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Individual differences in hyper-realistic
mask detection
Jet G. Sanders* and Rob Jenkins

Abstract

Hyper-realistic masks present a new challenge to security and crime prevention. We have recently shown that people’s
ability to differentiate these masks from real faces is extremely limited. Here we consider individual differences as a
means to improve mask detection. Participants categorized single images as masks or real faces in a computer-based
task. Experiment 1 revealed poor accuracy (40%) and large individual differences (5–100%) for high-realism masks
among low-realism masks and real faces. Individual differences in mask categorization accuracy remained large when
the Low-realism condition was eliminated (Experiment 2). Accuracy for mask images was not correlated with accuracy
for real face images or with prior knowledge of hyper-realistic face masks. Image analysis revealed that mask and face
stimuli were most strongly differentiated in the region below the eyes. Moreover, high-performing participants tracked
the differential information in this area, but low-performing participants did not. Like other face tasks (e.g. identification)
, hyper-realistic mask detection gives rise to large individual differences in performance. Unlike many other face tasks,
performance may be localized to a specific image cue.

Keywords: Masks, Disguise, Face perception, Face detection, Face recognition, Deception, Fraud, Passports,
Performance enhancement, Individual differences

Significance
The proliferation of Hollywood-style silicone masks has
caught the security sector unawares. These whole-face
masks allow wearers to transform their facial appearance in
seconds and are readily accepted as real faces. The implica-
tions for security and crime prevention are potentially
far-reaching, as undetected face masks undermine the con-
nection between facial appearance and personal identity.
Psychological research on face perception has discovered
large individual differences in identification ability. The
present studies similarly reveal large individual differences
in the completely novel task of hyper-realistic mask detec-
tion and identify a specific region under the eyes that may
drive accurate performance. Our findings raise the interest-
ing prospect of selecting personnel for very narrow cogni-
tive tasks. They also suggest that performance on this
particular task may be responsive to training. Either route
could improve our ability to distinguish hyper-realistic face
masks from real faces.

Background
In a number of high-profile criminal cases, offenders have
used hyper-realistic face masks (Fig. 1) to transform their
facial appearance, leading police to pursue suspects who
looked nothing like the actual offenders (e.g. different race
or age; Bernstein, 2010). In a separate incident, an airline
passenger wearing a hyper-realistic mask boarded an inter-
national flight without the deception being noticed
(Zamost, 2010). These cases suggest that, in practical set-
tings, hyper-realistic face masks can be difficult to distin-
guish from real faces. Experimental evidence bears out this
conclusion. In a series of studies (Sanders et al., 2017), we
examined incidental detection of unexpected but attended
hyper-realistic masks in both photographic and live pre-
sentations. In all of these studies, viewers accepted
hyper-realistic masks as real faces. These findings extend a
tradition of research into realism of artificial stimuli. The
Uncanny Valley phenomenon originally considered a
range of human-like stimuli from puppets to robots
(Mori, 1970; Mori, MacDorman, & Kageki, 2012). In re-
cent years, the focus has shifted somewhat to
computer-generated images (e.g. Nightingale, Wade, &
Watson, 2017), but the very success of computer graphics
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has raised awareness that on-screen images may be digit-
ally generated or enhanced. One of the interesting aspects
of hyper-realistic masks is that they also fool the eye in
the physical world (Sanders et al., 2017), where digital
image manipulation has not yet encroached.
The finding that spontaneous mask detection is unreli-

able suggests that specific measures may be required if de-
tection rates are to be improved. Here we pursue an
individual differences approach to the problem. Over the
last decade, individual differences have become an import-
ant topic in face perception research, not least because they
suggest a route to improving performance in applied set-
tings. For face identification, the range of ability is brack-
eted by two extremes. At the high end, super-recognizers
who rarely make errors (Bobak, Bennetts, Parris, Jansari, &
Bate, 2016; Robertson, Noyes, Dowsett, Jenkins, & Burton,
2016; Russell, Duchaine, & Nakayama, 2009), and at the
low end, people with developmental prosopagnosia who
rarely exceed chance performance (Behrmann & Avidan,
2005; Duchaine & Nakayama, 2005). Between these ex-
tremes, there is a spectrum of ability on standardized face
identification tests (e.g. Burton, White, & McNeill, 2010;
Duchaine & Nakayama, 2006).
These findings have led some researchers to suggest that

personnel selection could play a useful role in optimizing
occupational face recognition (White, Kemp, Jenkins,
Matheson, & Burton, 2014). For example, Metropolitan
Police super-recognizers have been found to score
unusually high on a range of face identification tests
(Robertson et al., 2016).
For mask detection, the cognitive situation is some-

what different. Here the challenge is not individuation at
the subordinate level (Rosch, Mervis, Gray, Johnson, &
Boyes-Braem, 1976), but rather categorization at the
basic level, albeit for the unusual case where one
basic category (masks) deliberately mimics the other
(faces). As the current task involves face/non-face
categorization, it arguably has more in common with
face detection than with face identification (see

Bindemann & Lewis, 2013, for a careful dissection of
these issues).
The analogy with face detection may have some broad

predictive value for the present case. Large individual differ-
ences in face detection ability have recently been reported
(Robertson, Jenkins, & Burton, 2017) and they appear to
dissociate from face identification ability. However, one im-
portant difference is that face detection hinges on the pres-
ence or absence of a face-like pattern (e.g. two eyes above a
nose above a mouth). That criterion will not help the
viewer in the current task, as hyper-realistic face masks and
real faces both present face-like patterns. Thus, the intu-
ition is that hyper-realistic mask detection will require finer
discrimination than face detection tasks demand.
As yet, very little is known about individual differences

in this finer perceptual task. For example, we do not
know the expected range of ability. Nor do we know any
factors that might differentiate high performers from
low performers. The present studies address these issues
by asking whether some people are better than others at
categorizing masks and faces, and what they may be
doing that allows them to perform well. The overarching
aim is to establish whether an individual differences ap-
proach might be as useful in hyper-realistic mask detec-
tion as it has been in face identification.
We begin in Experiment 1 by comparing detection of

low-realism and high-realism masks in the context of
real faces. In Experiment 2, we eliminated low-realism
masks to focus participants on the harder comparison
(high-realism masks vs real faces). Finally, we undertook
an image analysis to compare use of information for
high- and low-accuracy subgroups.

Experiment 1
Previous studies of hyper-realistic mask perception have
assessed spontaneous detection of masks during an or-
thogonal task (social inference ratings; Sanders et al.,
2017). Detection rates approached floor levels in that
situation, precluding individual differences analysis. In

Fig. 1 Hyper-realistic dominant male mask (right) worn by author RJ (left)
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this study, we sought to increase detection rates by: (1)
explicitly instructing participants that the task was to
distinguish masks from real faces; (2) presenting masks
and faces equally often (50% prevalence); and (3) explaining
this prevalence rate to participants. These measures were
intended to license “mask” responses, even when partici-
pants were not certain. We expected that low-realism
masks and real faces would be categorized accurately. Our
main interest was in the range of performance for
high-realism masks.

Method
Ethics statement
Ethics approval for all experiments was obtained from the
departmental ethics committee at the University of York.

Participants
Thirty members of the volunteer panel at the University
of York (21 women, 9 men; mean age = 22 years, age
range = 18–41 years) took part in exchange for a small
payment or course credit.

Stimuli and design
To collect images of high-realism masks, we entered the
search terms “realistic masks,” “hyper-realistic masks,” and
“realistic silicone masks” into Google Images. We selected
images that: (1) exceeded 150 pixels in height; (2) showed
the mask in roughly frontal aspect; (3) showed the eye
region without occlusions; and (4) included real hair
eyebrows. We used the same criteria to search the websites
of mask manufacturers (e.g. RealFlesh Masks, SPFX, CFX)
and topical forums on social media (e.g. Silicone Mask
Sickos, Silicone mask addicts). Our aim here was to sam-
ple “ambient” photos of hyper-realistic masks that repre-
sent the range of the mask images in the visual world
(Jenkins et al., 2011). For this reason, we avoided promo-
tional studio photographs of the masks and instead used
photos of the masks in situ. This search resulted in 37
hyper-realistic mask images that met the inclusion criteria.
For comparison, we collected 37 images of low-realism

masks by entering search terms such as “Halloween,”
“party,” “mask,” “masquerade,” “face-mask,” and “party
mask” in Google Images and selecting the first images
that met inclusion criteria 1–3 above.
We also collected 74 real-face images for use as fillers

in the mask/face categorization task. To ensure that the
demographic distribution among our real face images
was similar to that portrayed by the high-realism masks,
we entered the search terms “young male,” “old male,”
“young female,” and “old female” into Google Images.
We then accepted images that met criteria 1–3 until the
distribution of faces across these categories was the
same as for the high-realism mask images. All photos

were cropped to show the head region only and resized
to 540 × 385 pixels for presentation (see Fig. 2).
The final image set consisted of 148 photographs (37

high-realism masks, 37 low-realism masks, 74 real faces).
Each participant viewed the 148 images intermixed in a
different random order (within-subjects design).

Procedure
Participants were instructed that half of the images
showed real faces and half of the images showed masks.
They were also informed that mask trials would contain
both low-realism masks and high-realism masks. Each
trial consisted of a centrally presented image (a mask or
a face) together with the prompt “Is this person wearing
a mask?” and response options “Yes - Press M” and “No
– Press Z.” The display remained on screen until re-
sponse, upon which the following trial began automatic-
ally. No time limit was imposed. Participants completed
three practice trials, followed by 148 experimental trials
in a unique random order. The entire experiment took
approximately 10 min to complete.

Results and discussion
Group performance
Real face images were correctly classified on 96.3% of tri-
als and were not analyzed further. Performance on mask
trials is summarized in Fig. 3. As expected, low-realism
masks were categorized reliably (M= 98.2%, SE = 0.4, CI
= 97.6–99.0). High-realism masks were categorized much
less reliably (M = 40.4%, SE = 5.6, CI = 29.2–51.5), mean-
ing that the clear majority of these masks (59.6%) were
misclassified as real faces. A within-subjects t-test
confirmed that this difference in accuracy was statistically
significant (t(29) = 10.29, p < 0.001).
Reaction time (RT) data followed a similar pattern. Cor-

rect responses to low-realism mask trials were relatively
fast (M= 895 ms, SE = 35, CI = 831–959). Indeed, RTs to
high-realism masks were twice as long 1629 ms (SE = 142,
CI = 1352–1901). Again, the difference between mask
conditions was statistically robust (t(29) = 5.86, p < 0.001).

Individual differences
As can be seen in Fig. 4, there was little variability in accur-
acy in the low-realism mask condition (range 95–100%),
with performance compressed against ceiling for this easy
task. In contrast, accuracy in the high-realism condition
spanned the entire range (5–100%). Unsurprisingly, there
was no correlation between high- and low-realism mask
trial performance (r = 0.182, p = 0.335).
Overall, classification judgements were much harder

for high-realism masks than for low-realism masks.
More importantly for the current study, the data reveal
striking individual differences in performance for the
high-realism condition. A few observers detected hardly
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any hyper-realistic face masks in this experiment, but a
few detected nearly all of them.
One possible interpretation of this pattern is that

low-realism masks make high-realism masks hard to detect,
by encouraging viewers to draw the category boundary in
the wrong place ([real faces + high-realism masks] vs [low--
realism masks] as opposed to [real faces] vs [high-realism +
low-realism masks]). Prior knowledge of hyper-realistic face
masks could protect against this error, leading to high over-
all accuracy. To address this possibility, we next repeated
the experiment without the low-realism mask condition.
We also asked participants whether they had encountered
hyper-realistic face masks before the experiment.

Experiment 2
This experiment was the same as Experiment 1, except for
the following changes. First, we replaced the low-realism

mask stimuli with high-realism mask stimuli, in order to
focus participants on the difficult judgments (real faces vs
hyper-realistic face masks). As before, we informed partic-
ipants that half of the trials would contain real faces and
half of them would contain masks. We expected the new
composition of trials to elicit errors in both directions (i.e.
masks mistaken for faces and faces mistaken for masks).
Our main interest was the distribution of performance in
this situation. To test for effects of prior mask knowledge
on performance, we also collected self-report ratings at
the end of the experiment.

Method
Participants
Thirty members of the volunteer panel at the University
of York (24 women, 6 men; mean age = 20 years, age

Fig. 2 Example of trial sequence in Study 1. Correct responses: Z, M, M, M, M. See main text for details

Fig. 3 Mean accuracy rates (a) and correct reaction times (b) across participants as a function of mask condition in Study 1
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range = 18–24 years) took part in exchange for a small
payment or course credit.

Stimuli and design
Additional stimuli were collected via Internet search,
using the method described in Experiment 1. Once
again, the proportions of young male, old male, young
female, and old female items were matched across real
face and high-realism mask images. The final image set
consisted of 148 photographs (74 high-realism masks
and 74 real faces). Each participant viewed the 148

images intermixed in a different random order (with-
in-subjects design).

Procedure
The procedure was the same as for Experiment 1, except
that the low-realism trials were replaced with
high-realism trials (see Fig. 5). To test whether individ-
ual differences in performance could be explained by
prior knowledge of hyper-realistic face masks, we asked
participants to rate their prior knowledge on a 7-point
Likert scale at the end of the experiment.

Results and discussion
Group performance
Overall categorization performance is summarized in
Fig. 6. As can be seen from the figure, classification of real
face images was accurate, but not at ceiling (M= 91.2%,
SE = 2.0, CI = 87.3–95.1). Accuracy for high-realism masks
was relatively low (M= 73.7%, SE = 2.7, CI = 68.3–79.0),
indicating that hyper-realistic masks were frequently mis-
classified as real faces (26.3%). A within-subjects t-test
confirmed that this difference in classification accuracy
was statistically significant (t(29) = 6.78, p < 0.001).
To analyze discriminability and bias, we also carried out a

signal detection analysis of correct performance (d’ = 1.56,
SE = 0.43, CI = 1.40–1.72, p(correct) = 0.825). This indicates
that participants were able to differentiate between masks
and real faces. A criterion analysis (C = 0.61, SE = 0.09, CI =
− 0.97 – – 0.43) indicates a modest bias towards responding
“mask.” After correcting for this bias, the ability to discrim-
inate masks from real faces remained (d’ corrected = 1.36,
SE = 0.43, CI = 1.40–1.72, p(correct) = 0.854).
There was no significant difference in reaction times be-

tween real face (M= 1301 ms, SE = 93, CI = 1121–1480)

Fig. 4 Scatterplot showing participants’ mean categorization
accuracy rates in the high-realism and low-realism mask conditions
in Study 1

Fig. 5 Example of trial sequence in Study 2. Correct responses: Z, Z, M, M
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and high-realism mask trials (M = 1283 ms, SE = 71, CI =
1145–1421; [t (29) = 0.34, p = 0.73]).

Individual differences
As can be seen in Fig. 7, almost everyone performed
above chance in both conditions. Classification accuracy
was in the range of 65–100% in the real face condition
and 43–91% in the high-realism mask condition. Inter-
estingly, there was no correlation in performance be-
tween the two conditions (r = − 0.04, p = 0.83).
We also measured the individual differences in

discriminability between masks and real faces in terms
of sensitivity (d’: range = 0.59–2.34) and criterion scores
(C: range = − 1.86 – 0.32).

Prior mask knowledge
Self-report ratings of prior mask knowledge were generally
low (M= 2.67, SD = 1.03), suggesting little or no exposure
to hyper-realistic face masks before the experiment. More
importantly, there was no significant correlation between
prior mask knowledge and performance in either the
high-realism mask condition (r = 0.025, p = 0.898) or the
real face condition (r = 0.319, p = 0.092), discriminabil-
ity (r = 0.295, p = 0.120), or bias (r = − 0.218, p = 0.256)
(see Fig. 8).
Overall error rates were high (20%) despite the sim-

plicity of the task and despite the fact that partici-
pants were informed about the prevalence of mask
and real face trials. We note that error rates were
somewhat higher in the mask condition (30%) than in
the real face condition (10%), meaning that overall,
masks were mistaken for faces more often than faces
were mistaken for masks. Interestingly, some partici-
pants were highly accurate in correctly categorizing
the masks. However, accuracy in the mask condition
was not explained by accuracy in the real face condi-
tion, nor by prior exposure to hyper-realistic face
masks. In the final study, we ask whether
high-performing individuals are using specific visual
cues to support their accurate judgements.

Image analysis
The purpose of the image analysis was to compare
the use of visual information by high classification
accuracy and low classification accuracy participants
in Experiment 2. Our specific interests were: (1) the
availability of visual cues—that is, whether mask and
face images differed reliably; (2) the nature of any
reliable visual cues—specifically, their spatial location;
and (3) whether high-performing and low-performing
participants made different use of these cues. We

Fig. 6 Mean accuracy rates (a) and correct reaction times (b) across participants as a function of experimental condition in Study 2

Fig. 7 Scatterplot showing participants’ mean categorization accuracy
rates in the real face and high-realism mask conditions in Study 2

Sanders and Jenkins Cognitive Research: Principles and Implications  (2018) 3:24 Page 6 of 10



addressed these issues by using categorization data
from Experiment 2.
The logic of this image analysis is as follows. The ap-

pearance of the mask stimuli and the face stimuli can be
summarized by generating an average image for each
stimulus category (an average mask and an average face).
Systematic differences between these two categories can
then be visualized by subtracting the average face from
the average mask to create a difference image. This differ-
ence image indicates which regions of the stimulus are
most informative for mask/face classification. Our hypoth-
esis is that high-performing participants tracked this infor-
mation more closely than low-performing participants. To
test this hypothesis, we used categorization responses
from Experiment 2 to generate difference images for the
high-performing and low-performing subgroups. This
allowed us to compare the perceptual difference images
(based on participants’ categorization of the stimuli)
against the physical difference image (based on the actual
stimulus categories). By undertaking this comparison for
different slices of the image, we were able to quantify par-
ticipants’ tracking of category-level regularities across dif-
ferent face regions.

Method
Participant subgroups
To establish a strong manipulation of the independ-
ent variable (categorization accuracy for masks), we
divided participants into performance quintiles (N = 6
per subgroup) and contrasted the highest and lowest
quintiles. A 2 × 2 mixed ANOVA with the
within-subject factor image type (mask, real face) and
the between-subjects factor of subgroup (high, low)
confirmed that these subgroups were statistically
distinct with respect to their classification scores.
Consistent with the whole-group analysis, we found a
significant main effect of image type, with higher accuracy
for real face trials (M = 90.0%, SE = 1.4, CI = 83.6–95.7)
than for mask trials (M = 72.5%, SE = 1.5, CI 65.9–
79.1), (F(1,10) = 13.76, p = 0.004, η2 = 0.58). More im-
portantly, there was also a significant main effect of
subgroup, with the high-accuracy group (M = 90.2%,
SE = 0.8, CI = 86.7–93.8) reliably outperforming the
low-accuracy group (M = 72.1%, SE = 2.1, CI = 62.9–
81.2), (F(1,10) = 85.44, p < 0.001, η2 = 0.89). There was
no significant interaction between these factors
(F(1,10) = 1.78, p = 0.212).

Fig. 8 Scatterplots showing participants’ mean categorization accuracy rates for high-realism masks (a) and real faces (b), discriminability (c) and
bias (d) as a function of prior mask knowledge in Study 2
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Face averages
We next constructed six average images (Burton, Jenkins,
Hancock, & White, 2005) from the following six image
sets: (1) actual masks (N = 74); (2) actual faces (N = 74);
(3) perceived masks for high performers; (4) perceived
faces for high performers; (5) perceived masks for low per-
formers; and (6) perceived faces for low performers
(weighted averages of images as classified; N > 50 for all).
Seven images (five masks, two real faces) were excluded
from this analysis because the camera angle did not allow
accurate landmarking of the photographs (see Kramer,
Jenkins, & Burton, 2017 for implementation details). The
six weighted texture averages for the remaining images
are shown in Fig. 9.

Difference images
To ask what distinguishes masks from real faces, we next
computed a difference image (average mask minus aver-
age face) separately for the veridical categories, the
high-performance group, and the low-performance group.
These three difference images are shown in Fig. 9 (lighter
regions indicate greater difference). The veridical differ-
ence image (Fig. 9, center) indicates that the surrounding
of the eye is especially informative, presumably because
the eye holes in the mask can produce local anomalies in
appearance (e.g. surface discontinuities if the mask is not
flush with the wearer’s face; complexion discontinuities if
the skin around the wearer’s eyes is exposed). The ques-
tion is whether observers pick up on these subtle cues.
Visual comparison confirms that the difference image for
the high-performer group (Fig. 9, left) closely resembles

the veridical difference image (Fig. 9, center). The differ-
ence image for the low-performer group (Fig. 9, right) re-
sembles the veridical difference image less closely. This
global pattern is perhaps to be expected, given the forma-
tion of the subgroups: if high performers did not track the
veridical categories, they would not be high performers.
However, local variations in this pattern may reveal spe-
cific cues that high performers exploit, and that low per-
formers overlook. We investigated this possibility by
comparing correlations between different image slices.

Image correlations
To avoid spurious inflation of correlation values by black
background pixels, we first cropped the background
from each difference image to create rectangular face
image (300 × 228 pixels) that retained all of the internal
features. To allow direct comparison across equally sized
regions, we then divided each rectangular image into 30
horizontal slices (10 × 228 pixels; see Fig. 9). Successive
rows of pixels can be concatenated to form a single vec-
tor of pixels for each slice (1 × 2280 pixels), in which the
grayscale intensity of each pixel is specified by an integer
value between 0 (black) and 255 (white). These intensity
values formed the input to the correlation analysis.
Figure 9 shows the results of these image correlations

(r values), separately for each slice. As can be seen from
the figure, correlations between the veridical difference
image and the high-performer image are consistently
high across image slices (range = 0.87–0.99). The corre-
lations between the veridical difference image and the
low-performer image are lower overall and much more

Fig. 9 Summary image analysis in Study 3. Average images show mean pixel intensities across images in each category, separately for high
performers (left), low performers (right), and veridical categories (center). Difference images are subtractions of pixel intensity (mask minus face; rescaled
for visualization). Lighter colors indicate larger differences. Note the light region around the eye in the veridical difference image. The y-axis shows 30
horizontal image slices. Correlations between difference images (gray bars) are shown for each image slice. The largest discrepancy between high and
low performers is shown at Slice 15 (black bars). High performers closely tracked categorial differences in this region. Low performers did not
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variable (range = 0.59–0.95). Most strikingly, there is a
distinct notch in correlation values between the
low-performer and veridical difference images, directly
under the eyes (image slice 15; r = 0.59). In fact, this was
the lowest correlation in entire analysis. Importantly,
that notch does not appear in the correlations between
the high performer and veridical difference images
(image slice 15; r = 0.95).
To summarize, our comparison of mask and face images

suggests that the eye surround is the most informative re-
gion for separating these two categories. High performers
appear to use information below the eye in a way that low
performers do not. What information could be in this re-
gion? We suggest two possibilities. First, in a real face, the
region below the eyes normally includes the lower eye-
lashes—an area of high local contrast. The masks in our
stimulus set do not include eyelashes. If the mask covers
the wearer’s eyelashes, it will typically reduce local contrast.
Reduced local contrast under the eye may be a cue to mask
detection. Second, in a real face, skin complexion below the
eyes normally changes gradually on a local scale. The masks
in our stimulus set do not necessarily match the complex-
ion of the wearer. If the mask exposes any skin below the
wearer’s eyes, it may cause an apparent discontinuity in skin
coloration. Discontinuity in complexion under the eye may
be a cue to mask detection. Each of these possibilities sug-
gests that the precise fit of the mask around the wearer’s
eyes is critical. Shade from the brow will tend to conceal
cues in the upper eye region, at least under normal illumin-
ation conditions (light source above). However, the same il-
lumination conditions will tend to highlight cues in the
lower eye region, making them more salient.

General discussion
Across three studies, we investigated individual differ-
ences in hyper-realistic mask detection—specifically, the
ability to categorize images as masks or real faces. In Ex-
periment 1, we found large individual differences in a
mask/face categorization task for high-realism masks,
low-realism masks, and real faces. Although low-realism
masks (and real faces) were categorized accurately over-
all (> 98% correct), high-realism masks were not (40%
correct). More importantly, from an individual differ-
ences perspective, accuracy in the high-realism condition
ranged from floor (5%) to ceiling (100%), despite the
consistently high accuracy for other stimulus types.
In Experiment 2, we discarded the low-realism mask

condition to focus exclusively on the difficult
categorization—hyper-realistic masks vs real faces. Per-
haps surprisingly, removing the easy condition improved
performance in the difficult condition considerably (74%
correct). This seemingly paradoxical result underscores
the importance of the context in which a categorization
decision is taken. The absence of an obvious category

distinction (cf. Experiment 1), combined with information
about the distribution of stimuli, presumably led partici-
pants in Experiment 2 to approach the task differently.
Nevertheless, we still observed a wide range of perform-
ance, even in this very different cognitive situation. Accur-
acy ranged from near chance (43%) to near ceiling (91%).
Interestingly, accuracy in the real face condition was also
varied (65–100%). However, performance in these two
conditions was uncorrelated and was not explained by
previous exposure to hyper-realistic face masks.
Both of these experiments revealed large individual

differences in hyper-realistic mask detection, in the sense
that some people were much more accurate than others
at categorizing masks and real faces. These findings sug-
gest that stable differences in ability may be worth pur-
suing. It is too early to say whether some individuals
exhibit a special talent for this task. Conclusive evidence
would require estimates of test–retest reliability and
consistently high performance across a range of tasks
(Russell et al., 2009; Robertson et al., 2016). Until then,
we suggest another possible route to improved detection
rates—one that does not depend on screening for
high-aptitude individuals. In our image analysis, we
asked what high performers are doing that low per-
formers are not. This analysis revealed a candidate visual
cue that these subgroups used differently—the area
under the eyes. Hyper-realistic mask images and real
face images diverged more strongly in this area than in
other areas. Moreover, high performers and low per-
formers diverged strongly in the extent to which the area
under the eyes predicted their responses. This intriguing
finding raises the question of whether mask detection
could be improved by drawing attention to this region. If
so, it could pave the way for a simple training interven-
tion. This is a tantalizing prospect, especially as benefits
of training in face identification tasks have proven diffi-
cult to pin down (Towler, White, & Kemp, 2014, 2017;
White et al., 2014). Eye-tracking data in combination
with accuracy rates, before and after training, should
elucidate the potential of this approach.
Finally, it is worth returning to the somewhat artificial

nature of this task. The experiment was specifically con-
trived to encourage detection of hyper-realistic masks. For
example, we focused on masks in the task instructions
and spelled out the distribution of mask and face stimuli.
In view of this strong framing, the detection rate for these
masks seems rather low. Nevertheless, it almost certainly
overestimates the rate of spontaneous detection when a
mask framing is absent. Sanders et al. (2017) reported ex-
tremely low rates of spontaneous detection, both for
photographic presentations in the lab and live viewing of
mask wearers outdoors. On the other hand, none of these
studies has measured detection during active social inter-
action with the mask wearer (e.g. conversation). We
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expect that, in a more interactive context, additional cues
from speech and movement could increase detection rate,
but that is a matter for future studies.
Across these studies, we show that distinguishing

hyper-realistic masks from real faces is a difficult task.
Some people are much better than others at picking out
hyper-realistic masks, and these large individual differ-
ences are not readily explained by correct categorization
of real faces or by prior exposure to hyper-realistic
masks. We suggest that they may be explained by differ-
ential use of specific visual cues and identify the region
under the eyes as a promising candidate.

Abbreviation
RT: Reaction time
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