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The Representational Semantic Conception
Mauricio Suárez and Francesca Pero*y

This article argues for a representational semantic conception (RSC) of scientific theo-
ries, which respects the bare claim of any semantic view, namely, that theories can be char-
acterizedassetsofmodels.RSCmustbesharplydistinguishedfromstructuralversions that
assume a further identity of ‘models’ and ‘structures’, which we reject. The practice turn
in the recent philosophical literature suggests instead that modeling must be understood
in a deflationary spirit, in terms of the diverse representational practices in the sciences.
These insights are applied to some mathematical models, thus showing that the mathe-
matical sciences are not in principle counterexamples to RSC.
1. The Semantic Conception of Theories: Structures and Representa-
tions. The semantic conception of scientific theories has had a long and dis-
tinguished history. It originates in the 1960s and replaced the older syntactic
conception around 1980 as the central or received view of scientific theories.
As is well known, in the syntactic conception, theories are identifiedwith sets
of statements in a particular language. By contrast, in the semantic concep-
tion, they are identified with sets of models, which are in principle express-
ible in any language. But this is a rather thin, minimal statement that leaves
much still to be described. What exactly are those ‘models’ models of, and
howmay they be characterized independently of language?Howcan the con-
ception’s account of “theory” as a set of models be reconciled with the ap-
parent differences in scientific practice between theories and models? And
how does its account of empirical adequacy differ from that within the syn-
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REPRESENTATIONAL SEMANTIC CONCEPTION 345
tactic conception? These and similar questions have occupied philosophers
for decades now but are still to be conclusively resolved (see Suárez 2005;
Halvorson 2012, 2013). A dominant view is that the semantic conception
amounts to a form of structuralism—since it takes models to be set-theoretical
structures of the sort famously defined by Suppes (2002). But we believe
things are much more nuanced and have moreover been moving fast in the
last 2 decades. The semantic conception is meant to inform us about the na-
ture of theory. But one has to pay attention to the different “identity claims”
that have been made on its behalf.

The semantic conception at least in part developed as a response to the
perceived failures of the syntactic account of theories defended by the logi-
cal empiricists. The logical empiricists were seen to endorse an identity claim
roughly along the following lines: “a scientific theory is a consistent set of
sentences in some mixed vocabulary L comprising both theoretical and ob-
servational terms.” The logical empiricists then supposedly for this reason
focused their attention and energy on getting right the structure of the lan-
guage of science—in particular, the form of its sentences, and the relation be-
tween theoretical and observational terms in what was known as the “mixed”
vocabulary. Such efforts are seen to have failed for a very large number of
reasons—among which stood out the inability to fully characterize the the-
oretical and empirical content of most scientific theories in any given lan-
guage. The semantic conception was in the first instance a post-positivistic
attempt to move away from such intricate issues regarding the form and log-
ical syntax of theories and toward a characterization of scientific theories in
nonlinguistic terms (van Fraassen 1980, chap. 3; Giere 1988; Hughes 1992;
Suppes 2002). It aimed at a wholesale rejection of the core identity claim of
the syntactic view. The defenders of the semantic conception at least initially
endorsed a different identity claim, according to which “a scientific theory is
a set of models.” The new identity claim clearly signals a change in empha-
sis away from language, but the details must still be filled in and have given
rise to some significant debate.

One possible way of filling in this new identity claim within the semantic
conception is to appeal to a further straightforward identification of models
with mathematical structures. If it is the case that “all scientific theories are
sets of models” and it is also the case that “all models are mathematical
structures,” then trivially it is the case that “all scientific theories are sets of
mathematical structures.” During the 1980s and 1990s this looked like the
definitive rendition of the semantic conception of theories, and several phi-
losophers of science at one point or another during those years seemingly
staked their intellectual efforts and professional careers on something like
this identity claim. Especially the second claim regarding models as struc-
tures found favor within both the German and American “structuralism”

schools (Sneed 1994; Moulines 1996). The mathematical structures in ques-
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tion would often come in one of three different kinds: (i) set-theoretical pred-
icates, (ii) phase spaces, or (iii) state spaces. However, in all these cases, re-
gardless of the details, the central idea is to identify a theory with a set do-
main D and a bunch of relations Ri defined on the elements of the domain.
So, let us count any of these versions of the semantic conception as part of a
more general ‘structuralist semantic conception’ of scientific theories. It is
defined by its endorsement of the identification of scientific theories with
mathematical structures.1

More recently, van Fraassen (2014) has suggested that the semantic con-
ception of scientific theories has evolved contemporaneously into a more
general “representational” view. He signals Hughes (1997) as the turning
point, an influential article advocating a pragmatic notion of representation
in the spirit of Goodman (1968). Hughes then explicitly linked scientific
models to representations of just this type. Van Fraassen points out that Giere
(1999) and Suárez (1999) developed similar views at around the same time.
And indeed, these three papers defend the claim that a scientific model is a
representation, and they provide a suitably pragmatic understanding of this
claim. The move has significant implications for the semantic conception.
For—as we have seen—a structuralist version of the semantic conception
necessarily fills in the identity claim structurally; that is, it understands a the-
ory to be composed or constituted by structures. Yet, the ‘representational’
version, which van Fraassen takes to be the latest stage of the semantic view,
fills in the identity claim very differently—in terms of representational mod-
els. These two conceptions are not identical since representations are not
structures. What is more, on the pragmatic understanding that their propo-
nents advance, representations are inconceivable as bare structures, since
representations are essentially “targeted” toward their objects. Thus, Suárez
(1999) argues that a model cannot be understood as a ‘flat surface’, or bare
structure, but must be understood as essentially pointing toward its target
within its context of application and use. Giere (2004) develops a four-place
account that is essentially agent centered, since it builds in agents’ purposes.

We may then refer to this representational version of the semantic con-
ception as the ‘representational semantic conception’, or RSC. The RSC is
not just distinct but incompatible with its structural predecessor. While the
bare identity claim for theories that minimally characterizes the semantic
view continues to hold (i.e., it is still defensible that “scientific theories are
1. This assumes that the semantic conception is indeed committed to an identity claim.
The commitment is sometimes weakened to an alternative ‘best-model’ claim, according
to which the semantic conception is only committed to the claim that scientific theories
are ‘best modeled’ as sets of models. The weakening does not affect our argument
against structural renditions of the semantic conception and brings in added complica-
tions (deriving from the more general second-order claim that some entity X is ‘best-
modeled’ as a model), so we ignore it here.
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REPRESENTATIONAL SEMANTIC CONCEPTION 347
just sets of models”), the content of this claim is filled in very differently. On
the older structuralist version, models are structures, and therefore the iden-
tity claim entails that “theories are just sets of structures.” By contrast, on the
latest representational version—as characterized by van Fraassen and de-
fended by Hughes, Giere, and Suárez—scientific theories are not structures
but representations of target systems.

The fact that these versions of the semantic view are incompatible may
suggest that the latest representational version has no room to accommodate
mathematical structures at all, or, at any rate, it remains amystery how it may
do so. Attempts to bring together the structural and representational variants
of the semantic conception invariably end up reducing the latter to the for-
mer. Bueno and Colyvan (2011) and Pincock (2012) are egregious cases of
ultimate reduction. But even those, like Chakravartty (2010), who cannot
be suspected to favor formal or structural renditions of scientific theories, the-
orizing, or theirmetaphysics end up conceding that “informational” accounts
of representation are basic or constituent, and functional accounts are merely
pragmatic. Thus, Chakravartty’s favorite informational account is not struc-
tural but similarity based, yet he concedes that informational accounts, what-
ever they may be, address “the issue of what representation is,” while func-
tional accounts only address “the issue of how representations are used”
(2010, 212). In otherwords, the onlyway theRSCseems to be able to account
for structural or mathematical modeling is by surrendering the position. This
inability to account for structural or mathematical representation in its own
terms would seem to be a defect of the RSC, since it is undeniable that math-
ematical structures do play a role—often a very significant role—in scientific
theorizing, particularly in physics. It cannot be denied, for instance, that both
pillars of twentieth-century physics (quantummechanics and relativity) have
leaned considerably on sophisticatedmathematical structural representation.
And the question then arises whether the RSC can do justice to the presence
of structures in scientific theorizing.

One of our purposes in this article is to show that the assumption that the
RSC cannot accommodate a role formathematical structures in scientific the-
orizing is fallacious.2 It depends on a conflation of the identity claim for theo-
ries with the additional thought that nothing that fails to constitute a theory
can play a role within its development. In other words, it is another instance
of a very common, yet fallacious, conflation of product and process (Suárez
2. We henceforth employ the term “structure” instead of “mathematical structure,”
which strikes us as redundant, since physical entities or objects can only be said to pos-
sess structure by mathematically instantiating them. We also refrain henceforth from the
terminology of “bare structure” since it is trivial that something else (such as an inten-
tion) can always be added to a structure in order to generate a composite hybrid entity,
which is by construction nonstructural.
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and Cartwright 2008). That a scientific theory is not constituted by a set of
structures does not entail that there cannot be structures employed in its de-
velopment and application.

2. Pragmatic Theories. Our other main purpose in this article is to argue
that theRSC is as close as it gets to a pragmatist account of theories as tools—
the view defended by Suárez and Cartwright (2008) and characterized as a
third “pragmatic view of theories,” beyond the syntactic and semantic views,
in Winther’s excellent entry for the Stanford Encyclopedia (Winther 2016).
Winther (2016, 31) emphasizes five main theses or themes in this pragmatic
viewof theories: (1) limitations, (2)pluralism, (3)nonformalaspects, (4) func-
tions, and (5) practice. Although Winther describes these theses as pertain-
ing to the “structures-within-a-theory,”we prefer to think of them as the fea-
tures of nonstructurally characterized theories. Thus, whereasWinther seeks
a characterization of “theory-structure” that satisfies these five themes, we
have no such hopes for structure. Instead we locate these themes in the na-
ture of nonstructurally characterized scientific theories. Thus, on our account
a structural characterization of theory, no matter how rich, will always be
“too weak for the predictive and explanatory work ... expected of it” (31).
Similarly, on our account, theories are plural and complex precisely because
they are not constituted by structures (cf. Winther’s very different claim that
structures themselvesmust be complex and plural—a claim that we find hard
to make mathematical sense of ). Theories have nonformal aspects precisely
because they are not solely constituted by structures (otherwise, on our view,
they would certainly have fully formal characterizations). And so on.

In other words, whereas Winther looks to retain an essentially structural
version of the semantic view, and then attempts to go pragmatist on the no-
tion of structure, we remain conservative on the definition of mathematical
structure and seek a more radical departure regarding the conception of the-
ory. This is why our RSC severs any constitutional connection of theories
withmathematical structures altogether. Yet, other than this critical difference
our aim is similar in broad terms. Like Winther we are set on emphasizing
pragmatic elements and themes involved in a more flexible and open-ended
approach to scientific theory. We simply claim that the semantic conception
in its bare minimal expression—which we will refer to as claim 1—is quite
compatible with such an extension. In liberating the semantic conception
from the shackles of structuralism, as we do, we open up the conceptual room
required for a genuinely pragmatist understanding of theory.

Hence, we first argue that on the RSC scientific theories are not consti-
tuted by structures, because theories are representations, and representations
are not constituted by structures. However, we do not deny that structures
can often be the means for the application and development of representa-
tions, and hence they can also be the effective means for the application and
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development of theories. What is needed here is the appropriate account of
representation. A suitably deflationary account of representation will accept
that in some cases—in some contexts—the representational source is, or
can be mapped uniquely onto, a mathematical structure; the representational
target is, or can be mapped uniquely onto, another structure; and the relation
between both that does the representational work in that very instance can
also be characterized structurally as some kind of morphism. A deflationary
conception is only committed to the denial that this structural relation as best
described constitutes representation even in that particular case—that is, it
will deny that it is the property in virtue of which the representation is such.

There is nothing we find in the history of the semantic conception to deny
the pragmatic turn advocated by the RSC. As is well known, the semantic
conception was introduced as a program of philosophical analysis of theo-
ries, comprising different formulations with a common core of assumptions.
The first assumption concerns the aim of this program, which is to provide a
format for scientific theories (van Fraassen 1987, 220–22), that is, a possible
way to present a theory. The second assumption concerns the nature of the
theory: while the format of theories may vary slightly according to the math-
ematics employed by the supporters of the view, theories are generally as-
sumed to be extralinguistic and eminently set theoretical.3

A nonexplicit assumption within the view, which is often overlooked in
the secondary literature, is the modesty that has to characterize the formali-
zation employed.4 The sense in which the formalization ismodest is twofold:
it is not meant to be the only philosophical analysis available of the theories
in question, nor is it meant to apply to all empirical sciences. Both points have
been stressed by Suppes, who claims that “to argue that such formalization is
one important method of clarification is not in any sense to claim that it is the
only method of philosophical analysis” (1968, 653). More recently, Suppes
extensively argued against the idea that a philosophical analysis of theories
could ever be universally applicable, that is, that it could apply to all scientific
3. To quote Suppe (1989, 199): “The ‘semantic conception’ gets its name from the fact
that it construes theories as what their formulations refer to when the formulations are
given a (formal) semantic interpretation. Thus ‘semantic’ is used here in the sense of
formal semantics or model theory in mathematical logic. On the semantic conception,
the heart of a theory is an extra-linguistic theory structure. Theory structures variously
are characterized as set-theoretic predicates (Suppes and Sneed), state spaces (Beth and
Van Fraassen), and relational systems (Suppe). Regardless of which sort of mathemat-
ical entity the theory structures are identified with, the do pretty much the same thing—
they specify the admissible behaviours of state transition systems.”

4. See in this regard also Le Bihan (2012) for what she calls the ‘modest interpretation of
the semantic view’, conceived as the “methodological prescription to use model theory
as a tool for the rigorous analysis of the structure of what scientists typically use to rep-
resent the world in actual practice” (251).
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theories, claiming that the “severe limitations” of set theory as a possible
framework to organize scientific theories should be recognized (see Sneed
1994, 214).

It is then possible to interpret appositely the claims made in the seminal
paper by Suppes (1961) about the fundamental character of the Tarskian con-
cept of models: the concept is fundamental in the sense that it can be em-
ployed as “technical meaning” shared by different sciences (empirical and
mathematical), as well as in the sense that it can be employed to deal with
different issues internal to a specific science. Despite a common apprehen-
sion to the contrary (even among sympathetic commentators such as Landry
[2007]), Suppes is not in this article setting the basis for reducing all the dif-
ferent concepts of models to the Tarskian one.5 In other words, the format of
a theory given within the semantic view is never canonical (i.e., universal).

Neither can the semantic view be used to provide a demarcation criterion
to figure out whether a theory is scientific. Suppe explicitly claims that the
semantic view does provide a “defensible account of what is to be a theory,”
and yet this status does not make it an “adequate account of what a scientific
theory is” (1989, 198–99). Given such strong restrictions on the applicabil-
ity of its analysis, a legitimate question is whether the semantic view can be
faithful to scientific practice. Suppe’s (1977, 655) answer on behalf of “his-
torically oriented philosophy of science” seems to us to still hold water. The
method of a historically oriented philosopher of science is to abstract pat-
terns of scientific reasoning from the history of science, to examine whether
they are valid patterns for the purposes at hand, and in case they are, to ex-
tract the structure of the pattern and eventually formulate claims of the form
“if any elements that ground this good pattern of reasoning feature in the the-
ory, then the theory is likely to be successful.” In particular, for Suppe, at
least three elements must hold for a good application of the semantic con-
ception to any case of scientific theorizing. Roughly, (i) the historically in-
formed philosopher of science notices a central use of the theory in relation
to characterizing the changes in an isolated system’s behavior, (ii) further re-
flection on its historical role shows some invariant features of the use of the
theory in actual practice that can thus be abstracted (such as a particular class
of states used to characterize the behavior of systems, the dynamical laws
employed to describe the changes, etc.), and (iii) a precise set theoretical
analysis of these abstract descriptions of the central uses of a theory can then
5. Landry appeals to Suppes’s commitment to “the set theoretical foundationalist pro-
gram” to ground her interpretation of the role that Suppes assigns to the Tarskian con-
cept of models (Landry 2007, 5). And she is quite right that the goal of the program is to
reduce all the branches of mathematics to set theory (see Suppes 1972, 1). However, as
just pointed out, Suppes gave up the idea of applying the set theoretical foundationalist
program to the philosophical analysis of scientific theories more than 20 years ago.

This content downloaded from 158.143.037.224 on August 12, 2019 09:31:40 AM
se subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



REPRESENTATIONAL SEMANTIC CONCEPTION 351
be provided. The adequacy of the analysis will very sensitively depend on
the extent to which its characterization of the use of the theory in practice
as a model of physical systems is adequate. It is clear that adequacy here will
always come in degrees, and therefore any identity claim of a theory with a
particular set-theoretical formalization will be correspondingly always open
to debate and refinement.

Therefore, the core claim of any semantic view, which states that theories
are sets of models, far from providing necessary and sufficient conditions
for the identity of theories, opens them up to a very context-dependent con-
sideration of the diverse inferential practices, or patterns of reasoning, that
such models historically ground in actual representational practice. It is this
practice of representation that must then be placed at the heart of a study of
theory. In the next section we review discussions regarding representation
within the semantic conception in its multiple guises. We defend a distinc-
tion between two questions referred to as the problems of constitution and
means and review the inferential account of representation that will frame
our views. In section 4, we defend that some of the means of scientific rep-
resentation, particularly in the physical or mathematical sciences, are struc-
tural. We then show how to accommodate such means within the inferential
conception of representation more generally—and hence how to accommo-
date them within the RSC. In section 5, we argue that structural accounts of
the constituents of representation are wrong because they lay down impos-
sible conditions on models that are not—and cannot—be met in practice.
This forecloses any version of the semantic conception of theories that iden-
tifies them with structures. The upshot in the conclusion is that the RSC has
no problem accommodating the use of structures in modeling the phenom-
ena, so long as it does not identify them with representation itself.

3. Means and Constituents of Representation: The Inferential Ac-
count. Our argument must then be understood as support for the RSC iden-
tity claim that “scientific theories are sets of representations.”There are, how-
ever, some caveats or presuppositions that are best to present up front. First,
our claim is conditional on a deflationary account of scientific representa-
tion—in particular, the type of inferential accounts that have been defended
in recent years by several authors (Suárez 2004; De Donato-Rodríguez and
Zamora-Bonilla 2009; Kuorikoski andYlikoski 2015).We consequently use
our terms (including “constituents” and “means”) in accordance with the
technical definitions provided within such inferential conceptions. Second,
the full identity claim of the RSC may yet turn out to be false—the semantic
view even in its most sophisticated latest stage could be false—and it is im-
portant to realize that the Hughes-Giere-Suárez thesis regarding models as
representations could nonetheless stand. In other words, the first identity
claim that characterizes the RSC (claim 1: theories are sets of models) is log-
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ically independent from the second identity claim that informs the Hughes-
Giere-Suárez thesis regarding models (claim 2: models are representations).
It is only the conjunction of both claims (1 and 2) that yields the full claim
that theories are sets of representations. We are committed to claim 2, which
one of us has defended extensively in the past, and we are here also tenta-
tively committing to claim 1. Therefore, we are tentatively committing to the
conjunction. We argue, at any rate, that the conjunction of claims 1 and 2 has
hitherto unexplored advantageous consequences for the semantic tradition.
Indeed it may be that this conjunction of claims is the only way to make the
semantic conception viable (at least we know of no other way of rendering
it viable).

References to the semantic conception are ubiquitous in the recent liter-
ature about scientific representation. Even when they do not appear explic-
itly, they are often implicit. Thus, recent discussions regarding the applica-
bility of mathematics, which are often a subterfuge by another name of the
more general issue of representation by mathematical models, tacitly appeal
to a structural account of representation supposedly necessitated by the se-
mantic conception (Bueno and Colyvan 2011; Pincock 2012). As Nguyen
and Frigg (2017) aptly point out, the claim that mathematical models are ex-
planatory tacitly involves an antecedent account of scientific representation,
which is often understood in this context to be provided by the semantic view.
It thus becomes easy to be misled into the thought that the semantic concep-
tion requires a particular structural account of representation (and indeed
even critics like Frigg [2006] seem to have been misled this way). Yet, his-
torically, advocates of the semantic conception have typically kept quiet on
the nature of representation, focusing instead on the formal structures that ap-
pear in mathematical models—all the way down from theory to data, as in
Suppes’s (1962) now classic treatment of models of the phenomena. And in-
deed, detailed philosophical discussion of representation within the semantic
conception is a very recent development—just 20 years old, since the pio-
neering contribution in Hughes (1997). How are we to understand this appar-
ent contradiction?

When it comes to the bearing of the semantic conception on representa-
tion, two distinct questions are at play, which it is important not to conflate
or run together. First, onemaywant to ask questions about what the semantic
conception actually entails regarding representation. We would like to sug-
gest that the answer is this: surprisingly very little, if anything at all. Second,
one may want to consider how it historically came about that the semantic
conception is implicitly linked in the minds of so many authors to a partic-
ular structural conception of representation. It is logically perfectly possible
that the answer to the first question is very thin, or inexistent, while the an-
swer to the second is thickly informative. In fact, it stands to reason that if the
semantic conception does not entail a structural account of representation,
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then some richly textured historical explanation should be forthcoming for
why it has been understood by many to so entail it. There is plenty of histor-
ical and sociological detail that can shed light on why the ‘structural seman-
tic conception’ was understood to be the only possible rendition of the view
(Suppe 1977). Our concern in this article is theoretical, and we have to set
such detailed historical considerations aside. The key minimal claim for our
present purposes is that nothing in the history of the discipline requires a tight
logical connection between the semantic view, minimally construed as the
mere statement of its core claim 1, and any particular view of representation.
The ‘structural semantic conception’ goes beyond the statement of claim 1: it
adds an assimilation of models to structures that is not a core commitment of
the semantic view.

Another way to make this point appeals to different problems one may
address in relation to representation. On the one hand, there is what we will
call the problem of means, or application, namely, the problem of studying
how different representational sources relate to their target systems, within
their particular contexts of application, where the relation minimally requires
the possibility of surrogative reasoning from source to target (Swoyer 1991)
but can otherwise vary greatly. The diversity is so large in fact that one should
properly speak of the “problems” of application or means—since the solu-
tion to this problem can differ maximally from case to case. On the other
hand, there is the problem of constitution, which is the problem of defining
the general conditions in virtue ofwhich sources represent their targets across
contexts. This requires a universal answer in all circumstances, so it is prop-
erly speaking just one very large and abstract problem. Now, there are, occa-
sionally, structural answers to the first kind of problem: some mathematical
models relate structurally to (an appropriately structural description of ) their
targets within the context of their application. But we argue that there is no
structural answer to the second problem: there is no structural morphism be-
tween sources and targets in virtue ofwhich representation in general obtains.
Yet, the structuralist semantic conception has been taken by many, friends
and foes alike, to implicitly carry a response to this problem of constitution,
according to which representation is itself a structural relation and is consti-
tuted by some morphism or mapping (for paradigmatic examples, see van
Fraassen 1980; Frigg 2006). But in fact, we argue, structuralism merely can
answer the problem of application of mathematical models—it can only in-
form us as to what structural means are typically employed in particular in-
stances of successful representation. And there is no confusing a means of
mathematical representation, however typical, with the constitutive relation
of representation in general.

Throughout this article we adopt the deflationary view that the constitu-
tion problem is unanswerable. The RSC that we favor thus carries no com-
mitment to any particular substantive account of representation, and it is cer-
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tainly not possible to sneak structuralism in through the back door, as it were.
Yet, staying resolutely quiet on the problem of constitution does not prevent
us from addressing the problem of application. And it does not prevent us
from giving the appropriate structural rendition of the means of particular
representations by mathematical models in any given context in which in-
deed that is appropriate.

In the burgeoning modeling literature of the last 2 decades or so, there is
widespread acceptance and recognition of the fact, first stated by Swoyer
(1991), that a main use—if not the main use—of scientific modeling is sur-
rogative inference about diverse aspects of the model’s target (where the
model’s target may be a real or an imaginary entity, system, or process). On
this fact, to our knowledge, all commentators agree, even when they dis-
agree about the explanation of this one fact (Hughes 1997; Chakravartty
2001; Giere 2004; Frigg 2006; van Fraassen 2008). It may thus be said to
be a platitude about scientific modeling and representation that all models
are at least in principle able to license some inferences regarding their target.
The main point of building a model is to allow such surrogative inferences,
and it is such inference-drawing actions (Boesch 2017), if anything at all,
that are constitutive of communal representing acts.6

A substantive account of representation assumes that this fact about sur-
rogative inference stands to be explained by ulterior facts regarding the na-
ture of the representational relation between representational sources and tar-
gets. Thus, on similarity accounts of representation, the similarity between
representational source and target is what explains the fact that surrogative
inference is possible. On isomorphism accounts, the structural identity of the
sourcemodel and its target explains the fact that inferencesmay be drawn from
the source about the target. And so on. On such views, it is the facts about
the nature of the deeper representational relation that explain its surface fea-
tures. Yet, as is very well known by now, such substantive accounts run into
a myriad of problems that make them entirely implausible, inappropriate, or
unviable as accounts of the representational relation.7

A deflationary account, by contrast, rejects any explanatory demand on
any of the surface features of a representation, such as its surrogative infer-
ential prowess. Deflationists do not require an explanation of the capacity of
a scientific model source to license inferences about its target—particularly
6. Note also that, as is commonly emphasized these days as well, such inferences may
well not be to true conclusions regarding the target. Faithfulness is not in other words
required: it is only required that the inferences, whether sound or not, be pertinently
about the target. The emphasis is on the inferential action in its social context, not on
the validity of the inference per se.

7. There is no space here to review these problems, which are by now well known. See
Pero (2015) for a review.
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not so in virtue of any deeper features of the representational relation be-
tween source and target. Instead the inferential capacity of the model source
toward its target is taken to be an unanalyzable component of the represen-
tation. Other aspects of the modeling relation (such as its faithfulness or the
effectiveness of its means) are rather to be understood in terms of such sur-
face features. On this view, there are no deeper facts about the representa-
tional relation that may illuminate such surface features; the latter stand on
their own, requiring no explanation.

It is possible to gain a better grasp of the distinction between “surface”
and “deep” features of a representation in practice by reference to a further
philosophical distinction between “constituents” and “means.” In a represen-
tation of some objects, system, or process b by means of some model a, we
have adopted the stipulation to refer to a as the “source” and b as the “target.”8

We can then say that the relation R(a, b) constitutes the representation—or
that it is the constituents of the representation—if and only if, for any (source,
target) pair in any context, R(source, target) is the relation of representation.
But, the relation R(a, b) is the means of the representation of b by a in a par-
ticular context of use if and only if R(a, b) is the one relational property of a
and b that is actively employed by the agent who, in the particular context,
uses the representation in order to draw or infer conclusions about b from
a. More simply put, R(a, b) constitutes the representational relation if it is
the general relational property of source and targets that defines it and hap-
pens to be instantiated in the context by a and b. But even if there is no con-
stitutive general relation that it instantiates, it is still the case that R(a, b) as it
obtains in the particular context, and only in that context, is the means by
which a represents b.

If there can be means without constituents, there can be representation in
a deflationary sense: it is permissible to say that a represents b becauseR(a, b)
obtains even though there is no “deeper” constitutive relation that explains
why this is so. The litmus case then against a substantive account of repre-
sentation is the existence of representational means without constituents. We
want to argue in what follows that the means of some scientific representa-
tions—typical in mathematical modeling that characterizes the physical sci-
ences—are often structural. The relation R(a, b) that is employed in that par-
ticular context to carry out surrogate reasoning is a structural morphism.
However, this does not mean that the particular morphism R(a, b) employed
in that context is the constituent of the representational relation between a
and b in any context. On the contrary, we argue that no morphism type con-
stitutes representation. In the spirit of our deflationism, there is no need to
8. In other words, if “a represents b” is true, then ‘a’ is the representational source, and
‘b’ is the representational target, by the above stipulation.
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postulate any constituents at all. In other words, our purpose in this article is
toargue that even in thosecases inwhich themeansof representationare struc-
tural, it does not follow that representation per se is structural. We argue that
if representation is to be identified with anything at all, even in those con-
texts in which the means of representation are structural, it should be iden-
tified with whatever inferential practice is enacted in such contexts by those
structural means at hand (and therefore not be identified with the structural
means themselves).

4. Structural Means and Surrogative Reasoning. The means of the rep-
resentation of b by a at a given time t and context c may be any kind of re-
lation R(a, b) that holds between them—as long as this is actively employed
in surrogative inference from a to b in that context at that time. However,
this leaves open whether a and b are themselves structured in terms of rela-
tions or properties of the different elements in their domain. Let us assume
that this is so. That is, suppose that a and b either are both structures or can be
described as such (perhaps because they are physical entities or processes
that for the purposes of the representation at hand, in the right context, ex-
emplify relevant structures). Then we can write Sa and Sb for the two struc-
tures that correspond to a and b, as follows: Sa 5 hDa, Rii, and Sb 5 hDb,
Rji, where {Da}, {Db} are the domains of the structures, and {Ri}, {Rj} are
the sets of relations defined over the elements of the domain.9

We are likely to find structural means of representation in science when-
ever the relevant (source, target) pairs are structures themselves. Those struc-
tures may be presented as set-theoretical predicates, phase spaces, or state
spaces or whatever mathematical equations these are defined by. We may
consider any number of examples from theoretical physics. The Hilbert state
space formalism for quantum systems is one. It assigns a state to a system and
9. We ignore the rank order of the diverse kinds of n-tuples. There are of course two-
place relations, three-place relations, four-place relations, and so on. These are some-
times conventionally represented by means of a superscript: Ri

n would thus represent
the ith n-tupled relation, etc. Among these there can be one-place relations too: Ri

0,
which represent the monadic properties of the elements in the domain. There is no loss
in generality in assuming them all to be in the class of relations, ordered by the i index.
Similarly, sometimes structures are said to be strictly triadic entities: hDs, Ri, fji, contain-
ing not only relations over the domain but also functions over those relations (Chang and
Keisler 1973). We ignore these complexities here since they do not affect anything we
go on to say, but it is worth reminding ourselves that a full structural homomorphism
must involve mapping of functions as much as relations—a sort of homology that cap-
tures some of the “dynamical” aspect of the structure. This complexity makes the job, if
anything, harder for any account of the constituents of representation as any particular
morphism. So ignoring the complexities does not weaken our argument against them.
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represents it as a vector or a ray (family of vectors) in a complex higher di-
mensional vector space. It then represents any of the system’s properties as
one of a family of operators acting on the space. The commutativity property
of the operators for a particular system then defines an equivalence class of
isomorphic states: those that establish the same probability distribution over
the eigenstates of the commuting operators. Alternative approaches to quan-
tum mechanics in which the Hilbert space does not play such a representa-
tional role, such as Bohmian mechanics, provide further examples. A Boh-
mian system’s state (the position and velocity of its constituent particles) is
at all times defined by its Hamiltonian, and the dynamical Schrödinger equa-
tion, and is thus represented in configuration space (where the configuration
space of a n-particle system is a 3n-dimensional space). And the motion of a
system of Bohmian particles is hence isomorphic to the motion of the univer-
sal Bohmian particle in configuration space.

These turn out to be complex examples, since the isomorphism is never
to the intuitive physical three-dimensional space. But there are even simpler
examples, such as the simple harmonic oscillator or Brownianmotion in clas-
sical mechanics. Consider the simple harmonic oscillator in one direction
with its motion governed by Hooke’s law: F 5 2kx, where k is a constant
of the system. The equation may be solved for the displacement of a point
particle on a line, and it instantiates a phase space structure where the two
variables of motion are the position of the point (x) and its momentum (m)
or, for a particle of unit mass, its velocity (v). The dynamics of the motion on
the phase space determines a structure of correlated points in time: S 5
hP, Rii, where each point is related to its successor by a succession rule that
determines the particle’s trajectory. It is then possible to lay out a structural
mapping between this structure in the model (the representational source)
and the corresponding structure instantiated by the motion of an undamped
oscillator or pendulum (the representational target). They pendulum’s trajec-
tory in physical space is given by its one-dimensional coordinate in time,
hence, by the values of the two variables (x, t). This again provides a structure
S 0 5 hP0, R

0
ii, where each point in space is related to its successor in time by

the succession rule imposed by the t coordinate. It is then relatively trivial to
check that both structures are isomorphic to a degree, namely, the degree to
which the trajectories of the pendulum in space and the point particle in phase
space accurately correlate.

Nor are such cases confined to mathematical physics. In marine ecolog-
ical biology, the Lotka-Volterramodel of predator-prey populations in a com-
petitiveenvironment, forexample,hasbeenamplydiscussed in thephilosoph-
ical literature (Weisberg 2007; Boesch 2017; Knuuttila and Loettgers 2017).
This is easy to understand in terms of isomorphisms operating between those
relations holding among the quantities in themodel source (whichobey a cou-
ple of straightforward nonlinear equations and thus can easily put in a struc-
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tural format) and the empirically observed ratios in actual populations of fish
in the Adriatic sea (as reported byD’Ancona andwhich formed the empirical
basis of the outcome-oriented model by Volterra, in particular; see Knuuttila
and Loettgers 2017, 1027ff.).10

A computer simulation of Brownian motion provides yet another, more
complex example. A dotmoving randomly on a computer screen is themodel
for the motion of a particle floating in some fluid or gas (e.g., a spot of dust
floating in a stream of vapor). This is easily generated by the computer im-
plementation of the Wiener equation for Brownian motion. A Wiener pro-
cess is a continuous in time stochastic processWt that obeys the normal dis-
tribution, as follows (Grimmett and Stirzaker 1982/2001, 370ff.):

1. W0 5 0 almost surely.
2. Wt has independent increments: Wt1u 2 Wt is independent of u (WS:

s ≤ t) for u ≥ 0.
3. W has Gaussian increments (normally distributed):Wt1u5Wt N(O, u),

where O is the mean and u is the variance.
4. Wt is almost surely continuous in t.

The point is that such a process defines a motion of a dot on the state space,
which accurately represents the motion of a dust particle floating in a fluid.
The trajectory of a random Brownian walk is illustrated in figure 1 (courtesy
of Juan Parrondo). This motion in mathematical space may be taken in turn
to model the motion of a real physical dust particle in a fluid. But it must be
stressed that since the mathematical motion is randomly generated, there is
no guarantee that it will model the motion of any one particle perfectly.
Rather, it models one ‘typical’ kind of motion of one such particle. At any
rate the representational relation, if it obtains, takes a structural form. The mo-
tion in mathematical space is to some degree isomorphic to that of the phys-
ical particle. In set-theoretic terms, there is a structure S induced by the for-
mer motion that is reproduced as S 0 in the motion of the latter particle, just as
in the pendulum case (where the relations are once again due to the contiguity
in time of the positions occupied by the dot/particle).

But there are in mathematical physics other examples of representational
means that are not structural. One example is provided by the Quantum State
10. Our analysis of the episode is in agreement with Knuuttila and Loettgers (2017).
Like them, we find that the modeling methodology of Volterra, in particular, does not
fit in with the “indirect representation” approach of Godfrey-Smith (2006) and Weisberg
(2007). This is important to our thesis, since Weisberg and Godfrey-Smith’s basic claim
entails that not all theorizing is modeling, while the representational version of the se-
mantic view (RSC) that we defend in this article of course assumes that the products of
theorizing (theories) are essentially all sets of models (at different levels of abstraction,
involving different degrees of idealization, arrived at with diverse methodologies, etc.).
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Diffusion stochastic differential equation for the state of a free particle (see
Percival 1998, 50):

dwi 5 2
i

ℏ
~Hwi dt 1o

j

hL*j i Lj 2
1

2
L*j Lj 2

1

2
hL*j i hLj i

� �
∨ wi dt

1o
j

Lj 2 hLj ið Þwi dyj:

This equation describes the evolution of the quantum vector state of a par-
ticle subject to a diffusion process. It is important to understand the nested
nature of the representations that play a role in this model. There is first of all
the equation itself, which represents in a symbolic (nonstructural) form the
motion of a vector in a vector space. It is of course possible to solve the equa-
tion to figure out what it entails for the motion of the state vector—in fact
the equation has to be solved in order to determine uniquely the state vector
motion—but it does not follow that the equation is structurally isomorphic to
themotion. Now, this vector in turn represents the state of a physical quantum
Figure 1. Brownian motion in three-dimensional space.
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particle subject to diffusion. This last relationship is structural, but it is not a
simple isomorphism. The graph (e.g., fig. 4.1 in Percival 1998, 51) depicting
the trajectory of the state on the Bloch sphere as prescribed by the equation is
not itself a depiction of the movement of the particle in three-dimensional
physical space, nor is it isomorphic to it. One has to apply Born’s probability
postulate in order to derive any meaningful information regarding the actual
particle position. There is no geometrical isomorphism even if both source
and target have a mathematical form.

In other words, in physics and other mathematical sciences there are cases
in which the representational source and target are both mathematical enti-
ties, which can be understood structurally, and indeed the means of the rep-
resentation is some structural morphism between them. But there are other
cases in which both source and target have a structural (or at least mathe-
matical) form, and yet the representation of the one by the other is not struc-
tural—and certainly not a matter of structural morphism. The shape of the
(source, target) pair is not an infallible guide to the type of representational
means that are operative in the context at hand. On the contrary, one needs to
inspect the context in detail to figure out just what guides the inference draw-
ing from source to target.

5. The Structural Semantic Conception Revisited. We have established
that when both source and target in a scientific representation can be given
structural descriptions it becomes possible—although not necessary—for a
kind ofmorphism to be themeans of the representation. The relation between
source and target that is employed in surrogative inference about the target is
appropriately structural. This addresses the problem of means or application
within RSC, which is thus shown to have the resources to handle such cases
without any difficulty.

It may seem that a ‘structural semantic conception’ would achieve the
same result automatically—for on such a version of the semantic view all
means are necessarily structural. But this is not so. There is no single kind
of morphism that is either the constituents of representation or even the uni-
versal means of structural representation. The reason why the constituents of
representation cannot be structural is related to the inherent diversity of sci-
entific modeling, which is ubiquitously idealization ridden. Scientific rep-
resentations may idealize in at least three different ways (Pero and Suárez
2016): by abstracting, by pretending, or by simulating—where the third is a
combination of the former two. Nomorphism can account for all these forms
of idealization. The weakest proposal is Swoyer’s ‘D/W-morphism’, but it
imposes no genuine structural constraints: any structure holds the requisite
relation with any other structure. In other words, there is no informative
morphism that all representational means reduce to, even when the source
and the target are structures or may be mapped uniquely onto structures.
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Pero and Suárez (2016, 77ff.) have shown that the two common types of
idealizations in science pull in opposite directions when it comes to estab-
lishing a structural morphism between model and target. Roughly, ‘abstract-
ing’ involves ignoring details in the target by suppressing any correlative fea-
tures in the model, while ‘pretending’ involves adding features in the model
that lack any correlate in the target. Suppose that we are in the lucky situation
to have uniquely specified a structure for both source and target, as S 5
hDS , fRSgi, and T 5 hDT , fRTgi, where DS, DT are the domains of individ-
uals of each of the structures S, T, and RS, RT are the relations defined over the
respective domains. We then say that a model S abstracts some property in
the target if and only if there exists some n-tuple: fa1, a2, ::: , ang ∈ DT ,
such that there is a property or relation Ri

T (a1, a2, ::: , an) obtaining in the
target and lacking in the source: Ri

T (a1, a2, ::: , an) ∧ Ri
S , where Ri

S( f (a1),
f (a2), ::: , f (an)) is the correlative property over the corresponding elements
of the domain in the target. And we say that the model pretends some prop-
erty in the target if and only if there exists some n-tuple: fb1, b2, ::: , bng ∈ DS ,
such that there is a property or relation Ri

S(b1, b2, ::: , bn) obtaining in the
source that is lacking in the target: Ri

T . The range of the morphism function
in the source is whatever n-tuple maps over f 21(b1), f 21(b2), ... , f 21(bn),
since we do not insist that the function f must be one to one and onto an
isomorphism.

Most scientific models both abstract some properties in their target and
pretend some other properties. The well-known example of the billiard ball
model for a gas in the kinetic theory exemplifies both. A system of billiard
balls models a system of gas molecules, with some provisos. First, billiard
balls are shiny, opaque, and hard, and these are properties that the model can
at best pretend are in the target system of gas molecules. Second, there are
properties of the gas molecules that are ignored or denied in the billiard ball
model, such as viscosity and thermal conductivity. These properties are ab-
stracted away. Viscosity, for example, is a physical consequence of density
and temperature of the whole gas. Yet, a system of billiard balls lacks the
connection between density and temperature, on the one hand, and viscos-
ity, on the other. Even if temperature and density were well-defined quanti-
ties in a system of billiard balls (which they are not), there would be no cor-
responding property of viscosity of billiard balls. It is not merely that the
property is ignored—it is expressly denied for billiard balls. Similarly, there
are properties of the system of gas molecules as a whole that the system of
billiard balls as a whole does not possess, namely, free expansion. These are
abstracted away not just from the molecules but from the system considered
as a whole.

The question is what sort of morphism can accommodate such kinds of
idealization. As it turns out, those morphisms that can accommodate ab-
straction cannot accommodate pretence and vice versa. Full or partial iso-
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morphism accommodates neither. Homomorphism accommodates pretence
but not abstraction. And homomorphism without the condition known as
faithfulness (not a properly defined morphism; see Pero and Suárez 2016,
80) accommodates abstraction but not pretence. None of these can accom-
modate the combination of pretence and abstraction. And the question then
remains whether there is a further weakening of homomorphism that could
do this. Pero and Suárez (2016) canvass the different options and answer
negatively.

Indeed, the weakest proposal we are aware of is Swoyer’s ‘D/W-
morphism’. This is weaker than homomorphism since it does not require
an injection from the range into the image (in technical language, this is not
even a properly defined mapping). The idea here is to consider two subsets
L and W of the domain of the target (i.e., L ⊆DT ; W ⊆DT ), such that f is
a function such that f21 takes every relation defined over L into relations
defined over the corresponding elements inDS, and f takes every relation de-
fined over the corresponding elements in DS to those in W into relations de-
fined over those elements in W ⊆DT (i.e., f counterpreserves the relations
defined over the elements in W). Since this is not a bijection, it accommo-
dates pretence: there are elements in DS that have no correlate in DT. And
since the subsets L and W need not overlap, it also may accommodate ab-
straction, since there may be elements inDT that are inW but not inL). How-
ever, a D/W-morphism is not really a mapping or any established morphism
unless L↦W (in which case it boils down to a standard homomorphism).
The selection of the subsets {L} and {W} is arbitrary and specific to the case
at hand; the only thing that the existence of such a mapping issues is a struc-
tural rendition of the source and the target. Nothing informative follows from
the proof of the existence of a D/W-morphism other than the knowledge that
both source and target can be minimally given a structural formulation. And
that was precisely our initial assumption.

In conclusion, we suggest that an inferential account of themeans of struc-
tural representation—where applicable—should adopt a minimal concept of
structure. A structure is then the internal partition into elements and relations
that is ascribed by a competent agent to a target system via some model (ep-
istemic structure ascription; see Pero 2015). The internal structure of amodel
is in this sense a prerequisite for the inferential activity to take place, and,
once it is fixed, the ‘inferential suitability’ of a model (the possibility to em-
ploy the model’s structure as an approximation of the target) with respect to
its target is thus determined.Once again, the fact that one of the concrete prop-
erties a source of representation should display can be cast in structural terms
does not imply any form of structuralism about the constituents of represen-
tation. In fact, thisminimal concept of structure is deeply intertwinedwith the
inferential practice that allows conclusions from model sources about their
targets.Without any referral to agents’ inferential practice and the context en-
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acting it, the work to be done by this concept of structure in any philosophical
analysis of scientific representation would just fade out.

According to the RSC that we have defended here, this is indeed as it
should be. Theorizing is infused with the rich textures of practice, and the
results of theorizing (models) are similarly infused—to the point that no un-
derstanding of these models that reduce them to formal structures is at all
viable. Instead RSC recommends accepting the practice up front, by consid-
ering modeling as an inherently outcome-driven normative practice. If sci-
entific models and scientific theories reflect and embody their intended uses
and aims essentially, this is only because the practice that gives rise to and
generates them is essentially intentional (Boesch 2017). No account of the-
ory in terms of modeling that denies such a fundamental lesson can succeed.

6. Conclusion. The semantic conception of theories has traditionally been
understood in its structural version—as such it has been assumed that it car-
ries a commitment to a specific structural rendition of the relation of repre-
sentation. We argue that it is possible to free the semantic conception from
its structuralist trappings. Two different identity claims regarding the nature
of theories seem to be conflated all too often, yet the identification of models
and structures is an additional commitment that is not required by the main
or core claim of the semantic conception. We have argued that no informa-
tive structural rendition of the constituents of representation can provide for
all the different kinds of structural mappings that occur inmathematical phys-
ics, where two varieties of idealization (abstraction and pretence) are ubiq-
uitous. An alternative version of the semantic view (which we have referred
to as RSC) appeals to a nonstructural conception of representation only.
There is no need for any further identity commitment over and above its core
claim to conceive of theories in terms of models and to link theorizing to
modeling practice. Nonetheless, RSC has the necessary resources to explain
the role ofmathematical structures as themeans of some remarkable instances
of scientific modeling.
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