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In recent years, a big effort has been made by part of the climate community towards the devel-18

opment of climate services in order to make climate information decision oriented. In a climate19

forecasting context, this means identifying climate variables, thresholds and/or events of rele-20

vance to users. Once identified, these elements, which generally do not coincide with variables21

typically forecasted by the scientific community, are analysed to determine whether they can be22

predicted both reliably and skillfully at the appropriate time scale. This process generally requires23

a sustained dialogue between the different parties involved before coming to a fruitful conclusion.24

Here, we discuss two such efforts which attempt to bridge the gap between climate forecasting25

and application for two phenomena already receiving a fair amount of attention from the general26

public: hurricanes and Arctic sea ice.27

The first seasonal forecast model of tropical cyclone (TC) activity was published in the late28

1970s by Nicholls (1979). However, due to a general skepticism regarding seasonal forecasting29

of TCs in the meteorological community at the time, its author did not begin issuing publicly-30

available seasonal tropical cyclone forecasts for the Australian region until the late 1980s (Nicholls31

2019, personal communication). Relying in part on a newly discovered relationship between At-32

lantic hurricanes and El Niño-Southern Oscillation, William Gray at Colorado State University33

(CSU) thus became the first to issue TC outlooks in real-time in 1984 (Gray 1984). While CSU34

has been producing uninterrupted forecasts since then and was the only group doing so for the35

Atlantic through the mid-1990s, many groups have since initiated seasonal hurricane forecasts of36

their own. The number of groups issuing seasonal predictions for the Atlantic increased dramat-37

ically in the mid-to late-2000s, likely due in part to the extremely active 2004 and 2005 Atlantic38

hurricane seasons. Seasonal predictions of TC activity are now produced for each basin where TCs39

are observed, and for most TC basins, predictions are issued by multiple groups. For the Atlantic40

basin alone, 26 groups, ranging from private weather companies to universities to national weather41
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services, are now producing publicly-available seasonal outlooks. This increase in the number of42

groups issuing these forecasts is also owed in large part to the development of new technologies as43

well as easily accessible climate data, which has made it relatively straighforward for any group44

(or individual) to develop their own forecasting system.45

Seasonal sea ice forecasts began more than two decades later than seasonal hurricane forecasts.46

But after the record low sea ice extent (SIE) in September 2007, which fell 26% below the previous47

year and took many scientists by surprise, there was a growing effort in the scientific community48

to develop reliable methods to predict the minimum SIE a few months in advance. This effort49

was led by a grassroots project organized through the Study of Environmental Arctic Change50

(SEARCH) called the Sea Ice Outlook1 (SIO). Each year starting in June, the SIO would collect51

and synthesize sea ice outlooks of the pan-Arctic September SIE and share results on its webpage.52

SIOs were requested each month up to the September minimum. In 2014, the effort was formally53

funded by several US agencies and rolled into the Sea Ice Prediction Network2 (SIPN). In 2017,54

based on the SIPN, the sister project SIPN South3 was initiated to meet the growing demand for55

sea ice forecasts in the Southern Ocean.56

Perhaps surprisingly, despite a 25-year head start, there is no such equivalent organized network57

in the hurricane community. However, a similar platform has recently been brought online which58

gathers all freely-available Atlantic hurricane outlooks as they are made available by the 26 differ-59

ent groups now issuing them. Each year since 2016, the site has collected and displayed seasonal60

hurricane forecasts issued from late March through early August. Spearheaded by the Barcelona61

Supercomputing Center and CSU and supported by a private sponsor (XL Catlin - now AXA XL)62

1https://www.arcus.org/sipn/sea-ice-outlook
2https://www.arcus.org/sipn
3http://acecrc.org.au/sipn-south
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but relying on the volunteer participation of the forecasters, the hurricane collation site4 arose from63

the desire of these three institutions to centralize the various outlooks, which are typically pub-64

licly available but scattered across different domains. This stands in contrast with a coordinated65

community effort which offers its view on the upcoming hurricane season.66

While the first hurricane forecasts were based on statistical relationships between TC activity67

and key climate predictors such as ENSO and Caribbean basin sea level pressures (Gray 1984),68

the increase in climate model resolution has allowed the development of dynamical model-based69

forecasts, wherein hurricane-like vortices are detected and tracked in initialized climate simu-70

lations (Vitart and Stockdale 2001). However, because this type of forecast requires expensive71

infrastructure compared to the comparatively simpler statistical models, few groups are now issu-72

ing dynamical forecasts, and only one of these groups (the UK Met Office) is currently making73

their forecasts freely available. At present, most groups are producing so-called hybrid forecasts,74

which rely on both statistical relationships between TCs and the large-scale environment and ini-75

tialized climate simulations by dynamical models (for an estimate of the large-scale fields during76

the hurricane season). The increase in computational power has also fostered the development77

of innovative technologies, as machine learning techniques have started to be applied to the TC78

forecasting problem. While still in their infancy, they have the potential to yield new insights79

on the large-scale factors modulating TC formation. Since 2018, two groups have begun issuing80

hurricane outlooks based on machine learning techniques, and more are likely to follow.81

For sea ice forecasts, various methods were used initially, including heuristic estimates, simple82

linear regression models and dynamical coupled ice-ocean models. However, with time, the use of83

dynamical models for sea ice forecasts has grown, including both coupled ice-ocean models forced84

by atmospheric reanalysis data or fully-coupled climate models, with and without initialization by85

4www.seasonalhurricanepredictions.org
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data assimilation. And while early forecasts simply provided estimates of the pan-Arctic sea ice86

extent, today’s forecasts also include sea ice thickness, spatial maps of sea ice probability (presence87

of ice or not) and timing of sea ice break-up and ice advance. These metrics are arguably of more88

use to various stakeholders than the pan-Arctic sea ice extent, whether it is local communities89

planning for the seasonal hunt, or shipping companies trying to avoid the ice. This effort has90

been recently extended through separate funding to include a year-round portal for sub-seasonal91

to seasonal forecasts (Wayand et al. 2019). In comparison, the hurricane website includes an92

outlook for four different basinwide statistics (named storms, hurricanes, major hurricanes and93

Accumulated Cyclone Energy - an integrated measure of frequency, intensity, and duration), thus94

only providing information on the expected overall level of hurricane activity.95

Figures 1 and 2 show the hurricane and sea ice outlooks for the recent years. For hurricanes,96

seasonal forecasts issued in 2015 and 2016 were quite good - with the median outlook correctly97

predicting the observed number of hurricanes (4) in 2015 and missing by only one hurricane (898

predicted vs. 7 observed) in 2016. However, the median forecast in 2017 and 2018 underpre-99

dicted hurricane activity - with both median forecasts predicting three fewer hurricanes than were100

observed. In 2017, the median forecast was for 7 hurricanes, while 10 were observed. In 2018,101

the median forecast was for 5 hurricanes, while 8 were observed. Hurricane forecast skill does102

improve with a decrease in lead time, with moderate skill emerging in June and August forecasts103

showing the largest skill (Klotzbach et al. 2019). Perhaps surprisingly, we do not detect a cluster-104

ing of the August forecasts with respect to the April and June forecasts over the 2015-2018 period,105

except for 2017 when most forecasters revised their forecast upward due to anomalous warming of106

the tropical Atlantic just ahead of the start of the season. Despite this adjustment, few forecasters107

predicted the hyperactive 2017 hurricane season.108
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For sea ice, pan-Arctic September SIE forecasts generally fail to capture large deviations from109

the long-term trend (Hamilton and Stroeve 2016; Stroeve et al. 2015), regardless of the method110

used. The median forecast is only weakly correlated with observed data (Pearson correlation111

coefficient of 0.13), but is still slightly superior to trivial forecasts like persistence (0.08) or trend112

extrapolation (0.01) (none of which are significantly different from zero at the 5% level based on113

a one-sided t-test). Interestingly, the forecast skill does not necessarily improve with shorter lead114

times as one would expect. Perhaps even more interesting is the fact that the median outlooks115

are highly correlated (0.89) with the verification data from the previous year. That is, the median116

outlook of year n is strongly influenced by how anomalous the observed conditions were in year117

n-1 (a similar result was noted in Hamilton and Stroeve (2016)). So in effect, when viewed as a118

whole, groups tend to forecast the previous year’s conditions. Unfortunately, we do not have a119

sufficient amount of retrospective forecasts to determine whether something similar occurs in the120

context of hurricanes. Correlations of CSU June forecasts, which go back to 1984, for the number121

of Atlantic hurricanes issued on June 1st with the previous year’s observed hurricanes was 0.27,122

compared to 0.36 for the actual year, suggesting that hurricane forecasts behave differently, which123

is probably linked to the strong influence of ENSO on Atlantic hurricanes and their forecasts.124

While the total hurricane count is one of the most commonly forecasted hurricane variables,125

it is of relatively little use to many stakeholders due to its limited application. Although not in-126

cluded on the platform itself, many groups are also issuing forecasts for the number of landfalling127

storms for different parts of the basin, which generally include different segments of the conti-128

nental U.S. coastline where financial impacts of landfalling storms are the largest. However, even129

these landfall forecasts are of limited use because they are not explicitly tailored to a stakeholder’s130

decision-making process. In reality, the lack of tailoring to stakeholder needs - in the tropical131

cyclone space at least - is likely due to:132
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1. the sheer scope and complexity of stakeholders that are actively interested in tropical cyclone133

predictions; these stakeholders range from emergency planners and aid agencies to financial134

risk managers such as re/insurance companies.135

2. the desire by typical stakeholders to have predictions of a tightly defined risk, which has not136

yet been attempted in any very explicit way, rather than the scientific hazard itself.137

It can be said that risk is a function of hazard, vulnerability and exposure; this way of think-138

ing is deeply ingrained in the catastrophe modelling industry, which attempts to quantify societal139

impacts of perils. Although, as mentioned earlier, seasonal tropical cyclone landfall forecasts are140

now being attempted, the fact that they still remain disconnected from a fully coherent picture141

of vulnerability and exposure, as pertains to a precise decision-maker, means that they will likely142

remain of limited direct use to stakeholders, even if proven skillful. Rather than landfalling predic-143

tions being useless though, it is clear that these attempts are facilitating the conversation between144

the academic communities that are focused on the hazard, and those applied communities focused145

on the risk, such that predictions may be tailored to explicit decision-making chains in the future.146

In that sense, the hurricane seasonal forecasting community should consider emulating the SIPN147

which, with time, has evolved to better meet stakeholder needs.148

Hurricane and sea ice forecasting have more in common than it might initially appear. In the149

context of global climate change, the processes to be forecasted are likely not stationary. That is,150

forecasting hurricanes and sea ice is more about chasing a moving target than one at rest. To face151

this reality, fundamental research continues in parallel to the efforts presented in this manuscript.152

Identifying new physical mechanisms that offer predictability at seasonal time scales would in-153

deed improve our skill at forecasting sea ice or hurricanes, but also drive our understanding be-154

yond simple predictor-predictand empirical relationships that might break down as mean states155
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change (Caron et al. 2015). Another point of convergence between the two fields of research is the156

notion that at the time scales considered, forecasts can only be expressed in probabilistic terms.157

Indeed, while climatic preconditioning drives in part the sea ice retreat and hurricane activity over158

one season, it is well-known that weather - unpredictable beyond two weeks - both modulates sea159

ice evolution and the timing and location of hurricane formation. Probabilistic forecasts, even if160

well calibrated, are prone to misinterpretation by audiences outside the forecasting community161

itself (Gigerenzer et al. 2005). This reality underlines the need to provide expert guidance when162

these forecasts are communicated to the public and stakeholders. Finally, a third common as-163

pect is the awareness that forecast skill and value are different concepts. As first pointed out by164

Murphy (1993), a forecast can be correct in terms of correspondence with matching observations165

but unexploitable for stakeholders. Sea ice and hurricane forecasting have historically attempted166

to forecast region-wide quantities relevant for forecast verification purposes such as total sea ice167

extent or basinwide count over a given season. While such diagnostics can readily be used to eval-168

uate retrospective forecasts, they often have little utility for those who need information to make169

a decision. The sea ice forecasting community is crossing the line by proposing a range of new170

user-oriented diagnostics, as explained above. We are hoping that the hurricane community can171

follow suit.172

Despite dramatic progress in recent years in the fields of Arctic sea ice predictability (Chevallier173

et al. 2017) and prediction (Zampieri et al. 2018) as well as in hurricane forecasting (Klotzbach174

et al. 2019), the authors are unaware of any stakeholders reliant on these forecasts for planning175

(Wagner et al. 2019) and risk mitigation or transfer purposes, both because the variables currently176

forecasted are not useful for these purposes and because a reliable estimate of the skill of more177

useful variables (e.g. timing of sea ice break-up, odds of an hyperactive hurricane season) have178

yet to be established. The continuation of international cooperative initiatives like SIPN and179
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the seasonal hurricane prediction platform will be key to move forecasts beyond the academic180

framework and make them useful in an operational context of climate services, like weather181

forecasting did at the end of the 20th century.182

183

Additional information184

The sea ice and hurricane outlook data, as well as the scripts used to generate Fig. 1 and 2,185

can be obtained from the following Github project: https://github.com/fmassonn/paper-hurricanes-186

seaice.git187
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TABLE 1. Comparison of Sea Ice and Hurricane Outlook platforms

Sea Ice Outlook Hurricane Outlook

Region Arctic North Atlantic

Operational since 2014 2016

Period targeted September June-November

Variables forecasted

Total Sea ice extent Number of named storms

Sea ice probability (2D) Number of hurricanes

Ice free Date (2D) Number of major hurricanes

Regional sea ice extent Accumulated cyclone energy

(Alaska Region, Beaufort and Chukchi Seas)

Forecast Submission June, July, August Continuous March-August

Number of forecasts archived (2018) 813 133

Type of forecasts

Statistical Statistical (including machine learning)

Dynamical (fully coupled models and ocean-ice model only) Dynamical

Hybrid Hybrid

Heuristic

Participating groups (as of 2018) 39 26

Type of organizations

Universities (30) Universities (8)

Government agencies (2) Government agencies (6)

General public (7) Private weather companies (12)

Data available Upon request Directly, csv format
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FIG. 1. Forecasts of North Atlantic basinwide hurricane number and verification data. The observed

number of hurricanes for each season is shown in gray (Landsea and Franklin 2013). The light blue dots are all

of the latest individual hurricane outlooks collected since 2015 (one dot per group). The dark blue line is the

median of those outlooks. The green and purple lines are two benchmark forecasts: the climatology forecast is

defined as the average of all hurricane counts from 1969 to the current year minus one (green), and the 10-yr

persistence forecasts is defined as the average of all hurricane counts from the 10 preceding years (purple). The

numbers along the x-axis indicate the number of forecast that have been submitted for a given year for that

particular variable.
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FIG. 2. Forecasts of September Arctic sea ice extent and verification data. The National Snow and Ice

Data Center (NSIDC) Sea Ice Index, version 3 (Fetterer et al. 2017) is shown in gray as observational reference

for verification of the forecasts. The light blue dots are all individual June Sea Ice Outlooks collected since the

inception of the project in 2008 (252 forecasts in total). The dark blue line is the median of those outlooks. The

green and purple lines are two benchmark forecasts: a linear trend forecast based on September extents available

until the year preceding the forecast (green) and an anomaly persistence forecast (purple). To produce the latter,

May anomalies were added to the September climatology. The numbers along the x-axis indicate the number of

forecasts that have been submitted for a given year for that particular variable.
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