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Abstract

We present a novel entry-game with endogenous information acquisition to study the welfare
el ects of opacity and competition. Potential entrants to an opaque market are uncertain about their
competitive advantage relativeto other investors, i.e. their type. They construct optimal costly signals
to learn about their types, where the marginal cost of learning captures the opacity of the market. In
general, the individually optimal entry and learning decisions are socially suboptimal. Players over-
invest in learning and more opagque markets are associated with more crowding. Nevertheless, more
opague markets might still lead to higher welfare by implying a better trade-o! between the degree
of crowding and the total cost of learning. Similarly, decreasing the share of smart investors in the
market might also improve welfare. However, berce competition is always detrimental to welfare as it

leads to more wasteful learning without changing the level of crowding.
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1 Introduction

In our rapidly changing global economy, entrepreneurs and bnancial investors have to be nimble and
well prepared to survive. Fleeting investment opportunities arise routinely in global Pnancial markets.
Technological developments create new market segments by the day and make existing ones obsolete.
It isinsu” cient to simply recognize new opportunities. The key to success for the potential entrant
is to tell whether she was su" ciently early in noticing the opportunity and whether her existing skill
sets make her ableto compete €' ciently. In light of this, it isnot surprising that market participants,
ranging from venture capitalists, global banksto leading technological companies, invest vast sumsinto
analyzing markets, developing know-how and technology to help them decide whether to undertake
investment opportunities. Also, new opportunities are heterogeneous. Some opportunities are in the
public eye, leading to a large mass of would-be entrants standing on the sideline considering whether
to jump into the fray. Some opportunities are opaque making it costly or even impossible to predict
whether the existing skill sets will lead to success or failure. Which kinds of new market segments
or trading opportunities are subject to overcrowding? Are the vast resources invested in learning
about opaque opportunities socially useful? Should regulators push for transparency? In general,
what are the welfare implications of learning about such new investment opportunities in the face of
competition and opaqueness?

In this paper, we present a unique, parsimonious framework to answer these questions. We analyse
a novel entry-game with endogenous information acquisition to study the welfare el ects of opacity
and competition. Potential entrants (players hereon) to an opaque market are uncertain about their
competitive advantage relative to others, i.e. their type. They construct optimal signals to learn
about their types subject to an entropy cost. The opacity of the market is captured by the marginal
cost of learning, while the extent of competition is modelled by the mass of players standing on the
sidelines. In general, the individually optimal entry and learning decisions are socially suboptimal.

Players always over-invest in learning and more opagque markets tend to be more crowded. Never-



theless, transparency is not always optimal as more opaqueness might still lead to higher welfare by
discouraging costly learning without excessively increasing crowding. Opaqueness is more likely to be
benebcial if competition is not too Perce, while transparency is preferred if competition is excessive.
Fiercer competition leads to more wasteful learning leading to deteriorating welfare without al! ecting
crowding.

In our game, playersCtype is distributed over the unit interval. Each player@ pay-o! upon entry is
a linear function of the mass of entrants with better types, and the mass of entrants with worse types.
We focus on the case for which an entrant® revenue is decreased by an additional better entrant and
increased by aworse entrant such that players engagein a Orat raceQ We also assumethat the el ect of
an additional random entrant (if sheisbetter or worse with equal probability) is also negative, leading
to potential GerowdingOin the market. Each player constructs an optimal signal structure to learn
about her type. Building on Sims (1998, 2003), the cost of any given signal structure is proportional
to the implied reduction in entropy. Given the equilibrium strategies, a player@ posterior on her type
implies a posterior on the mass of better and worse entrants. Hence, each player learns about her
competitive advantage on the given market relative to other entrants.

Our formalization results in a parsimonious structure. In equilibrium, the optimal information
acquisition and entry strategies are reduced to a single function, mapping player® possible types into
a probability of entry. For example, if the player were to decide to enter with a given probability
independently of her type, we represent this choice with a constant function. This strategy does not
require learning. In contrast, if the player were to decide to enter if and only if her type is better
than a given threshold, this can be represented by a step function. However, for this, her signal hasto
be su" ciently precise to know with certainty whether her type is above this threshold. This strategy
turns out to be very costly under our specibcation. In equilibrium, players typically choose an interior

strategy represented by a smooth, monotonic function, implying higher entry probability for better

types.



Our main result isthat whether a regulator should aim for more transparency depends on the level
of competition. Typically, full transparency is preferred only if there is a large mass of players aware
of the opportunity and ready to enter, i.e. if competition is bperce. Otherwise either an interior level of
opacity or full opacity maximizes welfare. The intuition relies on two el ects. First, full transparency
leads to insu" cient entry because worse players do not internalize their benebcial el ect on better
entrants. On the other hand, full opacity leads to crowding which is more severe if competition is more
Perce because players unaware of their types exert a negative externality on other entrants. Therefore,
less than full transparency might push entry closer to its €' cient level especially when competition
is limited. Second, there is costly over-learning in our model because of the rat-race between the
players. This leads to a more subtle benebt of increased opacity. Less than full transparency might
help to reduce the overall cost of learning. While decreasing transparency, by debnition, increases
the marginal cost of learning, it might reduce the amount of learning su" ciently that the overall cost
decreases. The benebt of this reduction in learning expenditure can more than o! set the welfare loss
of increased crowding due to more opacity. Thus increasing opacity is more likely to improve welfare
if competition is limited because the welfare loss from crowding is less of a concern.

An additional result is that bercer competition decreases welfare. First we show that unless the
mass of playersis so small that the entry decision is trivial, increasing competition does not change
aggregate entry, which stabilizes at an ine" ciently low or high level. To understand this result, note
that players adjust their entry decisions along two main dimensions as competition increases. First,
the marginal benebt of knowing your type more precisely before entering isincreasing in competition
because there are more players with a better type, increasing the Oat raceQamong players. Second,
with more players, GerowdingObecomes a bigger concern. We show that these two e! ects have exactly
ol setting el ects on aggregate entry. Nevertheless, as competition increases, welfare decreases. The
key insight is that the Qrat raceO el ect increases with competition, thus players choose to learn

more. While ceteris paribus more learning can alleviate ine" cient over-entry (as stated above), more



learning due to increased competition does not change the amount of entry. Thus the higher learning
cost implied by more competition is socially wasteful.

We analyze two extensions. First, we show that when better types bnd socially more valuable deals
in the new market, then more competition often leads to an allocation that is Qoo €' cientOcompared
to the planner@ solution. Thereason is similar to that in the baseline model, it is dueto over-learning
that decreases welfare. Second, we also extend our model to the case in which there is heterogeneity
across players: some are more sophisticated and thus can learn at a lower cost than others. Keeping
the mass of all players bxed but increasing the share of sophisticated players might also decrease
welfare. Initially, increasing the fraction of sophisticated players increases welfare since it raises the
average sophistication of players and this can alleviate over-entry. However, further increasing the
fraction of sophisticated players beyond a certain threshold, less sophisticated players are afraid of
being ripped o! and exit themarket. Once less sophisticated players exit, sophisticated players engage
in a vicious Qrat raceQof learning which leads to decreasing welfare, similar to the baseline model.
Thus like in opacity, in many cases there is an intermediate mix of sophisticated and unsophisticated
players that maximizes welfare. Identifying the most sophisticated players as high-frequency traders
connects this result to the policy debate on the social benebt of ultra-high frequency trading.*

Our main contribution is to study the welfare e! ects of optimal learning in an entry game with
uncertain competitive advantage. Our paper is connected to various branches of literature. First,
there is a growing literature on the welfare e! ects of endogenous information acquisition, e.g. Myatt
and Wallace (2012) and Colombo, Femminis, and Pavan (2014). While this literature focuses on a
common-value learning, we analyze an environment when players learn about their relative advantage
compared to the other entrants.

Second, from a methodological view point we rely on the rational inattention approach pioneered

by Sims (1998, 2003). We follow the branch of the literature which allows for fully Rexible informa-

1See, for example, Securities and Commission (2010).



tion acquisition as Mat@ka and McKay (2015), but restrict ourselves to binary actions similarly to
Woodford (2008), Yang (2015,b).?

Third, thereisaliterature analyzing entry/ exit in Pnancial marketsin the presence of externalities
induced by other investors. Stein (2009) introduces a simple model of crowded markets. More gener-
ally, there is a classic literature on socially in€" cient entry, e.g. Tullock (1967), Krueger (1974), and
Loury (1979). We contributeto thisliterature by introducing a Rexible, but costly learning technology
and studying its welfare el ects. Reatedly, Abreu and Brunnermeier (2003) and Moinas and Pouget
(2013) show that the inability to learn about one@® relative position versus that of other investorsOs
a key ingredient in sustaining excessive investment in bubbles. This highlights our contribution in
adding learning to a modédl of crowded markets with potential over-entry.

Finally, there are numerous papers showing excessive investment in learning or €l ort. Thereisa
literature on the social value of private learning: e.g. in Hirshleifer (1971), private information can
be detrimental as it changes ex ante incentives for insurance, in Glode, Green, and Lowery (2012),
learning a! ects ex-post trading opportunities. These papers study welfare el ects in markets with
asymmetric private information, while in our framework information is imperfect but symmetric.

The rest of the paper is structured as follows. In Section 2 we present our model. In Section 3
we analyze the optimal choice of entry and learning and the e! ects of opagueness and competition on
crowding and welfare. In Section 4 we consider extensions of the payo! function and also allow for
heterogeneity in player sophistication. Section 5 concludes. All proofs are relegated to Appendix A.
Further analysis can be found in the online appendices. In Appendix B we analyze median entrants.
In Appendix C we give a structural microfoundation for the reduced form model and analyze its

economic implications. We analyze Gaussian signals instead of fully Rexible learning in Appendix D.

2T he other successful approach is to allow for continuous actions, but restrict the signals to be Gaussian. See Magkowiak
and Wiederholt (2009), Hellwig and Veldkamp (2009) and Kacperczyk, Nieuwerburgh, and Veldkamp (2016) for intriguing
models using this approach.



2 A model of learning and investing in crowded markets

In this part we describe our setup. We brst present the payo! function, then introduce the Rexible
learning technology and debne the real outcomes. Finally, we discuss potential interpretations and

microfoundations of our reduced form model.

2.1 Payo!s

Consider an entry game with a continuum of players of mass M, each with a type ! uniformly
distributed over [0,1]. M measures the level of competition between the players. Each player can
decide to take an action: whether to enter the market or not. ! characterizes the player@ ability to
identify better investment opportunities in this new market than others. Lower ! implies a better

type. The utility gain (or loss, if negative) from entry is given by
#u(l)=1! "ap!)+ #aa(l)! & (D

where # and " are constant parameters. b(!) denotes the equilibrium mass of entrants with a type
better than !. a(!) denotes the equilibrium mass of entrants whose type is worse than !'. We show in
the microfoundation in Appendix C that it isnatural to assume that that " > |#|. First, thisimplies
that, " + # > 0, which iswithout loss of generality sinceit issimply consistent with the interpretation
that alower ! representsa better type. Second, it followsthat " ! # > 0, such that the median entrant
imposes a negative externality on others, that is, the market is proneto getting crowded from a social
point of view. It also followsthat " > 0 while # could be positive or negative, though we focus most

of our analysis on the more interesting case of # > 0. When $ > 0, better players have an absolute



advantage, that is, better types derive more utility from entering regardless of the entry decision of
others. We discuss this case in Section 4.1, otherwise we analyze the simpler case of $ = 0.3
As we specify below, players do not know their type, but can gather information about it through

a costly learning process.

2.2 Learning cost based on entropy

Before entry, players can engage in costly learning about their type. Observe that if H (§ is any
intuitive measure of uncertainty then H (!) ! H (!|s), the reduction of uncertainty after observing
signal s, is a measure of learning induced by signal s. Following Sims (1998), we measure uncertainty
by specifying H (§ as the Shannon-entropy of a random variable.* Therefore, we specify the cost of
learning a signal s as being proportional to the induced reduction in entropy of ! : H(')! H (!]s).
This quantity is often called the mutual information in ! and s. As Sims (1998) argues, the advantage
of such a specibcation is that it both allows for Rexible information acquisition and can be derived
based on information theory. Note that the payo! (1) for a given ! in our model is linear in entry.
Woodford (2008) derives the optimal signal structure and entry decision rule for such problems which

we restate in the lemma below.

Lemma 1. Optimal signal choice. The optimal signal structureis binary: players choose to receive
signal s = 1 with probability m(!) and s = 0 with probability 1! m(!), given their type!. The optimal

entry decision conditional on the signal is: enter if s= 1, stay out if s= 0.

Thus, similar to Yang (2015) the conditional probability of entry m(!), or equivalently, the condi-

tional probability of getting a signal 1, is the only choice variable. The intuition for the binary signal

3In the main text, we work with the reduced form payo! (1). In Appendix C, we embed the reduced form game into
an explicit model of capital reallocation. Also, in an earlier version Kondor and Zawadowski (2016), we provide microfoun-
dations in various other contexts, including production with local spill-overs, consumption with externalities, and academic
publications. The critical feature of all microfoundations is that each player® pay-o! is lower if better types also enter, while
worse entrants can either help or hurt. These applications provide further insights on the interpretation of parameters! "
and #. We summarize these applications in section 2.4.

4The entropy of a discrete variable is dePned as =, P(x) log ﬁ, where the random variable takes on the value x with

probability P(x), see MacKay (2003).



structure isthat the only reason players want to learn about ! isto be able to make a binary decision
of whether or not to enter. Given the linearity of the problem, the GtheapestOsignal to implement
the optimal entry strategy is also binary, it simply tells the player whether or not to enter.

We now write the cost of learning, debned by the reduction in entropy, in case of a binary infor-
mation structure. Denote the amount of learning L using the mutual information in type! and signal

s (debned in Lemma 1) as

L(m)" H()! H(!|s)=H(s)! H(s|!) = 2)
! " " # %, " # " #$

p log b + (1! p)log i p ! ) m(!) log () + (1! m(!))log 1 m() d!

where the brst equation is a property of Shannon-entropy. p denotes the unconditional probability of
entry and is debned by:
%,

P= m(F)dr (3

The expression for learning (2) can be understood in the following way. There is no learning if the
signal is uninformative about the state, that is, if it prompts the player to enter with probability p
unconditional on itstype!. Indeed, it iseasy to check that when m (!) isconstant at pthen L (m) = 0.
Thus, learning depends on how much information the signal contains about the state. Intuitively, the
steeper m(!) becomesin ! (keeping average entry p constant), the more the player is di! erentiating its
entry decision according to itstype and the higher the entropy reduction, thus the higher the learning
cost. The highest cost is achieved when m (!) is a step function. Note that L is bounded from above
but might generate inPnite marginal cost of learning.

Our measure of the cost of learning induced by a signal debned in Lemma 1 ispual (m) where | is
an exogenous marginal cost parameter. u isour measure of the opacity of the market. We assume that
players have to decide about the amount of information acquisition ex ante without any knowledge
about the action of others. We interpret this as the cost of building an information gathering and

evaluation QnachineOwhich includes the costs of gathering and optimally evaluating the right data.



Conveniently, standard results in information theory imply that the entropy of a random variable
is proportional to the average number of bits needed to optimally convey its realization. Hence, the
parameter 1 can be interpreted as the cost of building a marginally larger information gathering and

evaluating machine or writing a longer GcodeQ®

2.3 Competitive and planner@® solution

We debne the competitive solution of the game as a Nash equilibrium: strategy problesm;(!) : [0, 1] #
[0,1] for all i $ [0,1], such that player i@ strategy is a best response to all other playersOstrategy.
We restrict our attention to looking for a symmetric Nash equilibrium in which all players choose the
same m(!) function, thus the i subscript is suppressed in what follows. Remember that the payo!
of player ! depends on the mass of players with higher and lower ! entering. In case of symmetric

strategies, the mass of players with types lower (i.e. better) than ! who choose to enter is
%,
b(!)=Ma m(rdr, (4)
0
while the mass of types higher (i.e. worse) than ! who choose to enter as

%4
a(l)=M & m(Hdr, (5)

!
and M ap= K(!) + a(!) isthe aggregate entry of players.
Players aim to maximize their expected payo! from entering, net of learning costs:

%
V = 1m(!)é\#u(!) d'! paL(m), (6)
0

SAn alternative would be to think of capacity as limited and p being the Lagrange multiplier of the capacity constraint.
Instead, our modelling choice captures the idea that in most relevant contexts learning capacity can be expanded, even if for
acost. That is, the player can decide to use more complex code to evaluate data, hire new stal or spend more time with the
analysis before entry.



where # u is the utility gain of entrants debned by (1). We debne welfare® as the total utility gain
from entry W " M &V, and aggregate revenue of the players as their expected payo! before taking
into account learning costs M aR " M é&olm(! )Ya# u(!) d'. In the competitive solution, each player
chooses m(!) and takes # u as given. The social planner can choose the strategy m(!) of all players

and takes into account that # u also depends on m(!).

2.4 Applications

There are various applications which imply the reduced form payo! (1). The common theme in these
applicationsisthat each player@ pay-o! islower if better typesalso enter (" > 0), while worse entrants
can typically increase the payo! (# > 0). Applications di! er in the interpretation of a better type,
and in what the source of the externalities are.

In Online Appendix C, we consider the problem of a Pnancial investor who develops a novel trading
strategy. Her problem is that she does not know whether she is among the brst investors with this
trading idea or the strategy is already QGrowdedOas described by Stein (2009). In the latter case, not
only her realized return is expected to be smaller, but in the case of an aggregate liquidity shock, her
losses induced by bre-sales are larger. On the other hand, a larger mass of late players can help her
if sheis subject to an idiosyncratic liquidity shock. Thisis so, because they can provide her liquidity,
i.e., better terms for exit. We show that in this application, a better type is the player who bnds
the new opportunity early. The size of " isrelated to the price impact of early entrants, while # is
related to the benebt of liquidity provided by late entrants. " ! # is higher when bre-sales are more
frequent and more severe. In this setting opacity can be interpreted as the amount of information

that is available about other tradersCtrading strategy and the informativeness of price. The regulator

SIn principle, there might exist applications were V, the per capita utility is a better measure of welfare than total utility
W. We have opted to focus on W because of two reasons. First, in the applications we have considered and summarized in
section 2.4, W tendsto be a more relevant welfare measure. In these applications, " u tendsto measure the productivity gain
on areallocated unit of capital a potential entrant can transfer towards a new opportunity. Potentially, the economy benebts
more when more capital is reallocated. This potential benebt is measured by total utility and not per capita utility. Second,
our results showing that welfare might be decreasing in M are stronger if one consider the measure W. In fact, whenever W
is decreasing in M, V must be also decreasing.
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can potentially make markets more transparent by e.g. collecting and disclosing the amount of capital
devoted to di! erent trading strategies.

In the working paper version Kondor and Zawadowski (2016), we provide further microfoundations.
For instance, our payo! function can be derived from the problem of potential entrantsinto a market
with scarce inputs and local spill-overs. Consider a technology start-up developing a new service with
network externalities. A late entrant might struggleto attract the best specialized engineers and other
scarce resources paying a premium. On the other hand, more late entrants can increase the value of
the product for all brms through the network externality. Large levels of opacity could result from
secretive product development to guard intellectual property. A planner could increase transparency
by mandating the reporting and publishing of product development plans and the amounts invested
in certain activities.

Finally, we also consider a tournament model in academic publications. When a researcher chooses
a subbeld to work on, she has to make sure that she can write better papers than others. This might
not be clear without signibcant investment in understanding the connected literature and methodology.
At the same time, she would like to enter to a beld where many others enter, otherwise her impact
might remain very low, even if her quality of work is high. In this setting opacity measures how hard
it isto Pgure out what other researchers are working on or planning to work on. A planner could
increase transparency by publicizing research plans and encouraging dissemination and feedback on

early stage research.

3 Model Solution

In this section we analyze the model. We start by the characterization of the no information (1 = %)
and full information (1 = 0) benchmark. We then formulate and solve the playersGand the planner®
problem for general levels of opacity p. Finally, we derive the welfare €l ects of more competition

(higher M) and less transparency (higher p). This section contains the main insights of the moddl.
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We argue that opaque markets tend to be more crowded, opaqueness is likely to be benebcial if
competition is not too Perce, and that bercer competition leads to more wasteful learning leading to
deteriorating welfare without a! ecting crowding. We also explain the main mechanisms behind these
insights.

In this section, we allow for any " and # in (1) satisfying our parameter restrictions but restrict $
to 0. We analyze the $ > 0 case in an extension in Section 4.1 to show that results are qualitatively

similar in that case.

3.1 Full and no information benchmark

To better understand the optimal strategies and aggregate entry, we brst look at the extreme cases
of full information and no information. These extreme cases highlight that the nature of externality
changes depending on the amount of information. While without information both # and " repre-
sent externality, with full information only " does. We show that this implies under-entry with full
information whenever # > 0, and over-entry with no information regardless of the sign of #, both
compared to the planner® solution.

The next Lemma characterizes optimal strategies and entry in the competitive solution and under
the planner in the full information benchmark, that is, when the marginal cost of reducing entropy,

M, is zero. We also refer to this case as full transparency.

Lemma 2. Full information benchmark. Under full information (u = 0), there is too little entry

in the competitive equilibrium if # > 0, and excessive entry if # < 0. In the symmetric competitive
~ ' (

equilibrium playersOequilibrium strategy is a unit step function m(!)|y=0=1 ! & Mi , resulting in

aggregate entry | s

o1
M ap|,=0= min M . (7
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In the social planner® optimum, one of the many symmetric optimal strategies is a unit step function

[

Ms(M)u=0=1 ! & W , and all of the planner@ optimal strategies imply aggregate entry

! 1 $
M aps = min —#,M . (8

Under full information, in the competitive equilibrium, each player entersif and only if her pay-o!
is non-negative. The worst type entrant (with ! = M—l,.) earns zero revenue. Thisresultsin strategies
m(!) that are unit step functions. Comparing (7) and (8) showsthat in case of # > 0 the competitive
and social solutions lead to the same entry if and only if M < &. In that case, the mass of players
are so small that under both solutions all players enter. Apart from this trivial case, whether the
competitive solution implies under- or over-entry Bcompared to the social planner® choice B depends
on the sign of #. There is excessive entry in the competitive equilibrium if # > 0, since players with
higher ! do not take into account the positive el ect of their entry that accruesto entrants with lower
I'. This highlights the fact that under full information, externalities are fully captured by #.

We now turn to the of no information case, which we also refer to as full opacity. In this case

each player enters with a constant probability irrespective of its type ! since learning about its type

is prohibitively expensive. Thisresultsin strategies m(!) that are Rat functions.

Lemma 3. No information benchmark. In the absence of information (u # %), there is al-

ways excessive entry in the competitive equilibrium. The competitive entry function is constant at

*

m(!)|yr » = min W,l , implying aggregate entry of

!
by, $

M &p|,» » = min M (9

n! #

) *

The social planner@ entry functions is also constant at mg(!)|y # = min W,l , implying

aggregate entry of (8).
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Similarly, to the full information benchmark, the competitive and social solutions lead to the same
entry when the mass of total entrantsis small, M < ,L# because all enter with probability 1. This
threshold is determined by a zero utility condition for the average entrant. This leads to a larger
threshold than in the case of full information where the threshold was determined by a zero utility
condition for the worst type (highest !) entrant. For interior solutionsin the competitive equilibrium,
players are indi! erent between entering and not. The planner restricts entry in order to increase
the payo! to players. In fact the interior solution implies excessive entry under any other parameter
values: twice as many players enter in the competitive equilibrium than under the planner@® choice.
The intuition is analogous to the Gragedy of commonsQ Each player failsto internalize that her own
entry reduces the expected benebt of entry for all other entrants. T his follows from the assumption of
" > |#|, thus entering harms other entrants on average and the market is prone to GrowdingQ Since
players enter irrespective of their type, what matters is the net average externality on others, which
is captured by " ! #.

Why does only # corresponds to an externality under full information, while both # and " do
under no information? After all, expression (1) suggest that both low type entrants a! ect the payo!
of better type entrants and vice-versa regardless of the amount of information. In the full information
benchmark the worst type entrant isthe marginal type. Thisentrant bndsthat if no one enterswith a
worse type, and everyone enters with a better type, her utility is exactly 0. When # > 0, the planner
would like to force a slightly worse type to enter also, as it would increase each better type® pay-o!
through theterm a(!), compensating for this worst type® negative private pay-o! . The planner could
also take into account the negative e! ect of this additional entrant on all the worse type entrants

through the term b(!), but those do not enter anyway. Thisis why " does not correspond to an
externality under full information.
In