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Abstract

We explore existence and properties of equilibrium when N ≥ 2 bidders

compete for L ≥ 2 objects via simultaneous but separate auctions. Bidders

have private combinatorial valuations over all sets of objects they could win,

and objects are complements in the sense that these valuations are supermod-

ular in the set of objects won. We provide a novel partial order on types

under which best replies are monotone, and demonstrate that Bayesian Nash

equilibria which are monotone with respect to this partial order exist on any

finite bid lattice. We apply this result to show existence of monotone Bayesian

Nash equilibria in continuous bid spaces when a single global bidder competes

for L objects against many local bidders who bid for single objects only. We

then consider monotone equilibrium with endogenous tiebreaking building on

Jackson, Simon, Swinkels and Zame (2002), and demonstrate that these exist

in general. These existence results apply to many auction formats, including

first-price, second-price, and all-pay.
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1 Introduction

Simultaneous bidding for multiple objects is a commonly occurring phenomenon in

many real-world auction markets, but surprisingly little is known about the proper-

ties of equilibria in games involving simultaneous auctions when bidder payoffs are

non-additive.1 For example, when auctioning drilling rights in the US Outer Con-

tinental Shelf, the US Minerals Management Service typically offers (and bidders

typically bid on) a large number of drilling tracts simultaneously. Prior empirical

work (e.g. Hendricks and Porter, 1988, Hendricks, Pinkse and Porter, 2003) suggests

that economically important complementarities may exist between tracts in close

proximity. Yet little is presently known – either theoretically or empirically – about

how such synergies might affect equilibrium behavior in such markets.2

This paper analyzes equilibrium within a class of mechanisms we refer to as si-

multaneous standard auctions for complementary goods. In this setting, a collection

of L ≥ 2 objects are offered for sale to a set of N ≥ 2 bidders. Bidders have indepen-

dent private valuations over combinations of objects, where objects are complements

in the sense that bidders’ valuations are supermodular in sets of objects won. Auc-

tions are simultaneous in the sense that bidders may bid on each object individually

but may not submit contingent or combinatorial bids, and standard in the sense that

each object l is allocated to the highest bidder in auction l and payments in auction

State University.
1Examples of markets involving simultaneous bidding include highway procurement in many

US states (e.g. Krasnokutskaya [2011], Somaini [2013], Groeger [2014] among others), recycling
services in Japan (Kawai, 2010), cleaning services in Sweden (Lunander and Lundberg, 2013), oil
and drilling rights in the US Outer Continental Shelf (Hendricks and Porter, 1988, Hendricks,
Pinkse and Porter, 2003), and to a lesser extent US Forest Service timber harvesting (Athey, Levin
and Siera, 2011, among many others).

2Notable exceptions are Fox and Bajari (2013), who estimate the deterministic component of
bidder valuations in FCC simultaneous ascending spectrum auctions, and Gentry, Komarova and
Schiraldi (2017), who empirically study simultaneous bidding in Michigan Department of Trans-
portation highway procurement auctions.
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l depend only on bids in auction l. So long as all auctions are standard, auctions for

different objects may have different formats. For simplicity, we frame discussion in

terms of a single auctioneer, although this is inessential for our results.

The simultaneous standard auction game raises a number of significant theoret-

ical challenges. Even assuming independent private types, each bidder’s preference

structure could in principle be as complex as a complete (2L − 1)-dimensional set of

valuations assigned by that bidder to each of the 2L − 1 possible non-empty subsets

of objects. Meanwhile, the simultaneous standard auction permits bidders to sub-

mit (at most) L individual bids on the L objects being sold. Furthermore, as usual

in auctions, payoffs in the resulting game may be discontinuous in bids. The end

result is a discontinuous Bayesian game with high-dimensional types for which even

basic properties—such as existence of Bayesian Nash equilibrium—are challenging

to establish in general.

Section 2 introduces the model and describes what we mean by a standard auc-

tion. The framework of standard auctions includes many auction formats, such as

first-price, second-price, and all-pay. Section 3 introduces a partial order on bidder

types characterized by a finite number of linear inequalities on marginal valuations.

These inequalities define a cone (with a nonempty interior) strictly contained in the

first-orthant cone of the (2L − 1)-dimensional type space, which is the cone describ-

ing the usual coordinatewise order. We show that even the (strong) assumption of

supermodular valuations is insufficient to ensure monotonicity of best replies with

respect to the usual coordinatewise order on types—in fact, a strict coordinatewise

increase in type can induce a strict coordinatewise decrease in best-reply bids. Our

stronger partial order, however, is sufficient for monotonicity in that each bidder i

has an interim best reply such that an increase in i’s type with respect to our partial
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order will imply an increase in i’s bids with respect to the usual coordinatewise order.

Equipped with this preliminary result, Section 4 builds on the methodology of

Athey (2001), McAdams (2003) and Reny (2011) to establish existence, in any si-

multaneous standard auction, of pure strategy equilibria on finite bid spaces which

are monotone in the sense above. This result turns on one additional condition,

which clarifies the relationship between the partial order cone and the support of

bidder’s joint distribution of valuations. Namely, we show that this relationship is

“sufficiently rich” if this distribution is absolutely continuous with respect to the

Lebesgue measure in the (2L − 1)-dimensional space and the support of this dis-

tribution is regular enough. While the existence of a pure strategy Bayesian Nash

Equilibrium follows from Milgrom and Weber (1985), the monotone characterization

of the equilibria under a suitable partial order on types is novel in this setting.

We then proceed to consider continuous bidding spaces. First, in Section 5.1, we

consider a special case similar in spirit to Krishna and Rosenthal (1996), in which

a single global bidder bids in simultaneous first-price auctions for L objects against

a collection of local bidders who bid for single objects only.3 Building on proof

techniques in Reny (2011), we show existence of a pure strategy Bayesian Nash

equilibrium which is monotone with respect to our partial order. To the best of

our knowledge, both existence and monotonicity are novel in this setting. Moreover,

monotonicity is here pivotal in establishing existence; the proof turns on passing from

a sequence of monotone equilibria on discrete spaces to the limit of this sequence in

a continuous space, which is feasible only because the space of monotone strategies

is known to be compact in an almost-everywhere convergence metric if the partial

3In this section only, we restrict attention to simultaneous first-price auctions, as our primary
purpose is illustration. We conjecture, however, that arguments similar to those in 5.1 could be
used to establish existence of monotone equilibria in standard auctions more generally.
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order is sufficiently rich (Reny, 2011).

While we believe that this finding is of interest in its own right, this example also

serves to highlight a subtle challenge arising in settings with more than one global

bidder. Specifically, the interaction between strategic overbidding by global bidder i

and dependence across auctions of bids by i’s global rivals leads to failure of a key

technical property—better-reply security of Reny (1999)—needed to complete the

existence proof. In Section 5.2, we therefore turn to an alternative solution concept,

equilibrium with endogenous tiebreaking, building on the work of Jackson, Simon,

Swinkels and Zame (2002, henceforth JSSZ). JSSZ define the communication exten-

sion Gc to a given game G as the game arising when, in addition to their actions

under G, players also submit cheap-talk indications of their types which the auction-

eer may use (only) to resolve ties. A solution to Gc is a strategy profile for bidders

plus a tiebreaking rule such that strategies are a Bayesian Nash equilibrium given

the tiebreaking rule. Starting from a class of discontinuous games G which includes

ours, JSSZ establish existence of solutions to Gc in which bidders play distributional

strategies as defined by Milgrom and Weber (1985) and communication is truthful.

In the context of simultaneous auctions for complementary goods, we show that

these general conclusions can be sharpened in at least three respects. First, rather

than permitting bidders to communicate their full (2L − 1) × 1-dimensional types,

we allow bidder i to submit (in addition to her bid vector bi) only an L × 1 vector

of cheap-talk signals si; we refer to this as a signaling extension to distinguish it

from the communication extension of JSSZ. Second, in any simultaneous standard

auction, we show the existence of a solution to the signaling extension in which

the auctioneer’s tiebreaking rule can be characterized by a set of L weakly monotone

tiebreaking precedence functions (ρ1, ..., ρl), where the auctioneer randomizes object l
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independently among the set of high bidders in auction l with the highest tiebreaking

precedence: i.e. among the set of bidders i with bil = maxj{bjl} and ρl(sil) =

maxj{ρl(sjl)}. This characterization of tiebreaking sharpens that in JSSZ, implying

in particular existence of a solution where allocations and payments in auction l

depend only on bids and signals in auction l. Furthermore, whereas JSSZ consider

only existence in distributional strategies, we obtain existence in pure strategies

which are additionally monotone in a suitable partial order sense.

Section 6 contains several numerical examples of bidding behavior in simultaneous

auctions for complementarities, which illustrate our main theoretical results. Proofs

of all propositions and lemmas are collected in the Appendix.

Our analysis relates to an important phenomenon arising in simultaneous auctions

known as the exposure problem. Exposure can occur when bidders try to win several

objects without opportunities to express their preferences on combinations of the

objects. In this situation, bidders might strategically underbid or overbid in an

attempt to avoid winning undesirable bundles. As a result, the auctions can fail

to construct efficient allocations, leading some bidders to incur ex-post losses. The

exposure problem has been analyzed in various settings within the simultaneous

auctions literature, although to the best of our knowledge the available results remain

sparse.4 We do not analyse the exposure problem formally in the paper but we do

highlight this problem in our examples.

Related literature The effect of complementarities in simultaneous auctions has

been studied, among others and in very specific setups, by Bikhchandani (1999),

by Rosenthal and Wang (1996) and Szentes and Rosenthal (2003) in simultaneous

4See Krishna and Rosenthal (1996), Rosenthal and Wang (1996), Milgrom (2000a), Goeree and
Lien (2014), Meng and Gunay (2017), among others.
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first-price auctions, by Krishna and Rosenthal (1996) in simultaneous second-price

auction, and by Brusco and Lopomo (2002, 2009) and Cramton (1997) in simultane-

ous ascending auctions.

Szentes and Rosenthal (2003) study the simultaneous first-price mechanism in a

complete information setting with two identical players who compete via simulta-

neous first-price auctions for three identical objects. Their analysis highlights the

challenges involved in study of the simultaneous first-price mechanism – even in rela-

tively simple settings, equilibrium turns out to have subtle and surprising properties.

Similar complexity arises in Krishna and Rosenthal (1996), who study a setting where

many identical objects are auctioned via simultaneous second-price auctions to two

types of bidders: global bidders, who bid in multiple auctions, and local bidders,

who bid in one auction only. Global bidders’ preferences are characterized by a one-

dimensional private type describing their valuation for each (identical) single object,

with a deterministic, common knowledge synergy realized in the event of a multiple

win. In contrast, we allow a much richer type space in which global bidders to have

private valuations for each of the possible (2L − 1) × 1 combinations of auctioned

objects. We thereby take a significant step toward characterizing equilibrium in a

broad class of simultaneous auction games.

Games of incomplete information with payoffs supermodular in actions have also

been studied by, among others, Athey (2001), McAdams (2003) and Reny (2011).

Vives (1990) established the existence of pure-strategy equilibria in Bayesian games

when payoffs are supermodular and upper-semicontinuous in actions. This could

provide an alternative path to establishing existence when the bid space is finite,

but does not speak to monotone equilibria. Meanwhile, Van Zandt and Vives (2007)

demonstrate existence of monotone pure strategy equilibria in games with supermod-
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ular utility assuming (among other conditions) that utility is continuous and exhibits

increasing differences in own and rival actions. The latter condition does not hold

even in finite bid spaces, and therefore cannot be applied in our setting.5

There is also a substantial literature analyzing properties of various combinato-

rial auction mechanisms. Notable studies in this literature include Cantillon and

Pesendorfer (2006), Ausubel and Milgrom (2002), Ausubel and Cramton (2004),

Cramton (2006), Krishna and Rosenthal (1996), Klemperer (2008, 2010), Milgrom

(2000a, 2000b), to mention just a few. Detailed surveys of this literature are given

in de Vreis and Vorha (2003) and Cramton et al. (2006). While these studies also

consider settings where bidders have preferences over combinations, the theoretical

problems generated by simultaneous bidding differ substantially from those encoun-

tered in true combinatorial mechanisms.6

2 Simultaneous standard auctions with comple-

mentarities

Consider a setting in which N risk-neutral bidders compete for L prizes allocated

via a class of mechanisms we call simultaneous standard auctions, defined as follows:

Definition 1 (Simultaneous standard auctions). We say that objects l = 1, ..., L are

allocated via simultaneous standard auctions if the bidding mechanism is such that:

5As usual in auctions, once one moves from finite to continuous bid spaces, utility is no longer
either continuous or semi-continuous in actions. Hence results based on these no longer apply.

6Though only tangentially related to our problem, there is also a growing literature on multi-unit
discriminatory auctions of homogeneous objects. Reny (1999, 2011), Athey (2001), and McAdams
(2006) address existence and properties of equilibrium in such auctions. Meanwhile, Hortacsu
and Puller (2008), Hortacsu and McAdams (2010), and Hortacsu (2011) provide more empirical
perspectives on multi-unit auctions.
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1. Bidders may bid for each object l = 1, ..., L individually, but may not submit

combination or contingent bids;

2. Each object l is allocated to a high bidder in auction l, with payments condi-

tional on allocation determined solely by bids in auction l.

Note that while allocations are always to a high bidder, payment rules need not be

the same across l. In what follows, we frame discussion in terms of a single seller,

although this is inessential for our results.

For ease of exposition, in analyzing monotonicity and bidding we will initially

assume that ties are broken randomly and independently across objects:

Assumption 1 (Independent tie-breaking). Ties are broken independently across

auctions; tie-breaking does not depend on bidders’ types.

We will maintain this assumption through Section 5.1, which demonstrates existence

of monotone equilibria in continuous bid spaces with one global bidder. It will

be dropped in Section 5.2, when we consider monotone equilibria with endogenous

tiebreaking in continuous bid spaces with many global bidders.

Let an outcome from the perspective of bidder i be an L × 1 indicator vector ω

with a 1 in the lth place if object l is allocated to bidder i and a 0 in the lth place

otherwise. Similarly, let the outcome matrix Ω for bidder i be the (2L−1)×L matrix

whose rows contain (transposes of) each possible outcome ω 6= 0: e.g. if L = 2,

ΩT =

 0 1 1

1 0 1


In what follows, we use the squared Euclidean norm ‖ω‖2 to denote the number of

objects allocated to bidder i in outcome ω.
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Bidder preferences Let Y ω
i denote the combinatorial valuation bidder i assigns

to outcome ω. We normalize the outcome “win nothing” to zero, and assume that

valuations are non-decreasing in the set of objects won:

Assumption 2 (Values Normalized and Non-decreasing). Y 0
i = 0 and Y ω

i is non-

decreasing in the vector of objects won: ω′ ≥ ω implies Y ω′
i ≥ Y ω

i .

Let Yi be the (2L−1)×1 vector describing the combinatorial valuations i assigns

to all possible winning outcomes (normalizing Y 0
i = 0 as above), with elements of

Yi corresponding to rows in Ω. In what follows, we interpret Yi as bidder i’s private

type in the bidding game, known to bidder i but unknown to rivals at the time of

bidding. We further assume that private types Yi are i.i.d. across bidders:

Assumption 3 (Independent Private Values). Each bidder i draws private type Yi

from a continuous c.d.f. FY,i with compact support Yi ⊂ R2L−1, with FY,i common

knowledge and types drawn independent across bidders: Yi ⊥ Yj for all i, j.

As our focus is on monotone equilibria, we will further assume that objects are

complements in the sense that combinatorial valuations are supermodular in the set

of objects won:

Definition 2. We will say that bidders have supermodular valuations if for any

outcomes ω1, ω2,

Y ω1∧ω2
i + Y ω1∨ω2

i ≥ Y ω1
i + Y ω2

i ,

where ω1 ∧ ω2 denotes the meet of ω1, ω2 and ω1 ∨ ω2 denotes the join of ω1, ω2.

Supermodularity implies that winning a larger set of objects increases the marginal

valuation i assigns to any additional object.
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Actions and strategies Let Bil be the set of feasible bids for bidder i in auction

l. For each bidder i, we assume that Bil is a compact subset of R+.7 The action

space for bidder i is the set of L × 1 bid vectors bi = (bi1, . . . , biL)T , with bi ∈ Bi =

×lBil and Bi a lattice in RL. As usual, a pure strategy for bidder i is a function

σi : Yi → Bi. Let σ = (σ1, . . . , σN) denote a pure strategy profile for all bidders, and

σ−i = (σ1, ..., σi−1, σi+1, ..., σN) denote a strategy profile for all bidders except i.8

Joint and marginal winning probabilities Let Pi(b;σ−i) be the (2L − 1) × 1

vector describing the probability distribution over outcomes arising when i submits

bid b ∈ Bil against rival strategies σ−i, with P ω
i (b;σ−i) the element of Pi(b;σ−i)

describing the probability of outcome ω. Similarly, let Γi(b;σ−i) be the L× 1 vector

describing marginal win probabilities arising when i submits bid vector b ∈ Bil

against rival strategy profile σ−i, with Γil(b;σ−i) the marginal probability i wins

auction l. Observe that Γi(b;σ−i) is related to Pi(b;σ−i) by

Γi(b;σ−i) = ΩTPi(b;σ−i).

Under Assumption 1, Γil(b;σ−i) depends only on bid bl. Furthermore, if ties occur

with probability zero, Γil(b;σ−i) is the c.d.f. of the maximum rival bid in auction l.

Interim payoffs and expected payments Let πi(bi; yi, σ−i) denote the expected

interim payoff of bidder i with type yi ∈ Yi submitting bid vector bi against rival

7While we do not explicitly model reserve prices, these can easily be accommodated in our
framework by introducing a dummy bidder whose action space is a singleton including only the
relevant reserve prices.

8Note that although we do not discuss reserve prices explicitly, our framing here in fact implicitly
accommodates arbitrary reserve prices. One could, for instance, simply include a dummy bidder
whose bid space in each auction is a singleton equal to the relevant reserve. All results developed
below would then immediately extend.
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strategies σ−i. Maintaining Assumptions 1-3, we may write πi(bi; yi, σ−i) as follows:

πi(bi; yi, σ−i) = yTi Pi(b;σ−i)−
L∑
l=1

cil(bil;σ−i), (1)

where cil(bil;σ−i) denotes i’s expected mechanism-determined payment in auction l

as a function of i’s bid bil in auction l given rival strategies σ−i. For example, if

auction l is a first-price auction, then we would have

cil(bil;σ−i) = bilΓil(bil;σ−i).

Note that the additively separable form for payments follows jointly from our hy-

potheses of standard auctions and independent tiebreaking; the former implies that

payments in auction l depend only on allocations and bids in auction l, while the

latter implies that allocations in auction l depend only on bids in auction l.

3 Monotone best responses in simultaneous stan-

dard auctions with complementarities

3.1 Partial order on types

A natural first question in analysis of simultaneous auctions is whether bidding strate-

gies are monotone in any natural economic sense. Monotonicity is useful in analyzing

both technical and empirical questions. Furthermore, insofar as we are focusing on a

setting with complementarities between objects, it is natural to expect that “higher

valuations” should in some sense translate into higher bids. In this section, we show

that this is in fact the case: there is a partial order � on the space of types Yi such
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that if y′i � yi, then i has a best reply at type y′i which is coordinatewise greater than

any best reply at type yi.

We first make precise the notion of marginal valuations in this combinatorial

context:

Definition 3 (Marginal valuations). Let ω and ω′ be two outcomes such that ω′ ≥ ω
in the coordinatewise sense. For bidder i, the marginal valuation of objects corre-
sponding to allocation ω′ relative to those in allocation ω is defined as the difference

Y ω′

i − Y ω
i .

Recall that under Assumption 2 all marginal valuations are non-negative.

We define a partial order � on the space of types Yi such that y′i � yi implies

that every marginal valuation is higher for type y′i than for type yi. Bearing in mind

the combinatorial nature of marginal valuations, this leads to the following definition

for the partial order �:

Definition 4 (Partial order). We will say that

ỹi � yi

if and only if for any outcome ω and any object l such that ωl = 0 we have

ỹω∨eli − ỹωi ≥ yω∨eli − yωi . (PO)

Note that (by construction) the partial order (PO) is more restrictive than the usual

coordinatewise order on Yi. In particular, choosing ω = 0, we find that ỹi � yi

implies ỹeli ≥ yeli for any object l, which in turn implies ỹel∨emi ≥ yel∨emi for any l 6= m

and so forth. Proceeding inductively in this way, we ultimately conclude that ỹi � yi

implies ỹi ≥ yi coordinatewise.

Importantly, the coordinatewise partial order on the set of combinatorial val-

uations would not be sufficient to ensure coordinate-wise monotonicity of best re-
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sponses; indeed, even when objects are complements, a strict coordinatewise increase

in i’s type can lead to a strict coordinatewise decrease in all elements of i’s best-

response bid. Intuitively, this is because the usual coordinatewise order on Yi imposes

insufficient structure on the marginal value added by any additional object.

The failure of coordinatewise monotonicity in the context of a two-object simul-

taneous first price example is illustrated in Example 1.

Example 1. Consider two bidders competing for two objects via simultaneous first-
price auctions. Suppose that bidder 2’s fixed strategy is to bid either in auction
1 (with probability 1

2
) or in auction 2 (with probability 1

2
), drawing bids from the

uniform U [0; 1] distribution in either case. Consider two types for bidder 1:

y′1 = (0, 0, 0, 2)T , y′′1 = (0, 1, 1, 5/2)T .

For b1, b2 ∈ [0, 1], these types correspond to the following profit functions:

π′ = −b1 ·
(

1

2
− b2

2

)
− b2 ·

(
1

2
− b1

2

)
+ (2− b1 − b2) ·

b1 + b2
2

,

π′′ = −b1 ·
(

1

2
− b2

2

)
+

(
5

2
− b2

)
·
(

1

2
− b1

2

)
+

(
5

2
− b1 − b2

)
· b1 + b2

2
,

yielding best response bids b′ =
(
1
2
, 1
2

)T
and b′′ =

(
1
4
, 1
4

)T
respectively. Ignoring the

first component, which corresponds to the case of winning no auctions, we see that
y′′1 is strictly greater than y′1 in the coordinatewise sense.

Thus even when objects are complements in the (strong) sense of supermodular

valuations, a strict coordinatewise increase in type (from y′1 to y′′1) can generate a

strict coordinatewise decrease in i’s best response bid (from b′ to b′′). As pointed out

by Reny (2011) in a substantially different context (multi-unit auctions with risk-

averse bidders), the fundamental problem is that the coordinatewise partial order

on types imposes insufficient structure on marginal value added: for instance, when

moving from y′1 to y′′1 in Example 1, the value added by object 2 (in events where i

is already winning object 1) falls from 2 to 1.5 even as the value i assigns to winning
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objects 1 and 2 together increases from 2 to 2.5.

Going back to the partial order (PO), while the economic motivation for it is

clear, we note that it also has a useful geometric interpretation. Intuitively, this

interpretation arises from the observation that there is a positive cone generating

our partial order. Specifically, define the set Z2L−1 as follows:

Z2L−1 =

{
z ∈ R2L−1 : taking z0 = 0, ∀ (ω, l such that ωl = 0) zω∨el − zω ≥ 0

}
.

(2)

Then Z2L−1 is a solid cone located in the first orthant of the 2L − 1-dimensional

space R2L−1.9 Furthermore, for any yi ∈ R2L−1, the set yi+Z2L−1, which amounts to

the translation of the cone Z2L−1 in R2L−1 to vertex yi, represents all the realizations

of i’s type in R2L−1 that dominate yi in the sense of partial order (PO). Similarly,

the set yi − Z2L−1, which amounts to the rotation of Z2L−1 and then its translation

in R2L−1 to vertex yi, represents all the realizations of i’s type in R2L−1 that are

dominated by yi under the partial order (PO).

3.2 Monotone best replies

To conclude this section, we demonstrate that the additional structure imposed by

the partial order (PO) is in fact sufficient to restore an economically meaningful

notion of monotonicity. Specifically, given any set of rival strategy profiles σ−i, we

show that if ỹi � yi in the sense of (PO), then at least one element of i’s best reply

9To remind the readers, a nonempty subset Z of a vector space is said to be a cone if it satisfies
the following three properties: (i) Z + Z ⊂ Z, (ii) αZ ⊂ Z for all α ≥ 0, (iii) Z ∩ (−Z) = {0}.
Any cone with a nonempty interior is a solid cone. In this case the interior of Z2L−1 is clearly

nonempty in R2L−1; e.g. for L = 2 we have (ze1 , ze2 , ze1∨e2)T = (1, 1, 2)T ∈ Zo
3 , for L = 3 we have

(ze1 , ze2 , ze3 , ze1∨e2 , ze1∨e3 , ze2∨e3 , ze1∨e2∨e3)T = (1, 1, 1, 2, 2, 2, 3)T ∈ Zo
7 , and so forth for L > 3.

Hence Z2L−1 is a solid cone in R2L−1.
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bid correspondence at type ỹi is coordinatewise no smaller than every element of i’s

best reply bid correspondence at type yi. We prove this proposition in three steps.

First, combining our hypothesis of simultaneous standard auctions with Assump-

tions 1–3 above, we show that supermodularity of valuations in the set of objects

won implies supermodularity of interim payoffs πi(bi; yi, σ−i) as a function of bi:

Lemma 1. Suppose that Assumptions 1–3 hold. Fix a rival pure strategy profile σ−i.
Let yi be a realization of bidder i’s type. If valuations are supermodular in the sense
of Definition 2, then the interim payoff function

πi(bi; yi, σ−i) = yTi P (bi;σ−i)−
L∑
l=1

cil(bil;σ−i)

is supermodular in bi.

Second, we establish that bidders’ interim payoffs satisfy the following weak single

crossing property in yi:

Lemma 2. Maintaining Assumptions 1–3, fix a pure strategy σ−i for the rival bid-
ders. Suppose that types ỹi and yi are such that ỹi � yi in the sense of the partial
order (PO), and suppose that b̃i ≥ bi in the coordinatewise sense. Then

πi(b̃i; yi, σ−i) ≥ πi(bi; yi, σ−i) =⇒ πi(b̃i; ỹi, σ−i) ≥ πi(bi; ỹi, σ−i).

Finally, we combine these results to establish the following weak monotonicity

property on the set of i’s best replies to σ−i:

Proposition 1. Maintaining Assumptions 1–3, suppose that valuations are super-
modular in the sense of Definition 2. Fix a pure strategy profile σ−i for the rival
bidders. Let bi ∈ Bi be a best response to σ−i when bidder i’s type is yi, and b̃i ∈ Bi
be a best response to σ−i when i’s type is ỹi, where ỹi and yi are such that ỹi � yi in
the sense of the partial order (PO). Then the bid vector bi∨ b̃i is also a best response
to σ−i when i’s type is ỹi.
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Proposition 1 does not, of course, guarantee existence of a best reply strategy σ∗i

to σ−i. It does, however, imply that if such a best reply exists, then there also exists

a best reply strategy σ̃∗i which is monotone in that y′i � yi in the sense of (PO)

implies σ̃∗i (y
′
i) ≥ σ̃∗i (yi) in the usual coordinatewise order. This in turn provides a

foundation for our analysis of monotone equilibrium below.

4 Monotone equilibrium in finite bid spaces

Building on the partial order (PO), we next turn to consider monotone equilibrium in

finite bid spaces. Specifically, suppose that B is a finite lattice. Under an additional

support condition on Yi to be defined shortly, we show that there exists a Bayesian

Nash equilibrium in pure strategies (σ∗1, ..., σ
∗
N) : Y → B with the property that

y′i � yi in the sense of (PO) implies σ∗i (y
′
i) ≥ σ∗i (yi) in the usual coordinatewise

order.

Toward this end, we require one additional assumption, which guarantees that

the support of Yi is “sufficiently rich” to permit meaningful comparisons with respect

to the partial order (PO):

Assumption 4. There is a countable subset Y?i of Yi such that every set in FYi-
sigma-algebra assigned positive probability by FYi contains two points between which
(here “between” is understood in the partial order sense) lies a point in Y?i .

For this assumption to hold jointly with atomlessness of the distribution of Yi, it

is necessary that there exists a positive FYi-measure of points in the support Yi that

can be compared to each other by means of the partial order (PO). In particular,

(PO) should not reduce to the trivial partial order on Yi. Fortunately, Assumption

4 turns out to follow from natural regularity conditions on the distribution of Yi:
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Proposition 2. Suppose that Yi is compact and has non-empty interior with respect
to R2L−1, and that the boundary of Yi has zero Lebesgue measure in R2L−1. Further
suppose that the joint distribution of the (2L − 1)-dimensional vector Yi has density.
Then Assumption 4 holds.

Conditions in Proposition 2 are closer to the assumptions on distributions of types

imposed by McAdams (2003), who in addition requires the density to be bounded

from above and also be bounded away from zero on Yi.10

We now turn to this section’s main result: under Assumptions 1–4, at least one

Bayesian Nash equilibrium monotone in the sense of (PO) exists on any finite bid

lattice. In view of Proposition 1, the proof of this statement is relatively straight-

forward. Restricting bids to a finite lattice guarantees the continuity of the interim

payoff function, which ensures that each player’s interim best reply correspondence

is non-empty. Hence by Proposition 1, we conclude that each player has a best reply

which is monotone and join closed with respect to the partial order (PO) on types

and the usual coordinatewise order on bids. To guarantee existence of an equilibrium

in monotone pure strategies, we therefore need only verify conditions G.1-G.6 of Reny

(2011), after which Theorem 4.1 of Reny (2011) delivers the result. Of these, only

condition G.3 is potentially problematic, leading to our Assumption 4 and sufficient

10Note that McAdams (2003) obtains results only for the coordinatewise partial order and, thus,
those results are not directly applicable in our general framework where the partial order is different.
However, for some forms of the utilities for bundles we could apply McAdams (2003) results directly
(if we, of course, strengthen the requirement of Proposition 2 on the distribution of types to conform
with McAdams (2003)). Consider, for instance, the case when all standalone valuations Y e` are
distributed on [0, 1] and the value for a bundle ω, ‖ω‖ > 1 (‖ · ‖denotes the Euclidean norm), has
the form

Y ω =

L∑
`=1

Y ω∧e` +
∑

ω′:ω′≤ω,ω′ 6=ω,‖ω′‖>1

zω′
∏

h:ω∧eh=eh

Y eh , (3)

where the z-variables indicate degrees of complementarities of the objects given in their subscripts,
and all z-variables are between 0 and 1. It is clear that in this case we can just impose the
coordinatewise order on both the standalone valuations Y e` and the z-variables to obtain our
results on the monotonicity of best responses and further results on equilibria applying McAdams
(2003) directly. Note that our main results in this paper are more general as they do not require a
specification (3) or similar, and also impose less stringent conditions on the distributions of types.
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conditions provided in Proposition 2. We thereby conclude:

Proposition 3. Maintaining Assumptions 1–4, suppose that valuations are super-
modular in the sense of Definition 2. for each bidder i the bid space Bi ⊂ RL is a
finite lattice.11 Then there is an equilibrium in pure strategies which are monotone
with respect to the partial order (PO) on types and the coordinatewise partial order
on bids: i.e. such that y′i � yi in the sense of (PO) implies b′i ≥ bi in the usual
coordinatewise sense.

As in Reny (2011), Proposition 3 immediately extends to existence of symmetric

monotone equilibria when bidders are symmetric:

Corollary 1. In addition to the hypotheses of Proposition 3, suppose that bidders
are symmetric in the sense that Yi = Yj, Fi = Fj, Bi = Bj for all bidders i, j,
and the i.i.d. tie-breaking rule is used. Then there is an equilibrium in symmetric
pure strategies monotone with respect to the partial order (PO) on types and the
coordinatewise partial order on bids.

The proof of this corollary follows immediately from the proof of Proposition 3 given

in the Appenidix, but invoking Theorem 4.5 rather than Theorem 4.1 of Reny (2011).

We therefore do not provide a separate proof.

Note that the main contribution of Proposition 3 is not existence per se,12 but

rather existence in strategies which are monotone with respect to a suitably defined

partial order. Since our analysis in Section 5 pivots on monotonicity, this additional

structure turns out to be essential.

11E.g., Bi =
L
×
l=1
Bil where each Bil consists of the finite number of points.

12Existence of equilibrium in pure strategies could be obtained by, for instance, applying results
in Milgrom and Weber (1985).

19



5 Monotone equilibria in continuous bid spaces

We now turn from finite to continuous bid spaces, applying Proposition 3 to establish

two new results. We begin with a special case inspired by Krishna and Rosenthal

(1996), in which a single global bidder bids for multiple objects against many local

bidders who bid for single objects only. We demonstrate existence of a monotone pure

strategy Bayesian Nash equilibrium in this context, building on limiting techniques

in Reny (2011) to extend from discrete to continuous bid spaces. While instructive

in its own right, this example also highlights a subtle technical challenge: with

more than one global bidder, interaction between strategic overbidding by global

bidders and strategic dependence of bids across auctions leads to failure of a key

technical condition—better-reply security of Reny (1999)—needed to complete the

extension proof. Returning to the full model, we therefore consider instead a more

general solution concept inspired by the work of JSSZ: equilibrium with endogenous

tiebreaking. We define this solution concept in detail in Section 5.2, and demonstrate

that equilibria with endogenous tiebreaking exist for any number of global bidders.

5.1 One global bidder and many local bidders

First consider the following special case of our general model: suppose that one

global bidder competes for L objects against many local bidders, with each local

bidder competing in exactly one auction. Let bidder 0 denote the global bidder and

let l1, . . . , lN denote the auctions in which local bidders 1, . . . , N are competing.

For simplicity, and for this section only, further suppose that each auction l =

1, ..., L is a first-price auction. We conjecture that similar results could be shown for

other standard auctions, but do not pursue this further here as our goal is illustration.
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We specialize our assumptions to this environment as follows:

Assumption 5. The global bidder is risk-neutral and draws private type Y0 (which
contains combinatorial valuations for all ω 6= 0) from a continuous (2L − 1)-variate
c.d.f. F0 with compact support Y0 ⊂ R2L−1. The global bidder’s valuations are
monotone (Y ω′ ≥ Y ω for ω′ ≥ ω) and supermodular in the sense of Definition 2.

Assumption 6. Each local bidder i is risk-neutral and draws private type Yi for
object li from a univariate continuous c.d.f. Fi with compact support Yi equal to the
support of Y

eli
0 , i = 1, . . . , N . Types are independently distributed across all bidders.

For each l = 1, . . . , L, let Bl ⊂ R be a compact interval describing feasible bids

in auction l. Then a pure a strategy for the global bidder 0 is a map σ0 : Y0 → B0

with B0 ≡ ×Ll=1Bl, while a pure strategy for local bidder i is a map σi : Yi → Bli .

It is straightforward to construct a sequence of finite lattices {B̈k0 ; B̈k1 , . . . , B̈kL}∞k=1

such that as k → ∞ each B̈kj becomes increasingly dense in Bj, j = 0, . . . , L. By

Proposition 3, for each k the collection of such finite lattices will induce a monotone

equilibrium strategy profile σ̈k, where monotonicity of the strategy of the global

bidder is understood in the sense of the partial order (PO) on the type space and

the coordinatewise order for bid vectors, and monotonicity of the strategies of the

local bidders are understood in the usual univariate sense. By Lemma A.13 in Reny

(2011), the space of strategies monotone with respect to our partial order is compact

in the pointwise convergence topology, hence the sequence of strategies {σ̈k}∞k=1 will

have a subsequence {σ̈kj}∞j=1 which converges pointwise a.e. to a limit σ∗. This limit

σ∗ is a monotone pure strategy profile by construction; we seek to show that it also

defines an equilibrium on the continuous bid space B ≡ {B0;B1, . . . ,BL}.

To achieve this, we apply the concept of better-reply security introduced in Reny

(1999), defined formally as follows:
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Definition 5 (Secure a payoff). Player i can secure a payoff of α ∈ R at strategy
profile σ ∈ S if there exists σ̄i ∈ Si such that Πi(σ̄i;σ

′
−i) ≥ α for all σ′−i in some

open neighborhood of σ−i.

Definition 6 (Better-Reply Secure). A game G = (Si,Πi)
N
i=1 is better-reply secure

if whenever (σ̃, Π̃) is in the closure of the graph of the vector payoff function Π(·)
and σ̃ is not an equilibrium, some player i can secure a payoff strictly above Π̃i at σ̃.

By Remark 3.1 in Reny (1999) (p. 1038), if a game is better-reply secure, then

the limit of a convergent sequence of ε-equilibria, as ε tends to zero, is a pure strategy

equilibrium. To establish existence of an equilibrium in monotone pure strategies on

the continuous space B, it is therefore sufficient to demonstrate the following:

(i) There exists a sequence of finite lattices {B̈k0 ; B̈k1 , . . . , B̈kL}∞k=1 such that if σ̈k is

a monotone pure strategy equilibrium on {B̈k0 ; B̈k1 , . . . , B̈kL} for each k, then

{σ̈k}∞k=1 is a sequence of ε-equilibria on B for which ε→ 0;

(ii) The bidding game is better-reply secure when bids may be submitted on B.

We now establish each of these in turn.

Lemma 3. Suppose that Assumptions 1, 4, 5, and 6 hold, and that each auction
l = 1, ..., L is a first-price auction.

Let {B̈k0 ; B̈k1 , . . . , B̈kL}∞k=1 be any sequence of finite lattices such that:

1. B̈k0 ⊂ B0, B̈kl ⊂ Bl for all l = 1, . . . , L, and

H(B̈kj ,Bj)→ 0 as k →∞,

for j = 0, . . . , N , where H(·, ·) stands for the Hausdorff distance.

2. For each l = 1, . . . , L, B̈kl is a subset of B̈k0l such that min B̈k0l < min B̈kl ,
max B̈k0l > max B̈kl , and for any b′l, b

′′
l ∈ B̈kl there exists a point b′′′l ∈ B̈k0l such

that b′l < b′′′l < b′′l .

Let σ̈k be a monotone pure strategy equilibrium for bid space B̈k. Then for any
sequence {εm} such that εm > 0 and εm → 0, there exists a subsequence {km}∞m=1 of
k = 1, 2, ... such that strategy profile σ̈km is an εm-equilibrium on the unrestricted B.
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Note that the proof of Lemma 3 turns on choosing lattices {B̈k0 ; B̈k1 , . . . , B̈k1} such

that the bid lattice of the global bidder is always finer than the product of the bid

lattices of the local bidders. This guarantees that at each point along the sequence

of finite grids considered the global bidder can resolve ties in the direction she most

prefers. This in turn allows us to use the global bidder’s revealed preference on finite

lattices to bound her potential gains from deviation in continuous bid space.

Lemma 4. Suppose that Assumptions 1, 4, 5, and 6 hold, and that each auction l =
1, ..., L is a first-price auction. Then the simultaneous first-price auction game with
one global and many local bidders is better-reply secure when considering monotone
strategies played by the bidders.

While we relegate details to the Appendix, we emphasize that the proof of Lemma

4 is more complicated here than in standard single- or multi-unit auctions. In typi-

cal single- or multi-unit auctions, better-reply security follows almost automatically

from the fact that bidders almost surely bid below their marginal valuations. One

can therefore construct payoff-securing deviations by slightly increasing bids at any

point involving potential ties.13 Here, in contrast, the global bidder may strategically

overbid for a given object—i.e. submit a bid strictly above her marginal valuation—

in the hope of winning higher-order combinations. The proof of Lemma 4 therefore

in fact turns on independence of rival bids faced by the global bidder. This allows

us to assert that any increase in the marginal probability of winning object l pro-

portionally increases the probability of winning all combinations involving object l,

and hence to conclude that the global bidder will always want to break relevant ties

in her favor.

Finally, combining Lemmas 3 and 4, Remark 3.1 in Reny (1999), and Lemma

A.13 of Reny (2011) as described above, we obtain this subsection’s main result:

13see, e.g., Reny (1999, 2011) for examples of this argument.
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Proposition 4. Suppose that Assumptions 1, 4, 5, and 6 hold, and that each auction
l = 1, ..., L is a first-price auction. In the simultaneous first-price auction game with
one global bidder and many local bidders, a monotone pure strategy equilibrium exists
on the compact convex bid space B.

Now consider what may go wrong with more than one global bidder. Recall

that, due to the possibility of strategic overbidding by the global bidder, our proof

of Lemma 4 (better-reply security) turns crucially on independence of bids by local

rivals across auctions. Unfortunately, however, if multiple global bidders are present,

bids by global rivals may in principle exhibit arbitrary dependence across auctions

through strategies σ. When combined with the possibility of strategic overbidding,

this turns out to imply that with multiple global bidders, the simultaneous auction

game need not be better-reply secure.

For example, consider a setting in which two global bidders compete for two

objects. Imagine a sequence of strategies along which these bidders converge to a tie

in auction 1, such that at each strategy profile in the sequence, any type of bidder 1

bidding “just above” the tie point in auction 1 also submits a bid for object 2 which

wins auction 2 with certainty. Then any deviation by bidder 2 to a point “just above”

the tie will produce a strict increase in the probability that bidder 2 wins auction 1,

without increasing the probability that bidder 2 wins objects 1 and 2 together. If

bidder 2 also engages in strategic overbidding for object 1, this could in turn imply

a strict decrease in bidder 2’s expected payoff. Hence even if the limit profile (with

ties) is not an equilibrium, bidder 2 may not be able to secure any payoff higher than

she eventually achieves along the sequence.

We illustrate such a case formally in Example 4 in the Appendix. This example

confirms that, with more than one global bidder, the simultaneous auction game

need not satisfy either better-reply security as defined by Reny (1999) or several
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recent extensions due to Carmona (2009), McLennan, Monteiro and Tourky (2013),

and Barelli and Meneghel (2013) among others. This in turn undermines any proof

of existence paralleling Proposition 4 with more than one global bidder.

5.2 Monotone equilibrium with endogenous tie-breaking

Recall that the technical challenge in establishing better-reply security with many

global bidders is not overbidding per se; rather, it is the fact that by slightly in-

creasing her bid in auction l, bidder i may win auction l only against types of global

rivals against which i is likely to lose in other auctions. There may therefore exist a

sequence of strategies {σk}∞k=1, converging to a limit σ̃ involving ties, such that no

type tying at the limit can secure a higher payoff along the sequence, but a positive

measure of tying types wish to deviate at the limiting profile σ̃. The fundamen-

tal problem in such a case is that independent tiebreaking at the limiting profile σ̃

may lose information regarding the order in which near-ties are broken along the

sequence—types tying in the limit could submit different bids in auction l at every

strategy profile σk in the sequence. If this tie-breaking order could be preserved in

the limit, then σ̃ would in fact represent a monotone pure strategy equilibrium.

Motivated by this observation, in analyzing simultaneous auctions with many

global bidders, we focus on a solution concept which generalizes Bayesian Nash equi-

librium along the lines proposed by Jackson, Simon, Swinkels and Zame (2002, hence-

forth JSSZ). In what follows, we refer to this solution concept as an equilibrium with

endogenous tiebreaking in the signaling extension of the simultaneous bidding game.

We define this solution concept formally as follows.

Let G be a simultaneous auction game satisfying Assumptions 2–4 on primitives

above. In what follows, we no longer presume that ties are resolved independently
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across actions according to some pre-specified tiebreaking rule – i.e. we no longer

maintain Assumption 1 above. Rather, from this point forward, we interpret G as a

game of indeterminate outcomes in the language of JSSZ: that is, a game requiring

only that each object l is awarded to a high bidder in auction l, without specifying

which high bidder will receive the object in the event of a tie.

We define the signaling extension Gs to the game of indeterminate outcomes G

by augmenting each bidder’s strategy space as follows. For each auction l, we allow

bidder i to submit, in addition to her bid vector bi, a vector of cheap-talk signal

si ∈ [0, 1]L indicating her desired tiebreaking precedence in each auction l. These

signals are irrelevant for allocations and payoffs except in case of ties, in which case

the auctioneer may consider (s1, ..., sN) in determining how to break ties.

A pure strategy for bidder i in the signaling extension Gs is therefore a function

σi × τi : Yi → Bi × Si, where σi : Yi → Bi denotes i’s bidding strategy as above and

τi : Yi → Si denotes i’s tiebreaking strategy in the signaling extension.14 As above,

let Y = ×iYi, B = ×iBi, and S = ×iSi collect type, bid, and signal spaces across

bidders respectively, with σ = (σ1, ..., σN) and τ = (τ1, ..., τN) denoting profiles of

bidding and tiebreaking strategies across bidders.

For each auction l ∈ {1, . . . , L}, let ∆N
l be the N -dimensional simplex describing

all possible probabilities with which object l could be allocated to each of the N

competing bidders. Let the correspondence Θ : B × S → ∆N
1 × · · · ×∆N

L be the set

of admissible object allocation probabilities in the signaling extension Gs to G: that

is, the set of rules such that object l is allocated to bidder i only if bil = maxj bjl.

Following JSSZ, we define an allocation rule θ : B×S → ∆N
1 ×· · ·×∆N

L as a selection

14Since we focus on pure strategies, writing bidder i’s strategy as the cross-product of her bidding
and tiebreaking strategies involves no loss of generality.
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from the correspondence Θ.15

As in JSSZ, we define a pure strategy solution to the signaling extension Gs as

an allocation rule θ∗ plus a profile of pure bidding and tiebreaking strategies σ∗× τ ∗

such that σ∗ × τ ∗ constitute a Bayesian Nash equilibrium given the allocation rule

θ∗. We refer to any such solution as an equilibrium with endogenous tiebreaking.

We are now in position to state this section’s main result: under our assumptions

on primitives, there exists an equilibrium with endogenous tiebreaking in which (i)

bidders play monotone pure strategies, (ii) allocation of object l depends only on

bids and signals in auction l, and (iii) tiebreaking is weakly monotone in signals.

Proposition 5. Let G be an L-object N-bidder simultaneous auction game. Suppose
that assumptions 2–4 hold, that Bi ⊂ RL is a compact lattice for each i = 1, . . . , N ,
and that valuations are supermodular in the sense of Definition 2. Then the signaling
extension Gs to G admits a pure strategy solution θ∗;σ∗ × τ ∗ such that:

1. Both bidding strategies σ∗ and signaling strategies τ ∗ are monotone with respect
to the partial order (PO) on types and the coordinatewise order on actions;

2. The auctioneer’s allocation rule θ∗ can be characterized by a L × 1 vector of
anonymous tiebreaking precedence rules (ρ1, ..., ρL) such that:

(a) For each l = 1, ..., L, ρl is a weakly monotone function from [0, 1] to [0, 1];

(b) Bidder i = 1, ..., N submitting signal sil ∈ [0, 1] is assigned tiebreaking
precedence ρl(sil) ∈ [0, 1] in auction l;

(c) Each object l = 1, ..., L is allocated randomly and uniformly among high
bidders in auction l with the highest tiebreaking precedence.

While we defer the full proof of Proposition 5 to the Appenidix, the intuition is

worth sketching briefly here. As noted above, the fundamental problem in passing

from the sequence of finite equilibria {σk}∞k=1 to the limit σ∗ is that the relative

15Note that this set of allocation rules defines allocation probabilities over auctions, not over
combinations; since we ultimately seek a set of allocation rules which are separable across auctions,
this turns out to be sufficient for our purposes.
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tiebreaking precedence along the sequence need not be preserved in the limit. But

since this relative tiebreaking precedence is determined (along the sequence) by the

L × 1 vectors of bids submitted by each bidder, it must be encodable in (at most)

an additional L × 1 of signals for each bidder. It only remains to find an encoding

such that any bidder types separated by a non-vanishing measure of bids along

the sequence also submit strictly different signals in the limit; we accomplish this by

linking τ ∗l to the measure of the maximum bid in auction l. This construction implies

that (almost) no type of bidder i can strictly gain from submitting any (bi, si) in the

range of equilibrium strategies ×j(σ∗j × τ ∗j ); otherwise, bidder i could also eventually

gain along the sequence {σk}∞k=1 by bidding like the relevant type yj of bidder j.

The role of the weakly monotone tiebreaking precendence rule ρl is simply to rule

out profitable off-equilibrium deviations by mapping every signal s ∈ [0, 1] to the

same tiebreaking precedence as some on-equilibrium signal si in the range of ×iτ ∗i .

Hence, under ρl, bidder i’s set of deviations in auction l is payoff-equivalent to i’s

set of on-equilibrium deviations in auction l. In view of the observations above, this

guarantees that σ∗ × τ ∗ is an equilibrium profile under ρ.

As with Proposition 3 above, Proposition 5 extends immediately to existence of

symmetric equilibria with endogenous tiebreaking when bidders are symmetric:

Corollary 2. In addition to the hypotheses of Proposition 5, suppose that bidders are
symmetric in the sense that Yi = Yj, Fi = Fj, and Bi = Bj for all bidders i, j. Then
the signaling extension Gs to G admits a pure strategy solution θ∗;σ∗ × τ ∗ satisfying
the conclusions of Proposition 5 plus the property that strategies are symmetric: i.e.
that σ∗i × τ ∗i = σ∗j × τ ∗j for all bidders i, j.

The proof of this fact follows immediately from the proof of Proposition 5, replacing

the generic sequence {σk} of finite equilibria derived from Proposition 5 with a

sequence of symmetric equilibria derived from Corollary 1.
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Although obviously related to JSSZ’s general result on existence of equilibria with

endogenous tiebreaking, Proposition 5 and Corollary 2 strengthen JSSZ’s conclusions

in several important respects. First, whereas JSSZ guarantee existence of a solution

to the communication extension G̃c only in distributional strategies as defined by

Milgrom and Weber (1985), we obtain existence of such a solution in pure strategies

which are additionally monotone with respect to the partial order (PO). Second, we

provide much more structure on tiebreaking than is available using only results in

JSSZ. For instance, Proposition 5 yields a solution in which auctions are truly both

simultaneous and separable: i.e. in which allocation of object l depends only on bids

and signals in auction l. Similarly, weak monotonicity of tiebreaking rules under

Proposition 5 implies that allocation probabilities are weakly monotone in types.

6 Examples

Lastly, we present several examples illustrating bidding strategies, equilibrium over-

bidding, and the exposure problem in simultaneous auctions for complementary

goods. We first explore a very simple discrete-bid environment where the bidding

set consists of only two points, so that equilibrium bidding strategies can be solved

analytically. We then proceed to explore bidding and exposure within a much richer

bidding space, where equilibrium behavior can be approximated though not solved

exactly.

Throughout this section, we consider a setting with two objects and two ex-ante

symmetric global bidders. Each bidder has standalone valuation Y 1,0
i for object one

and Y 0,1
i for object two, with all standalone valuations independent random variables

distributed uniformly on [0, 1]. Meanwhile, the joint valuation each bidder assigns
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to having two objects is

Y
(1,1)
i = Y e1

i + Y e2
i + k, i = 1, 2,

where k ≥ 0 denotes the complementarity each bidder associates with winning both

objects, which for simplicity we assume is constant.

We begin with Example 2, in which we restrict both bidders to bid on a two-

element discrete grid. We consider three different auction formats—first-price, second-

price and all-pay—and illustrate symmetric BNE in pure monotone strategies in each.

In this example, a bidder may potentially incur a loss when submitting the high bid,

and whether such a loss happens depends on bidder’s type as well as what that bidder

won. This gives rise to potential exposure problems, whose incidence we quantify. In

first-price and all-pay auctions, we find that exposure happens with positive proba-

bility for moderate and high levels of complementarity, with both the probability of

exposure and the maximal degree of exposure increasing in k. For the second-price

auction, the discrete bid grid implies that exposure may happen even for k = 0,

although the degree of exposure is again increasing in k. Looking at the maximal

degree of exposure, we find that the exposure problem is generally no more severe in

the all-pay auction than in the first-price auction, and less severe in the first-price

auction than in the second-price auction.

Example 2. Consider the two-auction, two-bidder environment described above.
Suppose the bidders are only allowed to bid either b1 = 0 or b2 = 1

2
for each object,

and ties for objects are broken independently with a fair lottery. We consider first-
price, second-price, and all-pay auctions, characterizing a BNE in symmetric pure
monotone strategies for each. We illustrate how BNE changes when k increases and
discuss occurrences of exposure.

First-price auction
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If k = 0, so that there are no complementarities from winning two objects, then
each bidder always bidding 0 for each object is a BNE.

For k ∈ (0, 1), the equilibrium bidding strategies are

βi (Y
e1
i , Y e2

i ) =


(
1
2
, 1
2

)
, if (Y e1

i , Y e2
i ) ∈ A,(

1
2
, 0
)
, if (Y e1

i , Y e2
i ) ∈ B,(

0, 1
2

)
, if (Y e1

i , Y e2
i ) ∈ C,

(0, 0) , if (Y e1
i , Y e2

i ) ∈ D,

(4)

where regions A,B,C and D are defined as follows:

A =

{
(ye1 , ye2) ∈ [0, 1]2 : ye1 + ye2 ≥ 2γ(k)− k

2
, ye1 ≥ γ(k)− k

2
, ye2 ≥ γ(k)− k

2

}
,

(5)

C =

{
(ye1 , ye2) ∈ [0, 1]2 : ye1 < γ(k)− k

2
, ye2 ≥ γ(k)

}
,

B =

{
(ye1 , ye2) ∈ [0, 1]2 : ye1 ≥ γ(k), ye2 < γ(k)− k

2

}
,

D = [0, 1]2\(A ∪B ∪ C),

and

γ(k) =
k3

8
+ 3k2

8
− k

2
+ 1

k2

2
+ k

2
+ 1

. k ∈ (0, 1].

Figure 1 illustrates the BNE in symmetric monotone pure strategies when k = 0.2
and k = 0.6.

For k ∈ (1, 2], the equilibrium bidding strategies are

βi (Y
e1
i , Y e2

i ) =

{ (
1
2
, 1
2

)
, if (Y e1

i , Y e2
i ) ∈ A1,

(0, 0) , if (Y e1
i , Y e2

i ) ∈ D1,
(6)

where regions A and D are described as follows:

D1 =
{

(ye1 , ye2) ∈ [0, 1]2 : ye1 + ye2 ≤ γ(k)
}
, (7)

A1 = [0, 1]2\D,

with

γ1(k) =
2− k√

1 + (2− k)(k − 1) + 1
.

When k ≥ 2, in the equilibrium bidders always submit b2 = 1
2

for each object.

For k > 0 small enough, there no exposure for any of the bidders. However,
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Figure 1: Illustration to Example 2 (first-price auction).

for k ∈ (k∗fp,exp, 2] with k∗fp,exp ≈ 0.4171 some bidders with valuations in region A if
k ≤ 1 and valuations in region A1 if k ∈ (1, 2] become exposed when winning one
object only. For k > 2 some bidders are also exposed when winning one object only.
The maximum possible exposure (ex-post loss) is 0.5.

Second-price auction
In a second-price auction, with k = 0, the equilibrium bidding strategies are such

that each bidder submits b1 in auction ` if ye` < 1
3

and submits b2 otherwise.
When the complementarity becomes strictly positive, the equilibrium bidding

strategies change. When k ∈ (0, k∗sp), where k∗sp ≈ 0.8385 (to be exact, k∗sp satisfies

(k∗sp)
3

8
+

(k∗sp)
2

8
+ k∗sp − 1 = 0), then the monotone bidding strategies have the form

(4)-(5) with

γ(k) =
k3

8
+ 5k2

8
+ k

2
+ 1

3 + k2

2
+ 3k

2

.

The graphical illustration of these regions and equilibrium bidding behavior for
k = 0.2 and k = 0.6 is given in Figure 2.

For k ∈ [k∗sp, 2), the equilibrium bidding strategies are in the form (6)-(7) with

γ1(k) =
2− k√

1 + (2− k)(k + 1) + 1
.

For k ≥ 2, in the equilibrium bidders always submit b2 = 1
2

for each object.
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Figure 2: Illustration to Example 2 (second-price auction).

As we see, in this case bidders bid more aggressively than in the first-price auction.

Due to the second-price auction format, some bidders may be exposed even if
k = 0 when winning one object and having to pay b2 for that object. The maximum
possible degree of exposure in this situation is equal to 1

3
. When k > 0, there

are similar possible exposure situations when bidders with some values in in A if
k ∈ (0, k∗sp) or values in A1 if k ∈ (k∗sp, 2) win one object only. However, in contrast
to the first-price auction above, some bidders with values in these regions may be
exposed even when winning both objects and having to pay b2 for each object.

For k ≥ 2, bidders always submit b2 = 1
2

for each object. The maximum possible
degree of exposure in this case is equal to 1.

All-pay auction
In an all-pay auction, with k = 0 the equilibrium bidding strategy is always

submitting b1 = 0 for each object.

When k ∈ (0, k∗ap), where k∗ap ≈ 1.5418 (to be exact, k∗ap satisfies
(k∗ap)

3

16
+

k∗ap
2
−1 =

0), the monotone bidding strategies have the form (4)-(5) with

γ(k) =
k3

16
+ k2

4
+ 1

k2

4
+ k

2
+ 1

.

The graphical illustration of the equilibrium bidding strategies for k = 0.2 and
k = 0.6 is given in Figure 3.
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Figure 3: Illustration to Example 2 (all-pay auction).

For k ∈ [k∗ap, 4), the equilibrium bidding strategies are in the form (6)-(7) with

γ1(k) =
4− k√

1 + k(4− k) + 1
.

For k ≥ 4, bidders always submit b2 = 1
2

for each object.

As we can see, bidders are more cautious in the all-pay auction than in the first-
price auction.

For k > 0 small enough, there no exposure for any of the bidders.
For k > k∗ap,exp with k∗ap,exp ≈ 0.5911 some types in region A if k ≤ k∗ap and in in

region A1 if k > k∗ap are exposed when winning one object only. For k ≥ 4, similarly
some types will again be exposed when winning one object only. The maximum
possible degree of exposure (ex-post loss) is 0.5.

While Example 2 is simple enough that we can characterize equilibrium bidding

strategies exactly, a two-element bid grid is obviously quite restrictive. To gain in-

tuition regarding behavior in richer bidding spaces, we turn to Example 3, which

numerically illustrates an approximate BNE in the same setting as Example 2, but

now allowing a richer bidding space. For concreteness, we restrict attention to the
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simultaneous first-price auction format, illustrating strategies for the fixed comple-

mentarity level k = 0.3. We then briefly discuss the effects of simultaneous bidding

on exposure, revenue and efficiency in this simultaneous first-price setting.

Example 3. Consider the setting of Example 2, with two symmetric global bidders
competing for two objects with fixed complementarity k = 0.3. Suppose that objects
are allocated via simultaneous first-price auctions, and that bidders can bid any
non-negative price for each object.

Due to the constancy of the complementarity, the monotonicity of strategies β`,
` = 1, 2, in the partial order sense described in this paper is equivalent to monotonic-
ity in Y e1

i and in Y e2
i .

It is difficult to derive a closed form for the equilibrium bidding strategies even
in this framework, so Figure 4 depicts approximations of these strategies obtained
by the iteration of best responses on a dense discrete grid. Iteration is conducted
until a pre-determined convergence criterion is satisfied. After such equilibrium best
responses are obtained, we fit them on a continuous bidding by employing tensor-
product polynomials (in Y e1

i , Y e2
i ) on [1, 2]2.

The monotonicity of strategies in each Y e` , ` = 1, 2, can be clearly seen in Figure
4. For each fixed Y e2

i ,the equilibrium bid for object 1 is strictly increasing in Y e1
i ,

and for each Y e1
i , increasing Y e2

i also increases the equilibrium bidding strategy on
object 1. Also, as expected, we have that for a given Y e` , each bidder submits a bid
higher that in the case of additive valuations (zero complementarity).

Table 1 contains some numerical characteristics of economic aspects of this auc-
tion game. As we can see, the presence of a strictly positive complementarity in
the valuation for both objects results in some exposure as well as revenue gains for
the seller and lower expected profit for a bidder relative to the benchmark case of
zero complementarity (k = 0 in Y

(1,1)
i = Y e1

i + Y e2
i + k). As is expected, auction

simulteneity results in a positive probability of an inefficient allocation of an object.

7 Conclusion

Building on techniques in Athey (2001), McAdams (2003), Reny (2011) and JSSZ

(2002), we establish the existence of pure strategy monotone equilibria in a class

of standard simultaneous auction mechanisms for complementary goods. All the

analysis is conducted under the assumption of supermodular preferences. In general
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Figure 4: Illustration of equilibrium bidding strategies in Example 3. k denotes the

complementarity in Y
(1,1)
i = Y e1

i + Y e2
i + k.

bidders’ valuations across different bundles of objects are not additive across individ-

ual objects in these bundles. Monotonicity on the space of types is understood in the

partial order sense given by a cone described by a finite number of linear inequalities

on increasing differences of bidders valuations between a larger and a smaller sets of

objects, while monotonicity on the space of bids is understood in the coordinatewise

order sense.

An alternative approach to existence could be the differential equations approach.
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Expected seller’s revenue from one auction 0.4859
Expected bidder’s profit 0.2777
Prob of i winning both objects 0.3456
Prob of i winning only one object 0.3079
Prob of inefficiency when both objects are won by the same bidder 0
Prob of inefficiency in an auction when each bidder wins only one object 0.0480
Prob of exposure when both objects are won by the same bidder 0
Prob of exposure in an auction when each bidder wins only one object 0.1241
Average degree exposure in an auction (conditional on exposure) 0.0777
Average MLT in an auction 0.1640
Average MLT in an auction when winning only that auction 0.1215
Average total MLT when winning both auctions 0.3655

Table 1: Numerical results derived from simulation based on the bid strategies described

in Example 3. MLT stands for money left on the table.

Because bidders’ preferences are over many bundles of objects, the existence prob-

lem would be characterized by a system of partial differential equations with some

boundary conditions. Issues of existence of solutions of systems of partial differential

equations are infamously much more difficult than those in the systems of ordinary

differential equations and, therefore, the approach did not seem realistic to us.
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Appendix: Proofs and counterexamples

Proof of Lemma 1

Payments
∑L

l=1 cil(bil;σ−i) are additively separable across auctions, hence modular in bi =
(bil, ..., bil) by construction. To establish supermodularity of interim payoffs

πi(bi; yi, σ−i) = yTi P (bi;σi−)−
L∑
l=1

cil(bil;σ−i)

in bi, it is therefore sufficient to establish that expected valuations yTi P (bi;σi−) are super-
modular in bi for any yi ∈ Yi.

Toward this end, for any realization y−i of the rivals’ types, let the (
∑
Nl − l) × 1

vector B−i = σ−i(Y−i) be the vector of all rival bids across all auctions. With slight abuse
of notation, let yi(b;B−i) denote player i’s expected valuation given type yi, own bid vector
b and the complete rival bid vector B−i:

yi(b;B−i) = Eω[yωi |yi, b, B−i],

where the expectation is taken over ties. Note that, in the absence of ties, bidder i will
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win each auction in which his bid is the highest, ω = ω(b, B−i) will be deterministic, and

yi(b;B−i) = y
ω(b,B−i)
i .

The function yTi Pi(b, σ−i) can be written as the expectation of yi(b;B−i) with respect
to the distribution of the rival bids:

yTi Pi(b, σ−i) =

∫
yi(b;σ−i(Y−i)) F−i(dY−i).

Let b′, b′′ ∈ Bi. We want to show that

yTi Pi(b
′′ ∨ b′;σ−i) + yi

TPi(b
′′ ∧ b′;σ−i) ≥ yiTPi(b′′;σ−i) + yi

TPi(b
′;σ−i),

or equivalently, that∫
[yi(b

′′ ∨ b′;σ−i(Y−i)) + yi(b
′′ ∧ b′;σ−i(Y−i))− yi(b′′;σ−i(Y−i))− yi(b′;σ−i(Y−i))] FY−i(dY−i) ≥ 0.

(8)

For a specific realization y−i of rivals’ types, if there are no ties for (b′′;σ−i(y−i)) and
(b′;σ−i(y−i)), then

ω(b′′ ∧ b′;σ−i(y−i)) = ω(b′;σ−i(y−i)) ∧ ω(b′′;σ−i(y−i)),

ω(b′′ ∨ b′;σ−i(y−i)) = ω(b′;σ−i(y−i)) ∨ ω(b′′;σ−i(y−i)),

and

yi(b
′′ ∨ b′;σ−i(y−i)) + yi(b

′′ ∧ b′;σ−i(y−i))− yi(b′′;σ−i(y−i))− yi(b′;σ−i(y−i)

= y
ω(b′′∨b′;σ−i(y−i))
i + y

ω(b′′∧b′;σ−i(y−i))
i − yω(b

′;σ−i(y−i))
i − yω(b

′′;σ−i(y−i))
i

= y
ω(b′;σ−i(y−i))∨ω(b′′;σ−i(y−i))
i +y

ω(b′;σ−i(y−i))∧ω(b′′;σ−i(y−i))
i −yω(b

′;σ−i(y−i))
i −yω(b

′′;σ−i(y−i))
i ≥ 0.

Alternatively, if there are ties at either (b′′;σ−i(y−i)) or (b′;σ−i(y−i)), then some of the
outcome vectors ω(b′′ ∧ b′;σ−i(y−i)), ω(b′′ ∨ b′;σ−i(y−i)), ω(b′;σ−i(y−i)), ω(b′′;σ−i(y−i))
will be stochastic. Let λ2(b

′; b′′;σ−i(y−i)) denote the joint distribution of ω(b′;σ−i(y−i))
and ω(b′′;σ−i(y−i)). Note that the distribution of ω(b′′ ∨ b′;σ−i(y−i)) coincides with the
distribution of ω(b′;σ−i(y−i))∨ ω(b′′;σ−i(y−i)), and the distribution of ω(b′′ ∧ b′;σ−i(y−i))
coincides with the distribution of ω(b′;σ−i(y−i)) ∧ ω(b′′;σ−i(y−i)). Therefore,

yi(b
′′ ∨ b′;σ−i(y−i)) = E(ω1,ω2)∼λ2(b′;b′′;σ−i(y−i))

[
yω1∨ω2
i |yi, b, σ−i(y−i)

]
,

yi(b
′′ ∧ b′;σ−i(y−i)) = E(ω1,ω2)∼λ2(b′;b′′;σ−i(y−i))

[
yω1∧ω2
i |yi, b, σ−i(y−i)

]
.

Since we can write

yi(b
′;σ−i(y−i)) = E(ω1,ω2)∼λ2(b′;b′′;σ−i(y−i)) [yω1

i |yi, b, σ−i(y−i)] ,

yi(b
′′;σ−i(y−i)) = E(ω1,ω2)∼λ2(b′;b′′;σ−i(y−i)) [yω2

i |yi, b, σ−i(y−i)] ,
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then the integrand in (8) can be written as

E(ω1,ω2)∼λ2(b′;b′′;σ−i(y−i))

[
yω1∨ω2
i + yω1∧ω2

i − yω1
i − y

ω2
i |yi, b, σ−i(y−i)

]
. (9)

Because for every realization of (ω1, ω2) from the distribution λ2(b
′; b′′;σ−i(y−i)) we have

yω1∨ω2
i + yω1∧ω2

i − yω1
i − y

ω2
i ≥ 0,

the expectation in (9) is also non-negative. Thus, for every y−i, the integrand in (8) is
non-negative. Therefore, (8) holds.
�

Proof of Lemma 2

Denote

b
(0)
i = (bi1, bi2, bi3, . . . , bi,L−1, biL)T ,

b
(1)
i = (b̃i1, bi2, bi3, . . . , bi,L−1, biL)T ,

b
(2)
i = (b̃i1, b̃i2, bi3, . . . , bi,L−1, biL)T ,

. . .

b
(L)
i = (b̃i1, b̃i2, b̃i3, . . . , b̃i,L−1, b̃iL)T .

Represent the difference πi(b̃i; yi, σ−i)− πi(bi; yi, σ−i) in the following way:

πi(b̃i; yi, σ−i)− πi(bi; yi, σ−i) =
L∑
l=1

(
πi(b

(l)
i ; yi, σ−i)− πi(b(l−1)i ; yi, σ−i)

)
Now represent the interim payoff function πi(b, yi, σ−i) by applying what we refer to
throughout this paper as a marginalization technique:

πi(bi, yi, σ−i) =
∑

ω:ωl=0

yωi (Pωi (bi, σ−i) + Pω∨eli (bi, σ−i)) +
∑

ω:ωl=0

(yω∨eli − yωi )Pω∨eli (bi, σ−i)

−
L∑

m=1

cim(bim, σ−i).

Note that if ωl = 0, then Pωi (b;σ−i)+Pω∨eli (b;σ−i) is the probability of winning all objects
m 6= l for which ωm = 1 and losing all objects m 6= l for which ωm = 0. Thus, this is
the probability of the event that does not depend on the allocation of object l (also using
Assumption 1). Therefore, Pωi (b;σ−i)+Pω∨eli (b;σ−i) does not depend on the bid for object
l. Therefore, if ωl = 0, then

Pωi (b
(l)
i ;σ−i) + Pω∨eli (b

(l)
i ;σ−i)− Pωi (b

(l−1)
i ;σ−i)− Pω∨eli (b

(l−1)
i ;σ−i) = 0

44



because bid vectors b
(l)
i and b

(l−1)
i differ only in the bid submitted for object l. Hence,

πi

(
b
(l)
i ; yi, σ−i

)
−πi

(
b
(l−1)
i ; yi, σ−i

)
=
∑

ω:ωl=0

(yω∨eli −yωi )
(
Pω∨eli (b

(l)
i , σ−i)− P

ω∨el
i (b

(l−1)
i , σ−i)

)
− cil(b̃il, σ−i) + cil(bil, σ−i).

Note that because the component corresponding to the bid submitted for object l in the

vector b
(l)
i is greater than the one in the vector b

(l−1)
i , and all the other components in the

two vectors are the same, then

∀ω : ωl = 0 Pω∨eli (b
(l)
i , σ−i)− P

ω∨el
i (b

(l−1)
i , σ−i) ≥ 0.

Combining this across all objects l, we have

πi(b̃i; yi, σ−i)−πi(bi; yi, σ−i) =
L∑
l=1

∑
ω:ωl=0

(yω∨eli −yωi )
(
Pω∨eli (b

(l)
i , σ−i)− P

ω∨el
i (b

(l−1)
i , σ−i)

)
︸ ︷︷ ︸

≥0

−
L∑
l=1

cil(b̃il, σ−i) +

L∑
l=1

cil(bil, σ−i).

The analogous representation for type ỹi is

πi(b̃i; ỹi, σ−i)−πi(bi; ỹi, σ−i) =
L∑
l=1

∑
ω:ωl=0

(ỹω∨eli −ỹωi )
(
Pω∨eli (b

(l)
i , σ−i)− P

ω∨el
i (b

(l−1)
i , σ−i)

)
︸ ︷︷ ︸

≥0

−
L∑
l=1

cil(b̃il, σ−i) +
L∑
l=1

cil(bil, σ−i).

From the definition of the partial order we then conclude that

πi(b̃i; ỹi, σ−i)− πi(bi; ỹi, σ−i) ≥ πi(b̃i; yi, σ−i)− πi(bi; yi, σ−i),

which implies the weak single crossing property. �

Proof of Proposition 2

Let µ2L−1 denote the Lebesgue measure in R2L−1. Fix any S ⊂ Yi with a positive FYi
measure. By the absolute continuity assumption then, µ2L−1(S) > 0. We start by showing
that we can find two points in S – denote them as ȳi and ỹi, – such that all the inequalities
in the definition of the partial order will be satisfied strictly. In other words, we want to
find ȳi, ỹi ∈ S such that ỹi ∈ ȳi +Zo

2L−1. Set Zo
2L−1 is the interior in R2L−1 of cone Z2L−1

defined in (2) (it is discussed in the main text of the paper that Zo
2L−1 6= ∅).
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We claim that we can take any ȳi ∈ S that is a point of (Lebesgue) density of S. The
property of being a point of density of S means that

lim
r↓0

µ2L−1 ((ȳi + Br) ∩ S)

µ2L−1 (ȳi + Br)
= 1,

where Br denotes the open ball in R2L−1 centered at 0 of radius r > 0.
Note that if ȳi ∈ S is a point of density of S and the set (yi + Z) ∩ S is empty, then

µ2L−1 ((ȳi + Br) ∩ S)

µ2L−1 (ȳi + Br)
=
µ2L−1

(
(ȳi + Br) ∩ S ∩ (ȳi + Zo

2L−1)
c
)

µ2L−1 (ȳi + Br)

≤
µ2L−1

(
(ȳi + Br) ∩ (ȳi + Zo

2L−1)
c
)

µ2L−1 (ȳi + Br)

for all r > 0. Note that the ratio

µ2L−1

(
Zo
2L−1 ∩Br

)
µ2L−1 (Br)

is strictly between zero and one does not depend on r.16 Denote this ratio as cL ∈ (0, 1).
Using the translation invariance property of the Lebesgue measure we obtain then that

µ2L−1 ((ȳi + Br) ∩ S)

µ2L−1 (ȳi + Br)
≤
µ2L−1

(
(ȳi + Br) ∩ (ȳi + Zo

2L−1)
c
)

µ2L−1 (ȳi + Br)
= 1− cL

for all r > 0, but this contradicts the property of ȳi being a point of density of S. This
contradiction means that for any point ȳi of Lebesgue density of S, we can find ỹi ∈
ȳi + Zo

2L−1 to give us the conclusion. By the Lebesgue property a.e. ȳi ∈ S is a point of
density.

By convexity, the boundary of each set in the finite union of sets composing Yi has
Lebesgue measure zero in R2L−1. Since the boundary of a finite union of sets is contained
in the finite union of the respective boundaries, we conclude that the boundary of Yi has
Lebesgue measure zero in R2L−1. Therefore, without loss of generality, we can select both
yi ∈ S and ỹi ∈ S ∩ (yi + Zo

2L−1) to be in the interior of Yi in R2L−1. Therefore, we can
find a small r > 0 such that the ball ỹi+Br is contained in (yi+Zo2L−1)∩Yi. Consider the
intersection (ỹi + Br) ∩ (ỹi +Zo

2L−1). This intersection is non-empty and is an open set in

R2L−1. Every point in this intersection dominates ȳi but is dominated by ỹi in the sense of
partial order (PO). As a union of a finite number of compact sets, Yi is compact in R2L−1

and, hence, has a dense countable subset. Denote it as Y?i . Set (ỹi + Br) ∩ (ỹi + Zo
2L−1)

16To see this, consider the scaling transform y → y
r . It maps the Zo

2L−1∩Br to Zo
2L−1∩B1. Since

the Jacobian of this sort of transform is independent of y, the ratio of the volume of the intersection
of shape Zo

2L−1 with he ball Br to the volume of Br is invariant under such a transform.
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being a non-empty open set in R2L−1 clearly has to contain a point from Y?i . �

Proof of Proposition 3

We define the partial order � on the space of types as in (PO). Let us define the partial
order in each bid (= action) space as the coordinatewise order:

b̃i � bi ⇐⇒ b̃i ≥ bi,

where b̃i ≥ bi means that each component on the L-dimensional vector b̃i is greater or
equal than the corresponding component of bi.

We verify conditions of Theorem 4.1 and Proposition 4.4 in Reny (2011). Let us start
with conditions G1-G6 in Theorem 4.1.

G1 Obviously, the partial order given in Definition 4 is transitive:

˜̃yi � ỹi, ỹi � yi ⇒ ˜̃yi � yi;

it is also reflexive:
yi � yi;

and it is also antisymmetric:

ỹi � yi and yi � ỹi ⇒ ỹi = yi.

Let A(<2L ∩ Yi) denote the Borel sigma-field on <2L ∩ Yi. Let us show that

Gi ≡ {(ỹi, yi) ∈ Yi × Yi : ỹi � yi} ∈ A(<2L ∩ Yi)×A(<2L ∩ Yi).

Notice that the partial order between ỹi and yi can be fully expresses as comparison
of certain linear inequalities for ỹi and yi. In other words, the order ỹi � yi can be
fully described as a system of linear inequalities

MLỹi −MLyi ≥ 0,

where matrix ML is defined in a certain way. Therefore, Gi is the intersection of a
closed convex polyhedron in R2·2L with Yi × Yi, and thus, Gi ∈ A(<2·2L ∩ Yi × Yi).
Under the Euclidean metric <2L∩Yi is a locally compact Hausdorff space. Therefore,
by e.g. Proposition 7.6.2 on page 220 in Cohn (2013),

A(<2·2L ∩ Yi × Yi) = A(<2L ∩ Yi)×A(<2L ∩ Yi),

and, hence, Gi ∈ A(<2L ∩ Yi)×A(<2L ∩ Yi).

G2 The atomlessness of the measure on the sigma-algebra for Yi follows from the conti-
nuity of c.d.f. FY,i in Assumption 3.
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G3 This is assumed explicitly.

G4 Bi is assumed to be a lattice. Also,{
(b̃i, bi) ∈ Bi × Bi : b̃i � bi

}
is closed in the product topology on RL × RL because the partial order on Bi is the
coordinate-wise partial order.

G5 Each Bi is a locally-complete Euclidean metric lattice.

G6 The function

ui(bi, b−i; yi) =
∑
ω

(yωi − ω′bi) ·
∏

l: ωl=1

(
1(bil > max

j 6=i
bjl) + Til(Sl, bil)1(bil = max

j 6=i
bjl)

)
×

∏
l: ωl=0

1(bil < max
j 6=i

bjl) (10)

is jointly measurable. It is bounded since both Yi and Bi are bounded. Note that
Til(Sl, bil), where Sl denotes the set of bidders tying for the highest bid in auction
l, stands for the probability of obtaining object l in case of ties. This formulation
accords with Assumption 1.

The function ui(bi; yi) is also continuous in bi ∈ Bi for every yi ∈ Yi since by assump-
tion Bi consists of a finite number of points.

Thus, G1-G6 in Theorem 4.1 in Reny (2011) hold. Clearly, Lemmas 1 and 2 of this paper
imply (i) in Proposition 4.4 in Reny (2011). �

Proof of Lemma 3

Fix ε > 0. Choose k such that δk ≡ maxj=0,...,N H(B̈kj ,Bj) < ε/L.
For local bidder j = 1, . . . , N with type realization yj ∈ Yj , the argument is entirely

standard; we reproduce it here only for completeness. Let π∗j = maxbj∈Bj πj(yj , bj ; σ̃
k
−j)

and b∗j = arg maxbj∈Bj πj(yj , b; σ̃
k
−j), and let b̈j be the smallest element of B̈j such that

b̈j ≥ b∗j . Clearly, we must have b∗j ≤ yj , hence the loss associated with bidding b̈j (rather

than b∗j ) can be no greater than δk. But b̈j was feasible for bidder j under grid space B̈k,
whence by equilibrium πj(yj , σ̈

k
j (yj); σ̈

k
−j) ≥ πj(yj , b̄j ; σ̈k−j) ≥ π∗k−δk > π∗k−ε. Since yj was

arbitrary, this bound also applies in expectation. Thus local bidder j can gain no more
than ε by deviating from strategy profile σ̈kj when rivals play strategy profile σ̈k−j ; i.e. σ̈k−j
satisfies the conditions of an ε-equilibrium for local bidder j.

For the global bidder 0, the argument is somewhat more subtle, turning on the fact
that action spaces for bidder 0 are always such that bidder 0 can choose (at cost no greater
than the bid increment) whether and how to resolve potential ties. Fixing type y0 ∈ Y0 and
holding strategies of local bidders fixed at σ̈k−0, let π∗0 denote bidder 0’s supremum payoff
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over the unrestricted bid space B0. Let {bm0 }∞m=1 be any sequence of L× 1 bid vectors for
bidder 0 such that π0(y0, b

m
0 ; σ̈k−0) → π∗0 as m → 0. Let {bm0l}∞m=1 be the scalar sequence

such that for each m = 1, 2, ... the scalar bm0l is the lth element of the L× 1 bid vector bm0 ;
i.e. the element describing bidder 0’s bid in auction l. Construct a sequence {b̈m0l}∞m=1 from
{bm0l}∞m=1 as follows: if bm0l ∈ B̈kl , then b̈m0l = bm0l , otherwise

b̈m0l = min{b′l ∈ B̈k0l : b′l > max{b′′l ∈ B̈kl |b′′l < bm0l}}.

Recall that B̈kl is a selection from B̈k0l such that for any two points b′l, b
′′
l in B̈kl there exists

a third point b′′′l ∈ B̈k0l\B̈kl such that b′l < b′′′l < b′′l . Furthermore, from the perspective of
bidder 0, allocation probabilities for each l are flat outside the support B̈kl of rival strategies
σ̈k−0. Hence by construction the sequence b̈m0l will yield the same allocation probabilities as
the sequence bm0l for any m = 1, 2, .... Thus bidder 0’s expected payoffs along bid sequence
b̈m0l can differ from bidder 0’s expected payoffs along bid sequence bm0l by at most the bid
increment δk. Repeating this construction separately for each l = 1, ..., L, we obtain a
sequence {b̈m0 }∞m=1 contained in B̈k0 , yielding the same allocations as {bm0 }∞m=1, and for
which bidder 0’s payoffs differ (relative to {bm0 }∞m=1) by at most Lδk. But (by equilibrium)
bidder 0’s payoffs under the equilibrium strategy σ̈k0 must be weakly greater than bidder 0’s
payoffs at each feasible deviation, and {b̈m0 }∞m=1 is a sequence of feasible deviations which
eventually attain a payoff within Lδk < ε of bidder 0’s unrestricted supremum at type y0.
Since y0 was arbitrary, this bound on bidder 0’s interim gains also implies a bound on
bidder 0’s ex ante gains, whence it follows that σ̈k is an ε-equilibrium on the unrestricted
bid space B. �

Proof of Lemma 4

Let (σ̃, Π̃) be any point in the closure of the vector payoff function

Π(σ) = (Π0(σ); Π1(σ), . . . ,ΠN (σ)),

i.e. any Π̃ for which there exists a sequence of monotone strategies {σk}∞k=1 such that
σk → σ̃ (under the metric of Lemma A.13 in Reny (2011)) and Π(σk)→ Π̃. Suppose that
σ̃ is not an equilibrium. We need to show that some player i ∈ {0, 1, . . . , N} can secure a
payoff strictly above Π̃i at σ̃.

First suppose that under the limiting strategy σ̃ relevant ties occur with probability
zero. The vector ex ante payoff function Π(·) is then continuous in a neighborhood of σ̃,
from which it follows that Π̃ = Π(σ̃). By hypothesis σ̃ is not an equilibrium, hence there
exists a player i and a strategy σ0i such that

Πi(σ
0
i , σ̃−i) > Πi(σ̃i; σ̃−i)

Let Π∗i be i’s supremum payoff against rival strategies σ̃−i, and let {σni }∞n=1 be any sequence
of strategies for i such that Πi(σ

n
i ; σ̃−i)→ Π∗i . Recall that ties are broken randomly across

bidders and auctions. Hence if relevant ties occur with probability bounded away from
zero along the sequence {σn}∞n=1, it must be that i is indifferent as to how these are
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resolved.17 This in turn implies that i’s supremum payoff Π∗i can also be approached by a
strategy sequence {σni }∞n=1 such that for each n the random vector Bi = σni (Yi) has a joint
distribution with atomless marginals.18 Choose any such sequence. Since Π∗i ≥ Π0

i > Π̃i

there will exist an n such that
Πi(σ

n
i ; σ̃−i) > Π̃i.

But by construction σni generates a joint bid distribution with atomless marginals, hence
there is no rival strategy profile under which i ties with positive probability under σni . Thus
Πi(σ

n
i ; ·) is also continuous in σ−i at σni for each n. Hence for large enough n, we will have

Πi(σ
n
i ;σ−i) > Π̃i

for all σ−i in a neighborhood of σ̃−i. Thus bidder i can secure a payoff strictly above Π̃i.
Now suppose that under the limiting strategy σ̃, a relevant tie occurs with positive

probability for at least one auction l = 1, . . . , L. In particular, suppose that such a tie
occurs at bid b̄l. By construction, this tie must involve at least one local bidder i. Let
Ỹi(b̄l) be the set of types such that i bids b̄l under the limiting strategy σ̃; note that Ỹi(b̄l)
has positive measure by construction. Clearly we must have vi ≥ b̄l almost everywhere
in Ỹi(b̄l), since otherwise i could strictly gain by deviating to a bid strictly below b̄l on a
relevant subset of types. Furthermore, we can have vi = b̄l on at most a measure-0 subset
of Ỹi(b̄l). Hence we must have vi > b̄l almost everywhere in Ỹi(b̄l). But in this case either
i wins with probability approaching 1 against any other rival type submitting limiting bid
b̄l along the sequence σk, or i can secure a payoff strictly above Π̃i by deviating on Ỹi(b̄l)
to a bid infinitesimally above b̄l.

Thus for any sequence of strategies converging to a tie between two local bidders, or
for any sequence of strategies converging to a tie between the global bidder and one local
bidder such that tying types of the local bidder lose with probability bounded away from
zero along the sequence, at least one player i can secure a payoff strictly greater than Π̃i.
But one potential problem case still remains: a sequence of strategies σk converging to a
relevant tie between the global bidder 0 and a single local bidder i, in which almost every
type of bidder 0 tying at b̄l in the limit loses against almost every type of bidder i tying
at b̄l in the limit with probability approaching one along the sequence. We will show that
the global bidder can secure a payoff strictly above Π̃0 in this case.

Toward this end, suppose that σk is a sequence satisfying the description above. Con-
sider type y ∈ Y0 of bidder 0. Following Gentry, Komarova and Schiraldi (2019), Let
the L × 1 vector V (y) denote bidder 0’s standalone valuations for winning each object
` = 1, ..., L individually; i.e. V`(y) = ye` for all `. Similarly, let K(y) denote the 2L− 1× 1
vector given by

K(y) = y − ΩV (y),

17For local bidders, one can easily rule out ties along {σn}∞n=1; for global bidders, the argument
is more complicated, so we temporarily allow them.

18For instance, one could add a small continuously distributed error ε to each bid, with the
support of ε tending to a unit mass at 0 and the sign of ε adjusted as needed to ensure i’s preferred
tie-breaking resolution at each type yi.
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where Ω denotes the 2L − 1 × L outcome matrix defined in Section 2. We refer to Kω(y)
as the complementarity that type y of bidder 0 associates with each combination ω; that
is, the difference between i’s value yω for the combination and the sum of i’s standalone
valuations for each object won in the combination.

Let Ȳ0l be the set of y ∈ Y0 such that σ̃0l = b̄l. For each l = 1, ..., L, define Γl(y;σk) as
the marginal probability that bidder 0 with type y ∈ Y0 wins auction l = 1 under strategy
profile σk, and let Γ̃l(y) = limk→∞ Γl(y;σk).19 Since independence of types across local
rivals implies independence of bids across both rivals and auctions, we may then write the
limiting interim payoff of bidder 0 at type y as follows:

π̃(y) = Γ̃l(y)[Vl(y)− b̄l] +
∑
6̀=l

Γ̃`(y)[V`(y)− σ̃0`(y)] +
∑
ω

Kω(y)
L∏
`=1

Γ̃`(y)ω` [1− Γ̃`(y)]1−ω`

=
∑
6̀=l

Γ̃`(y)[V`(y)− σ̃0`(y)] +

 ∑
ω:ωl=0

Kω(y)
∏
`6=l

Γ̃`(y)ω` [1− Γ̃`(y)]1−ω`


+ Γ̃l(y) ·

[Vl(y)− b̄l] +
∑

ω:ωl=0

[Kω∨el(y)−Kω(y)]
∏
`6=l

Γ̃`(y)ω` [1− Γ̃`(y)]1−ω`

 , (11)

where we obtain the second expression from the first by partitioning the set of outcomes
ω into those with ω` = 0 and those with ω` = 1, factoring out terms involving Γ̃l(y) from
the joint win probability

∏
` Γ̃`(y)ω` [1− Γ̃`(y)]1−ω` , and recombining terms, noting that

{ω : ωl = 1} = {ω ∨ el for ω : ωl = 0}.

For each auction l, let vl denote the infimum of the support of Vl(Y0). Restrict attention to
the subset of y in Ȳ0l such that Vl(y) > vl; since Vl(y) = vl for at most a set of F0-measure
0 in Y0, this subset has the same F0-measure as Ȳ0l. Suppressing y in notation, we may
write the final term in braces as follows:

(Vl − b̄l) +
∑

ω:ωl=0

[Kω∨el −Kω]
∏
`6=l

Γ̃ω`
` [1− Γ̃`]

1−ω` . (12)

Note that this term reflects bidder 0’s net expected marginal valuation for winning auction l,
taking as given her expected probabilities of winning other auctions ` 6= l (which, critically,
do not depend on bl).

First suppose that the expected marginal valuation (12) above is strictly positive for
F0-a.e. y ∈ Ȳ0l. Then bidder 0 can secure a payoff strictly above Π̃0 by deviating at each
y ∈ Ȳ0l to a bid b′l slightly greater than b̄l.

Now suppose instead that the marginal valuation (12) is nonpositive on a subset of Ȳ0l
with positive F0-measure. The supermodularity of complementarities implies Kω∨el ≥ Kω

19Note that by construction we have Γ̃l(y) 6= Γl(y; σ̃) for y ∈ Ȳ0l.
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for all ω, whence

Vl +
∑

ω:ωl=0

[Kω∨el −Kω]
∏
`6=l

Γ̃ω`
` [1− Γ̃`]

1−ω` > 0.

Recall that, by hypothesis, vl is weakly greater than the infimum of the support of Yi for
each local rival i with `i = l. Hence, when local rivals employ undominated strategies, any
bl > vl implies a strictly positive probability of winning auction l. Hence there exists a
b′l ∈ (vl, Vl) for which both Γ̃′l > 0 and

Vl − b′l +
∑

ω:ωl=0

[Kω∨el −Kω]
∏
` 6=l

Γ̃ω`
` [1− Γ̃`]

1−ω` > 0.

The first line of (11) does not depend on Γ̃l, so the only effect of deviating to bid b′l at
type y is to replace the nonpositive final term in the limiting payoff (11) with a strictly
positive limiting term. By construction, this represents a strict increase in limiting payoffs,
which bidder 0 may secure against any sequence of rival strategies converging to σ̃−0 by
infinitesimally increasing the deviating bid b′l. Furthermore, by hypothesis, such securing
deviations exist on a set of types y ∈ Ȳ0 of positive F0-measure. Hence in this case bidder
0 can secure an ex ante payoff strictly greater than Π̃0.

Taken together, the cases above establish that for any point (σ̃, Π̃) in the closure of the
graph of the vector ex ante payoff function Π(·), if σ̃ is not an equilibrium then at least
one player i ∈ {0, 1, . . . , N} can secure a payoff strictly above Π̃i. This is what was to be
shown. �

Proof of Proposition 5

The proof of Proposition 5 is by construction.
Consider any sequence {B̈k1 , ..., B̈kL}∞k=1 of finite bid lattices for auctions l = 1, ...L, such

that H(B̈kl ,Bl) → 0 for all l, where H denotes Hausdorff distance. For each k = 1, 2, ...,
let the bid space for bidder i = 1, ..., N , B̈ki , be the Cartesian product of bid spaces B̈kl
for the auctions l in which i is competing, and let B̈k = ×Ni=1B̈ki denote the Cartesian
product of action spaces for all bidders. Proposition 3 implies that for each k there exists
a monotone pure strategy bidding equilibrium σk on B̈k, where as usual monotonicity is
understood in the sense of the partial order (PO) on types and the coordinatewise order on
bids. As in Section 5.1, we may invoke Lemma A.13 in Reny (2011) to conclude that the
space of strategies monotone with respect to (PO) is compact, and hence that the sequence
{σ̈k}∞k=1 has a subsequence {σ̈kj}∞j=1 which converges pointwise a.e.-F to a monotone pure
strategy limit σ∗. With more than one global bidder, however, we may no longer leverage
better-reply security to conclude that σ∗ is an equilibrium.

Now augment the limit strategy profile σ∗ with a profile of tiebreaking strategies τ∗ =
(τ∗1 , ..., τ

∗
N ) constructed as follows. For each strategy profile σk along the sequence {σk}∞k=1,

let Γkil(bl) ≡ Pr(σkil(Yi) ≤ bl) denote the c.d.f. of bidder i’s bid in auction l, Γ̄kl (bl) ≡∏N
i=1 Γkil(bl) denote the c.d.f. of the maximum bid among all bidders in auction l, and
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γ̄kl (bl) denote the (discrete) p.d.f. associated with the c.d.f Γ̄. For each bidder i and
auction l, let τkil(yi) ≡ Γ̄kl (σ

k
il(yi)) −

1
2 γ̄

k
l (σkil(yi)) denote the c.d.f. of the maximum bid

among all bidders in auction l, evaluated at the point bl = σkil(yi), less 1/2 the p.d.f. of the
maximum bid among all bidders in auction l, also evaluated at the point bl = σkil(yi).

Note the following properties of the function Γ̄kl (bl) −
1
2 γ̄

k
l (bl). First, since each step

of the c.d.f. Γ̄l is equal to the p.d.f. γ̄kl (bl), Γ̄kl (bl) −
1
2 γ̄

k
l (bl) is monotone in bl. Second,

consider any k = 1, 2, ... and any two bids b1, b2 ∈ B̈k
l . Suppose WLOG that b2 ≥ b1.

Clearly, if b2 = b1, then Γ̄kl (b1)−
1
2 γ̄

k
l (b1) = Γ̄kl (b2)−

1
2 γ̄

k
l (b2). Alternatively, if b2 > b1, then[

Γ̄kl (b2)−
1

2
γ̄kl (b2)

]
−
[
Γ̄kl (b1)−

1

2
γ̄kl (b1)

]
=

1

2
[γ̄kl (b1) + γ̄kl (b2)] + Γ̄kl ((b1, b2)),

where Γ̄kl ((b1, b2)) denotes the Γ̄kl -measure of the open interval (b1, b2).
Finally, for each bidder i, define an L × 1 vector τki (yi) = (τki1(yi), ..., τ

k
iL(yi)) stacking

up the functions τkil just defined. Observe that, by construction, τk1l, ..., τ
k
Nl preserve order

of bids across bidders: i.e. for any bidders i, j, we have τkil(yi) R τ
k
jl(yj) as σkil(yi) R σ

k
jl(yj).

Furthermore, the vector τki (yi) inherits monotonicity of σki : y′i � yi in the sense of (PO)
implies τki (y′i) ≥ τki (yi) in the usual coordinatewise sense. Hence defining τk = (τk1 , ..., τ

k
1 )

and focusing on the subsequence such that σk → σ∗, it follows that there exists a further
subsequence {kj}∞j=1 such that τk also converges pointwise a.e.-F to a monotone limit τ∗.

What do we gain from this construction? The cardinal limit σ∗ cannot preserve ordinal
information on bids along the sequence – a tie under σ∗ implies only that a positive measure
of types have the same limit bid. But the ordinal limit τ∗ does: if τ∗il(yi) < τ∗jl(yj), then

we must eventually have τkil(yi) < τkjl(y) and hence σkil(yi) < σkjl(yj) almost surely even

if also σkil(yi) → σkjl(yj) (and hence types yi, yj tie under σ∗). Furthermore, the set of
types experiencing any relevant tie under the limit profile τ∗ will correspond, up to a set
of measure zero, with the set of types eventually experiencing an equivalent tie along the
sequence σk. These facts are central to our construction, so we state and prove them
separately as a lemma.

Lemma 5. Consider any auction l = 1, ..., L and any (b̄l, t̄l) such that there exists some
bidder i = 1, ..., N and type yi such that σkil(yi) → b̄l and τkl (yi) → t̄l as k → 0. Then for
any bidder j = 1, ..., N and for any type yj of bidder j such that limk τ

k
jl(yj) = t̄l,

• If τ∗jl(yj) < t̄l, then eventually σkjl(yj) < σkil(yi) as k →∞;

• If τ∗jl(yj) > t̄l, then eventually σkjl(yj) > σkil(yi) as k →∞.

• If τ∗jl(yj) = t̄l, then either (i) there exists K < ∞ such that σkjl(yj) = σkil(yi) for all

k > K, or (ii) the Γ̄kl -measure of the closed interval

[min{σkil(yi), σkjl(yj)},max{σkil(yi), σkil(yi)}]

approaches zero as k →∞.
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Further suppose that t̄l > 0, and for each bidder j, let Ȳj be the set of types yj ∈ Yj such
that σkil(yi) → b̄l and τkil(yi) → t̄l. Then there exists a sequence {bkl }kk=1, with bkl ∈ B̈kl for
each k = 1, 2, ... and bkl → b̄l, such that for all bidders j, the Fj-measure of types yj such
that yj ∈ Ȳj but σkjl(yj) 6= bkl converges to zero as k →∞.

Proof of Lemma 5. First suppose that τ∗jl(yj) < t̄l. Consider the subset of types yj such

that both σkjl(yj) and τkjl(yj) are pointwise convergent; recall that this set has full measure
with respect to Fj . If τ∗jl(yj) < t̄l, then by definition

lim

{
Γ̄kl (σ

k
jl(yj))−

1

2
γ̄kl (σkjl(yj))

}
< t̄l = lim

{
Γ̄kl (σ

k
il(yi))−

1

2
γ̄kl (σkil(yi))

}
.

But from above, this can hold only if eventually σkjl(yj) < σkil(yi).
Now suppose that that τ∗jl(yj) > t̄l. In this case, reversing the arguments in the last

paragraph shows that we must eventually have σkjl(yj) > σkil(yi).

Next suppose that both τkjl(yj)→ t̄l and τkil(yi)→ t̄l. Further suppose that there does

not exist any K < ∞ such that k > K implies σkil(yi) = σkjl(yj) for all k > K. Letting

bk1 ≡ min{σkil(yi), σkjl(yj)} and bk2 ≡ max{σkil(yi), σkjl(yj)}, we must then have bk1 < bk2, at

least along a subsequence. But recall from above that bk1 < bk2 implies[
Γ̄kl (b

k
2)− 1

2
γ̄kl (bk2)

]
−
[
Γ̄kl (b

k
1)− 1

2
γ̄kl (bk1)

]
=

1

2
[γ̄kl (bk1) + γ̄kl (bk1)] + Γ̄kl ((b

k
1, b

k
2))

≥ 1

2
[γ̄kl (bk1) + γ̄kl (bk1) + Γ̄kl ((b

k
1, b

k
2))]

= Γ̄kl ([b
k
1, b

k
2]).

The left-hand side of this inequality is identically |τkjl(yj)− τkil(yi)|, which approaches zero

by hypothesis. Meanwhile, the right-hand side is the Γ̄kl -measure of the closed interval
[bk1, b

k
2]. Hence if τkjl(yj) → t̄l, τ

k
il(yi) → t̄l, and there does not exist a K < ∞ such that

σkil(yi) = σkjl(yj) for all k > K, then Γ̄kl ([b
k
1, b

k
2])→ 0. This establishes the claim.

Lastly, consider the final statement of Lemma 5. Suppose that t̄l > 0, and let Ȳj denote
the set of types yj ∈ Yj such that σkjl(yj)→ b̄l and τkjl(yj)→ t̄l; note that this set coincides
up to a set of Fj-measure 0 with the set of types yj such that τ∗jl(yj) = t̄l.

Without loss, restrict attention to j such that the Fj-measure of Ȳj strictly exceeds
zero; the statement clearly holds trivially otherwise.

For each k, let bkl and b̄kl be the minimum and maximum, respectively, among bids
σkjl(yj) submitted by some type yj ∈ Ȳj of some bidder j, and let bkl be the conditional

Γ̄kl -median of the interval [bkl , b̄
k
l ] (rounded up within B̈kl as necessary). Note that this

sequence is well defined since at least one bidder j submits bids in the interval [bkl , b̄
k
l ] with

positive probability, and since t̄l > 0 implies that for sufficiently large k this bidder is the
maximum bidder with strictly positive probability.

With this sequence {bkl }∞k=1 in hand, consider bidder j, and let Yk,−j (bkl ), Y
k,=
j (bkl ), and
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Yk,+j (bkl ) be subsets of Ȳj defined as follows:

Yk,−j (bkl ) = {yj ∈ Ȳj |σkjl(yj) < bkl },

Yk,=j (bkl ) = {yj ∈ Ȳj |σkjl(yj) = bkl },

Yk,+j (bkl ) = {yj ∈ Ȳj |σkjl(yj) > bkl }.

For any (measurable) S ⊂ Yj , let Fj(S) denote the Fj-measure of S. Note that for each k
we have

Fj(Ȳj) = Fj(Yk,−j (bkl )) + Fj(Yk,=j (bkl )) + Fj(Yk,+j (bkl )).

First consider Fj(Yk,−j (bkl )), and suppose that limk→∞ Fj(Yk,−j (bkl )) 6= 0. Since Fj(Yk,−j (bkl ))
is nonnegative, there must then exist some ε > 0 such that, at least along a subsequence,
we have Fj(Yk,−j (bkl )) ≥ ε. Pass to this subsequence as necessary.

Now, at each iteration k, let b̃kl denote the median bid submitted by types yj within the

subset Yk,−j (bkl ) (rounding down in case of ties). Note that this is again well defined since

by hypothesis Fj(Yk,−j (bkl )) ≥ ε. Furthermore, by construction, at least Fj-measure ε/2 of

types yj ∈ Yk,−j (bkl )) have σkjl(yj) ≤ b̃kl , and at least Fj-measure ε/2 of types yj ∈ Yk,−j (bkl ))

have σkjl(yj) ≥ b̃kl (although these sets could overlap).

Next consider the c.d.f. of the maximum bid at step k, evaluated at b̃k. By definition,

Γ̄kl (b̃
k
l ) = Γkjl(b̃

k
l )
∏
i 6=j

Γkil(b̃
k).

Since Γ̄kl (b̃
k
l ) ≥ Γ̄kl (b̃

k
l ) −

1
2 γ̄

k
l (b̃kl ) → t̄l > 0, we must eventually have Γ̄kl (b̃

k
l ) > t̃l for some

t̃l > 0, and hence
∏
i 6=j Γkil(b̃

k
l ) > t̃l since Γkjl(b̃

k
l ) ≤ 1. Pass to this subsequence as needed.

Finally, consider any y1 ∈ Yk,=j (bkl ) ∪ Y
k,+
j (bkl ) and any y2 such that σkjl(y2) ≤ b̃kl .

Observe that

τkjl(y1) = Γ̄kl (b
k
l )−

1

2
γ̄kl (bkl )

≥ Γ̄kl ([0, b̃
k
l )) + γ̄kl (b̃kl ) + Γ̄kl ((b̃

k
l , b

k))

≥ Γ̄kl ([0, b̃
k
l )) +

1

2
γ̄kl (b̃kl ) +

1

2

[
γ̄kl (b̃kl ) + Γ̄kl ((b̃

k
l , b

k
l ))
]

= Γ̄kl (b̃
k
l )−

1

2
γ̄kl (b̃kl ) +

1

2
Γ̄kl ([b̃

k
l , b

k
l ))

≥ τkjl(y2) +
1

2
Γ̄kl ([b̃

k
l , b

k
l )).

By definition, Γ̄kl ([b̃
k
l , b

k
l )) is the probability that the maximum bid in step k falls in the

interval [b̃kl , b
k
l ). One way (of many) this can occur is that bidder j submits a bid in [b̃kl , b

k
l ),

while all other bidders submit bids weakly less than b̃kl . Since, by construction, j submits
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a bid in the interval [b̃kl , b
k
l ) with probability at least ε/2, it follows that

Γ̄kl ([b̃
k
l , b

k
l )) ≥ Pr(σkjl ∈ [b̃kl , b

k
l ))
∏
i 6=j

Γkil(b̃
k
l ) ≥

εt̃l
2
.

Hence, for all k, for all y1 ∈ Yk,=j (bkl )∪Y
k,+
j (bkl ), and for all y2 ∈ Yj(t̄l) such that σkjl(y2) ≤

b̃kl , we must have

τkjl(y1) ≥ τkjl(y2) +
εt̃l
4
> 0.

But recall that, for each k, the Fj-measure of the set {yj ∈ Yk,−j : σkjl(yj) ≤ b̃kl } is at least

ε/2 > 0, while the Fj-measure of the set Yk,=j (bkl ) ∪ Y
k,+
j (bkl ) is at least Fj(Ȳj)/2 > 0. In

other words, we can find two subsets of Ȳj of Fj-measure bounded away from zero, such
that for every k, all values of τkjl(·) on one subset are bounded away from all values of

τkjl(·) on the other subset by a strictly positive distance. In this case, if τkjl(yj) → t̄l on

one subset, we cannot have τkjl(yj) → t̄l on the other, contradicting the hypothesis that

τkjl(yj)→ t̄l for all yj ∈ Ȳj . It follows that we must have limk→∞ Fj(Yk,−j (bkl )) = 0.

To complete the argument, consider Fj(Yk,+j (bkl )), and suppose that limk→∞ Fj(Yk,+j (bkl )) 6=
0. In this case, taking b̃kl to be the median bid submitted by types yj ∈ Yk,+j (bkl ), and fo-

cusing on the limit of τkjl(·) among types whose bids weakly exceed b̃kl , we find that the

hypothesis limk→∞ Fj(Yk,+j (bkl )) 6= 0 implies a contradiction analogous to the one above.

Hence we must also have Fj(Yk,+j (bkl ))→ 0. This establishes the claim.

Lemma 5 immediately implies that bidder i with type yi cannot strictly gain from
submitting any (b̄, t̄) which is on the equilibrium path in the sense that for each auction l,
there exists some bidder j = 1, ..., N and type yj with σkil(yi)→ b̄l and Γ̄kl (σ

k
il(yi))→ t̄l. For

by Lemma 5, the outcomes generated by such a (b̄, t̄) can differ on at most a set of measure
approaching zero from the limiting outcomes which would have eventually obtained had
bidder i imitated the relevant type yj of bidder j in auction l along the sequence of equilibria
σk. Hence if deviating to (b̄, t̄) is strictly profitable under σ∗×τ∗, imust eventually also have
had a strictly profitable deviation at some point along the sequence σk. This contradicts
the hypothesis that σk is a sequence of equilibria.

So i cannot have a profitable deviation which is on the equilibrium path in the sense
above. To ensure that the profile σ∗× τ∗ is an equilibrium, it is therefore sufficient to con-
struct a collection of tiebreaking precendence rules ρ∗1, ..., ρ

∗
L such that the set of deviations

available to i under σ∗ × τ∗ are payoff equivalent to those on the equilibrium path.
Toward this end, consider the tiebreaking rule ρ∗l (t) equal to the c.d.f. of the random

variable T = max{τ∗1l(Y1), ..., τ∗Nl(YN )} evaluated at t. Then ρ∗l is a weakly monotone
function from [0, 1] to [0, 1]. Furthermore, if the auctioneer evaluates ties according to
the tiebreaking rule ρ∗l (t), then by construction submitting any tiebreaking signal t∗ ∈
[0, 1] is equivalent (up to an irrelevant set of measure zero) to submitting the next lowest
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tiebreaking signal on the equilibrium path. Hence under tiebreaking rule ρ∗l , bidder i’s set
of feasible deviations in auction l is payoff equivalent to her set of feasible deviations on the
equilibrium path. In view of the arguments above, it follows that σ∗× τ∗ is an equilibrium
under the L× 1 vector of tiebreaking rules ρ∗ = (ρ∗1, ..., ρ

∗
L).

Example of a simultaneous standard auction game with mul-
tiple global bidders that is not better-reply secure.

Example 4. Consider a setting where two symmetric bidders i = 1, 2 compete in two
first-price auctions, with reserve price r = 1 in auction 1 and r = 0 in auction 2. Each
bidder i has standalone valuations Y 1,0

i and Y 0,1
i uniformly distributed on [0, 1], and a

combinatorial valuation Y 1,1
i = Y 0,1

i + e1,1i with e1,1i continuously distributed on [1, 2], with

(Y 0,1
i , Y 1,0

i , e1,1i ) mutually independent. In what follows, let F (y1,1) denote the marginal

c.d.f of the combinatorial valuation Y 1,1
i .

In this setting, consider the following sequence of bidding strategies n = 1, 2, 3, .... In
auction 1, bidders bid according to the strategy βn1 (yi) = 1 + F (y1,1i )/n. Meanwhile, in

auction 2, each bidder i bids according to the fixed strategy β2(yi) = B(y1,1i )−1, where B(·)
is the strategy describing a symmetric Bayesian Nash equilibrium of a standard first-price
auction with standalone valuations drawn from distribution F (·): i.e.,

B(v) = v −
∫ v

1

F (z)

F (v)
dz.

In other words, in auction 1, both bidders submit strategies converging to the reserve price
r = 1. Meanwhile, in auction 2, they bid “as if” competing in a first-price auction in which
both bidders draw standalone valuations according to Vi = Y 1,1

i − 1.
Note the following features of this sequence of strategies. First, for each bidder, bids

in each auction are comonotone in y1,1, which implies that each bidder either wins both
auctions, or wins neither. Second, the bidder who wins both auctions is the one with
the highest valuation for the combination. Third, along the sequence, bids in auction 1
are monotonically decreasing toward the reserve price r = 1, while expected payments in
auction 2 are constant. Hence, as n → ∞, payoffs for both bidders are monotonically
increasing toward the limit

π̄ =

∫ 3

1

[
y1,1 −B(y1,1)

]
F (y1,1) dF (y1,1),

which also equals the payoff which each bidder would obtain if they were instead competing
in a standard first-price auction for a single object with valuations drawn from symmetric
distribution F .

Let β̄ = limn→∞(βn1 , β
n
2 ) be the limit of this sequence of strategy profiles as n → ∞:

i.e. β̄1(yi) = 1, β̄2(y) = βn1 (yi) = B(y1,1i ) − 1. Clearly, this limit strategy profile β̄ will
involve a tie at b11 = b21 = 1 in auction 1 with certainty. Furthermore, the limit strategy
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profile β̄ will not be an equilibrium.20

Building on this example, we aim to show two further results. First, the game is not
continuously secure in the sense of Barelli and Meneghel (2013), which implies that it is
not multiply secure in the sense of McLennan, Monteiro and Tourky (2013) or better-reply
secure in the sense of Reny (1999). Second, while β̄ is not a Bayesian Nash equilibrium
with independent tiebreaking, it is part of an equilibrium with endogenous tiebreaking.

We begin with the second claim: β̄ is an equilibrium bidding strategy with endogenous
tiebreaking. To see this, suppose we augment the strategy space of the auction game by
allowing each bidder i to submit, in addition to their bid bij , a cheap-talk signal tij ∈ [0, 1]
used by the auctioneer to break ties in auction j = {1, 2}. Specifically, suppose that, in the
event that b1j = b2j , the auctioneer awards object j to the bidder submitting the highest
tiebreaking signal in auction j (allocating randomly in the event that tiebreaking signals
are also tied). With this simple extension, β̄ is in fact an equilibrium bidding strategy.

Toward this end, augment the limit bid strategy β̄ with a signaling strategy such that
bidder i submits tiebreaking signal ti1 = φ(y1,1i ) in auction 1, where φ(·) is any strictly
monotone function from R to [0, 1].21 The specific function φ considered is inessential; for
our purposes, all that matters is that both players employ the same signaling strategy, and
that this signaling strategy is a strictly monotone function of (only) the joint valuation
Y 1,1
i . Furthermore, since the limit profile β̄ almost never yields ties in auction 2, any

profile of signaling strategies in auction 2 will be consistent with equilibrium. We aim to
show that, taking rival bidding and signaling strategies as given, neither bidder can gain
by changing either their signal or their bid.

First note that both bidders submit the minimum bid in auction 1. Hence any profitable
deviation must involve changing either the signaling strategy in auction 1 or the bidding
strategy in auction 2.

Next, holding bid b1 = 1 fixed, suppose that bidder i submits bid B(z)− 1 in auction
2 (for z not necessarily equal to y1,1i ; as usual, we can express any potentially profitable
deviation in this way). Then it is also optimal for bidder i to submit tiebreaking signal
φ(z) in auction 1. For conditional on winning auction 2, each bidder always prefers to win
auction 1 also: Y 1,1 − Y 0,1 always exceeds 1. Furthermore, neither bidder wants to win
auction 1 without also winning auction 2: Y 1,0 < 1 almost surely. Setting ti1 > φ(z) would
induce events in which bidder i wins auction 1 but not auction 2; setting ti1 < φ(z) would
induce events in which i wins auction 2 but not auction 1. In either case, bidder i could
at least weakly, and almost always strictly, gain from submitting signal ti1 = φ(z) instead.

In other words, we can restrict attention to deviations of the form (1, B(z)−1, φ(z)) for
some z ∈ [1, 3]. By construction, at any such candidate deviation, bidder i either wins both
auctions or wins neither, paying total bid B(z) and receiving joint valuation y1,1i in the

20Formally, with independent tiebreaking, each bidder i bidding bij = 1 will win auction 1 with
probability 1/2 under the limit strategies. Hence, in the events in which they win auction 2, each
bidder i will receive y1,1i with probability 1/2, and y0,1i < y1,1i with probability 1/2, rather than

receiving y1,1i with certainty as along the sequence. Consequently, the limit bidding strategy for
auction 2, which relies on both bidders knowing that in the events they win auction 2 they will also
win auction 1, will not be an equilibrium.

21For concreteness, one could for instance normalize φ(y1,1i ) = F (y1,1i )
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event of a win. Furthermore, given that their rival is following the equilibrium strategies
specified above, bidder i submitting deviation bid (1, B(z) − 1, φ(z)) wins both auctions
with probability F (z). Bidder i’s problem is therefore to choose z ∈ [1, 3] to solve

max
z

(y1,1i − 1− (B(z)− 1))F (z) = max
z

(y1,1i −B(z))F (z).

But this problem is formally equivalent to the bidding problem in a first-price auction in
which both bidders draw effective valuations y1,1i from F (·). By construction, B(z) is the
equilibrium bidding strategy corresponding to such an auction, which implies that each
bidder i’s optimal choice is z = y1,1i . Hence a bidder with type y1,1i optimally submits

bid vector (1, B(y1,1i )− 1) and tiebreaking signal τ(y1,1i ). Note that, by construction, each
bidder’s payoff under this equilibrium is equal to the limit payoff π̄ defined above.

We now return to the question of whether the simultaneous auction game is payoff
secure. Toward this end, we consider the related definitions of Barelli and Meneghel (2013),
McLennan, Monteiro and Tourky (2011), and Reny (1999). Intuitively, adapted to our
context, these papers define a game as payoff secure at strategy profile β̄ if, in some
neighborhood B of β̄, the following two conditions hold: (i) every player i can secure a
payoff above some threshold π̃i against every rival strategy contained in B, and (ii) at
each possible strategy profile β̃ in B, some bidder is earning a payoff πi(β̃) strictly below
the payoff π̃i which they are able to secure. The precise definition of “secure a payoff”
varies across studies, with the continuous security concept of Barelli and Meneghel (2013)
nesting the multiple security concept of McLennan, Monteiro and Tourky (2011), which
nests the better-reply security concept of Reny (1999). Essentially, however, all three
definitions require each bidder i to be able to use some strategy or strategy correspondence
to guarantee a payoff above the threshold π̃i against any rival strategy in the neighborhood
B, where the securing strategies can in principle depend on which rival strategies are played
at each point in the neighborhood.

For our purposes, it is sufficient to demonstrate that, against rival strategy βn, any
own strategy must yield an expected payoff strictly below the limit payoff π̄; this implies
that it is impossible for any bidder to secure a payoff equal to or greater than π̄i using any
strategy or combination of strategies. Toward this end, suppose to the contrary that there
exists a strategy β̃ for bidder i yielding expected payoff weakly exceeding π̄ when the rival
bidder follows strategy βn. Observe that, by following strategy β̃1(·) in auction 1, bidder
i with type yi wins auction 1 against all rival types yj such that

y1,1j ≤ F
−1(nβ̃1(yi)− n).

Now return to the equilibrium with tiebreaking developed above. Observe that, by sub-
mitting bid vector (1, β̃2) and submitting tiebreaking signal φ(F−1(nβ̃1(yi) − n)), bidder
i could achieve the same ex-post allocations and auction-2 payments as she achieves by
playing β̃ against βn. But from above, we know that the expected payoff from such a
deviation must be at least weakly below π̄, since π̄ is the payoff from bidder i’s optimal
play given the strategy of her rival. It follows that we must have bidder i’s expected payoff
from playing β̃ against βn at least weakly below π̄. Furthermore, since βn(·) > 1 almost
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surely, the strategy β̃ must involve either losing auction 1 almost surely, or an average bid
in auction 1 which strictly exceeds 1. Either would strictly reduce payoffs relative to the
limiting payoff π̄. Hence the inequality in expected payoffs must be strict.

Since any strategy played against βn must yield a payoff strictly below π̄, we conclude
that any payoff π̃ securable by i, using any strategy or strategy mapping allowable under
the definitions above, must be strictly below π̄. Furthermore, for any possible π̃ < π̄, we
have exhibited a sequence of strategies which are contained in any neighborhood of β̄, such
that both bidders eventually obtain payoffs strictly greater than π̃. In other words, for any
payoff π̃ which bidders could potentially secure, and in every neighborhood of the limit
strategy β̄, there exists a strategy profile βm(·) such that both bidders earn payoffs strictly
greater than π̃. We conclude that conditions (i) and (ii) of the payoff security definition
cannot hold simultaneously. Hence the game is not payoff secure.

Finally, we briefly discuss the analyses of Bagh and Jofre (2006) and Carmona (2009),
which also concern extensions to better-reply security but are not nested by Barelli and
Meneghel (2013). Bagh and Jofre (2006) provide weaker sufficient conditions than Reny
(1999) under which better reply security (as defined by Reny 1999) holds. Since we have
already shown directly that our game is not better reply secure, these conditions are un-
fortunately not helpful here. Meanwhile, Carmona (2009) shows that weak better reply
security plus weak upper semicontinuity are sufficient for existence of Nash equilibrium.
Weak upper semicontinuity requires that for each (β̃, π̃) pair in the frontier of the closure
of the function mapping strategies to payoffs, there exists at least one player i who can
earn a payoff strictly greater than πi by deviating to some alternative strategy βi. But as
shown above, the strategy-payoff pair (β̄, π̄) is in the frontier of the closure of the payoff
function, and no bidder i can earn a payoff above π̄i if their rival bids according to β̄.
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