. (2014) proposed to split the data into two parts, X = (X1,X2) where X1 has size p×n1

and X2 is p×n2 with n = n1 +n2. Defining Σ̃i = n−1
i XiX

T
i , i = 1, 2, and m = n1 to be the split location,

they propose

Σ̌m = Pdiag(PT

1 Σ̃2P1)P
T, (3.3)

where Pi is the matrix of eigenvectors for Σ̃i. With independent observations in X, we can permute the

data and form the above estimator again from the split data X = (X
(j)
1 ,X

(j)
2 ), j = 1, . . . ,M , ultimately

leading to the grand average estimator

Σ̌ = P

(
M−1

M∑
j=1

diag(PT

1jΣ̃
(j)

2 P1j)

)
PT, (3.4)

where Σ̃
(j)

i = n−1
i X

(j)
i X

(j)T
i = PijDijP

T
ij , i = 1, 2. They show that when p < n−m and p/n → 0, a split

such that m/n → γ ∈ (0, 1) will make Σ̌m optimal with respect to the expected element-wise L1 or L2

loss.

Using the same data splitting idea, Lam (2016) proposed the NERCOME,

Σ̂m = P1diag(P
T

1 Σ̃2P1)P
T

1 . (3.5)

This estimator is designed to minimize
∥∥P1DP1 − Σ

∥∥2
F
, and is proved to be convergent to Σ̂Ideal,1 =

P1diag(P
T
1ΣP1)P

T
1 , the ideal estimator with P1 replacing P, under the spectral norm with p/n → c > 0

when
∑

n≥1 p(n−m)−5 < ∞, including the case c = 1. The estimator Σ̂m is also asymptotically as efficient

as the ideal estimator Σ̂Ideal (the one using P) in estimating Σ with respect to the Frobenius loss when we

also have m/n → 1 and n−m → ∞. Importance about Σ̂m is that the convergence to Σ̂Ideal,1 means that

Σ̂m is also a nonlinear shrinkage estimator like Σ̂NS , with only P replaced by P1. Its calculation involves

data splitting and eigenanalysis, which can be faster than the algorithm in Ledoit and Wolf (2012) when

p is small to moderate in size (e.g. p of order of hundreds). Practically, c = 1 poses no problems for Σ̂m,

while Σ̂NS can have problems from the QuEST package proposed in Ledoit and Wolf (2012). At the same

time, m/n → 1 is needed but not m/n → γ ∈ (0, 1), since in the analysis in Lam (2016), p is growing as
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fast as n, while Abadir et al. (2014) considered p to be growing slower than n.

While using P1 as the matrix of eigenvectors do not fully utilize all data like P, the averaged estimator

Σ̂ = M−1
M∑
j=1

P1jdiag(P
T

ijΣ̃
(j)

2 P1j)P
T

1j (3.6)

can be performing better than Σ̌ and Σ̂NS as demonstrated numerically in Lam (2016). This estimator is

also proved to be asymptotically as efficient as Σ̂Ideal in estimating Σ with respect to the Frobenius loss

when p/n → c > 0, while its inverse is asymptotically as efficient as Σ̂
−1

Ideal in estimating Σ−1 with respect

to the inverse Stein’s loss under p/n → c > 0. Lam (2016) also proved these asymptotic properties when

the data follows a factor model, so that no estimation of the number of factors is necessary while such

properties are kept.

Beyond Frobenius loss, nonlinear shrinkage can have very different formulas compared to those proposed

in Ledoit and Wolf (2012) even for the rotation-equivariant class, since the solution to the optimization

problem minD L(PDPT,Σ), where L(·, ·) is a general loss function, can be very different from di = pT
i Σpi.

With normality of data assumed, under p/n → c ∈ (0, 1] and a spiked covariance model where Σ has r

fixed top-eigenvalues followed by all ones, Donoho et al. (2018) derived optimal shrinker for a wide variety

of loss functions, showing that optimality is very loss-function, and hence application, dependent.

4 Applications

Depending on the application, an estimated covariance or precision matrix can be used for many different

purposes. From a stepping stone for further data analysis to being the highlight in its own right, we

give several applications of covariance matrix estimation in this section, comparing a number of different

procedures introduced in the process.

4.1 Principal component analysis (PCA)

This is a perfect example of a very common statistical procedure where the population covariance matrix

Σ is of central importance to the problem, but optimization should be carried out with other quantities in

mind, namely the first r largest eigenvalues and their corresponding eigenvectors for Σ, where r is usually

the number of “factors” that explain most of the variance of the data. Depending on the application,

there may not be distinguishable “factors” though, in the sense that all eigenvalues of Σ are of the same

(constant) order.
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In the PCA literature, it is often of interest to study a spike model for Σ. As in Shen et al. (2016) for

instance, a multiple-component spike model is defined as

λj =

 cjp
α, j ≤ m;

1, j > m,
α ≥ 0,

where m is a finite integer and the constants cj are positive with cj > cj+1 > 1 for j = 1, . . . ,m− 1. This

is equivalent to defining

Σ = Qdiag(c1p
α − 1, . . . , cmpα − 1)QT + Ip, (4.1)

where Q ∈ Rp×m is such that QTQ = Im. A more general model for Σ is

Σ = Qdiag(c1p
α, . . . , cmpα)QT +Σe, (4.2)

where Σe has uniformly bounded eigenvalues. Both (4.1) and (4.2) are associated with the factor model

for the data,

xi = Qfi + ei, i = 1, . . . , n, (4.3)

where Q is as defined in (4.1) or (4.2), fi is independent of ei, with var(fi) = diag(c1p
α, . . . , cmpα) and

var(ei) = Σe. Compare this model to (2.13) in Section 2.4. In financial econometrics literature, (4.1)

is called a strict factor model while (4.2) is called an approximate factor model. The index α can be

considered the signal strength of the model. If α is large, then consistent estimation of the eigenvectors of

Σ (i.e., the principal component directions) is easier to achieve through an eigenanalysis of S, the sample

covariance matrix of the data.

Consider a very simple one-factor model (m = 1),

xi = Aui + ei, i = 1, . . . , n,

where A = (ai) is a column vector of constants such that 0 < cmin ≤ |ai| ≤ cmax < ∞ for cmin and cmax

some universal constants, and var(ui) < ∞ uniformly as n, p → ∞. Then we can rewrite

xi =
A∥∥A∥∥ ·

∥∥A∥∥ui + ei,

so that we can take Q = A/
∥∥A∥∥ and fi =

∥∥A∥∥ui for model (4.3), since by assumption of A,
∥∥A∥∥ has

order p1/2, so that var(fi) =
∥∥A∥∥2var(ui) has order p. This means that α = 1. The factor ui is then called

a pervasive factor in the jargon of financial econometrics literature. It means that the dynamics of ui is
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affecting almost all of the variables in xi.

For a general r-factor model with r pervasive factors (i.e., α = 1 for the first r eigenvalues of Σ),

Fan et al. (2013) showed that with sparse Σe, their POET method can consistently estimate Q when

n = o(p2), even when p is growing exponentially fast relative to n. In fact, sparsity of Σe is not needed

for just consistent estimation of Q as long as Σe has all eigenvalues uniformly bounded above. Hence

in terms of PCA analysis, POET can achieve consistent estimation of the principal component directions

with α = 1. This actually means that an eigen-analysis of the sample covariance matrix S is already

enough for consistent estimation of the first r principal component directions in such a pervasive r-factor

model, since POET used these directions for the construction of their estimator. It also means that all

rotation-equivariant shrinkage estimators mentioned in Section 3.2 are also fine for extracting the first r

principal component directions since they utilize all eigenvectors of S in their construction.

However, Shen et al. (2016) showed for a very wide range of (p, n, α) that, in general, when p is large,

α is small (say α = 0) or n is small, it is more difficult for the sample eigenvectors to be consistent. See

their paper for detailed theoretical results with rates of convergence, and the references therein. Since Σ is

not the ultimate aim of PCA, but rather the eigenvectors and eigenvalues of Σ, methods are proposed for

structural estimation of the eigenvectors of Σ. The estimation of eigenvalues is the study of the spectrum

of Σ, which falls in the spectrum estimation of high dimensional covariance matrix. The techniques heavily

involve random matrix theory again. Interested readers are referred to Ledoit and Wolf (2015) and the

references therein.

For structural estimation of the eigenvectors, a very popular choice is to assume that the eigenvectors

themselves are sparse, in the sense that many elements in the eigenvectors are very small, except for a few.

Sparse PCA (SPCA) is to extract principal component directions assuming sparsity of the eigenvectors of

Σ. This enhances interpretability of principal component directions, in the sense that it indicates only a

few variables among p of them are important in a particular principal component direction. Instead of

reviewing different SPCA methods, see a nice review paper such as Zou and Xue (2018) for more details

on how SPCA can help obtain consistency in the eigenvectors estimation again under high dimension. For

a general PCA review, see Abdi and Williams (2010) and Johnstone and Paul (2018) and the references

therein.

4.2 Covariance estimation for cosmological data

The data comes from a mock cosmological survey analyzed in Joachimi (2016). To avoid as much technical

terms in cosmological study as possible, the data consists of p = 120 and nr = 2000 independent and
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identically distributed data vectors, recording “two-point correlation functions of cosmic weak lensing”.

They are observed deep into a part of the universe, and if the region of the universe we observe grow

bigger, then so does p. We want to estimate the population covariance matrix Σ of the observations, to be

further used in statistical analysis of some astronomical models. Ultimately, we want to get as little bias

and variance in the parameters estimated in those models as possible, meaning a good covariance matrix

estimator is essential. The precision matrix is particularly important, since likelihood functions of those

models involve the precision matrix.

Each of the nr realizations is actually independent simulation of the universe from big bang, and

hence involve hugely expensive computational cost and needed mainframe supercomputers to finish. Hence

the main aim of the study in Joachimi (2016) is to discover if a regularized estimator of Σ, instead of

the sample covariance matrix, can achieve good performance for the estimation of those astronomical

parameters relative to the population covariance matrix, but with much reduced sample size, ideally much

less than nr = 2000. If this is achievable, it means that we can maintain the standard of the estimated

parameters, but with much less realizations (and hence much less computational cost) for estimating Σ.
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Figure 1: Upper left: Σ, p = 120. Upper right: |Σ|, in log-scale. Lower left: Σ−1. Lower right: |Σ−1|, in
log-scale.

Figure 1 shows Σ, estimated by the sample covariance using all nr = 2000 realizations. The log-scale

plot reveal many fine structures of the covariance and the precision matrices, although the original scale
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plot displays many close-to-zero elements. Certainly we do not know if Σ is sparse or not if we do not

have all nr = 2000 realizations, but it would not be too difficult to see that there could be sparse elements

in both Σ and Σ−1 even from looking at the heat map of a sample covariance matrix of a much smaller

subsample, say n = 80. This prompts us to use sparse estimation of covariance and precision matrix. Since

precision matrix plays a more important role, we would want to put more focus on the performance of an

estimator for Σ−1.

Joachimi (2016) has used µTΣ−1µ as a signal-to-noise ratio, where µ is the true mean of the re-

alizations. We perform a simulation experiment to compare the estimated signal-to-noise ratio to the

true one, using the bias µ̂TΣ̂
−1

µ̂ − µTΣ−1µ to gauge performance. On top of this, we use the Frobe-

nius error
∥∥Σ̂ − Σ

∥∥
F

to illustrate the last point made in Section 3.2, namely, different criteria can give

different optimal estimators. We randomly draw n = 80 realizations from the pool of 2000 for each simu-

lation. We compare 5 estimators: Graphical lasso (GLASSO) from Section 2.3, the NOVELIST estimator

by Huang and Fryzlewicz (2018), NERCOME by Lam (2016), nonlinear shrinkage (Nonlin) estimator by

Ledoit and Wolf (2012), and finally the grand average (Grand Avg.) estimator by Abadir et al. (2014).

The last 3 estimators are introduced in Section 3.2, while the NOVELIST is introduced in Section 3.1. The

tuning parameter for the graphical lasso is pre-set so that it can estimate the signal-to-noise ratio best.

Since Σ−1 is sparse as seen in Figure 1, we expect the graphical lasso to perform well since it encourages

sparsity in the precision matrix.

We run the simulations 200 times. Table 1 shows, as expected, that the graphical lasso is the best for

estimating the signal-to-noise ratio which involve Σ−1. Changing to the Frobenius loss, the best estimator

becomes NERCOME. All in all, it is of much importance to determine what kind of criterion to use, and

what knowledge/structure we can assume on Σ or Σ−1, before we determine what estimators to use.

NERCOME Nonlin Grand Avg. NOVELIST GLASSO S

µ̂TΣ̂
−1

µ̂− µTΣ−1µ 46.8(35.8) 55.5(34.9) 10.3(21.3) 39.1(101.9) -3.8(9.5) -∥∥Σ̂−Σ
∥∥
F

2.7(1.1) 3.4(4.0) 3.0(2.0) 3.1(3.5) 16.6(1.4) 3.3(4.0)

Table 1: Bias and Frobenius error for 5 estimators, with mean and standard deviation (in bracket) reported.
The last column is the sample covariance matrix, which is always singular in this experiment.

4.3 Risk management and portfolio allocation

In finance, portfolio management is important for risk and return control. Assuming xi is an observed

daily/weekly/monthly log-return vector of p assets, with m = E(xi), var(xi) = Σ and they are assumed to
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be stationary for a period of time. The classical Markowitz portfolio allocation theory solves the problem

min
w

wTΣw subject to mTw ≥ µ, wT1p = 1, (4.4)

where 1p is a vector of p ones, and µ is a “target return” which the portfolio hope to achieve on average. In

words, we want to minimize the “risk” of the portfolio w, which is defined as the variance of the associated

return, var(wTxi) = wTΣw, subject to the mean return mTw being larger than the target return. Without

the target return constraint, the minimum variance portfolio is the solution

wmv =
Σ−11p

1T
pΣ

−11p

. (4.5)

If mTwmv ≥ µ, then wmv is also the solution to (4.4). Otherwise, if m is linearly independent of 1p, then

the solution to (4.4) is

wopt = (1− α)wmv + αwmkt, wmkt =
Σ−1m

eTΣ−1m
, α =

µ(mTΣ−1m)(eTΣ−1e)− (mTΣ−1e)2

(mTΣ−1m)(eTΣ−1e)− (mTΣ−1e)2
. (4.6)

We can see that the explicit solution always involve the precision matrix Σ−1, and hence it is important

to have a good estimator of Σ−1. At the same time, the estimated risk of any given portfolio w is wTΣ̂w,

so that we want to have a good estimator for Σ when it comes to risk assessment. This is on top of the

need for estimating the high dimensional vector m, which is often not being stationary after a certain

(supposedly short) time period.

Focusing on estimating wmv, an ideal criterion will be to minimize
∥∥wmv − ŵmv

∥∥, where ŵmv has

Σ replaced by an estimator Σ̂. As far as we know there are no estimators that aim to minimize this.

Fan et al. (2013) instead assumed a factor model (2.13) and proposed POET for Σ̂ as described in Section

2.4. This makes sense as return data usually has at least a market factor that is pervasive.

In an empirical study, Lam (2016) considered risk minimization for a portfolio of p = 100 stocks,

which is also considered in section 7.2 of Fan et al. (2013). The data consists of 2640 annualized daily

excess returns {rt} for the period January 1st 2001 to December 31st 2010 (22 trading days each month).

Five portfolios are created at the beginning of each month using five different methods in estimating the

covariance matrix of returns. A typical setting here is n = 264, p = 100, that is, one year of past returns

to estimate a covariance matrix of 100 stocks. Each portfolio has weights given by

ŵ =
Σ̂

−1
1p

1T
pΣ̂

−1
1p

,
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where Σ̂
−1

is an estimator of the p × p precision matrix for the stock returns, using strict factor model

(i.e., (4.3) with var(ei) = σ2Ip, abbreviated as SFM), POET from Section 2.4, and grand average, NER-

COME and nonlinear shrinkage (Nonlin) from Section 3.2 respectively. At the end of each month, for each

portfolio, we compute the total excess return, the out-of-sample variance and the mean Sharpe ratio, given

respectively by (see also Demiguel and Nogales (2009)):

µ̂ =

119∑
i=12

22i+22∑
t=22i+1

wTrt, σ̂2 =
1

2376

119∑
i=12

22i+22∑
t=22i+1

(wTrt − µ̂i)
2, ŝr =

1

108

119∑
i=12

µ̂i

σ̂2
i

.

SFM POET NERCOME Grand Avg. Nonlin
Total excess return 153.9 109.5 128.0 127.9 124.8
Out-of-sample variance .312 .267 .264 .264 .264
Mean Sharpe Ratio .224 .197 .212 .211 .205

Table 2: Performance of different methods. SFM represents the strict factor model, with diagonal covariance
matrix.

Table 2 shows the results. Clearly, the out-of-sample variance, which is a measure of risk, is the

smallest for NERCOME, grand average and Nonlin, while the strict factor model has the highest risk. One

highlight of NERCOME, which is proved in Lam (2016) but not in Abadir et al. (2014) or Ledoit and Wolf

(2012) for the grand average and Nonlin respectively, is that we do not even need to estimate the number

of factors for the underlying factor model for the data, which is a crucial input in the case for strict factor

model and POET.

4.3.1 Intraday data

Previously we consider xi to be low-frequency return data recorded at most daily. When intraday data is

concerned, we consider the log-price processes of p assets using a diffusion model

dXt = µtdt+ΘtdWt, t ∈ [0, 1],

where Wt is a p-dimensional standard Brownian motion. With this model, the integrated covariance

matrix Σ =
∫ 1

0
ΘtΘ

T

t dt then plays the central role for portfolio allocation. For a portfolio w, wTΣw =∫ 1

0
wTΘtΘ

T

t wdt can be considered as an accumulation of instantaneous risk wTΘtΘ
T

t w at time t over

the whole period [0, 1]. The literature is rich (yet still young) in how to estimate this matrix under high

dimension for intraday data, or even truly high-frequency data (prices within 5 minutes interval, or even

tick-by-tick data), where the price is contaminated by the so-called microstructure noise. See for instance

Wang and Zou (2010), Dao et al. (2017) and Fan and Kim (2017) and the references therein.

Since Lam (2016) has shown that nonlinear shrinkage can be attained using a data splitting scheme
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without explicit transformation formulas, Lam et al. (2017) proposed to estimate Σ assuming constant

correlation matrix process assumptions, allowing us to write Θt = γtΛ, so that Σ =
∫ 1

0
γ2
t dt ·ΛΛT. This

leads to a two-part estimation procedure, with ΛΛT to be estimated using the self-normalized return rℓ =

p1/2∆Xℓ/
∥∥∆Xℓ

∥∥, where ∆Xℓ = Xτℓ −Xτℓ−1
and τℓ represents the ℓth synchronous observation time, ℓ =

1, . . . , n. When p is fixed, the sample covariance matrix of rℓ, Sr = n−1
∑n

ℓ=1 rℓr
T

ℓ works well. Under the

framework p/n → c > 0, we are tempted to use nonlinear shrinkage on Sr for regularization, but rℓ is not of

the formAzℓ for some constant matrixA and random vector zt with independent and identical standardized

elements, meaning that the formulas in Ledoit and Wolf (2012) are not applicable. The NERCOME

estimator in Lam (2016) can be applied to the data rℓ, and the corresponding asymptotic optimal properties

are presented in Lam et al. (2017). Lam and Feng (2018) even applied nonlinear shrinkage on tick-by-tick

data which is contaminated by market microstructure noise with non-synchronous trading times, and hence

the returns are not even independent. They constructed a nonlinear shrinkage integrated volatility matrix

estimator that is proved to be converging to an ideal estimator with a specific rate of convergence while

the constructed matrix is positive definite in probability. They also proved that the minimum variance

portfolio using such an estimator has some nice exposure bounds that are the same as the theoretical

minimum variance portfolio. See simulations and portfolio exercises carried out in Lam and Feng (2018)

which compared a number of state-of-the-art alternatives, including methods that directly regularizes on

the portfolio weight in Fan et al. (2012) and DeMiguel et al. (2009).

5 Conclusion

Estimation of covariance matrix in high dimension is difficult because the sample covariance matrix simply

fails miserably, and we have to impose regularization explicitly. Two branches of regularization are presen-

ted in this paper. One branch is to impose particular structure in our estimation procedure, and another

branch to shrink the extreme eigenvalues of the sample covariance matrix. The appropriate method to

use depends heavily on applications as well. If scientific knowledge indicates particular structures in the

population covariance matrix, then we want to use regularization that enhances those structures. Other-

wise, shrinkage is not a bad idea in the absence of a priori information on the data and the structure of

the population covariance matrix. Shrinkage estimators are usually associated with particular loss functi-

ons. Different loss functions can result in different shrinkage formulas for the eigenvalues of the sample

covariance matrix.

There are still many open challenges. Like Section 4.3 mentioned, an ideal criterion for optimization

does not mean it is easy to derive the corresponding optimizer, when ideal criterion is also problem-
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dependent. And for time series data, how can we estimate conditional covariance matrix efficiently?

Partial solutions are offered in finance, for example, in Engle et al. (2019) where they proposed a large

dynamic covariance matrix estimator, but a useful estimator may be different in other scientific fields. We

also mentioned robust estimation in Section 2.1 and accommodation of heavy-tailed data in Section 2.4,

which are both very important topics in covariance matrix estimation. Finally, if a data vector can be

naturally formed into an array for each observation (for example, a matrix), a covariance matrix for the

data vector may then be generalized to a higher order tensor structure, depending on applications. How

can we perform regularization effectively then?
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