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We present a novel ent ry-game with endogenous informat ion acquisit ion to study the welfare

e! ects of opacity and compet it ion. Potent ial ent rants to an opaque market are uncertain about their

compet it ive advantage relat ive to other investors, i.e. their type. They const ruct opt imal cost ly signals

to learn about their types, where the marginal cost of learning captures the opacity of the market . In

general, the individually opt imal ent ry and learning decisions are socially subopt imal. Players over-

invest in learning and more opaque markets are associated with more crowding. Nevertheless, more

opaque markets might st ill lead to higher welfare by implying a bet ter t rade-o! between the degree

of crowding and the total cost of learning. Similarly, decreasing the share of smart investors in the

market might also improve welfare. However, Þerce compet it ion is always detrimental to welfare as it

leads to more wasteful learning without changing the level of crowding.
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1 I nt roduct ion

In our rapidly changing global economy, ent repreneurs and Þnancial investors have to be nimble and

well prepared to survive. Fleet ing investment opportunit ies arise rout inely in global Þnancial markets.

Technological developments create new market segments by the day and make exist ing ones obsolete.

It is insu" cient to simply recognize new opportunit ies: The key to success for the potent ial ent rant

is to tell whether she was su" cient ly early in not icing the opportunity and whether her exist ing skill

sets make her able to compete e" cient ly. In light of this, it is not surprising that market part icipants,

ranging from venturecapitalists, global banks to leading technological companies, invest vast sums into

analyzing markets, developing know-how and technology to help them decide whether to undertake

investment opportunit ies. Also, new opportunit ies are heterogeneous. Some opportunit ies are in the

public eye, leading to a large mass of would-be entrants standing on the sideline considering whether

to jump into the fray. Some opportunit ies are opaque making it cost ly or even impossible to predict

whether the exist ing skill sets will lead to success or failure. Which kinds of new market segments

or t rading opportunit ies are subject to overcrowding? Are the vast resources invested in learning

about opaque opportunit ies socially useful? Should regulators push for t ransparency? In general,

what are the welfare implicat ions of learning about such new investment opportunit ies in the face of

compet it ion and opaqueness?

In this paper, we present a unique, parsimonious framework to answer these quest ions. We analyse

a novel ent ry-game with endogenous informat ion acquisit ion to study the welfare e! ects of opacity

and compet it ion. Potent ial ent rants (players hereon) to an opaque market are uncertain about their

compet it ive advantage relat ive to others, i.e. their type. They const ruct opt imal signals to learn

about their types subject to an entropy cost . The opacity of the market is captured by the marginal

cost of learning, while the extent of compet it ion is modelled by the mass of players standing on the

sidelines. In general, the individually opt imal ent ry and learning decisions are socially subopt imal.

Players always over-invest in learning and more opaque markets tend to be more crowded. Never-
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theless, t ransparency is not always opt imal as more opaqueness might st ill lead to higher welfare by

discouraging cost ly learning without excessively increasing crowding. Opaqueness is more likely to be

beneÞcial if compet it ion is not too Þerce, while t ransparency is preferred if compet it ion is excessive.

Fiercer compet it ion leads to more wasteful learning leading to deteriorat ing welfare without a! ect ing

crowding.

In our game, playersÕtype is dist ributed over the unit interval. Each playerÕs pay-o! upon entry is

a linear funct ion of the mass of ent rants with bet ter types, and the mass of ent rants with worse types.

We focus on the case for which an entrantÕs revenue is decreased by an addit ional bet ter ent rant and

increased by a worse entrant such that players engage in a Òrat raceÓ. We also assume that the e! ect of

an addit ional random entrant (if she is bet ter or worse with equal probability) is also negat ive, leading

to potent ial ÒcrowdingÓin the market . Each player const ructs an opt imal signal st ructure to learn

about her type. Building on Sims (1998, 2003), the cost of any given signal st ructure is proport ional

to the implied reduct ion in ent ropy. Given the equilibrium strategies, a playerÕs posterior on her type

implies a posterior on the mass of bet ter and worse entrants. Hence, each player learns about her

compet it ive advantage on the given market relat ive to other ent rants.

Our formalizat ion results in a parsimonious st ructure. In equilibrium, the opt imal informat ion

acquisit ion and entry st rategies are reduced to a single funct ion, mapping playerÕs possible types into

a probability of ent ry. For example, if the player were to decide to enter with a given probability

independent ly of her type, we represent this choice with a constant funct ion. This st rategy does not

require learning. In contrast , if the player were to decide to enter if and only if her type is bet ter

than a given threshold, this can be represented by a step funct ion. However, for this, her signal has to

be su" cient ly precise to know with certainty whether her type is above this threshold. This st rategy

turns out to be very cost ly under our speciÞcat ion. In equilibrium, players typically choose an interior

st rategy represented by a smooth, monotonic funct ion, implying higher ent ry probability for bet ter

types.
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Our main result is that whether a regulator should aim for more t ransparency depends on the level

of compet it ion. Typically, full t ransparency is preferred only if there is a large mass of players aware

of the opportunity and ready to enter, i.e. if compet it ion is Þerce. Otherwise either an interior level of

opacity or full opacity maximizes welfare. The intuit ion relies on two e! ects. First , full t ransparency

leads to insu" cient ent ry because worse players do not internalize their beneÞcial e! ect on bet ter

ent rants. On the other hand, full opacity leads to crowding which is more severe if compet it ion is more

Þerce because players unaware of their types exert a negat ive externality on other ent rants. Therefore,

less than full t ransparency might push entry closer to its e" cient level especially when compet it ion

is limited. Second, there is cost ly over-learning in our model because of the rat -race between the

players. This leads to a more subt le beneÞt of increased opacity. Less than full t ransparency might

help to reduce the overall cost of learning. While decreasing t ransparency, by deÞnit ion, increases

the marginal cost of learning, it might reduce the amount of learning su" cient ly that the overall cost

decreases. The beneÞt of this reduct ion in learning expenditure can more than o! set the welfare loss

of increased crowding due to more opacity. Thus increasing opacity is more likely to improve welfare

if compet it ion is limited because the welfare loss from crowding is less of a concern.

An addit ional result is that Þercer compet it ion decreases welfare. First we show that unless the

mass of players is so small that the entry decision is t rivial, increasing compet it ion does not change

aggregate entry, which stabilizes at an ine" cient ly low or high level. To understand this result , note

that players adjust their ent ry decisions along two main dimensions as compet it ion increases. First ,

the marginal beneÞt of knowing your type more precisely before entering is increasing in compet it ion

because there are more players with a bet ter type, increasing the Òrat raceÓamong players. Second,

with more players, ÒcrowdingÓbecomes a bigger concern. We show that these two e! ects have exact ly

o! set t ing e! ects on aggregate entry. Nevertheless, as compet it ion increases, welfare decreases. The

key insight is that the Òrat raceÓ e! ect increases with compet it ion, thus players choose to learn

more. While ceteris paribus more learning can alleviate ine" cient over-ent ry (as stated above), more
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learning due to increased compet it ion does not change the amount of ent ry. Thus the higher learning

cost implied by more compet it ion is socially wasteful.

We analyze two extensions. First , we show that when bet ter types Þnd socially more valuable deals

in the new market , then more compet it ion often leads to an allocat ion that is Òtoo e" cientÓcompared

to the plannerÕs solut ion. The reason is similar to that in the baseline model, it is due to over-learning

that decreases welfare. Second, we also extend our model to the case in which there is heterogeneity

across players: some are more sophist icated and thus can learn at a lower cost than others. Keeping

the mass of all players Þxed but increasing the share of sophist icated players might also decrease

welfare. Init ially, increasing the fract ion of sophist icated players increases welfare since it raises the

average sophist icat ion of players and this can alleviate over-ent ry. However, further increasing the

fract ion of sophist icated players beyond a certain threshold, less sophist icated players are afraid of

being ripped o! and exit the market . Once less sophist icated players exit , sophist icated players engage

in a vicious Òrat raceÓof learning which leads to decreasing welfare, similar to the baseline model.

Thus like in opacity, in many cases there is an intermediate mix of sophist icated and unsophist icated

players that maximizes welfare. Ident ifying the most sophist icated players as high-frequency t raders

connects this result to the policy debate on the social beneÞt of ult ra-high frequency t rading.1

Our main contribut ion is to study the welfare e! ects of opt imal learning in an entry game with

uncertain compet it ive advantage. Our paper is connected to various branches of literature. First ,

there is a growing literature on the welfare e! ects of endogenous informat ion acquisit ion, e.g. Myat t

and Wallace (2012) and Colombo, Femminis, and Pavan (2014). While this literature focuses on a

common-value learning, we analyze an environment when players learn about their relat ive advantage

compared to the other ent rants.

Second, from a methodological view point we rely on the rat ional inat tent ion approach pioneered

by Sims (1998, 2003). We follow the branch of the literature which allows for fully ßexible informa-

1See, for example, Securit ies and Commission (2010).
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t ion acquisit ion as Matÿejka and McKay (2015), but rest rict ourselves to binary act ions similarly to

Woodford (2008), Yang (2015,b).2

Third, there is a literature analyzing entry/ exit in Þnancial markets in the presence of externalit ies

induced by other investors. Stein (2009) int roduces a simple model of crowded markets. More gener-

ally, there is a classic literature on socially ine" cient ent ry, e.g. Tullock (1967), Krueger (1974), and

Loury (1979). We contribute to this literature by int roducing a ßexible, but cost ly learning technology

and studying its welfare e! ects. Relatedly, Abreu and Brunnermeier (2003) and Moinas and Pouget

(2013) show that the inability to learn about oneÕs relat ive posit ion versus that of other investorsÕis

a key ingredient in sustaining excessive investment in bubbles. This highlights our cont ribut ion in

adding learning to a model of crowded markets with potent ial over-ent ry.

Finally, there are numerous papers showing excessive investment in learning or e! ort . There is a

literature on the social value of private learning: e.g. in Hirshleifer (1971), private informat ion can

be detrimental as it changes ex ante incent ives for insurance, in Glode, Green, and Lowery (2012),

learning a! ects ex-post t rading opportunit ies. These papers study welfare e! ects in markets with

asymmetric private informat ion, while in our framework informat ion is imperfect but symmetric.

The rest of the paper is st ructured as follows. In Sect ion 2 we present our model. In Sect ion 3

we analyze the opt imal choice of ent ry and learning and the e! ects of opaqueness and compet it ion on

crowding and welfare. In Sect ion 4 we consider extensions of the payo! funct ion and also allow for

heterogeneity in player sophist icat ion. Sect ion 5 concludes. All proofs are relegated to Appendix A.

Further analysis can be found in the online appendices: In Appendix B we analyze median entrants.

In Appendix C we give a st ructural microfoundat ion for the reduced form model and analyze its

economic implicat ions. We analyze Gaussian signals instead of fully ßexible learning in Appendix D.

2The other successful approach is to allow for cont inuous act ions, but rest rict the signals to be Gaussian. See Ma«ckowiak
and Wiederholt (2009), Hellwig and Veldkamp (2009) and Kacperczyk, Nieuwerburgh, and Veldkamp (2016) for int riguing
models using this approach.
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2 A model of learning and invest ing in crowded market s

In this part we describe our setup. We Þrst present the payo! funct ion, then int roduce the ßexible

learning technology and deÞne the real outcomes. Finally, we discuss potent ial interpretat ions and

microfoundat ions of our reduced form model.

2.1 Payo! s

Consider an entry game with a cont inuum of players of mass M , each with a type ! uniformly

dist ributed over [0, 1]. M measures the level of compet it ion between the players. Each player can

decide to take an act ion: whether to enter the market or not . ! characterizes the playerÕs ability to

ident ify bet ter investment opportunit ies in this new market than others. Lower ! implies a bet ter

type. The ut ility gain (or loss, if negat ive) from entry is given by

# u(! ) = 1 ! " áb(! ) + # áa(! ) ! $ á! (1)

where # and " are constant parameters. b(! ) denotes the equilibrium mass of ent rants with a type

bet ter than ! . a(! ) denotes the equilibrium mass of ent rants whose type is worse than ! . We show in

the microfoundat ion in Appendix C that it is natural to assume that that " > |#|. First , this implies

that , " + # > 0, which is without loss of generality since it is simply consistent with the interpretat ion

that a lower ! represents a bet ter type. Second, it follows that " ! # > 0, such that the median entrant

imposes a negat ive externality on others, that is, the market is prone to get t ing crowded from a social

point of view. It also follows that " > 0 while # could be posit ive or negat ive, though we focus most

of our analysis on the more interest ing case of # > 0. When $ > 0, bet ter players have an absolute
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advantage, that is, bet ter types derive more ut ility from entering regardless of the entry decision of

others. We discuss this case in Sect ion 4.1, otherwise we analyze the simpler case of $ = 0.3

As we specify below, players do not know their type, but can gather informat ion about it through

a cost ly learning process.

2.2 Learning cost based on ent ropy

Before entry, players can engage in cost ly learning about their type. Observe that if H (á) is any

intuit ive measure of uncertainty then H (! ) ! H (! |s), the reduct ion of uncertainty after observing

signal s, is a measure of learning induced by signal s. Following Sims (1998), we measure uncertainty

by specifying H (á) as the Shannon-ent ropy of a random variable.4 Therefore, we specify the cost of

learning a signal s as being proport ional to the induced reduct ion in ent ropy of ! : H (! ) ! H (! |s) .

This quant ity is often called the mutual informat ion in ! and s. As Sims (1998) argues, the advantage

of such a speciÞcat ion is that it both allows for ßexible informat ion acquisit ion and can be derived

based on informat ion theory. Note that the payo! (1) for a given ! in our model is linear in ent ry.

Woodford (2008) derives the opt imal signal st ructure and entry decision rule for such problems which

we restate in the lemma below.

Lemma 1. Opt imal signal choi ce. The optimal signal structure is binary: players choose to receive

signal s = 1 with probabili ty m(! ) and s = 0 with probabili ty 1! m(! ), given their type ! . The optimal

entry decision conditional on the signal is: enter if s = 1, stay out if s = 0.

Thus, similar to Yang (2015) the condit ional probability of ent ry m(! ), or equivalent ly, the condi-

t ional probability of get t ing a signal 1, is the only choice variable. The intuit ion for the binary signal

3In the main text , we work with the reduced form payo! (1). In Appendix C, we embed the reduced form game into
an explicit model of capital reallocat ion. Also, in an earlier version Kondor and Zawadowski (2016), we provide microfoun-
dat ions in various other contexts, including product ion with local spill-overs, consumpt ion with externalit ies, and academic
publicat ions. The crit ical feature of all microfoundat ions is that each playerÕs pay-o! is lower if bet ter types also enter, while
worse entrants can either help or hurt . These applicat ions provide further insights on the interpretat ion of parameters ! ,"
and #. We summarize these applicat ions in sect ion 2.4.

4The entropy of a discrete variable is deÞned as
!

x P(x) log 1
P (x ) , where the random variable takes on the value x with

probability P(x), see MacKay (2003).
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st ructure is that the only reason players want to learn about ! is to be able to make a binary decision

of whether or not to enter. Given the linearity of the problem, the ÒcheapestÓsignal to implement

the opt imal ent ry st rategy is also binary, it simply tells the player whether or not to enter.

We now write the cost of learning, deÞned by the reduct ion in ent ropy, in case of a binary infor-

mat ion st ructure. Denote the amount of learning L using the mutual informat ion in type ! and signal

s (deÞned in Lemma 1) as

L(m) " H (! ) ! H (! |s) = H (s) ! H (s|! ) = (2)
!

p log
"

1
p

#
+ (1 ! p) log

"
1

1 ! p

#$
!

%1

0

!
m(! ) log

"
1

m(! )

#
+ (1 ! m(! )) log

"
1

1 ! m(! )

#$
d!

where the Þrst equat ion is a property of Shannon-ent ropy. p denotes the uncondit ional probability of

ent ry and is deÞned by:

p =
%1

0
m(÷! )d÷! (3)

The expression for learning (2) can be understood in the following way. There is no learning if the

signal is uninformat ive about the state, that is, if it prompts the player to enter with probability p

uncondit ional on its type ! . Indeed, it is easy to check that when m (! ) is constant at p then L (m) = 0.

Thus, learning depends on how much informat ion the signal contains about the state. Intuit ively, the

steeper m(! ) becomes in ! (keeping average entry p constant ), the more the player is di! erent iat ing its

ent ry decision according to its type and the higher the entropy reduct ion, thus the higher the learning

cost . The highest cost is achieved when m (! ) is a step funct ion. Note that L is bounded from above

but might generate inÞnite marginal cost of learning.

Our measure of the cost of learning induced by a signal deÞned in Lemma 1 is µ áL (m) where µ is

an exogenous marginal cost parameter. µ is our measure of the opacity of the market . We assume that

players have to decide about the amount of informat ion acquisit ion ex ante without any knowledge

about the act ion of others. We interpret this as the cost of building an informat ion gathering and

evaluat ion ÒmachineÓwhich includes the costs of gathering and opt imally evaluat ing the right data.
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Convenient ly, standard results in informat ion theory imply that the entropy of a random variable

is proport ional to the average number of bits needed to opt imally convey its realizat ion. Hence, the

parameter µ can be interpreted as the cost of building a marginally larger informat ion gathering and

evaluat ing machine or writ ing a longer ÒcodeÓ.5

2.3 Compet it ive and plannerÕs solut ion

We deÞne the compet it ive solut ion of the game as a Nash equilibrium: st rategy proÞles mi (! ) : [0, 1] #

[0, 1] for all i $ [0, 1], such that player iÕs st rategy is a best response to all other playersÕstrategy.

We rest rict our at tent ion to looking for a symmetric Nash equilibrium in which all players choose the

same m(! ) funct ion, thus the i subscript is suppressed in what follows. Remember that the payo!

of player ! depends on the mass of players with higher and lower ! entering. In case of symmetric

st rategies, the mass of players with types lower (i.e. bet ter) than ! who choose to enter is

b(! ) = M á
%!

0
m(÷! )d÷! , (4)

while the mass of types higher (i.e. worse) than ! who choose to enter as

a(! ) = M á
%1

!
m(÷! )d÷! , (5)

and M áp = b(! ) + a(! ) is the aggregate entry of players.

Players aim to maximize their expected payo! from entering, net of learning costs:

V =
%1

0
m(! ) á# u(! ) d! ! µ áL(m), (6)

5An alternat ive would be to think of capacity as limited and µ being the Lagrange mult iplier of the capacity const raint .
Instead, our modelling choice captures the idea that in most relevant contexts learning capacity can be expanded, even if for
a cost . That is, the player can decide to use more complex code to evaluate data, hire new sta! or spend more t ime with the
analysis before entry.
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where # u is the ut ility gain of ent rants deÞned by (1). We deÞne welfare6 as the total ut ility gain

from entry W " M áV , and aggregate revenue of the players as their expected payo! before taking

into account learning costs M áR " M á
&1

0 m(! ) á# u(! ) d! . In the compet it ive solut ion, each player

chooses m(! ) and takes # u as given. The social planner can choose the st rategy m(! ) of all players

and takes into account that # u also depends on m(! ).

2.4 A pplicat ions

There are various applicat ions which imply the reduced form payo! (1). The common theme in these

applicat ions is that each playerÕs pay-o! is lower if bet ter types also enter (" > 0), while worse entrants

can typically increase the payo! (# > 0). Applicat ions di! er in the interpretat ion of a bet ter type,

and in what the source of the externalit ies are.

In Online Appendix C, we consider the problem of a Þnancial investor who develops a novel t rading

st rategy. Her problem is that she does not know whether she is among the Þrst investors with this

t rading idea or the st rategy is already ÒcrowdedÓas described by Stein (2009). In the lat ter case, not

only her realized return is expected to be smaller, but in the case of an aggregate liquidity shock, her

losses induced by Þre-sales are larger. On the other hand, a larger mass of late players can help her

if she is subject to an idiosyncrat ic liquidity shock. This is so, because they can provide her liquidity,

i.e., bet ter terms for exit . We show that in this applicat ion, a bet ter type is the player who Þnds

the new opportunity early. The size of " is related to the price impact of early ent rants, while # is

related to the beneÞt of liquidity provided by late ent rants. " ! # is higher when Þre-sales are more

frequent and more severe. In this set t ing opacity can be interpreted as the amount of informat ion

that is available about other t radersÕtrading st rategy and the informat iveness of price. The regulator

6In principle, there might exist applicat ions were V , the per capita ut ility is a bet ter measure of welfare than total ut ility
W . We have opted to focus on W because of two reasons. First , in the applicat ions we have considered and summarized in
sect ion 2.4, W tends to be a more relevant welfare measure. In these applicat ions, " u tends to measure the product ivity gain
on a reallocated unit of capital a potent ial ent rant can t ransfer towards a new opportunity. Potent ially, the economy beneÞts
more when more capital is reallocated. This potent ial beneÞt is measured by total ut ility and not per capita ut ility. Second,
our results showing that welfare might be decreasing in M are st ronger if one consider the measure W . In fact , whenever W
is decreasing in M , V must be also decreasing.
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can potent ially make markets more t ransparent by e.g. collect ing and disclosing the amount of capital

devoted to di! erent t rading st rategies.

In theworking paper version Kondor and Zawadowski (2016), weprovide further microfoundat ions.

For instance, our payo! funct ion can be derived from the problem of potent ial ent rants into a market

with scarce inputs and local spill-overs. Consider a technology start -up developing a new service with

network externalit ies. A late ent rant might st ruggle to at t ract the best specialized engineers and other

scarce resources paying a premium. On the other hand, more late ent rants can increase the value of

the product for all Þrms through the network externality. Large levels of opacity could result from

secret ive product development to guard intellectual property. A planner could increase t ransparency

by mandat ing the report ing and publishing of product development plans and the amounts invested

in certain act ivit ies.

Finally, we also consider a tournament model in academic publicat ions. When a researcher chooses

a subÞeld to work on, she has to make sure that she can write bet ter papers than others. This might

not beclear without signiÞcant investment in understanding theconnected literatureand methodology.

At the same t ime, she would like to enter to a Þeld where many others enter, otherwise her impact

might remain very low, even if her quality of work is high. In this set t ing opacity measures how hard

it is to Þgure out what other researchers are working on or planning to work on. A planner could

increase t ransparency by publicizing research plans and encouraging disseminat ion and feedback on

early stage research.

3 M odel Solut ion

In this sect ion we analyze the model. We start by the characterizat ion of the no informat ion (µ = %)

and full informat ion (µ = 0) benchmark. We then formulate and solve the playersÕand the plannerÕs

problem for general levels of opacity µ. Finally, we derive the welfare e! ects of more compet it ion

(higher M ) and less t ransparency (higher µ). This sect ion contains the main insights of the model.
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We argue that opaque markets tend to be more crowded, opaqueness is likely to be beneÞcial if

compet it ion is not too Þerce, and that Þercer compet it ion leads to more wasteful learning leading to

deteriorat ing welfare without a! ect ing crowding. We also explain the main mechanisms behind these

insights.

In this sect ion, we allow for any " and # in (1) sat isfying our parameter rest rict ions but rest rict $

to 0. We analyze the $ > 0 case in an extension in Sect ion 4.1 to show that results are qualitat ively

similar in that case.

3.1 Full and no informat ion benchmark

To bet ter understand the opt imal st rategies and aggregate entry, we Þrst look at the ext reme cases

of full informat ion and no informat ion. These ext reme cases highlight that the nature of externality

changes depending on the amount of informat ion. While without informat ion both # and " repre-

sent externality, with full informat ion only " does. We show that this implies under-ent ry with full

informat ion whenever # > 0, and over-ent ry with no informat ion regardless of the sign of #, both

compared to the plannerÕs solut ion.

The next Lemma characterizes opt imal st rategies and entry in the compet it ive solut ion and under

the planner in the full informat ion benchmark, that is, when the marginal cost of reducing entropy,

µ, is zero. We also refer to this case as full t ransparency.

Lemma 2. Ful l i nfor mat i on benchmar k. Under ful l information (µ = 0), there is too little entry

in the competitive equilibrium if # > 0, and excessive entry if # < 0. In the symmetric competitive

equilibrium playersÕequilibrium strategy is a unit step function m(! )|µ= 0 = 1
'

! & 1
M "

(
, resulting in

aggregate entry

M áp|µ= 0 = min
!

1
"

, M
$

. (7)
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In the social plannerÕs optimum, one of the many symmetric optimal strategies is a unit step function

ms(! )|µ= 0 = 1
'

! & 1
M á(" ! # )

(
, and all of the plannerÕs optimal strategies imply aggregate entry

M áps = min
!

1
" ! #

, M
$

. (8)

Under full informat ion, in the compet it ive equilibrium, each player enters if and only if her pay-o!

is non-negat ive. The worst type entrant (with ! = 1
M " ) earns zero revenue. This results in st rategies

m(! ) that are unit step funct ions. Comparing (7) and (8) shows that in case of # > 0 the compet it ive

and social solut ions lead to the same entry if and only if M < 1
" . In that case, the mass of players

are so small that under both solut ions all players enter. Apart from this t rivial case, whether the

compet it ive solut ion implies under- or over-ent ry Ðcompared to the social plannerÕs choice Ðdepends

on the sign of #. There is excessive entry in the compet it ive equilibrium if # > 0, since players with

higher ! do not take into account the posit ive e! ect of their ent ry that accrues to entrants with lower

! . This highlights the fact that under full informat ion, externalit ies are fully captured by #.

We now turn to the of no informat ion case, which we also refer to as full opacity. In this case

each player enters with a constant probability irrespect ive of its type ! since learning about its type

is prohibit ively expensive. This results in st rategies m(! ) that are ßat funct ions.

Lemma 3. N o infor mat i on benchmar k. In the absence of information (µ # %), there is al-

ways excessive entry in the competitive equilibrium. The competitive entry function is constant at

m(! )|µ" # = min
)

2
M (" ! # ) , 1

*
, implying aggregate entry of

M áp|µ" # = min
!

2
" ! #

, M
$

(9)

The social plannerÕs entry functions is also constant at ms(! )|µ" # = min
)

1
M (" ! # ) , 1

*
, implying

aggregate entry of (8).
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Similarly, to the full informat ion benchmark, the compet it ive and social solut ions lead to the same

entry when the mass of total ent rants is small, M < 2
" ! # , because all enter with probability 1. This

threshold is determined by a zero ut ility condit ion for the average entrant . This leads to a larger

threshold than in the case of full informat ion where the threshold was determined by a zero ut ility

condit ion for the worst type (highest ! ) ent rant . For interior solut ions in the compet it ive equilibrium,

players are indi! erent between entering and not . The planner rest ricts ent ry in order to increase

the payo! to players. In fact the interior solut ion implies excessive entry under any other parameter

values: twice as many players enter in the compet it ive equilibrium than under the plannerÕs choice.

The intuit ion is analogous to the Òtragedy of commonsÓ: Each player fails to internalize that her own

entry reduces the expected beneÞt of ent ry for all other ent rants. This follows from the assumpt ion of

" > |#|, thus entering harms other ent rants on average and the market is prone to ÒcrowdingÓ. Since

players enter irrespect ive of their type, what mat ters is the net average externality on others, which

is captured by " ! #.

Why does only # corresponds to an externality under full informat ion, while both # and " do

under no informat ion? After all, expression (1) suggest that both low type entrants a! ect the payo!

of bet ter type entrants and vice-versa regardless of the amount of informat ion. In the full informat ion

benchmark the worst type entrant is the marginal type. This ent rant Þnds that if no one enters with a

worse type, and everyone enters with a bet ter type, her ut ility is exact ly 0. When # > 0, the planner

would like to force a slight ly worse type to enter also, as it would increase each bet ter typeÕs pay-o!

through the term a(! ), compensat ing for this worst typeÕs negat ive private pay-o! . The planner could

also take into account the negat ive e! ect of this addit ional ent rant on all the worse type entrants

through the term b(! ), but those do not enter anyway. This is why " does not correspond to an

externality under full informat ion.

In contrast , under the no informat ion benchmark, each type enters with the same posit ive proba-

bility. That is, the median entrant is the marginal type. Her ut ility is exact ly zero in equilibrium. The

median entrant e! ects the pay-o! s of both the bet ter type entrants through the term a(! ) and the

14



worse type entrants through the term b(! ). These e! ects are ignored in the compet it ive solut ion, but

not under the planner. This is why both # and " corresponds to externalit ies under no informat ion.

3.2 Opt imal st rat egies in t he general problem

In this part , we derive and describe the compet it ive equilibrium.

The following Lemma restates Proposit ion 1 of Yang (2015) for our model, which delivers our Þrst

order condit ions.

Lemma 4. Compet i t i ve best responses. The unique best response of a player to all other players

playing ÷m(! ) is:

i) m(! ) = 1 if and only if
&1

0 e! ! u ( ! )
µ d! & 1;

i i) m(! ) = 0 if and only if
&1

0 e
! u ( ! )

µ d! & 1;

i i i) m(! ) $ (0, 1) if and only if
&1

0 e
! u ( ! )

µ d! > 1 and
&1

0 e! ! u ( ! )
µ d! > 1, the optimal m(! ) is pinned

down by the Þrst-order condition:

1 ! M á" á
%!

0
÷m(÷! )d÷! + M á# á

%1

!
÷m(÷! )d÷! = µ á

"
log

!
m(! )

1 ! m(! )

$
! log

!
p

1 ! p

$ #
. (10)

To solve for theequilibrium m(! ), wedi! erent iate theÞrst -order condit ion (FOC) (10) with respect

to ! . That gives an ordinary di! erent ial equat ion for m(! ) where the original Þrst order condit ion at

! = 0 is the boundary condit ion. This ordinary di! erent ial equat ion can be solved up to the boundary

value m(0).

Pr oposi t ion 1. Compet i t i ve equi li br i um. There is a unique threshold øM > 0 pinned down by

øM á(# + " )
µ

= e! 1! " á øM
µ ! e! 1+ # á øM

µ , (11)

such that
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not thus opt imal. m(! ) then ßat tens out for higher levels (µ = 1) as learning becomes more cost ly

and eventually becomes completely ßat as with full opacity (µ = %) there is no learning as shown in

Lemma 3.

Note that for any level of opacity µ, the plannerÕs problem is the same as in the benchmark

described in Lemma 3 and there is no learning in the plannerÕs solut ion. Players want to di! erent iate

between states, but the planner does not . Every player wants to know whether she is bet ter than

the other players even if this is wasteful from the social plannerÕs point of view. We label this as the

Òrat -raceÓe! ect and it is driven by the assumpt ion " > |#|.

3.3 T he Welfare E! ect of Compet it ion and Opacit y

This part contains our main results on the welfare e! ects of compet it ion and opacity. First , we

describe the two benchmark cases of full opacity and full t ransparency as a funct ion of the degree

of compet it ion M . Then, we proceed to the welfare e! ects of compet it ion. Finally, we analyze the

welfare e! ects of opacity.

The welfare in the benchmark cases is presented in the following Lemma and illust rated in the

bot tom right panel of Figure 2.

Lemma 5. W elfare in the no infor mat i on and ful l i nfor mat i on benchmar ks.

1. In all cases, if competition M is low enough that all players enter, welfare is given by:

Wful l entry = M á
!

1 ! M á
" ! #

2

$
. (14)

2. In the competitive equilibrium, if M ' 1
" , with ful l information: W |µ= 0 = #+ "

2á" 2 .

3. In the competitive equilibrium, if M ' 2
" ! # , with no information: W |µ" # = 0.

4. In the plannerÕs solution, if M ' 1
" ! # , both under ful l and no information: W S = 1

2á(" ! # ) .
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Note Þrst that welfare under the plannerÕs solut ion is the same under both benchmarks. This is so,

because $ = 0, hence the planner cares only about aggregate entry as opposed to entry by each type.

Therefore, the planner can implement the full informat ion entry in the no informat ion benchmark by

imposing ident ical probability of ent ry for all types. Welfare is increasing in compet it ion M as long

as compet it ion is not excessive, i.e. M < 1
" ! # because below this level there are not enough players

to implement the socially e" cient level of ent ry. Welfare is constant above that level as more players

do not inßuence the level of aggregate entry.

Turning to the compet it ive solut ion, under no informat ion all players enter with probability 1 as

long as the average playerÕs ut ility is posit ive. This leads to a hump shape pat tern in M as shown

in Figure 2. Welfare is increasing as long as the mass of players is smaller than what is required

for the e" cient level, but decreases afterwards. Once welfare is zero, any addit ional increase in M

proport ionally reduces the probability of ent ry keeping aggregate entry and welfare constant .

Under full informat ion, only those players enter whose payo! is posit ive, keeping the average pay-

o! st rict ly posit ive. Whether there is over or under ent ry in the interior equilibrium, depends on the

sign of # as we discussed above.

Finally, given Lemma 5, it is easy to see that for some levels of compet it ion M , welfare is higher in

the no informat ion benchmark than in the full informat ion benchmark whenever # > 0. The intuit ion

is that under full informat ion entry is ine" cient ly low. No informat ion leads to higher ent ry which

can be closer to the e" cient level depending on M leading to higher welfare. We summarize this

observat ion in the following Corollary and return to this intuit ion in Subsect ion 3.3.2 when discussing

the e! ect of opacity on welfare.

Cor ol lar y 1. When the mass of players are in an intermediate range, M $
)

1
" , 2

" ! #

*
, welfare is

higher in the no information benchmark than in the full information benchmark.
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3.3.1 Compet it ion

In this part , we analyze the e! ect of compet it ion M on welfare for general levels of opacity µ. As a

preliminary step we show in Proposit ions 2 and 3 that the aggregate entry of players is insensit ive to

the degree of compet it ion once M is above the threshold øM deÞned in (11). However, øM is in general

di! erent from the socially opt imal level of aggregate entry deÞned in (8).

Pr oposi t ion 2. Crowding in compet i t i ve equi li br i um. The level of aggregate entry in the com-

petitive equilibrium is M áp = min
+
M , øM

,
.

For the intuit ion, recall that changing M changes the opt imal st rategy m (! ) for every player

through the rat race e! ect and the crowding e! ect . As the rat race e! ect primarily a! ects the slope

of the entry funct ion, as opposed to its level, it has lit t le inßuence on the average probability of ent ry

p. In contrast , due to the crowding e! ect the average entry p decreases in the mass of potent ial

compet itors M . In equilibrium, the decrease in p is exact ly proport ional to the increase in M , keeping

M áp constant .8 While aggregate entry is insensit ive to the level of compet it ion, it does depend on all

the other parameters of the model. In the next Proposit ion we characterize how the level of under-

or over-ent ry is determined by the relat ive st rength of the externalit ies implied by the parameters #

and " for Þxed level of opacity µ.

Pr oposi t ion 3. Comparat i ve stat i cs of crowding. I f there is su! cient competition, M >

max[ øM , 1
" ! # ], the amount of aggregate entry in the plannerÕs solution is øM s = 1

" ! # . Crowding is

deÞned by
øM
øM s

, the relative amount of competitive aggregate entry to plannerÕs optimum, and is

1. decreasing in #, and

2. increasing in " if # > 0, decreasing in " if # < 0 and does not depend on " if # = 0.
8Allowing players to ßexibly choose their informat ion st ructure is crucial in generat ing the result of constant ent ry as

the mass of players increases. With ßexible learning, the players can opt imally devise their informat ion to exact ly counter
the increase in the mass of players and thus enter at a constant aggregate rate. When learning is const rained, this is not
necessarily the case: we demonstrate this in Online Appendix D in which players can only buy Gaussian signals about their
type, subject to the same entropy cost as before.
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To bet ter understand the e! ects of " and # for Þxed µ, consider their e! ect on the di! erence of

social and private incent ives in the benchmarks presented in Lemmas 2 and 3. In the full informat ion

benchmark, crowding is
øM
øM s

|µ" 0 = " ! #
" . As # measures the social beneÞt of low-type entrants which

players fails to internalize, crowding is decreasing in #. In contrast , for Þxed #, larger " alleviates the

e! ect of this externality. If players su! er more by bet ter ent rants (larger " ), aggregate entry decreases

both under the plannerÕs and the compet it ive solut ions. However, when # > 0, this decrease in ent ry

is relat ively smaller in the compet it ive solut ion, because # > 0 implies under-ent ry. In cont rast , in the

no learning benchmark, crowding is
øM
øM s

|µ" # = 2, a rat io una! ected by the parameters. Therefore,

the e! ects driving the full informat ion benchmark carry over for intermediate values of µ.

Next , we show that while high levels of compet it ion do not e! ect aggregate entry and thus the level

of crowding, it does have a detrimental e! ect on welfare because it enhances the rat -race between play-

ers. Figure 2 shows the level of welfare, aggregate entry and revenue and total learning expenditure as

funct ion of the level of compet it ion M for several di! erent levels of opacity µ. In line with Proposit ion

2, aggregateentry and thus aggregate revenuedoes not changewith compet it ion if compet it ion is Þerce

enough (M > øM ). On the other hand, while the presence of some players (M < øM ) unambiguously

increases welfare in the compet it ive equilibrium, with high levels of compet it ion, welfare is decreasing

and tends to zero. We prove this formally in the following proposit ion.

Pr oposi t ion 4. W elfare and compet i t i on. I f M > øM , aggregate entry and the aggregate revenue

of players stays constant as we increase M . However, welfare becomes decoupled from revenue, and

converges to zero from above as M # %:

W ( øM ) > lim
M " #

W (M ) = 0. (15)

The reason for welfare tending to zero in this case is due to learning expenditure, see Figure 2.

As the mass of players in the market grows, they start worrying about crowding, and thus their

relat ive type ! , inducing them to learn about it . A rat race ensues with increasing amounts invested
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Figure 2: Real out comes as a funct ion of compet it ion
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T he four panels show the e! ect of compet it ion M on aggregate ent ry, aggregate revenue, total amount spent on learning by all players and welfare
of all players. For all panels the thin solid line is the social opt imum. T he light t hin solid line shows the compet it ive outcome with full opacity
(µ = # ) and the light t hin dashed line that for full t ransparency (µ = 0). T he thick (blue) lines are the compet it ive outcomes for intermediate
values of opacity µ: t he dashed line is that for µ = 0.2, while the solid line for µ = 1. T he plannerÕs solut ion is a (red) line. T he other parameters
are " = 4, # = 2, $ = 0. W hile aggregate ent ry and revenue are constant above a given level of compet it ion, welfare in the compet it ive equilibrium
always tends to zero with increasing compet it ion M for any level of posit ive opacity µ > 0. Note that t otal learning expendit ure is zero in the
plannerÕs solut ion and in the benchmark compet it ive equilibria for µ = 0 and µ = # .

in learning and reduced welfare. Thus increasing compet it ion among players leads to a drop in welfare

not because of overcrowding as was the case for full opacity (Lemma 5) but because of increased

spending on learning. In fact , compet it ion does not a! ect crowding at all, it only improves the type

of ent rants (see Appendix B).

Note, unlike in theno learning benchmark in Lemma 5, welfare isst rict ly posit iveunder compet it ive

solut ion for any parameter values. This shows that learning is useful under the compet it ive solut ion.

In fact , learning is a subst itute for coordinat ion. When learning is prohibit ively expensive, each player

enters with a probability that is too large. When players learn, they can part ially condit ion their ent ry
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on their type allowing for less aggregate entry. Indeed, as we later show in Proposit ion 5, crowding

decreases when markets are less opaque. The result ing coordinat ion is ine" cient , because social and

private incent ives for ent ry do not coincide. St ill, it is always bet ter than no learning at all. In

cont rast , the planner does not have to learn to coordinate as it can choose all playersÕact ions.

3.3.2 Opacit y

We now turn to the welfare e! ect of opacity. Since the a policymaker might be able to make the

market more opaque or t ransparent , as explained in Sect ion 2.4, the results help us understand what

kind of markets beneÞt from more t ransparency. We show that only markets with Þerce compet it ion

unambiguously beneÞt from more t ransparency. Less Þercely contested markets might even beneÞt

from more opacity, part ially because it makes players spend less on learning.

Welfare depends on aggregate revenue which itself is a funct ion of aggregate entry, and thus crowd-

ing, in the market . As a Þrst step, in Proposit ion 5 we show that increasing opacity µ unambiguously

increases crowding in the market .

Pr oposi t ion 5. Comparat i ve stat i cs of crowding. I f there is a su! cient mass M > max[ øM , øM s]

of players, the relative amount of competitive aggregate entry to social aggregate entry
øM
øM s

, i .e. crowd-

ing, is increasing in opacity µ.

Morecost ly informat ion leadsto morecrowding, becausethegameiscloser to a t ragedy of commons

problem as explained in Sect ion 3.2. Figure 3 summarizes how aggregate entry, revenue, learning

expenditure and welfare change as funct ion of opacity µ. One might expect that in a market prone

to crowding, making the market t ransparent (i.e. decreasing µ) increases welfare. However, as Figure

3 shows, welfare is not necessarily decreasing in opacity µ. In Proposit ion 6, we formally show that

there are levels of compet it ion M when higher opacity increases welfare.

Pr oposi t ion 6. Opt imal opaci t y.

1. I f M $
)

1
" , #+ "

(" ! # )á"

*
then maximal welfare in the competitive equilibrium is attained at µ > 0.
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Figure 3: Real out comes as a funct ion of market opacit y
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T he four panels show the e! ect of opacity µ on aggregate ent ry, aggregate revenue, total amount spent on learning by all players and welfare of
all players. We show the compet it ive equilibrium outcome for three levels of # . T he solid line is that for # = 2 and in this case full t ransparency
(µ = 0) is opt imal. T he dashed line is for # = 2.3 in which case an interior level of opacity µ is opt imal. For the dot t ed line # = 2.7, opacity above
a threshold or full opacity is opt imal. T he other parameters are " = 4, M = 1, $ = 0.

2. I f # is close enough to " , there exists an interval of µ in which welfare is increasing in opacity

(i.e. %W
%µ > 0) for any M > øM .

The Þrst result that full t ransparency is not necessarily opt imal is driven by compet it ive under-

ent ry for # > 0. As discussed in Sect ion 3.1, full informat ion is not necessarily opt imal in this case

because there is insu" cient ent ry. As opacity increases, ent ry gets closer to the e" cient level, which

increases welfare. While this above result is already apparent from Lemma 5, adding endogenous

learning allows us to analyze the opt imal level of opacity. Numerical results show that in many cases

the opt imal opacity of the market is inbetween full t ransparency and full opacity. We show the opt imal

level of opacity as a funct ion of # and M in Figure 4.
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Figure 4: Opt imal Opacit y
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T he Þgure shows the opt imal level of opacity as a funct ion of # and M with " = 4 and $ = 0. In the upper left area, full opacity (µ = # ) leads
to the highest possible welfare, keeping all other parameters Þxed. In the lower right area, full t ransparency (µ = 0) is opt imal. Between the
two regions, in the light area, t here is an interior level of opacity µ that leads to the highest welfare. From the Þgure it is clear that if t he only
di! erence between two market s is the level of compet it ion, t hen less compet it ive market s beneÞt from opacity, while more compet it ive market s
from t ransparency.

The intuit ion for the second part of Proposit ion 6 is much more subt le and is driven by the

welfare loss from endogenous learning. Increasing opacity has two addit ional e! ects beyond increasing

crowding: First , it increases the expenditure on learning for a Þxed amount learning. Second, by

increasing the marginal cost of learning it discourages players from learning. This second e! ect

dominates for large µ. This is illust rated by Figure 3: total learning expenditure is hump-shaped in

µ. Thus for intermediate values of µ, increasing opacity has a st ronger beneÞcial e! ect on decreasing

learning expenditure than the detrimental e! ect it has on increasing crowding. St rict ly speaking, the

Proposit ion only shows welfare is locally increasing in opacity but numerical simulat ions in Figure 3

show that full t ransparency is not a global opt imum in this case either. E.g. for # = 2.3 in the Þgure,

an interior level of µ is opt imal even though there is already excessive crowding as is apparent from

the decreasing aggregate revenue of players.

Overall, the increasing opacity entails a t rade-o! between potent ially decreasing total learning

expenditure and making crowding worse. As shown in Figure 4, intermediate opacity is opt imal if #

is high and the compet it ion in the market M is Þerce because in this case learning incent ives are very
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high and curtailing them has a beneÞt . Full opacity is not opt imal, since it leads to huge crowding

and zero welfare. On the other hand, full opacity is likely to be opt imal at low levels of compet it ion,

since in these cases insu" cient ent ry is the main issue and not allowing players to learn about their

type increases welfare by moving aggregate entry closer to its socially opt imal level. Overall, if the

policymaker can inßuence the degree of opacity a compet it ive market (change µ), he should make

markets with lots of compet it ion more t ransparent , while markets with less compet it ion and high #

might beneÞt from less t ransparency.

4 Ext ensions

In our Þrst extension weallow for $ > 0, i.e. thepayo! to playerswith bet ter types ishigher irrespect ive

of what other players do. We show that our previous results, at tained in the more t ractable baseline

set t ing with $ = 0, qualitat ive hold in this more general set t ing as well. Thus the assumpt ion that

bet ter ent rants do not get a higher payo! , i.e. there is no social value to bet ter types entering, is not

driving our results.

In our second extension, we slight ly reinterpret our measure of opacity µ: one can think of it not

only as a measure of the market but also as an at t ribute of players. Some players might be ÒsmarterÓ

and thus have a lower marginal cost of learning than others. We show that increasing the share of

smart players is similar to making the market more t ransparent , thus might not be opt imal.

4.1 Social ly more e" cient t ypes

Unt il now we analyzed the case where payo! of a player ! depends only on her rank among those who

entered. As a result , the type-dependent part of ut ility was simply redist ribut ive. That is, the planner

was not interested in which type enters, only in aggregate entry. In this part , we consider the case of

$ > 0, where bet ter types are more e" cient in both a social and a compet it ive sense. The model can
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only be solved numerically and the real outcomes are shown in Figure 5 as a funct ion of compet it ion.

The formal calculat ion of the equilibrium can be found in Online Appendix E.

Figure 5: Compet it ive and social opt imum wit h social ly more e" cient t ypes
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T he four panels show aggregate ent ry, aggregate revenue, total amount spent on learning by all players and welfare of all players as a funct ion of
compet it ion M . T he solid line shows the compet it ive outcome, while the dashed line the plannerÕs opt imum. T he parameters are: " = 4, # = 2,
µ = 0.5, $ = 0.5. T he main di! erence compared to Figure 2 using $ = 0 is that while aggregate ent ry is close to ßat above a threshold M , it
is not completely ßat . A lso, t here is posit ive spending on learning even in the plannerÕs equilibrium, though much less than in the compet it ive
equilibrium.

In this case, the social planner also wants to di! erent iate between states, the socially opt imal

ent ry funct ion ms(! ) is no longer constant , it is also downward sloping. However, the incent ive for

compet it ive learning is even higher since private incent ives include the rat race e! ect . Every player

wants to know whether it is ahead of the others.

We can understand the e! ect of $ > 0 by comparing Figures 2 and 5. As compet it ion increases,

aggregate entry is slight ly increasing in both the compet it ive and the social opt imum because bet ter

type entry has increasing beneÞt as the mass of players increases and there are more potent ial good
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entrants with low ! . In both cases, aggregate revenue is increasing faster in compet it ion M than

aggregate entry because most of the addit ional e" ciency comes from the bet ter ent rants, not simply

more entry. The main insight of the simpler model st ill holds, players are also mot ivated by the rat

race so there is excessive learning, though the welfare loss is part ially o! set by the welfare gain from

the shift ing type dist ribut ion of ent ry towards bet ter players. Nevertheless, the revenue gains from

bet ter ent rants, which is a side-e! ect of over-learning, cannot o! set the loss from excessive learning,

thus welfare st ill converges to zero.

4.2 H et erogenous players

In this sect ion we consider an extension with heterogenous players. E.g. in a Þnancial market , one can

think of high-frequency t raders and certain hedge funds as more sophist icated than pension funds.

Instead of changing the opacity µ of the market , we analyze how changing the composit ion of players

inßuences welfare. We show that increasing the share of sophist icated t raders does not necessarily

increase welfare because of the ensuing rat -race, similarly to our previous analysis. This allows us to

draw the conclusion that e.g. the increasing presence of high-frequency t raders in markets might be

welfare-dest roying.

We modify the model from Sect ion 2 by considering two groups of players: %áM mass of players is

sophist icated and faces a lower learning cost of µL , while (1! %) áM mass of players is unsophist icated

and faces a higher learning cost of µH > µL . Both groups of players have types ! that are uniformly

dist ributed over [0, 1]. We consider the symmetric equilibrium in which sophist icated players choose

the same entry st rategy of mL (! ), while unsophist icated players choose the same mH (! ). To simplify

the problem, we assume that the unsophist icated cannot learn at all, i.e. µH # %, result ing in a

constant mH in ! as described in Lemma 3. Otherwise the solut ion would be a set of two joint

di! erent ial equat ions which cannot be easily solved. We relegate details on how to compute the

equilibrium in this case to Online Appendix E.
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Figure 6: Real out comes wit h varying composit ion of players
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In this Figure we vary the port ion & of sophist icated players who can learn with low cost µL , while 1 ! & cannot learn at all, while the mass of
players M is kept constant . T he Þrst four panels show the same outcomes as in our original model, see Figure 2. T he Þfth Þgure shows the share
of unsophist icated players who enter. Parameters: " = 4, # = 2, while µ takes three di! erent values: µL = 0.04 (dot t ed line), µL = 0.5 (dashed
line), µL = 5 (solid line). In all cases the social planner would allow each player to enter wit h probability 1

M á( " ! # ) = 1
4 , yielding aggregate ent ry

of 1
" ! # = 1

2 .

We solve the above set of equat ions numerically since it is analyt ically int ractable. In Figure

6, we vary the port ion % of sophist icated players who can learn with cost µL . Thus, the overall
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mass of players M is kept constant but a growing fract ion of players is sophist icated. At % = 0

only unsophist icated are present and thus they enter unt il revenue is zero (given that M is large

enough), yielding zero welfare. As % init ially increases, welfare increases since the average player is

more sophist icated and overcrowding is alleviated. There are two e! ects leading to decreasing welfare

as %increases further. First , if the sophist icated are very sophist icated (low µL ) then having lots of

sophist icated leads to under-ent ry for # > 0, thus decreasing welfare. Second, and more interest ingly,

welfare can be decreasing in the share of sophist icated players % even for high µL in the absence of

under-ent ry. Consider for example the case of µL = 5 in Figure 6. Aggregate entry is well above

its socially opt imal level of 0.5, st ill if % is high, increasing % is welfare dest roying. The reason is

that as % increases, the unsophist icated are less likely to enter and above about % = 0.82 they are

completely driven out of the market . Once the unsophist icated are not present , welfare is decreasing

in %as the sophist icated engage in a rat -race of learning, as illust rated by the fast increasing learning

expenditure.

Figure 6 also highlights the int ricate interplay between the entry and learning st rategies of the

sophist icated and the unsophist icated. First , the remaining unsophist icated are less likely to enter

as the fract ion % of sophist icated increases because there is more and more aggregate entry at low

! , cream-skimming the market and leaving less revenues for unsophist icated players who enter indis-

criminately. Second, unsophist icated players are completely driven out of the market for high %when

sophist icated players are also not perfect ly sophist icated (if µL > 0), thus they are compet itors of

the unsophist icated, cannibalizing their revenues and eventually driving them out . The intuit ion is

similar to that in high-frequency t rading where some players may stay out of the market because they

are afraid of very fast players front -running them.

Interest ingly, if the sophist icated players are sophist icated enough (µL close to zero), unsophis-

t icated players will never be completely driven out of the market , see Figure 6. The reason is that

perfect ly sophist icated players follow cuto! st rategies with the last ent rant at the cuto! get t ing zero

payo! and being indi! erent . If only sophist icated players are present in the market , then an unsophis-
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t icated player with a uniform prior about its ! knows it can get posit ive payo! if its ! is smaller than

the cuto! of the perfect ly sophist icated players and gets zero payo! (equal to that of the last perfect ly

sophist icated to enter) with ! higher than the cuto! since there are no other ent rants with higher ! in

equilibrium. Figure 6 shows that in the case of µL = 0.04 if there are only few unsophist icated players

(%close to one), all unsophist icated enter.

The above analysis also highlights how a not very well informed (unsophist icated) player should

behave if she learns about an investment opportunity. Sheshould enter with relat ively high probability

if she thinks players in the market are predominant ly sophist icated but only if she believes that the

sophist icated players are very sophist icated. On the other hand, she should not enter at all, if she

thinks the other sophist icated players are not su" cient ly sophist icated. She may also choose to enter

if she thinks that players are predominant ly unsophist icated.

5 Conclusions

We analyze a novel ent ry-game with endogenous informat ion acquisit ion to study the welfare e! ects

of opacity and compet it ion. Since players in an opaque market are uncertain about their compet it ive

advantage relat ive to others, they const ruct opt imal signals to learn about it subject to an entropy

cost . The opacity of the market is captured by the marginal cost of learning, while the extent of

compet it ion is modelled by the mass of players standing on the sidelines. In general, the individually

opt imal ent ry and learning decisions are socially subopt imal. Players always over-invest in learning

and more opaque markets tend to be more crowded. Nevertheless, t ransparency is not always op-

t imal as more opaqueness might st ill lead to higher welfare by discouraging cost ly learning without

excessively increasing crowding. Opaqueness is more likely to be beneÞcial if compet it ion is not too

Þerce, while t ransparency is preferred if compet it ion is excessive. Fiercer compet it ion leads to more

wasteful learning leading to deteriorat ing welfare without a! ect ing crowding. Also, a larger share of

sophist icated players can be welfare dest roying.
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A Proofs

P r oof of L em m a 1

Proof. T he proof follows that of Lemma 1 in Woodford (2008) which is ident ical t o that of Lemma 1 in Yang (2015). For a detailed

proof, see the working paper version of Yang (2015).

P r oof of L em m a 2

Proof. Under complete informat ion, in the compet it ive opt imum the player wit h the highest ! = ø! t o enter is indi! erent between

entering and not :

! M á" áø! + 1 = 0 (A .1)

yielding ø! = 1
M á" . Clearly if ø! > 1 in the above, t hen even the last player Þnds it opt imal t o enter and m(! ) = 1. T his yields (7).

To derive the plannerÕs choice, note that welfare is by deÞnit ion aggregate revenue minus total cost of learning. We show that

wit h $ = 0 aggregate revenue M áR only depends on the aggregate ent ry M áp.

M áR = M á
# 1

0
m(! ) á" u(! )d! = M á

# 1

0
m(! ) á

$
1 ! M á" á

# !

0
m( ÷! )d÷! + M á# á

# 1

!
m( ÷! )d÷!

%
d! = (A .2)

M áp ! M 2 á" á
# 1

0
m(! )

# !

0
m( ÷! )d÷! d! + M 2 á# á

# 1

0
m(! )

# 1

!
m( ÷! )d÷! d! = (A .3)

M áp ! M 2 á" á
# 1

0

# 1

0
m(! ) ám( ÷! ) á1{ ! > ÷! } d÷! d! + M 2 á# á

# 1

0

# 1

0
m(! ) ám( ÷! ) á1{ ! < ÷! } d÷! d! (A .4)

By symmet ry, each double integral can be simpliÞed by split t ing it int o two ident ical ÒhalvesÓwhich then can be rejoined. We

show this formally for t he Þrst one but the same can be shown for the second integral.

# 1

0

# 1

0
m(! ) ám( ÷! ) á1{ ! < ÷! } d÷! d! =

1

2
á
# 1

0

# 1

0
m(! ) ám( ÷! ) á1{ ! < ÷! } d÷! d! +

1

2
á
# 1

0

# 1

0
m(! ) ám( ÷! ) á1{ ! > ÷! } d÷! d! = (A .5)

1

2
á
# 1

0

# 1

0
m(! ) ám( ÷! )d÷! d! =

1

2
á
# 1

0
m(! )d! á

# 1

0
m( ÷! )d÷! =

1

2
áp2 (A .6)

T hus the aggregate revenue M áR simpliÞes to a funct ion of aggregate ent ry M áp:

M áR = M áp ! M 2 á" á
1

2
áp2 + M 2 á# á

1

2
áp2 = (M áp) ! (" ! # ) á

1

2
á(M áp)2 (A .7)

A ll t hat remains is thus to pin down the opt imal average (and thus aggregate) ent ry that maximizes (A .7). T he Þrst order

condit ion for t he maximum yields:

p =
1

M
á

1

" ! #
. (A .8)
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Clearly if t he result ing p > 1, then the opt imal st rategy is ms (! ) = 1, leading to (8). Because learning is free, we could choose

many symmet ric ent ry funct ions. For simplicity, let us choose the st rategy in which all players wit h ! < ø! enter, t he others stay

out .9

P r oof of L em m a 3

Proof. Under no informat ion, in the compet it ive equilibrium every player enters wit h probability p and they are all indi! erent

given they do not know their ! and use a uniform prior. Expected payo! t o entering:

# 1

0
(M á# á(1 ! ! ) áp ! M á" á! áp + 1) d! = 0 (A .9)

yielding the uncondit ional ent ry probability in (9). I f M is low and the implied ent ry is larger than one, then the revenue is not

driven to zero and everyone enters for sure implying p = 1.

Only aggregate ent ry mat ters for t he revenue and the ent ropy funct ion penalizes any learning that leads to a non-constant

condit ional ent ry funct ion m(! ). T hus in the social plannerÕs opt imum, the planner maximizes welfare by choosing a constant

condit ional ent ry funct ion m(! ) = p that maximizes welfare:

W (p) =
# 1

0
p á(M á# á(1 ! ! ) áp ! M á" á! áp + 1) d! . (A .10)

Taking derivat ive wit h respect t o p and set t ing to zero, t his implies the ent ry probability in (8). As before, if t he implied ent ry

probability is larger than one then everyone enters for sure m(! ) = 1 implying ps = 1.

P r oof of L em m a 4

Proof. T his Lemma is the adaptat ion of Proposit ion 1 of Yang (2015) for our model (which it self is based on Lemma 2 in Woodford

(2008)). For a detailed proof, see the working paper version of Yang (2015). For exhibit ional purposes we restate the most important

part of t he proof t hat derives (10).

First note that if t he st rategy funct ion of all other players is ÷m(! ), t hen

" u(! ) = 1 ! M á" á
# !

0
÷m( ÷! )d÷! + M á# á

# 1

!
÷m( ÷! )d÷! . (A .11)

We use a Þrst order perturbat ion method to devise the Þrst order condit ion. We set m(! ) + ' á((! ) as m(! ), while we keep the

ent ry decision of t he others ÷m Þxed:

# 1

0
((m(! ) + ' á((! )) á" u( ÷m, ! ) ! µ áL (m(! ) + ' á((! ))) d! . (A .12)

9In fact for t he case $ > 0 this is t he unique solut ion.
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We then take derivat ive wit h respect t o ' and then set ' = 0 yielding the FOC:

# 1

0
((! ) á

&

" u( ÷m, ! ) ! µ á

'

log
$

m(! )

1 ! m(! )

%
! log

& ( 1
0 m( ÷! )d÷!

1 !
( 1

0 m( ÷! )d÷!

) * )

d! = 0. (A .13)

Since the original equat ion is an opt imum, the above equality has to hold for any ((! ): t hus the part mult iplying ((! ) has to be

zero for all ! . Set t ing ÷m = m we arrive at t he symmet ric solut ion and get (10).

P r oof of P r op osi t ion 1

Proof. First , from part i) of Lemma 4 the symmet ric solut ion is m(! ) = 1 if and only if t he following condit ion holds:

# 1

0
e! ! u ( ! )

µ d! =
# 1

0
e! 1! M á" á! + M á# á( 1 ! ! )

µ d! $ 1 (A .14)

where we simply subst it uted " u(! ) using m(! ) = 1. Simplifying and rearranging this yields M $ øM where øM is deÞned by (11).

Now we show that (11) has a unique solut ion øM for all admissible parameters. To show this Þrst observe that t he second derivat ive

of t he funct ion M á( # + " )
µ ! e! 1 ! " áM

µ + e! 1+ # áM
µ in M is negat ive if and only if # 2 < " 2e

M ( # + " )
µ which holds for all M > 0 because

by our assumpt ions |" | > |# |, # + " > 0 and µ > 0. T hus, t he above funct ion deÞning øM is cont inuous, concave, has the value 0 at

M = 0. I t is also increasing in M at M = 0 because the Þrst derivat ive is posit ive if # + " > 0, which holds by assumpt ion. I t is

also t rue that t he funct ion diverges to ! # as M " # if " > |# |, which again holds by assumpt ion. T hus, it has a unique posit ive

root øM . In this case Lemma 4 states that m(! ) = 1 is a unique best response, t hus this is also a unique symmet ric equilibrium.

Second, m(! ) = 0 is never a symmet ric equilibrium since if it was, t hen the following would have to hold

# 1

0
e

! u ( ! )
µ d! = e

1
µ $ 1 (A .15)

where we simply subst it uted " u(! ) using m(! ) = 0. T his can never hold because µ > 0.

T hird, if M > øM we must thus be in case iii) of Lemma 4 and therefore have a symmet ric interior solut ion. Di! erent iat ing

the Þrst order condit ion (10) we arrive at t he following di! erent ial equat ion:

(M á# + M á" ) á ÷m(! ) = !
µ ám"(! )

m(! ) á(1 ! m(! ))
. (A .16)

T hus, t he compet it ive equilibrium st rategy m(! ) in the symmet ric equilibrium (m = ÷m) has to solve the above di! erent ial equat ion

with the original Þrst order condit ion (e.g. evaluated at ! = 0) as a boundary condit ion which is (13). T he solut ion of (A .16) is

1
m ( ! ) + log

!
1! m ( ! )

m ( ! )

"

M (# + " )
= C +

!

µ
(A .17)
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for an appropriate constant C. Set t ing ! = 0 above and subt ract ing from the above we can eliminate C and thus arrive at

1

m(! )
+ log

$
1 ! m(! )

m(! )

%
!

M (# + " )

µ
á! =

1

m(0)
+ log

$
1 ! m(0)

m(0)

%
. (A .18)

Taking logs and using the deÞnit ion of t he Lambert funct ion (upper branch if z > 0) yields (12). Note that we have only proved

the existence of a symmet ric equilibrium, as the above is a solut ion to (10) which Ð according to Lemma 4 Ð describes the unique

best response to the others playing the same interior st rategy. Note that we do not prove that (A .17) is a unique solut ion to the

di! erent ial (A .16) but based on numerical simulat ions this is likely to be the case.

P r oof of L em m a 5

Proof. In neit her cases are there any learning cost s, as eit her learning is free (µ = 0) or because there is no learning (if µ = # ).

T hus in all cases W = M áR and the expressions in the Lemma direct ly follow from plugging in the aggregate ent ry levels (from

Lemmas 2 and 3 into (A .7).

P r oof of P r op osi t ion 2

Proof. To show that M áp is constant in M once the solut ion m is interior, Þrst writ e the system of 3 equat ions determining p.

First , t he di! erence of Þrst order condit ion (10) at ! = 0 and ! = 1.

p =
µ

!
log

!
m ( 0)

1! m ( 0)

"
! log

!
m ( 1)

1! m ( 1)

" "

M (# + " )
(A .19)

Second, the boundary condit ion (10) at ! = 0

#M p + 1 = µ
$

log
$

m(0)

1 ! m(0)

%
! log

$
p

1 ! p

%%
. (A .20)

T hird, t he implicit (A .18) for m(! ) evaluated at ! = 1

log
$

m(0)

1 ! m(0)

%
! log

$
m(1)

1 ! m(1)

%
=

M (# + " )

µ
+

1

m(0)
!

1

m(1)
(A .21)

Subst it ut ing

x0 = log
$

m(0)

1 ! m(0)

%
(A .22)

and

x1 = log
$

m(1)

1 ! m(1)

%
(A .23)

the system of three equat ions can be writ t en as:

p =
µ(x0 ! x1)

M (# + " )
(A .24)
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#M p + 1 = µ
$

x0 ! log
$

p

1 ! p

%%
(A.25)

x0 ! x1 =
M (# + " )

µ
+ e! x 0 ! e! x 1 . (A .26)

Note that p > 0 by deÞnit ion (3) which implies x0 > x1 by (A .24). Subst it ut ing out p from (A .24), (A .25), (A .26) we arrive at a

system of two equat ions:

F = µ
$

x0 ! log
$

µ(x0 ! x1)

M (# + " ) + µ(x1 ! x0)

%%
!

$
#µ(x0 ! x1)

# + "
+ 1

%
= 0 (A .27)

G =
M (# + " )

µ
! (x0 ! x1) + e! x 0 ! e! x 1 = 0 (A .28)

To prove M áp is constant , it is su# cient t o prove $ ( M áp)
$ M = 0 which from (A .24) is equivalent t o

%x0

%M
=

%x1

%M
(A.29)

We apply CramerÕs rule both for x0 and x1 to the system of equat ions (A .27) and (A .28):

%x1

%M
=

+
+
+
+
+
+
+

$ F
$ x 0

! $ F
$ M

$ G
$ x 0

! $ G
$ M

+
+
+
+
+
+
+

+
+
+
+
+
+
+

$ F
$ x 0

$ F
$ x 1

$ G
$ x 0

$ G
$ x 1

+
+
+
+
+
+
+

(A .30)

%x0

%M
=

+
+
+
+
+
+
+

! $ F
$ M

$ F
$ x 1

! $ G
$ M

$ G
$ x 1

+
+
+
+
+
+
+

+
+
+
+
+
+
+

$ F
$ x 0

$ F
$ x 1

$ G
$ x 0

$ G
$ x 1

+
+
+
+
+
+
+

(A .31)

First , we show that t he denominator,

%F

%x0

%G

%x1
!

%F

%x1

%G

%x0
(A .32)

is always posit ive. For this, note that $ F
$ x 0

+ $ F
$ x 1

= µ. Hence, we can rewrit e the denominator as

%F

%x0

$
%G

%x0
+

%G

%x1

%
! µ á

%G

%x0
. (A .33)

As $ G
$ x 0

= ! 1
m ( 0) < 0 and (using x0 > x1),

%G

%x0
+

%G

%x1
= e! x 1 ! e! x 0 > 0, (A .34)
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it is su# cient t o show that $ F
$ x 0

> 0. T his is implied by the observat ions limM # 0
$ F
$ x 0

= " µ
# + " > 0 and

%$ F
$ x 0

%M
=

µ2(# + " )

(M (# + " ) + µ(x1 ! x0))2
> 0. (A .35)

Second, we show that t he numerators of t he Cramer rule for t he two derivat ives are equal, yielding the su# cient condit ion

(# + " )e! x 0 ! x 1
,
ex 0 + x 1 (M (# + " ) + µ(x1 ! x0)) ! µex 0 + µex 1

-

M (# + " ) + µ(x1 ! x0)
= 0. (A .36)

I t follows from (A .26) that t he denominator is non-zero if x0 %= x1. T hus it is su# cient t o prove that

M (# + " )

µ
+ (x1 ! x0) +

1

ex 0
!

1

ex 1
= 0, (A .37)

which is exact ly t he funct ion G = 0 deÞned in (A .28). T hus the ident ity holds and we have proved that M áp is constant in M for

interior solut ions.

L em m a A .1. T echn ical p r op er t ies of øM . Let us deÞne

A & e
øM ( # + " )

µ ! 2e
# øM + 1

µ + 1 (A .38)

and

B & "
$

e
# øM + 1

µ ! e
øM ( # + " )

µ

%
+ #

$
e

# øM + 1
µ ! 1

%
. (A .39)

For any set of feasible parameters, A > 0, B < 0, and

B á øM + e
øM ( # + " )

µ ! 1 < 0. (A .40)

Fur thermore,

d øM

d"
= !

$
A

B
# + 1

%
øM (" ! # ) (A .41)

d øM

d#
=

$
A

B
" + 1

%
øM (" ! # ) (A .42)

d øM

dµ
=

.

/ øM +
e

øM # + "
µ ! 1

B

0

1 1

µ
(A .43)

.

P r oof of L em m a A .110

10We thank G«abor Lippner for helping us with this proof.
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Proof. First note that rearranging (11) deÞning øM yields:

e
1
µ =

e" á
øM
µ ! e! # á

øM
µ

øM
µ á(# + " )

. (A .44)

Let us start by showing that A > 0. Using (A .44), (A .38) can be rewrit t en as:

A = e( # + " ) á
øM
µ ! 2 áe

1
µ áe#

øM
µ + 1 = e( # + " ) á

øM
µ ! 2 á

e( # + " ) á
øM
µ ! 1

(# + " ) á
øM
µ

+ 1 = ez !
2

z
á(ez ! 1) + 1, (A .45)

where we denote z = (# + " ) á
øM
µ . Note that z > 0 by assumpt ion thus it su# ces to show that z áA > 0 for all z > 0. T his follows

from the fact t hat limz# 0+ A áz = 0 and that t he Þrst derivat ive of A áz is 1 ! ez (1 ! z) which is st rict ly posit ive for z > 0. T he

lat t er statement is obvious for z ' 1 and for z < 1 it reduces to showing ez < 1
1! z . Using the Taylor series of ez around z = 0 it

holds that ez < 1+ z + z2 for z < 1 since
2 $

k = 3
1
k ! < 1

2 . I t is t hus su# cient t o prove 1+ z + z2 < 1
1! z which holds for all z ( (0, 1).

T hus we have shown A > 0.

In order to prove B < 0 it su# ces to prove that
øM
µ áe! # á

øM
µ áB < 0 since

øM
µ áe! # á

øM
µ > 0. Using (A .39) one can thus writ e:

øM

µ
áe! # á

øM
µ áB = (# + " ) á

øM

µ
áe

1
µ ! " á

øM

µ
áe"

øM
µ ! # á

øM

µ
áe! # á

øM
µ = e" á

øM
µ ! e! # á

øM
µ ! " á

øM

µ
áe" á

øM
µ ! # á

øM

µ
e! # á

øM
µ (A .46)

where we subst it uted e
1
µ from (A .44). T hus we only have to show:

e" á
øM
µ ! " á

øM

µ
áe" á

øM
µ < e! # á

øM
µ !

$
! # á

øM

µ

%
áe! # á

øM
µ . (A .47)

Denote f (t ) = et ! t áet , and the above simpliÞes to

f
$

" á
øM

µ

%
< f

$
! # á

øM

µ

%
. (A .48)

Since " á
øM
µ > ! # á

øM
µ follows from " + # > 0. I f # $ 0 then (A) follows from the fact t hat f (t ) is a monotone decreasing funct ion if

t > 0 since f "(t ) = ! t áet < 0 (and it is monotone increasing if t < 0). I f # > 0 then we use that by our assumpt ions that " > |# |.

T hus f
!

! # á
øM
µ

"
> f

!
! " á

øM
µ

"
since f (t ) is a monotone increasing funct ion if t < 0. T hus in this case it su# ces to show that

f
!

" á
øM
µ

"
< f

!
! " á

øM
µ

"
which means all we need to show that is f (t ) < f (! t ) for all t > 0, i.e. e2t á(t ! 1) + t + 1 > 0 for t > 0

which is obvious for t ' 1 and for t ( (0, 1) reduces to showing t + 1
1! t > e2t . An upper bound on e2t using the Taylor expansion is

e2t < 1 + 2t + 2t2 + 4t 3

3 + 2t4 for t ( (0, 1), which follows from approximat ing all fourt h and higher order terms from above using

2 $
k = 4

2k

k ! < 2. T hus it su# ces to show t + 1
1! t > 1 + 2t + 2t2 + 4t 3

3 + 2t4 which simpliÞes to 2
3 + 2t2 > 2

3 t and is t rue for all t ( (0, 1).

T hus we have shown B < 0.
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In order to prove B á øM + e
øM ( # + " )

µ ! 1 < 0 we Þrst mult iply it by 1
µ áe! # á

øM
µ > 0 and thus have to show

e! # á
øM
µ á

øM

µ
áB +

1

µ
á
$

e" á
øM
µ ! e! # á

øM
µ

%
< 0 (A .49)

using (A .46) this can be rewrit t en as

$
e"

øM
µ ! e! #

øM
µ

%
(1 + 1/ µ) ! "

øM

µ
e"

øM
µ ! #

øM

µ
e! #

øM
µ < 0 (A .50)

Let s = "
øM
µ and t = ! #

øM
µ , by our assumpt ions s > t . Using (A .44) 1

µ = log e
1
µ = log es ! et

s! t , subst it ut ing this into (A .50), one

needs to show:

1 + log
$

es ! et

s ! t

%
<

ses ! tet

es ! et
= t +

(s ! t )es

es ! et
= t + (s ! t )

es! t

es! t ! 1
(A .51)

Note that 1 + log
!

es ! et

s! t

"
= 1 + t + log

!
es ! t ! 1

s! t

"
, t hus denot ing z = s ! t > 0, it su# ces to prove

1 + log(ez ! 1) ! log z ! z
ez

ez ! 1
< 0. (A .52)

At z " 0+ the left hand side evaluates to zero, t hus it su# ces to show that it is monotonically decreasing in z. Taking the

derivat ive, we need to show

! 1 ! e2z + ez (2 + z2)

z(ez ! 1)2
< 0 (A .53)

Since the denominator is posit ive, we need to show ! 1 ! e2z + ez (2 + z2) < 0 for z > 0. Note that at z = 0 this evaluates

to 0, t hus it su# ces to show that ! 1 ! e2z + ez (2 + z2) is monotone decreasing. Taking the derivat ive again, one has to show

ez
,
z2 + 2z ! 2ez + 2

-
< 0 which simply follows from the fact t hat t he Taylor expansion of ez implies ez > 1 + z + z 2

2 for z > 0,

as we can neglect t he other posit ive terms. T hus we have shown that B á øM + e
øM ( # + " )

µ ! 1 < 0.

For the derivat ives of øM recall t hat øM is deÞned implicit ly by (11):

F =
øM á(# + " )

µ
! e! 1 ! " á øM

µ + e! 1+ # á øM
µ = 0. (A .54)

T hus, d øM
d. for any parameter Ò.Ó becomes: !

$ F
$ .

$ F
$ øM

by the implicit funct ion theorem. T hen, (A .42)-(A .43) are given by simple

algebra.

P r oof of P r op osi t ion 3

Proof. øM s = 1
" ! # follows from (8). Using it t he derivat ive of interest

$
øM

øM s
$ . for any parameter Ò.Óbecomes:

d
øM
øM s

d.
=

%øM

%.
á(" ! # ) +

%(" ! # )

%.
á øM . (A .55)
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Basic algebra and Lemma A.1 yields
d

øM
øM s

d#
=

A

B
á" á øM < 0 (A .56)

proving the Þrst statement , and
d

øM
øM s

d"
= !

A

B
á# á øM , (A .57)

the sign of which is the same as the sign of # , proving the second statement in the proposit ion.

P r oof of P r op osi t ion 4

Proof. By Proposit ion 1 when M $ øM all players enter wit h probability 1. Hence, all equilibrium object s are the same for the

planner and in the decent ralized solut ion. In part icular, average ent ry of a player is p = 1 thus expected aggregate ent ry is M .

Aggregate revenue and welfare in this full ent ry case are

M áR = W = M áRs = Ws = M á
# 1

0
(M á# á(1 ! ! ) ! M á" á! + 1) d! = M !

M 2 (" ! # )

2
. (A .58)

To arrive at a formula for W (M ) for M > øM , we Þrst express aggregate learning from (2) and rearrange by using the fact t hat p

is constant in ! and that p =
( 1

0 m(! ) d! :

M áL = M á
$

p log
3

1

p

4
+ (1 ! p) log

3
1

1 ! p

4%
! M á

# 1

0

$
m(! ) log

3
1

m(! )

4
+ (1 ! m(! )) log

3
1

1 ! m(! )

4%
d! =

M á
# 1

0
p log

3
1

p

4
+ (1 ! p) log

3
1

1 ! p

4
! m(! ) log

3
1

m(! )

4
! (1 ! m(! )) log

3
1

1 ! m(! )

4
d! =

M á
# 1

0
m(! ) álog

3
1

p

4
+ (1 ! m(! )) álog

3
1

1 ! p

4
! log

3
1

1 ! m(! )

4
+ m(! ) log

3
m(! )

1 ! m(! )

4
d! =

M á
# 1

0
m(! ) á

$
log

$
m(! )

1 ! m(! )

%
! log

$
p

1 ! p

%%
d! ! M á

# 1

0
log

$
1 ! p

1 ! m(! )

%
d! . (A .59)

M ult iplying the above by µ and replacing the interior part of t he Þrst integral using the Þrst order condit ion expressed in (10)

yields:

M áµ áL = M á
# 1

0
m(! ) á

3
M á# á

# 1

!
÷m( ÷! )d÷! ! M á" á

# !

0
÷m( ÷! )d÷! + 1

4
d! ! M á

# 1

0
µ álog

$
1 ! p

1 ! m(! )

%
d! . (A .60)

T hus the Þrst integral is exact ly t he deÞnit ion of aggregate revenue. Since M áp is constant if M ' øM (see Proposit ion 2), so is

aggregate revenue M áR. Rearranging yields the below expression for W :

W (M ) = M áµ á
# 1

0
log

$
1 ! p

1 ! m(! )

%
d! (A .61)
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We now show that welfare converges to zero for M " # . Since both m(! ) " 0 and p " 0 in this case, one can use the Þrst

order approximat ion that

lim
m ( ! ) ,p# 0

log
$

1 ! p

1 ! m(! )

%
= lim

p# 0
log (1 ! p) ! lim

m ( ! ) # 0
log (1 ! m(! )) ) m(! ) ! p (A .62)

Since m " 0 it holds that
log( 1

m )
( 1

m ) " 0 and log (1 ! m) " 0 thus the implicit equat ion (A .17) for m(! ) can be approximated to

Þrst order by

1

m(! )
! M (# + " )

$
C +

!

µ

%
= 0. (A .63)

A closed form solut ion can be obtained in this limit case:

m(! ) =
µ

M (# + " )(Cµ + ! )
(A .64)

for an appropriate C. By the deÞnit ion of t he average ent ry p this implies

M áp = M á
# 1

0
m(! )d! =

µ

# + "
álog

$
1

Cµ
+ 1

%
. (A .65)

From Proposit ion 2 we know that M áp is a constant for any M > øM , thus (A .65) yields:

C =
1

µ á
$

e
øM á( # + " )

µ ! 1
%. (A .66)

Now we turn back to showing that welfare converges to zero for M " # . Using the Þrst order approximat ions of m(! ) and p

as expressed in (A .64) and (A .65), one can thus writ e:

lim
M # $

W (M ) = lim
M # $

M áµ á
# 1

0
log

$
1 ! p

1 ! m(! )

%
d! = lim

M # $
µ á

# 1

0
M ám(! ) ! M áp d! = (A .67)

µ á
# 1

0

$
µ

(# + " )(Cµ + ! )
!

µ

# + "
álog

$
1

Cµ
+ 1

%%
d! =

µ2

# + "
á
3# 1

0

1

Cµ + !
d! ! log

$
1

Cµ
+ 1

%4
= 0

T hus W (M ) " 0 and this convergence happens from above, since the payo! per player V = W
M cannot be negat ive, otherwise players

would choose not to enter.

P r oof of P r op osi t ion 5

Proof. Following the logic of t he proof of Proposit ion 3 basic algebra and Lemma A.1 yields:

d
øM
øM s

dµ
=

B á øM + e
øM ( # + " )

µ ! 1

B
á

" ! #

µ
> 0. (A .68)

42



P r oof of P r op osi t ion 6

Proof. Part 1 of t he Proposit ion follows direct ly from Lemma 5.

Part 2 follows from using the expression for W from (A .61) and di! erent iat ing with respect t o µ:

%W

%µ
= M á

# 1

0
log

$
1 ! p

1 ! m(! )

%
d! ! M áµ á

1

1 ! p

%p

%µ
+ M áµ á

# 1

0

1

1 ! m(! )

%m(! )

%µ
d! (A .69)

A lso, di! erent iat ing (A .18) wit h respect t o ! :

!
1

m2(! )(1 ! m(! ))

%m(! )

%µ
= !

1

m2(0)(1 ! m(0))

%m(0)

%µ
!

M (# + " )

µ2
á! (A .70)

W hen ! = 1:

!
1

m2(1)(1 ! m(1))

%m(1)

%µ
= !

1

m2(0)(1 ! m(0))

%m(0)

%µ
!

M (# + " )

µ2
(A .71)

(A .70) minus (A .71) yields:

!
1

m2(! )(1 ! m(! ))

%m(! )

%µ
= !

1

m2(1)(1 ! m(1))

%m(1)

%µ
+

M (# + " )

µ2
á(1 ! ! ) (A .72)

Next we solve %m(0)/ %µ and %m(1)/ %µ. (A .19) is equivalent t o:

log(
m(0)

1 ! m(0)
) ! log(

m(1)

1 ! m(1)
) =

M áp á(# + " )

µ
=

M (# + " )

µ
(A .73)

T he lat t er equality used the fact t hat M áp is constant in M once the solut ion m is in interior. DeÞne

Y =
M (# + " )

µ
. (A .74)

Di! erent iate (A .73) wit h respect t o µ:

1

m(0)(1 ! m(0))

%m(0)

%µ
!

1

m(1)(1 ! m(1))

%m(1)

%µ
=

%Y

%µ
(A.75)

From (A.71) and (A .71):

1

m2(0)(1 ! m(0))

%m(0)

%µ
=

1

m(0) ! m(1)

$
m(1) á

M (# + " )

µ2
+

%Y

%µ

%
(A.76)

1

m2(1)(1 ! m(1))

%m(1)

%µ
=

1

m(0) ! m(1)

$
m(0) á

M (# + " )

µ2
+

%Y

%µ

%
(A.77)
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Calculat ing m ( 0) ! p
m ( 0) ! m ( 1) á(A .76) + p! m ( 1)

m ( 0) ! m ( 1) á(A .77) and then subst it ut ing (A .70) and (A .72):

m(0) ! p

m(0) ! m(1)
á

1

m2(0)(1 ! m(0))

%m(0)

%µ
+

p ! m(1)

m(0) ! m(1)
á

1

m2(1)(1 ! m(1))

%m(1)

%µ

=
1

m(0) ! m(1)

$
p á

M (# + " )

µ2
+

%Y

%µ

%
=

1

m(0) ! m(1)

$
Y

µ
+

%Y

%µ

%
(A.78)

From (A.70), (A .72) and (A .78):

1

m2(! )(1 ! m(! ))

%m(! )

%µ

=
1

m(0) ! m(1)

$
Y

µ
+

%Y

%µ

%
+

m(0) ! p

m(0) ! m(1)
á

M (# + " )

µ2
á! !

p ! m(1)

m(0) ! m(1)
á

M (# + " )

µ2
á(1 ! ! ) (A .79)

We begin from the last t erm of (A .69), subst it ut ing (A .79):

# 1

0

1

1 ! m(! )

%m(! )

%µ
d!

=
1

m(0) ! m(1)

$
Y

µ
+

%Y

%µ

%# 1

0
m2(! )d! +

m(0) ! p

m(0) ! m(1)
á

M (# + " )

µ2

# 1

0
! m2(! )d!

!
p ! m(1)

m(0) ! m(1)
á

M (# + " )

µ2

# 1

0
(1 ! ! )m2(! )d! (A .80)

From (A.16):

m"(! ) = !
M (# + " )

µ
m2(! )(1 ! m(! )) (A .81)

Applying integrat ion by part s:

M (# + " )

µ2

# 1

0
! m2(! )d! = !

1

µ

# 1

0
! á

m"(! )

1 ! m(! )
d!

=
1

µ

# 1

0
! d(log(1 ! m(! ))) =

1

µ

3
log(1 ! m(1)) !

# 1

0
log(1 ! m(! ))d!

4
(A .82)

Similarly:

M (# + " )

µ2

# 1

0
(1 ! ! )m2(! )d! =

1

µ

3# 1

0
log(1 ! m(! ))d! ! log(1 ! m(0))

4
(A .83)

Subst it ute (A .82) and (A .83) into (A .80):

# 1

0

1

1 ! m(! )

%m(! )

%µ
d! =

1

m(0) ! m(1)

$
Y

µ
+

%Y

%µ

%# 1

0
m2(! )d! !

1

µ

# 1

0
log(1 ! m(! ))d!

+
1

µ

m(0) ! p

m(0) ! m(1)
log(1 ! m(1)) +

1

µ

p ! m(1)

m(0) ! m(1)
log(1 ! m(0)) (A .84)
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Next we study the second term of (A .69), using (A .79):

%p

%µ
=

# 1

0

%m(! )

%µ
=

1

m(0) ! m(1)

$
Y

µ
+

%Y

%µ

%# 1

0
m2(! )(1 ! m(! ))d!

+
m(0) ! p

m(0) ! m(1)
á

M (# + " )

µ2

# 1

0
! m2(! )(1 ! m(! ))d!

!
p ! m(1)

m(0) ! m(1)
á

M (# + " )

µ2

# 1

0
(1 ! ! )m2(! )(1 ! m(! ))d! (A .85)

Applying integrat ion by part s and using (A .16):

M (# + " )

µ2

# 1

0
! m2(! )(1 ! m(! ))d! = !

1

µ

# 1

0
! ám"(! )d! =

1

µ

3# 1

0
m(! )d! ! m(1)

4
=

1

µ
(p ! m(1)) (A .86)

Similarly, using (A .16) and applying integrat ion by part s:

M (# + " )

µ2

# 1

0
(1 ! ! )m2(! )(1 ! m(! ))d! =

1

µ

3
m(0) !

# 1

0
m(! )d!

4
=

1

µ
(m(0) ! p) (A .87)

Subst it ute (A .86) and (A .87) into (A .85):

%p

%µ
=

1

m(0) ! m(1)

$
Y

µ
+

%Y

%µ

%# 1

0
m2(! )(1 ! m(! ))d! (A .88)

Subst it ute (A .84) and (A .88) into (A .69):

1

M

%W

%µ
=

m(0) ! p

m(0) ! m(1)
log(1 ! m(1)) +

p ! m(1)

m(0) ! m(1)
log(1 ! m(0)) ! log(1 ! p)

+ 2
$

log(1 ! p) !
# 1

0
log(1 ! m(! ))d!

%

+
1

m(0) ! m(1)

$
Y + µ á

%Y

%µ

%$ # 1

0
m2(! )d! !

1

1 ! p

# 1

0
m2(! )(1 ! m(! ))d!

%
(A .89)

In the last sect ion, we prove that when # / " " 1, t here exist s a range of µ such that %W/ %µ > 0 for any M .

First , t he funct ion log(1 + x) ! x + 1
2á( 1! a) áx2 ' 0 for x ( [! a, # ). Let a = m ( 0) ! p

1! p . Subst it ute in x = p! m ( 1)
1! p and

x = ! m ( 0) ! p
1! p :

log(1 ! m(1)) ' log(1 ! p) +
p ! m(1)

1 ! p
!

1

2(1 ! a)

$
p ! m(1)

1 ! p

%2

(A .90)

log(1 ! m(0)) ' log(1 ! p) !
m(0) ! p

1 ! p
!

1

2(1 ! a)

$
m(0) ! p

1 ! p

%2

(A .91)
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m ( 0) ! p
m ( 0) ! m ( 1) á(19) + p! m ( 1)

m ( 0) ! m ( 1) á(20):

m(0) ! p

m(0) ! m(1)
álog(1 ! m(1)) +

p ! m(1)

m(0) ! m(1)
álog(1 ! m(0)) ! log(1 ! p) ' !

1

2

(p ! m(1))(m(0) ! p)

(1 ! p)2
á

1

1 ! a

' !
1

8

(m(0) ! m(1))2

(1 ! p)2
á

1 ! p

1 ! m(0)
' !

1

8

(m(0) ! m(1))2

(1 ! p)2
á

m(0)(1 ! m(1))

m(1)(1 ! m(0))
= !

1

8

(m(0) ! m(1))2

(1 ! p)2
áeY , (A .92)

where the last equality comes from (A .73) and (A .74).

Second, log(1 ! x) is a concave funct ion of x. Taking a Taylor expansion and using JensenÕs inequality for all t hird order and

higher terms:

log(1 ! p) !
# 1

0
log(1 ! m(! ))d! '

1

2
min

x %[m 1 ,m 0 ]

1

(1 ! x)2

# 1

0
(m2(! ) ! p2)d! =

1

2

1

(1 ! m(1))2

# 1

0
(m(! ) ! p)2d! (A .93)

Let ! p be the value such that m(! p ) = p is sat isÞed, using (A .16)

# 1

0
(m(! ) ! p)2d! =

# ! p

0
(m(! ) ! m(! p ))2d! +

# 1

! p

(m(! p ) ! m(! ))2d! ' min
! %[0,1]

,
m"(! )

- 2

' # ! p

0
(! ! ! p )2d! +

# 1

! p

(! p ! ! )2d!

*

'
3

M (# + " )

µ
m2(1)(1 ! m(0))
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á
1

3

,
! 3

p + (1 ! ! p )3-
'

1

12

M 2(# + " )2

µ2
m4(1)(1 ! m(0))2 (A .94)

From (A.20) and (A .22):

1

m(1)
!

1

m(0)
=

M (# + " )

µ
!

M p(# + " )

µ
=

M (# + " )

µ
á(1 ! p) (A .95)

Subst it ute (A .95) into (A .94):

# 1

0
(m(! ) ! p)2d! '

1

12

M 2(# + " )2

µ2
m4(1)(1 ! m(0))2 =

1

12

(m(1) ! m(0))2

(1 ! p)2
á

m2(1)(1 ! m(0))2

m2(0)
(A .96)

Subst it ute (A .96) into (A .93):

log(1 ! p) !
# 1

0
log(1 ! m(! ))d! '

1

24

(m(1) ! m(0))2

(1 ! p)2
á

m2(1)(1 ! m(0))2

m2(0)(1 ! m(1))2

=
1

24

(m(1) ! m(0))2

(1 ! p)2
exp

3
! 2 á

$
log(

m(0)

1 ! m(0)
) ! log(

m(1)

1 ! m(1)
)
%4

=
1

24

(m(1) ! m(0))2

(1 ! p)2
áe! 2Y (A .97)

where the last step used (A .19) and (A .74).
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T hird, we provide a lower bound for t he third term in (A .89). DeÞne g(! ) = m(! ) ! m(1), where g(! ) is non-negat ive for

! ( [0, 1] and decreasing.

# 1

0
m2(! )d! !

1

1 ! p

# 1

0
m2(! )(1 ! m(! ))d! =

1

1 ! p

3# 1

0
m3(! )d! !

# 1

0
m(! )d! á

# 1

0
m2(! )d!

4

=
1

1 ! p
á
3# 1

0
(m(1) + g(! ))3d! !

# 1

0
(m(1) + g(! ))d! á

# 1

0
(m(1) + g(! ))2d!

4

=
1

1 ! p
á
3

m(1)3 + 3m2(1)
# 1

0
g(! )d! + 3m(1)

# 1

0
g2(! )d! +

# 1

0
g3(! )d!

4

+
1

1 ! p
á

'

! m(1)3 ! 3m2(1)
# 1

0
g(! )d! ! m(1)

# 1

0
g2(! )d! ! 2m(1)

$ # 1

0
g(! )d!

%2

!
# 1

0
g(! )d!

# 1

0
g2(! )d!

*

=
1

1 ! p
á

&

2m(1)

' # 1

0
g2(! )d! !

$ # 1

0
g(! )d!

%2
*

+
3# 1

0
g3(! )d! !

# 1

0
g(! )d!

# 1

0
g2(! )d!

4)

(A .98)

For the Þrst t erm in (A .98)

# 1

0
g2(! )d! !

$ # 1

0
g(! )d!

%2

=
# 1

0

$
g(! ) !

# 1

0
g(! )d!

%2

=
# 1

0
(m(! ) ! m(1) ! (p ! m(1)))2 =

# 1

0
(m(! ) ! p)2 (A .99)

Now deÞne ! p such that m(! p ) = p, and then take the second order Taylor expansion of m(! ) around ! p . (A .99) can be approximated

by
# 1

0
(m(! ) ! p)2 ' min

! %[0,1]

,
m"(! )

- 2

' # ! p

0
(! ! ! p )2d! +

# 1

! p

(! p ! ! )2d!

*

'
1

12
min

! %[0,1]

,
m"(! )

- 2 (A .100)

Since both g(! ) and g2(! ) are decreasing funct ions of ! . From ChebyshevÕs sum inequality,

# 1

0
g3(! )d! '

# 1

0
g(! )d!

# 1

0
g2(! )d! (A .101)

Plugging (A .99), (A .100), (A .101) into (A .98) one arrives at t he following lower bound for t he third term in (A .89):

# 1

0
m2(! )d! !

1

1 ! p

# 1

0
m2(! )(1 ! m(! ))d! '

1

1 ! p
á

1

6
ám(1) á min

! %[0,1]

,
m"(! )

- 2

=
1

6
á

1

1 ! p
ám(1) á

(m(1) ! m(0))2

(1 ! p)2
á

m2(1)(1 ! m(0))2

m2(0)
(A .102)

where we used the same steps as in (A .94), (A .95), and (A .96).

From (A.95):

m(0) ! m(1)

m(0)m(1)
=

M (# + " )

µ
á(1 ! p) =

M áp á(# + " )

µ
á

1 ! p

p
=

M á(# + " )

µ
á

1 ! p

p
=

Y (1 ! p)

p
, (A .103)
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rearrange to get

Y

m(0) ! m(1)
=

1

m(0)m(1)

p

1 ! p
(A .104)

Combining (A .104) and (A .102)

1

m(0) ! m(1)

$
Y + µ á

%Y

%µ

%$ # 1

0
m2(! )d! !

1

1 ! p

# 1

0
m2(! )(1 ! m(! ))d!

%

'
$

1 +
µ

Y
á

%Y

%µ

%
á

Y

m(0) ! m(1)
á

1

6

1

1 ! p
m(1) á

(m(1) ! m(0))2

(1 ! p)2
á

m2(1)(1 ! m(0))2

m2(0)

=
1

6

$
1 +

µ

Y
á

%Y

%µ

%
(m(1) ! m(0))2

(1 ! p)2
á

pm2(1)(1 ! m(0))2

(1 ! p)2m(0)3

'
1

6

$
1 +

µ

Y
á

%Y

%µ

%
(m(1) ! m(0))2

(1 ! p)2
á

m3(1)(1 ! m(0))3

m(0)3(1 ! m(1))3
=

1

6

$
1 +

µ

Y
á

%Y

%µ

%
(m(1) ! m(0))2

(1 ! p)2
áe! 3Y (A .105)

(A .92), (A .97) and (A .105), using (A .89), imply that %W/ %µ > 0 for any M if t he following su# cient condit ion is sat isÞed:

!
1

8
eY +

1

12
e! 2Y +

1

6
e! 3Y

$
1 +

µ

Y
á

%Y

%µ

%
> 0 (A .106)

T his is t rue if Y < 0.03 and

1 +
µ

Y
á

%Y

%µ
>

1

3
(A .107)

(A .107) is equivalent t o:

%1
µ

%Y
>

3

2
á

1

Y
á

1

µ
(A .108)

Note that (11) can be rewrit t en as:

e
1
µ =

1

Y

$
e

"
# + " Y ! e! #

# + " Y
%

, (A .109)

taking logs, t his can be rewrit t en to express 1
µ in terms of Y and Z :

1

µ
= log

$
1

Y

$
e

"
# + " Y ! e! #

# + " Y
%%

= Z +
" ! #

2(# + " )
Y (A .110)

where Z is deÞned by

Z = log

&
eY / 2 ! e! Y / 2

Y

)

, (A .111)
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and limY # 0 Z = 0.

(A .108) holds if and only if:

dZ

dY
!

3

2

Z

Y
>

1

4
á

" ! #

# + "
. (A .112)

Note that limµ # $ Y = 0 and taking a Taylor expansion of dZ
d Y ! 3

2
Z
Y around Y = 0 yields

lim
µ # $

1

Y
á
$

dZ

dY
!

3

2
á

Z

Y

%
=

1

48
. (A .113)

Rearranging (A .114) we need to show that

4 á
1

Y
á
$

dZ

dY
!

3

2
á

Z

Y

%
>

1

Y
á

" ! #

# + "
. (A .114)

Using (A .113), for high enough µ, the right hand side can be bounded from below by e.g. 1
24 . Now for the Þxed Y associated with

this µ, one can Þnd an alpha close enough to " such that t he right hand side is smaller t han 1
24 . For high enough M we have

M > øM (for t he øM associated with the chosen µ) thus we are in an interior equilibrium that (A .61) can indeed be used.

T hus we have shown that for high enough µ, $ W
$ µ > 0 for all M above the threshold øM .
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