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ORDER SELECTION AND INFERENCE WITH LONG

MEMORY DEPENDENT DATA

ABHIMANYU GUPTA AND JAVIER HIDALGO

Abstract. In empirical studies selection of the order of a model is
routinely invoked. A common example is the order selection of an au-
toregressive model via Akaike’s AIC, Schwarz’s BIC or Hannan and
Quinn’s HIC. The criteria are based on the conditional sum of squares,
CSS. However the computation of the CSS might be difficult for some
models such as Bloomfield’s exponential model and/or when we allow for
long memory dependence. The main aim of the paper is thus to propose
an alternative way to compute the criterion by using the decomposition
of the variance of the innovation errors in terms of its frequency com-
ponents. We show its validity to obtain the correct order the model. In
addition, as a by-product, we describe a simple (two-step) estimator of
the parameters of the model.

1. INTRODUCTION

In empirical studies methods to select the order of a model are often in-
voked. The methods are based on the minimization of a criterion function
which involves the estimation of the one-step-prediction error, that is the
conditional sum of squares, CSS, plus a penalization function depending on
the number of parameters which has been estimated. For instance, when
deciding the order of an autoregressive (AR) or autoregressive moving av-
erage (ARMA) model, standard methods are Akaike (1974) AIC, Schwarz
(1978) BIC or Hannan and Quinn’s (1979) HIC information criterion. The
criteria only differ on the penalization function employed. The bulk of the
work has been done under the assumption that the data is weakly depen-
dent, see among others Akaike (1974), Hannan and Quinn (1979), Shibata
(1976), or Hannan (1980). However, one exception is Beran et al. (1998),
who examined the order determination of the autoregressive component of
a fractional integrated autoregressive (FARI) model with known, but finite,
upper limit for the order of the autoregressive polynomial.
However methods based on the computation of the CSS require to ob-

tain the innovation sequence, which for some models can be computationally
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very demanding, if at all possible. One of these models is the Bloomfield’s
(1973) exponential model. The reason comes from the observation that they
do not have a finite autoregressive representation and more importantly the
coefficients of the AR representation do not have a close form in terms of
the parameters of the model, so that one needs to implement numerical
integration to compute the coefficients and so the innovations. The lat-
ter computational complication might be exacerbated if one allows for the
possibility of long memory dependence.
The main objective of the paper is to introduce and examine the proper-

ties of a modified version of the aforementioned criteria. We shall focus on
the order selection of the fractional autoregressive, FARI, or the fractional
integrated Bloomfield’s (1973) exponential, FEXP, model, see respectively
(2.3) and (2.5) for their definitions. The order of the short memory compo-
nent, p0, of the models is assumed to be finite but with an unknown upper
bound, which appears to be realistic in empirical applications. Thus, by
order of the short memory, p0, we mean the order of the AR polynomial
if the data followed a FARI model. So, we relax some of the conditions
imposed in the work by Beran et al. (1998), which is the closest to the type
of assumption we impose to the dependence structure of the data. Moreover
we allow for a larger class of models as we do not focus exclusively on the
FARI models. To achieve that goal, we analyze a criterion function based
on the decomposition of the variance of the innovation/error term of the
model in terms of its frequency components by using the canonical decom-
position of the spectral density function, see Whittle (1963, p.26), Hannan’s
(1970, p.147) Theorem 6 or Brillinger’s (1981) Theorem 3.8.4 for a defini-
tion. We believe that the method has some important features compared
to those based on the CSS. Apart from the computational aspects already
mentioned, there are some additional theoretical considerations which we
shall mentioned when introducing our criterion.
In addition, as a by product, we describe and examine an estimator of

the long memory parameter without knowledge of the short memory com-

ponent which is of Op

(
T−1/2 log log1/2 T

)
. Furthermore, we provide root-T

consistent estimators of the short memory component for the AR or the
Bloomfield’s models. The motivation to examine these estimators of the
parameters comes from the fact that their statistical behaviour is central
to investigate the asymptotic properties of the estimation of p0. Finally,
because the parameters of the model are estimated independently of the
dimension (number of parameters) assumed in the model and root-T (up to

a log log1/2 T factor) consistent, they can be employed as initial estimates
in a two-step iterative algorithm when using the Whittle objective function
to estimate the parameters of the model.
The remainder of the paper is organized as follows. In the next section,

we present the canonical decomposition of the spectral density function and
we discuss how it can be used to estimate the parameters of the model.
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Furthermore we examine a simple two-step computational root-T consistent
and asymptotically normal estimator of the long memory parameter. Section
3 describes the criterion function to estimate the order of a FARI and/or a
FEXP model. We show that the criterion provides a consistent estimator of
the order of the model. Section 4 presents a small Monte-Carlo experiment
to assess the finite sample performance of the order selection. In Section
5, we give the proofs of our results. Finally in Section 6 we discuss the
scenario when the data is nonstationary, that is we allow the long memory
parameter to be in the nonstationary region. It appears possible/feasible
since the criterion does not need to compute the innovations of the model.

2. ESTIMATION OF THE FARI AND FEXP MODELS

The main aim of this section is to describe and examine how we can
estimate the parameters of the model using the canonical decomposition of
the spectral density function. The motivation for its study comes from the
observation that to prove the validity of our criterion given in (3.5), one
preliminary step is to know the statistical properties of the estimator of the
parameters employed in its computation. For that purpose, let {xt}t∈Z be
a zero mean covariance stationary sequence which is assumed to have the
autoregressive representation

(2.1) A (L)xt =:
∞∑

j=0

ajxt−j = εt, a0 = 1,

where {εt}t∈Z is a white noise zero mean sequence with variance σ
2
ε. We shall

assume that (2.1) admits a finite dimensional parameterization in terms of
a (p0 + 1)−dimensional parameter ψ. That is,

(2.2)
∞∑

j=0

aj (ψ)xt−j = εt, a0 (ψ) = 1.

One possible parameterization of (2.2) is the FARI (p0;α, 0) model

(2.3) Φ (L; θ) (1− L)α/2 xt = εt,

where α ∈ [0, 1) and Φ (L; θ) = 1 −
∑p0

j=1 θjL
j whose roots lie outside the

unit circle. For this model ψ =
(
α, θ′

)′
∈ ∆, a compact set in Rp0+1, and

we denote θ = (θ1, ..., θp0)
′. The parameter α is known as the long memory

parameter. Model (2.3) has a spectral density function given by

(2.4) fx (λ) =
σ2ε
2π

∣∣∣1− eiλ
∣∣∣
−α ∣∣∣Φ

(
eiλ; θ

)∣∣∣
−2
, 0 ≤ λ ≤ π.

A second possible (finite) parameterization of (2.2) is the FEXP model,
whose spectral density function is defined as

(2.5) fx (λ) =
∣∣∣1− eiλ

∣∣∣
−α
exp



−ζ0 −

p0∑

j=1

ζj cos (jλ)



 , 0 ≤ λ ≤ π.
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Here ψ =
(
α, ζ ′

)′
, where ζ =

(
ζ1, ..., ζp0

)′
, after we recall that the parameter

ζ0 is linked to the variance of the innovation sequence εt by the transforma-
tion σ2ε = 2π exp (−ζ0). Observe that the number of parameters governing
the short memory component is p0 for both FEXP and FARI models. As
indicated in the introduction, (2.5) does not have a finite AR representa-
tion even when α = 0 and more importantly, see (2.6) below, the coefficient
aj (ψ) in the AR representation (2.2) have no close form and they have to
be obtained by numerical integration.
Consider the AR (∞) representation of xt in (2.1). Using the canoni-

cal factorization of the spectral density function, see Whittle (1963, p.26)
or Hannan’s (1970, p.147) Theorem 6 or Brillinger’s (1981) Theorem 3.8.4,
their coefficients aj can be obtained as

aj =
1

2π

∫ π

−π
exp

{
−

∞∑

`=1

ξ`e
−i`λ

}
eijλdλ, j = 1, 2, ...(2.6)

σ2ε = 2πe−ξ0 ,

where

(2.7) ξ` =
1

π

∫ π

0
log (fx (λ)) cos (`λ) dλ, ` ≥ 0,

and fx (λ) denoting the spectral density function of the sequence {xt}t∈Z.

Next, suppose that we replace fx (λ) by gx (λ) =:
∣∣1− eiλ

∣∣α fx (λ) in (2.7).
Then, we would have that for the model (2.5), (2.7) becomes

(2.8) ζ` =
1

π

∫ π

0
log (gx (λ)) cos (`λ) dλ, ` ≥ 0

whereas for the model (2.4), (2.6) becomes

(2.9) θj =
1

2π

∫ π

−π
exp

{
−

∞∑

`=1

ξ`e
−i`λ

}
eijλdλ, j ≥ 1.

That is, expressions (2.8) and (2.9) provide respectively the parameters of
the short memory component of the FEXP and FARI models.
However in empirical examples, gx (λ) is unknown, so to compute either

(2.8) or (2.9), we need to estimate gx (λ). For that purpose, denote the

periodogram of a generic sequence {zt}
T
t=1 by

Iz (λ) = |wz (λ)|
2 , λ ∈ [0, π] ,

where

wz (λ) =
1

T 1/2

T∑

t=1

zte
−itλ

is the Discrete Fourier Transform of the sequence {zt}
T
t=1. Let λj = 2πj/T ,

j = 0,±1, ...,± [T/2] with [a] denoting the integer part of the number a,
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then a standard estimator of gx (λ) is the weighted periodogram

(2.10) ĝx (λ) =
1

2m+ 1

m∑

j=−m

∣∣∣1− ei(λj+λ)
∣∣∣
α̂
Ix (λ+ λj) ,

where α̂ is an estimator of the long memory parameter α and m = m (T )
a sequence that increases slowly with T , that is m−1 + T/m = o (1). For
instance, see Geweke and Porter-Hudak (1983) and Robinson (1995a), we
can estimate the parameter α by

(2.11) α̂ =
m∑

k=1

δk (m) log (Ix,k) ,

where, for a generic n, we denote
(2.12)

δk (n) =
hk − h (n)∑n

k=1

(
hk − h (n)

)2 ; hk = − log
∣∣∣1− eiλk

∣∣∣ ; h (n) = n−1
n∑

k=1

hk

and for a generic function χ (λ), we abbreviate χ (λk) by χk.
It is worth giving the intuition behind the estimator in (2.10). Since under

suitable regularity conditions, see Robinson (1995a), we have that α̂− α =
op (1) and f

−1
x (λ+ λj)E (Ix (λ+ λj)) → 1, we should expect that ĝx (λ)

will estimate σ2ε
∣∣Φ
(
eiλ; θ

)∣∣−2 / (2π) or exp
{
−ζ0 −

∑p0
j=1 ζj cos (jλ)

}
, that

is the short memory components of the FARI or FEXP models respectively.
Observe that the estimator given in (2.10) suggests to estimate fx (λ) by

f̂x (λ) =
∣∣∣1− eiλ

∣∣∣
−α̂

ĝx (λ)

which we can regard as being first prewhitened and then recoloured in
the frequency domain, in contrast to the analogue suggested by Press and
Tukey (1956) in the time domain when fx (λ) is believed to have sharp

peaks, as it might be under our conditions. The estimator f̂x (λ) was
considered in Hidalgo and Yajima (2002) who showed that, for λ > 0,∣∣∣
(
f̂x (λ)− fx (λ)

)
/fx (λ)

∣∣∣ = Op
(
m−1/2

)
and supj≥1

∣∣∣
(
f̂x,j − fx,j

)
/fx,j

∣∣∣ =
op (1). It is interesting to observe that the latter statistical properties do
not assume any prior knowledge of p0.
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So, replacing gx (λ) by ĝx (λ) in (2.7) and (2.8) and using Riemann’s
discrete approximation of integrals by sums, we obtain

ζ̂j =
1

M

M−1∑

`=1

(log ĝx,2m`) cos (jλ2m`) , j = 0, 1, ...,M ,(2.13)

Θ̂2mq = Θ̂−2mq = exp



−

M−1∑

j=1

ζ̂je
−ijλ2mq



 , q = 0, 1, ...,M ,(2.14)

θ̂` =
1

2M

M∑

q=−M+1

Θ̂2mqe
i`λ2mq , ` = 1, ...,M , and(2.15)

σ̂2ε = 2πe−ζ̂0 ,(2.16)

where z denotes the conjugate of the complex number z and M = [T/2m].
Observe that (2.13) gives the estimate of the parameters ζj , for j = 0, 1, ..., p0,

for the Bloomfield’s exponential model in (2.5) whereas θ̂` in (2.15) gives
those of Φ (L; θ) of the FARI model in (2.3).
We now introduce our regularity conditions.

Condition C1 : {xt}t∈Z admits a MA representation

xt =

∞∑

j=0

bjεt−j ,

∞∑

j=0

b2j <∞, b0 = 1,

where {εt}t∈Z is a stochastic process with finite 8 + δ moments for

some δ > 0, where E (εt |Ft−1 ) = 0, E
(
ε2t |Ft−1

)
= E

(
ε2t
)
= σ2ε and

the joint fourth cumulant of εt is

cum (εt1 , εt2 , εt3 , εt4) =

{
κ t1 = t2 = t3 = t4
0 otherwise.

Condition C2 : (∂/∂λ) |B (λ)| = O (|B (λ)| /λ) as λ→ 0+, where

B (λ) =
∞∑

j=0

bje
ijλ

is twice continuously differentiable in any open set outside the origin.
Also, there exist C ∈ (0,∞) and α ∈ [0, 1), such that

fx (λ) = Cλ−α
(
1 +O

(
λ2
))
as λ→ 0 + .

Condition C3 : m4/T 3 + T 2/m3 → 0.

Some discussion about our assumptions is in order. Condition C1 is re-
strictive in the linearity it imposes but not otherwise. The condition implies

that E |xt|
8+δ <∞ for some δ > 0. Condition C2 deals with the behaviour

of fx (λ). For frequencies λ→ 0+, they are the same used elsewhere by, say,
Robinson (1995a, b) and thus, the same comments apply here, while for fre-
quencies λ in any open set outside the origin, they are standard. It should be
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noted that both models (2.3) and (2.5) satisfy these two conditions. Finally
Condition C3 bounds the rate of increase of m to infinity.
We finish the section describing the statistical properties of the estimator

of the short memory component of the sequence given in (2.13) and (2.15)
as well as those properties for the long memory parameter. First their sta-
tistical properties are invariant regardless of the value of the true unknown
p0. This feature plays a relevant role on the properties of the estimator of
p0, p̂ given in the next section. Furthermore, proceeding as with the proofs
of Hidalgo and Yajima’s (2002) Theorems 3 and 1 respectively, for any finite
collection `1 < `2 < ... < `q,

T 1/2
(
θ̂`1 − θ`1 , ..., θ̂`q − θ`q

)
d
→ N (0, VFARI)

T 1/2
(
ζ̂`1 − ζ`1 , ..., ζ̂`q − ζ`q

)
d
→ N (0, VFEXP ) .

On the other hand, ĝx (λ; [log T ]) provides a consistent estimator of Φ
(
eiλ; θ

)

or exp
{
−ζ0 −

∑p0
`=1 ζ` cos (`λ)

}
, where respectively

(2.17)

ĝx (λ; p) =:
∣∣∣1− θ̂1eiλ − ...− θ̂peipλ

∣∣∣
−2

or =: exp

{
−ζ̂0 −

p∑

`=1

ζ̂` cos (`λ)

}
.

This motivates the following (two-step) estimator of α. Indeed, in view
of the previous arguments we may expect that ĝx (λ; [log T ]) Ix (λ) will as-

ymptotically behave as σ2ε
∣∣1− eiλ

∣∣−α /2π. So, we can estimate α using
the log-periodogram estimator but employing all the Fourier frequencies λj ,
1 ≤ j ≤ [T/2]. More specifically, we estimate α by

(2.18) α̃ =

[T/2]∑

k=1

δk ([T/2]) log (ĝx,k ([log T ]) Ix,k) ,

where δk ([T/2]) was defined in (2.12), and recall the notation ĝx (λk; [log T ]) =:
ĝx,k ([log T ])
We shall denote log2 T =: log (log T ). We then have the following result.

Theorem 1. Assuming C1 to C3, α̃− α = Op
(
T−1/2 log2 T

)
.

Proof. The proof of this, or any other, theorem is confined in Section 5. �

We now comment on the result of Theorem 1. Firstly, the rate of conver-
gence is faster than the one achieved by Moulines and Soulier (1999) by a
logarithmic factor and very close to the parametric rate except for a log2 T
factor. Secondly, Hidalgo and Yajima’s (2002) Theorems 3 and 1 and The-
orem 1 suggest that a step-wise algorithm can be implemented. That is, we

can employ α̃ instead of α̂ when computing ζ̂j and θ̂` in (2.13) and (2.15)

respectively. Of course with the updated new estimates ζ̂j and θ̂`, we can
update the estimate of α given in (2.18) and so on. This is achieved by
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updating our estimator of gx,k, i.e. ĝx,k ([log T ]). However, it is worth notic-
ing that since the initial estimators of the parameters θ`, ζ`, ` = 1, .., p, are
op
(
T−1/4

)
consistent, a two-step estimator will suffice. Finally, we mention

that inspecting the proof of Theorem 1, and in particular expression (5.1),
we easily observed that if instead of α̃ given in (2.18) we compute

α̌ =

[T/2]∑

k=1

δk ([T/2]) log (ĝx,k (p0) Ix,k) ,

we then have that T 1/2 (α̌− α) converges in distribution to a normal random
variable. The latter follows by Theorem 1, replacing [log T ] by p0 there.

3. ORDER SELECTION OF THE FARI AND FEXP MODELS

We now describe and examine the properties of the criterion function to
estimate p0. The problem of order selection dates back to Akaike’s (1974)
information criterion AIC for the selection of the order p0 of an AR (p0)
model, i.e. model (2.2) with α = 0. Akaike suggested to select p0 as the
value p̂ which minimizes

AIC (p) = log
(
σ̂2ε,p

)
+
2p

T
,

where σ̂2ε,p is an estimator of the variance of the innovation sequence εt
in (2.2), after an AR (p) model was fitted to the data. That is, σ̂2ε,p =

T−1
∑T

t=p+1 ε̂
2
t,p, where ε̂t,p, t = p + 1, ..., T , are the residuals. Alternative

criteria have been provided by Mallow’s (1973) Cp or Parzen’s (1974) CAT .
However, as was shown by Shibata (1976), these criteria overestimate the
true order p0 with a positive probability even as T increases to infinity.
Since it is always desirable to have consistent estimation procedures, some

modifications to the AIC were introduced. One of them is Schwarz’s (1978)
BIC criterion, defined as the value p̂ which minimizes

(3.1) BIC (p) = log
(
σ̂2ε,p

)
+
p log T

T
,

or Hannan and Quinn’s (1979) HIC

(3.2) HIC (p) = log
(
σ̂2ε,p

)
+
cp log2 T

T
with c > 2.

We have already pointed out that a possible drawback in the implemen-
tation of BIC (p) and/or HIC (p) is the computation of the CSS, i.e. σ̂2ε,p,
and in particular the residuals ε̂t,p. Indeed, the residuals are based on

(3.3) ε̂t,p =
t−1∑

j=0

aj

(
ψ̂
)
xt−j ,

and with long memory dependence data it may not be a good approxima-

tion to ε̃t,p =:
∑∞

j=0 aj

(
ψ̂
)
xt−j , or to show that the explicit truncation
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used in (3.3) has not consequences is not trivial. See Robinson (2005) for
discussion of the latter. Secondly as indicated in the introduction it may be

very hazardous to obtain ε̂t,p, as aj

(
ψ̂
)
can only be computed by integral

approximation in models such as Bloomfield’s FEXP. So, it appears that
the method might not be plausible or easy to compute.
So, due to the previous comments, we shall now describe a modification

of the above criteria based on the CSS. To that end, consider the Whittle’s
objective function

WT (p;α) =:
1

[T/2]

[T/2]∑

k=1

∣∣1− eiλk
∣∣α Ix,k

gx,k (p)
,

where similarly to ĝx (λ; p) given in (2.17), we define

gx (λ; p) =:
∣∣∣1− θ1eiλ − ...− θpeipλ

∣∣∣
−2

or =: exp

{
−ζ0 −

p∑

`=1

ζ` cos (`λ)

}
.

We then estimate p0 by

(3.4) p̂ = arg min
0≤p≤[log T ]

ST (p) ,

where

ST (p) = : BIC (p; α̂) = ŴT (p; α̂) +
p log T

T
(3.5)

ŴT (p; α̂) = :
1

[T/2]

[T/2]∑

k=1

∣∣1− eiλk
∣∣α̂ Ix,k

ĝx,k (p)
.

Before we state the properties of p̂ given in (3.4), we give the intuition of
the criteria in (3.5). Suppose first that p < p0. Because E

{∣∣1− eiλ
∣∣α Ix,j − gx,j (p0)

}
=

o (1), we may expect then that

BIC (p)−BIC (p0) = WT (p;α)−WT (p0;α) +
(p− p0) log T

T

'
σ2ε
[T/2]

[T/2]∑

k=1

gx,k (p0)

gx,k (p)
− σ2ε +

(p− p0) log T

T
.

On the other hand, see Brockwell and Davis (1991, p.377), we know that

σ2ε
[T/2]

[T/2]∑

k=1

gx,k (p0)

gx,k (p)
− σ2ε > 0,

so that we may conclude that, as T →∞,

BIC (p)−BIC (p0) > 0
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and hence that p̂ ≥ p0. But when p > p0, we have that

BIC (p)−BIC (p0) '
σ2ε
[T/2]

[T/2]∑

k=1

gx,k (p0)

gx,k (p)
− σ2ε +

(p− p0) [log T ]

T

=
(p− p0) [log T ]

T

because in this case [T/2]−1
∑[T/2]

k=1 gx,k (p0) /gx,k (p) = 1. The latter suggests
that argminBIC (p) cannot be achieved for a p > p0 either. Thus, we should
expect that p̂→P p0. This is formalized in the next theorem.

Theorem 2. Assuming Conditions C1 to C3, p̂→P p0 for models (2 .3 ) or
(2 .5 ).

We now comment on the results of Theorem 2. First inspection of the
proofs indicate that the theorem holds true if log T were replaced by log1+δ T
for any 0 < δ < 1. Following Pötscher (1991), one consequence of Theorem
2 is the the asymptotic properties of Whittle estimator are the same if p0
is replaced by p̂. In addition, as in An et al. (1982), we allow p to increase
as log T . This generalizes the often scenario where the true value of p0 is
assumed to be less than some (known) positive integer, say P . So, in this
regard we relax some of the conditions in Beran et al. (1998) who assumed
the upper bound P is known to the practitioner.
Finally, denote the Whittle’s estimator as

ψ̂ (p) = arg min
ψ=(α,β′)′

WT (p) =:
1

[T/2]

[T/2]∑

k=1

∣∣1− eiλk
∣∣α Ix,k

gx,k (β, p)
,

where we have adopted the notation β for either the parameters θ or ζ.

Theorem 3. Assuming Conditions C1 to C3 the statistical properties of the
Whittle estimate of the parameters are the same as if p0 were known. That

is, ψ̂ (p̂)− ψ̂ (p0) = op
(
T−1/2

)
.

Proof. The proof follows in the line of Pötscher (1991), so it is omitted. �

4. MONTE CARLO EXPERIMENT

To examine the finite sample performance of p̂, a small Monte Carlo
experiment was carried out. In our first set of experiments, we consider
FARI (1) and FEXP(1) models with α = 0.2, 0.4, 0.6, 0.8, and θ or ζ =
−0.8,−0.5,−0.2, 0.2, 0.5, 0.6, according to whether we consider the FARI
or FEXP model. For each combination, we generated 1000 replications of
series of length T = 128, 256, 512 using the circulant embedding algorithm
of Chandna and Walden (2013) that generates observations from a process
with prescribed spectral density.
For the estimation of the parameters θ or ζ (depending on the model

under consideration), we choose three different values form = T/2M . These
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values are m = 8, 16, 32 for T = 128, m = 16, 32, 64 for T = 256 and
m = 32, 64, 128 for T = 512. The choice reflects the theoretical requirement
thatm increases as a function of T , but maintains three different ratios T/m
(16, 8 and 4) for all three sample sizes examined. This makes for a more
meaningful comparison across various values of T and m.
The results are tabulated in Tables 1-3, covering T = 128, 256 and 512,

respectively. For the FARI(1) model, the two largest choices of m lead to
perfect AR order selection for all sample sizes, but even the smallest value
of m gives less than perfect results only in the T = 128 case, which is
the smallest sample size. Nevertheless the worst performance only exhibits
2.23% incorrect order selection. Similarly, we only observe a sensitivity of the
accuracy of order selection to the long memory parameter α for the smallest
values of m, although the proportion of correct orders remains above 84%
even in the worst cases. For the largest values of m, correct order selection
is perfectly achieved regardless of the value of T, θ or α.
The FEXP(1) model is somewhat more sensitive to parameter values

and sample sizes. For the smaller values of m and T , the proportion of
correct order selection can be quite low. This is especially true when the
long memory parameter α is large and is exacerbated by values of ζ with
large magnitudes. The problem is mitigated by increasing the sample size
T and m, as observed in Table 3 when (T,m) = (512, 128) yields a correct
order selection proportion in excess of 99.2% in all cases and perfect order
selection in 19 out of 24 cases. Thus our simulations suggest that correct
order selection in the FEXP model requires larger sample sizes as compared
to the FARI model, especially in models with larger longer memory or
autoregressive parameters. For both the FARI and FEXP cases, failure to
detect the correct order in our simulations exclusively results in overfitting
and never underfitting.
Note that for the FEXP (1) model, performance sometimes worsens with

increasing α for the two smallest bandwidths, but this phenomenon is less
common for the largest bandwidth. Since the bandwidths must increase with
T , this feature is likely due to the smaller bandwidths not being sufficient for
the purpose. In fact perusal of the tables reveals that such a phenomenon
is observed even for the FARI(1) model, even though the proportion of
correct order selection is much higher. Finally, note that even for the largest
bandwidths in the FEXP (1) model, it is sometimes the case that results
worsen as α increases but because the correct order detection rate is already
very high these changes are quite negligible. This lends further support to
the explanation that this feature arises because of too small a bandwidth,
relative to sample size.
In our second set of simulations, we again use the algorithm of Chandna

and Walden (2013) to simulate observations from a FARI (2) process, choos-
ing the same values for α, T and m as above and experimenting with
θ1 = (0.4, 0.4), θ2 = (0.3, 0.5) and θ3 = (0.5, 0.3). The results are re-
ported in Table 4. Order selection is perfect for θ1 regardless of the values
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of α, T or m. On the other hand, for θ2 and θ3 the smallest value of m (for
each respective value of T ), leads to an almost complete failure to detect the
true order. The problem is resolved with larger values of m, however, with
perfect order selection being achieved. As in the FARI(1) case, our order
detection criterion never underfits the model.
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FARI(1)
θ −0.8 −0.5 −0.2 0.2 0.5 0.6
α

m = 8 0.2 0.9760 0.9830 0.9880 0.9930 0.9000 0.9920
0.4 0.9590 0.9850 0.9870 0.9770 0.8780 0.9850
0.6 0.9530 0.9640 0.9830 0.9490 0.8490 0.9930
0.8 0.9280 0.9380 0.9630 0.9400 0.8410 0.9770

m = 16 0.2 0.9890 0.9870 0.9930 0.9990 0.9680 1.0000
0.4 0.9810 0.9810 0.9860 0.9950 0.9700 1.0000
0.6 0.9630 0.9650 0.9850 0.9720 0.9630 1.0000
0.8 0.9120 0.9440 0.9880 0.9560 0.9790 1.0000

m = 32 0.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

FEXP (1)
ζ −0.8 −0.5 −0.2 0.2 0.5 0.6
α

m = 8 0.2 0.7150 0.8670 0.9630 0.9910 0.9990 0.9990
0.4 0.5350 0.6470 0.7780 0.9350 0.9840 0.9960
0.6 0.4610 0.4320 0.5020 0.7110 0.8610 0.9100
0.8 0.3950 0.3450 0.3430 0.3630 0.5180 0.5780

m = 16 0.2 0.7070 0.8540 0.9740 0.9990 1.0000 1.0000
0.4 0.6650 0.6640 0.7620 0.9810 0.9980 0.9980
0.6 0.6770 0.6230 0.6120 0.6750 0.8790 0.9330
0.8 0.6700 0.6740 0.6110 0.5240 0.5700 0.5990

m = 32 0.2 0.9760 0.9630 0.9650 0.9980 1.0000 1.0000
0.4 1.0000 0.9850 0.9700 0.9860 0.9980 1.0000
0.6 1.0000 0.9960 0.9960 0.9830 0.9950 0.9910
0.8 1.0000 0.9990 1.0000 0.9980 0.9940 0.9920

Table 1. Empirical proportion of correct order selection
with 1000 replications and T = 128.
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FARI(1)
θ −0.8 −0.5 −0.2 0.2 0.5 0.6
α

m = 16 0.2 0.9950 0.9960 1.0000 0.9950 0.9490 1.0000
0.4 0.9830 0.9940 0.9970 0.9900 0.9390 1.0000
0.6 0.9710 0.9750 0.9930 0.9530 0.9280 1.0000
0.8 0.9310 0.9730 0.9810 0.9480 0.9410 1.0000

m = 32 0.2 0.9990 0.9980 0.9990 1.0000 0.9930 1.0000
0.4 0.9940 0.9920 0.9980 0.9990 0.9930 1.0000
0.6 0.9870 0.9830 0.9920 0.9600 0.9980 1.0000
0.8 0.9420 0.9680 0.9960 0.9430 0.9990 1.0000

m = 64 0.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

FEXP (1)
ζ −0.8 −0.5 −0.2 0.2 0.5 0.6
α

m = 16 0.2 0.7010 0.8270 0.9590 0.9930 0.9990 1.0000
0.4 0.5360 0.5500 0.6860 0.9380 0.9870 0.9970
0.6 0.4560 0.4120 0.4240 0.5410 0.7940 0.8490
0.8 0.3760 0.3130 0.2810 0.2780 0.2980 0.3240

m = 32 0.2 0.7410 0.8060 0.9640 1.0000 1.0000 1.0000
0.4 0.7380 0.6890 0.7150 0.9390 0.9970 0.9990
0.6 0.7480 0.6840 0.6470 0.5800 0.7520 0.8480
0.8 0.7590 0.7170 0.6250 0.4390 0.4280 0.3990

m = 64 0.2 1.0000 0.9900 0.9740 1.0000 1.0000 1.0000
0.4 1.0000 0.9990 0.9950 0.9940 0.9990 1.0000
0.6 1.0000 1.0000 1.0000 1.0000 0.9990 0.9980
0.8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 2. Empirical proportion of correct order selection
with 1000 replications and T = 256.
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FARI(1)
θ −0.8 −0.5 −0.2 0.2 0.5 0.6
α

m = 32 0.2 1.0000 1.0000 0.9980 1.0000 0.9810 1.0000
0.4 0.9990 0.9990 0.9980 0.9880 0.9720 1.0000
0.6 0.9940 0.9880 0.9990 0.9310 0.9760 1.0000
0.8 0.9710 0.9750 0.9940 0.9570 0.9950 1.0000

m = 64 0.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.4 1.0000 1.0000 0.9990 0.9990 1.0000 1.0000
0.6 1.0000 0.9990 0.9980 0.9420 1.0000 1.0000
0.8 0.9860 0.9780 0.9960 0.9700 1.0000 1.0000

m = 128 0.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

FEXP (1)
ζ −0.8 −0.5 −0.2 0.2 0.5 0.6
α

m = 32 0.2 0.6900 0.7700 0.9470 1.0000 1.0000 1.0000
0.4 0.5540 0.4890 0.5740 0.8800 0.9950 0.9970
0.6 0.4470 0.3900 0.3350 0.3500 0.5950 0.7110
0.8 0.2840 0.2240 0.1880 0.1490 0.1080 0.1110

m = 64 0.2 0.8210 0.7950 0.9330 1.0000 1.0000 1.0000
0.4 0.8200 0.7640 0.7250 0.8560 0.9980 1.0000
0.6 0.8430 0.7630 0.6490 0.5010 0.5430 0.6350
0.8 0.8470 0.7900 0.5960 0.4090 0.3020 0.2650

m = 128 0.2 1.0000 1.0000 0.9920 1.0000 0.9990 0.9990
0.4 1.0000 1.0000 0.9990 0.9990 1.0000 1.0000
0.6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 3. Empirical proportion of correct order selection
with 1000 replications and T = 512.
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T = 128 T = 256 T = 512

α m θ1 θ2 θ3 m θ1 θ2 θ3 m θ1 θ2 θ3

0.2 8 1.0000 0.0260 0.0070 16 1.0000 0.0110 0.0010 32 1.0000 0.0000 0.0000
0.4 1.0000 0.0440 0.0000 1.0000 0.0380 0.0010 1.0000 0.0030 0.0000
0.6 1.0000 0.0690 0.0020 1.0000 0.0570 0.0010 1.0000 0.0150 0.0000
0.8 1.0000 0.0960 0.0010 1.0000 0.0800 0.0000 1.0000 0.0230 0.0000
0.2 16 1.0000 1.0000 1.0000 32 1.0000 1.0000 1.0000 64 1.0000 1.0000 1.0000
0.4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 32 1.0000 1.0000 1.0000 64 1.0000 1.0000 1.0000 128 1.0000 1.0000 1.0000
0.4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 4. Empirical proportion of correct order selection with 1000 replications, FARI(2) model, θ1 =
(0.4, 0.4), θ2 = (0.5, 0.3), θ3 = (0.3, 0.5).
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5. PROOFS

5.1. Proof of Theorem 1.

From the definition of α̃ in (2.18) and abbreviating δk ([T/2]) by δk, we
have that
(5.1)

α̃− α =





[T/2]∑

k=1

δk log (gx,k (p0) Ix,k)− α



+

[T/2]∑

k=1

δk log
(
g−1x,k (p0) ĝx,k (p̂)

)
.

The first term on the right of (5.1) is Op
(
T−1/2

)
proceeding as in the proof

of Robinson’s (1995a) Theorem 2, after we observe that it is

[T/2]∑

k=1

δk log (Ix,k/fx,k)

and when using Robinson’s (1995a) Theorem 2 we notice that Ix,k is nor-
malized by the true fx (λ) instead of its approximation given in Condition
C2.
So to complete the proof it suffices to show that the second term on the

right of (5.1) is Op
(
T−1/2 log2 T

)
. We shall only consider the FARI model,

the proof for the FEXP is similarly handled if it is not easier. To that end
and using the convention that θp = 0 if p > p0, we have that

∣∣∣1− θ̂1eiλj − ...−−θ̂[log T ]ei[log T ]λj
∣∣∣
2
−
∣∣∣1− θ1eiλj − ...− θp0eip0λj

∣∣∣
2

(5.2)

=

[log T ]∑

p,q=1

(
θ̂p − θp

)(
θ̂q − θq

)
ei(p−q)λj

+2

[log T ]∑

p=1

(
θ̂p − θp

)
Re
((
1− θ1e

iλj − ...− θp0e
ip0λj

)
epλj

)
,

where Re (z) denotes the real part of the complex number z. Now, proceed-
ing as in the proof of Hidalgo and Yajima’s (2002) Theorem 3 but using a
Taylor’s expansion up to its third term in their expression (51), we obtain
that

θ̂p − θp =
1

M

M∑

q=1

κn,q

(
b|q−p|

+
+
1

M

)

+
1

M2

M∑

q1,q2=1

κn,q1κn,q2

(
b|p−q1+q2|+ +

1

M

)
+Op

(
m−3/2

)
,(5.3)

where Eκ2n,q < ∞, after we proceed as in expression (52) in Hidalgo and

Yajima (2002). (5.3) implies that
(
θ̂p − θp

)
= Op

(
T−1/2

)
for any 1 ≤ p ≤
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[log T ], and hence Taylor’s expansion of log z around z = 1 yields that the
second term on the right of (5.1) is

(5.4) 2

[log T ]∑

p=1

(
θ̂p − θp

) [T/2]∑

k=1

δkψk +Op
(
T−1 log2 T

)
,

where

ψ (λ) =
Re
((
1− θ1e

iλ − ...− θp0e
ip0λ
)
epλ
)

|1− θ1eiλ − ...− θp0e
ip0λ|2

.

Next, by definition of δk, we have that (5.4) is, except multiplicative
constants,

[log T ]∑

p=1

(
θ̂p − θp

) 2
T

[T/2]∑

k=1

ψk log
∣∣∣1− eiλk

∣∣∣+Op
(
T−1 log2 T

)

= 2

[log T ]∑

p=1

(
θ̂p − θp

)∫ π

0
ψ (λ) log

∣∣∣1− eiλ
∣∣∣ dλ+Op

(
T−1 log2 T

)
(5.5)

using Brillinger’s (1981, p.15) and Robinson’s (1995b) Lemma 2 because
ψ (λ) is a continuous differentiable function. However, because

∫ π

0

log
∣∣1− eiλ

∣∣
|1− θ1eiλ − ...− θp0e

ip0λ|2
cos (pλ) dλ = O

(
p−1
)
,

in view of (5.3), the right side of (5.5) is bounded in absolute value by

K

[log T ]∑

p=1

θ̂p − θp
p

+Op
(
T−1 log2 T

)
= Op

(
T−1/2 log2 T

)

for some finite and positive K. This completes the proof of the theorem. �

5.2. Proof of Theorem 2.

First note that because p̂ = argmin0≤p≤[log T ]−p0 ST (p), then ST (p̂) −
ST (p0) < 0. We begin with the proof for model (2.5). We first show that
Pr {p̂ > p0} → 0. Denote p̂ = p0 + j for some 1 ≤ j ≤ [log T ] − p0. Using
the inequality

(5.6) Pr {p̂ > p0} ≤ Pr

{
sup

1≤j≤[log T ]−p0

ST (p0)− ST (p0 + j) > 0

}
,

it suffices to show that the right side of (5.6) converges to zero.
For any 0 ≤ r < s ≤ [log T ], denote

ĥq (r, s) =
s−1∑

`=r

ζ̂` cos (`λq) and hq (r, s) =
s−1∑

`=r

ζ` cos (`λq) .
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Then, writing p = p0 + j, that ST (p0)− ST (p) is
(5.7)

1

T

T−1∑

q=1

Ix,q

∣∣∣1− eiλq
∣∣∣
α̃
exp

{
ĥq (1, p0)

}(
1− exp

{
ĥq (p0 + 1, p0 + j)

})
−
j [log T ]

T
.

Denoting 1 − exp
{
ĥq (p0 + 1, p0 + j)

}
=: bq (j), by standard algebra, the

first term of (5.7) is

1

T

T−1∑

q=1

Ix,q

∣∣∣1− eiλq
∣∣∣
α
exp {hq (1, p0)}

(
exp

{
ĥq (1, p0)− hq (1, p0)

}
− 1
)
bq (j)

(5.8) +
1

T

T−1∑

q=1

Ix,q

{∣∣∣1− eiλq
∣∣∣
α̃
−
∣∣∣1− eiλq

∣∣∣
α
}
exp {hq (1, p0)} bq (j)

+
1

T

T−1∑

q=1

Ix,q

{∣∣∣1− eiλq
∣∣∣
α̃
−
∣∣∣1− eiλq

∣∣∣
α
}(

exp
{
ĥq (1, p0)

}
− exp {hq (1, p0)}

)
bq (j)

+
1

T

T−1∑

q=1

Ix,q

∣∣∣1− eiλq
∣∣∣
α
exp {hq (1, p0)} bq (j) .

We begin examining the first term of (5.8). Because by Hidalgo and Yajima

(2002), ζ̂` − ζ` = Op
(
T−1/2

)
, using the convention that ζ` = 0 for ` > p0,

Taylor’s expansion of log z around 1 yields that the the first term of (5.8) is
(5.9)
p0∑

k=1

(
ζ̂k − ζk

) p0+j∑

`=p0+1

ζ̂`
1

T

T−1∑

q=1

Ix,q cos (`λq) cos (kλq)∣∣1− eiλq
∣∣−α exp {−hq (1, p0)}

+Op

(
log T

T 3/2

)
.

Now,

1

T

T−1∑

q=1

Ix,q
fx,q

ψq =
1

T

T−1∑

q=1

(
Ix,q
fx,q

− 2πIε,q

)
ψq +

2π

T

T−1∑

q=1

Iε,qψq

= Op

(
T−2/3 log2/3 T

)
+
2π

T

T−1∑

q=1

Iε,qψq

proceeding as in the proof of (4.8) in Robinson (1995b), and that Ix,q is
normalized by fx,q instead of its approximation in Condition C2. On the
other hand for any continuous differentiable function ψ (λ), the second term
satisfies that

(5.10)

∣∣∣∣∣∣
2π

T

T−1∑

q=1

Iε,qψq − σ
2
ε

∫ 2π

0
ψ (λ) dλ

∣∣∣∣∣∣
= O

(
T−1/2

)
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using Brillinger (1980, p.15). So, as fx,q =
∣∣1− eiλq

∣∣−α exp {−ζ0 − hq (1, p0)},
it yields that (5.9) is

e−ζ0
p0∑

k=1

(
ζ̂k − ζk

) p0+j∑

`=p0+1

ζ̂`

∫ 2π

0
cos (`λ) cos (kλ) dλ+Op

(
log T

T 3/2

)
= Op

(
log T

T 3/2

)

because
∫ 2π
0 cos (kλ) cos (`λ) dλ = 0 if k 6= `.

Next we examine the second term of (5.8), which proceeding as with the
first term and Theorem 1, it is

e−ζ0 (α̃− α)

p0+j∑

`=p0+1

ζ̂`

∫ 2π

0
cos (`λ) log

∣∣∣1− eiλ
∣∣∣ dλ+Op

(
log2 T

T 3/2

)

= (α̃− α)

p0+j∑

`=p0+1

ζ̂`φ` +Op

(
log2 T

T 3/2

)
,

where φ` = O
(
`−1
)
is the Fourier coefficient of e−ζ0 log

∣∣1− eiλq
∣∣.

The third term of (5.8) is easily seen to be Op
(
T−3/2 log2 T

)
using Taylor’s

expansion as was done for the first two terms. Finally the fourth term of
(5.8), using the inequality

∣∣ez − 1− z − z2/2
∣∣ ≤ Kz3, is

p0+j∑

`=p0+1

ζ̂`
1

T

T−1∑

q=1

Ix,q

∣∣∣1− eiλq
∣∣∣
α
exp {hq (1, p0)} cos (`λq)

+
1

2T

T−1∑

q=1

Ix,q

∣∣∣1− eiλq
∣∣∣
α
exp {hq (1, p0)}




p0+j∑

`=p0+1

ζ̂` cos (`λq)



2

+Op

(
log2 T

T 3/2

)
.

Now using (5.10), the first term of the last displayed expression is

p0+j∑

`=p0+1

ζ̂`

∫ 2π

0
cos (`λ) dλ+Op

(
log2 T

T 3/2

)
= Op

(
log2 T

T 3/2

)

because
∫ 2π
0 cos (`λ) dλ = 0 if ` 6= 0, whereas the same argument yields that

the second term is

p0+j∑

`=p0+1

ζ̂
2

`

∫ 2π

0
cos2 (`λ) dλ = K

p0+j∑

`=p0+1

ζ̂
2

` .

So, we conclude that the left side of (5.7), that is ST (p0; 1)− ST (p; 1), is

K

p0+j∑

`=p0+1

ζ̂
2

` + (α̃− α)

p0+j∑

`=p0+1

ζ̂`φ` −
j [log T ]

T
+Op

(
log2 T

T 3/2

)
,
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and hence the right side of (5.6) is bounded by

(5.11) Pr



 sup
1≤j≤[log T ]−p0

K

p0+j∑

`=p0+1

ζ̂
2

` + op (log T )− j [log T ] > 0





+Pr



 sup
1≤j≤[log T ]−p0


T (α̃− α)

p0+j∑

`=p0+1

ζ̂`φ` + op (log T )


− j [log T ] > 0



 .

So, to complete the proof that Pr {p̂ > p0} = o (1) it suffices to show
that (5.11) converges to zero. Proceeding as with the proof of Hidalgo and
Yajima’s (2002) Theorem 1 and standard algebra implies that for any ` ≥ 1,

T 1/2ζ̂` =
1

T 1/2

[T/2]∑

s=1

(
2πIε,s
σ2ε

− 1

)
cos (`λs) +Op

(
T 1/2

m
+
m1/2

T 1/2

)

=
1

T 1/2

T∑

t=2

εtεt−` +Op

(
T 1/2

m
+
m1/2

T 1/2

)
,

so that the first term of (5.11) is bounded by

(5.12) Pr

{
sup

1+p0≤`≤[log T ]

∣∣∣∣∣
1

T 1/2

T∑

t=2

εtεt−`

∣∣∣∣∣ >
[
log1/2 T

]}
.

Now because by Condition C2, εtεt−` is a martingale difference, using Markov

inequality and that sup` |a`| ≤
(∑

` |a`|
4
)1/4

, we obtain that (5.12) is bounded

by

1

[log T ]2

[log T ]∑

`=1

E

∣∣∣∣∣
1

T 1/2

T∑

t=2

εtεt−`

∣∣∣∣∣

4

= O
(
[log T ]−1

)
.

Next, the second term of (5.11) is bounded by

Pr

{
T 1/2 (|α̃− α|)

[log T ]1/2
> K

}
+ Pr

{
K sup
1+p0≤`≤[log T ]

T 1/2ζ̂` > [log T ]
1/2

}
.

The first term of the last displayed expression converges to zero by Theo-
rem 1, whereas the second term is that already examined in (5.12). This
concludes the proof that Pr {p̂ > p0} = o (1).
To complete the proof for model (2.5), it only remains to show that

Pr

{
sup

0≤p<p0

(ST (p0)− ST (p)) > 0

}
→ 0.

Because p0 is finite, it suffices to show that for any 0 ≤ p < p0,

(5.13) Pr {ST (p0)− ST (p) > 0} → 0.
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To that end, we first notice that

ST (p) =
1

T

T−1∑

q=1

Ix,q

∣∣∣1− eiλq
∣∣∣
α̃
exp

{
ĥq (1, p)

}
+
p [log T ]

T

=




1

T

T−1∑

q=1

Ix,q

∣∣∣1− eiλq
∣∣∣
α
exp {hq (1, p)}+

p [log T ]

T





+
1

T

T−1∑

q=1

Ix,q

{∣∣∣1− eiλq
∣∣∣
α̃
−
∣∣∣1− eiλq

∣∣∣
α
}(

exp
{
ĥq (1, p)

}
− hq (1, p)

)

+
1

T

T−1∑

q=1

Ix,q

∣∣∣1− eiλq
∣∣∣
α (
exp

{
ĥq (1, p)

}
− hq (1, p)

)
(5.14)

+
1

T

T−1∑

q=1

Ix,q

{∣∣∣1− eiλq
∣∣∣
α̃
−
∣∣∣1− eiλq

∣∣∣
α
}
hq (1, p) .

The last three terms on the right of (5.14) are op (1). Indeed, proceeding
as with the second term of (5.8) ,Taylor’s expansion and Theorem 1, we
conclude that the last term on the right of (5.14) is

(α̃− α)

∫ 2π

0
fx (λ)

∣∣∣1− eiλ
∣∣∣
α
exp

{
p∑

`=1

ζ` cos (`λ)

}
log
∣∣∣1− eiλ

∣∣∣ dλ+Op
(
log2 T

T

)

= (α̃− α)

∫ 2π

0
exp



−

p0∑

`=p+1

ζ` cos (`λ)



 log

∣∣∣1− eiλ
∣∣∣ dλ+Op

(
log2 T

T

)

= Op

(
log2 T

T 1/2

)
.

Next using Hidalgo and Yajima (2002), cf. (5.3), Taylor’s expansion yields
that the third term on the right of (5.14) is

p∑

`=1

(
ζ̂` − ζ`

) 1
T

T−1∑

q=1

Ix,q

∣∣∣1− eiλq
∣∣∣
α
exp {hq (1, p)}+Op

(
T−1

)

=

p∑

`=1

(
ζ̂` − ζ`

)∫ 2π

0
fx (λ)

∣∣∣1− eiλ
∣∣∣
α
exp

{
p∑

`=1

ζ` cos (`λ)

}
dλ+Op

(
T−1

)

=

p∑

`=1

(
ζ̂` − ζ`

)∫ 2π

0
exp



−

p0∑

`=p+1

ζ` cos (`λ)



 dλ+Op

(
T−1

)

= Op

(
T−1/2

)

using (5.10). The second term of (5.14) is op (1) using the behaviour of the
third and fourth terms of (5.14) together with Cauchy-Schwarz inequality.
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Finally, the first term on the right of (5.14) is

∫ 2π

0
fx (λ)

∣∣∣1− eiλ
∣∣∣
α
exp

{
p∑

`=1

ζ` cos (`λ)

}
dλ+

p [log T ]

T
+Op

(
T−1

)

using (5.10). So, we conclude that

ST (p) = e−ζ0
∫ 2π

0
exp





p0∑

`=p+1

ζ` cos (`λ)



 dλ+

p [log T ]

T
+ op (1)

and hence standard algebra yields that

ST (p0)−ST (p) = 2πe
−ζ0


1− 1

2π

∫ 2π

0
exp





p0∑

`=p+1

ζ` cos (`λ)



 dλ


+op (1) .

But the first term on the right of the last displayed expression is negative
since

1

2π

∫ 2π

0
exp





p0∑

`=p+1

ζ` cos (`λ)



 dλ > 1

proceeding as in Brockwell and Davis (1991, p.377). From here we conclude
the proof of (5.13) and hence part (a).
Now we examine model (2.3). Proceeding as with the proof of model

(2.5), we first show that Pr {p̂ > p0} → 0. Denote p̂ = p0 + j for some
1 ≤ j ≤ [log T ]− p0. Using the inequality (5.6), it suffices to show that

(5.15) Pr

{
sup

1≤j≤[log T ]−p0

ST (p0)− ST (p0 + j) > 0

}
→ 0.

To that end, we first notice that

ST (p0)− ST (p0 + j)(5.16)

=
1

T

T−1∑

q=1

Ix,q

∣∣∣1− eiλq
∣∣∣
α̃
(∣∣∣Φ

(
eiλq ; θ̂ (p0)

)∣∣∣
2
−
∣∣∣Φ
(
eiλq ; θ̂ (p0 + j)

)∣∣∣
2
)

−
j [log T ]

T
,

where θ̂ (p) =
(
θ̂1, ..., θ̂p

)′
and θ (p) = (θ1, ..., θp)

′. We shall first examine

the behaviour of
(5.17)

S̃T (p0 + j) =
1

T

T−1∑

q=1

Ix,q

∣∣∣1− eiλq
∣∣∣
α̃
(∣∣∣Φ

(
eiλq ; θ (p0)

)∣∣∣
2
−
∣∣∣Φ
(
eiλq ; θ̂ (p0 + j)

)∣∣∣
2
)
.
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Using (5.2), S̃T (p0 + j) is

p0+j∑

p1,p2=1

(
θ̂p1 − θp1

)(
θ̂p2 − θp2

) 1
T

T−1∑

q=1

Ix,q

(∣∣∣1− eiλq
∣∣∣
α̃
−
∣∣∣1− eiλq

∣∣∣
α
)
ei(p1−p2)λq

(5.18) +

p0+j∑

p1,p2=1

(
θ̂p1 − θp1

)(
θ̂p2 − θp2

) 1
T

T−1∑

q=1

Ix,q

∣∣∣1− eiλq
∣∣∣
α
ei(p1−p2)λq

+2

p0+j∑

p=1

(
θ̂p − θp

) 1
T

T−1∑

q=1

Ix,q

(∣∣∣1− eiλq
∣∣∣
α̃
−
∣∣∣1− eiλq

∣∣∣
α
)
Re
(
Φ
(
eiλq ; θ (p0)

)
eipλq

)

+2

p0+j∑

p=1

(
θ̂p − θp

) 1
T

T−1∑

q=1

Ix,q

∣∣∣1− eiλq
∣∣∣
α
Re
(
Φ
(
eiλq ; θ (p0)

)
eipλq

)
.

Because θ̂p− θp = Op
(
T−1/2

)
by Hidalgo and Yajima (2002), proceeding as

with the second term of (5.8), the first term of (5.18) is Op
(
T−3/2 log2 T

)
.

The second term of (5.18) is

p0+j∑

p1,p2=1

(
θ̂p1 − θp1

)(
θ̂p2 − θp2

)∫ 2π

0

∣∣∣Φ
(
eiλ; θ (p0)

)∣∣∣
−2
ei(p1−p2)λdλ+Op

(
log2 T

T 3/2

)

=

p0+j∑

p1,p2=1

(
θ̂p1 − θp1

)(
θ̂p2 − θp2

)
γp1−p2 +Op

(
log2 T

T 3/2

)

using (5.10) and where γp denotes the autocovariance function of an AR (p0)

process with spectral density function
∣∣Φ
(
eiλq ; θ (p0)

)∣∣−2 /2π.
Next, the third term of (5.18) is

2 (α̃− α)

p0+j∑

p=1

(
θ̂p − θp

) p0∑

`=0

θ`
1

T

T−1∑

q=1

Ix,q

∣∣∣1− eiλq
∣∣∣
α
log
∣∣∣1− eiλq

∣∣∣Re
(
ei(p+`)λq

)

+Op

(
log2 T

T 3/2

)

= 2 (α̃− α)

p0+j∑

p=1

(
θ̂p − θp

) p0∑

`=0

θ`

∫ 2π

0

∣∣∣Φ
(
eiλ; θ (p0)

)∣∣∣
−2
log
∣∣∣1− eiλ

∣∣∣Re
(
ei(p+`)λ

)
dλ

+Op

(
log2 T

T 3/2

)

+2 (α̃− α)

p0+j∑

p=1

(
θ̂p − θp

) p0∑

`=0

θ`φ` +Op

(
log2 T

T 3/2

)
,
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where φ` is the `th Fourier coefficient of
∣∣Φ
(
eiλ; θ (p0)

)∣∣−2 log
∣∣1− eiλ

∣∣Re
(
ei(p+`)λ

)

and using (5.10) for the first equality and Theorem 1 in the second equality

and that θ̂p − θp = Op
(
T−1/2

)
. Observe that φ` = O

(
`−1
)
.

Finally the last term of (5.18), which is
(5.19)

2

p0+j∑

p=1

(
θ̂p − θp

) p0∑

`=0

θ`
1

T

T−1∑

q=1

Iε,q

∣∣∣Φ
(
eiλq ; θ (p0)

)∣∣∣
−2
Re
(
ei(p+`)λq

)
+Op

(
log2 T

T 4/3

)
.

Because γ` =:
∫ 2π
0

∣∣Φ
(
eiλ; θ (p0)

)∣∣−2Re
(
ei`λ
)
dλ satisfies the equation in

difference
∑p0

`=0 γ`θ` = 0 and Brillinger (1991, p.15) implies that

1

T

T−1∑

q=1

∣∣∣Φ
(
eiλq ; θ (p0)

)∣∣∣
−2
Re
(
eipλq

)
−

∫ 2π

0

∣∣∣Φ
(
eiλ; θ (p0)

)∣∣∣
−2
Re
(
eipλ

)
dλ = O

(
1

T

)
,

we have that for any s,

ςT (s) =:
1

T

T−1∑

q=1

∣∣∣Φ
(
eiλq ; θ (p0)

)∣∣∣
−2
Re
(
eipλq

)
eisλq = O

(
1

T

)
,

and hence (5.19) is Op
(
T−4/3 log2 T

)
. Indeed,

p0∑

`=0

θ`
1

T

T−1∑

q=1

Iε,q

∣∣∣Φ
(
eiλq ; θ (p0)

)∣∣∣
−2
Re
(
ei(p+`)λq

)

=

p0∑

`=0

θ`

{
1

T

T∑

t=1

ε2t ςT (0) +
2

T

T∑

t=2

εt

t−1∑

s=1

εsςT (t− s)

}

= Op
(
T−1

)

by definition of ςT (p, s), that T
−1
∑T

t=1 ε
2
t−σ

2
ε = op (1) and εt

∑t−1
s=1 εsξT (p0, t− s)

is a martingale difference sequence triangular array. Observe that |TςT (p, s)| <

K. So together with the fact that θ̂p − θp = Op
(
T−1/2

)
, we conclude that

the first term of (5.19) is Op
(
T−3/2 log2 T

)
and then the last term of (5.18)

is Op
(
T−4/3 log2 T

)
. The latter implies that (5.17) can be written as

S̃T (p0 + j) =

p0+j∑

p1,p2=1

γp1−p2

(
θ̂p1 − θp1

)(
θ̂p2 − θp2

)

+(α̃− α)

p0+j∑

p=1

(
θ̂p − θp

) p0∑

`=0

φ`θ` +Op

(
log2 T

T 4/3

)
.
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Thus, the left side of (5.15) is bounded by

Pr



 sup
1≤j≤[log T ]−p0

p0+j∑

p1,p2=1

γp1−p2T
(
θ̂p1 − θp1

)(
θ̂p2 − θp2

)
− j log T > 0





+Pr



T

1/2 (α̃− α) sup
1≤j≤[log T ]−p0

p0+j∑

p=1

T 1/2
(
θ̂p − θp

) p0∑

`=0

φ`θ` − j log T > 0





converges to 0 proceeding similarly as with the proof of (5.11). This com-
pletes the proof of the theorem. �

6. CONCLUSIONS AND EXTENSIONS

In this paper we have introduced and examined a criterion for the order
selection of the fractional integrated autoregressive polynomial or Bloom-
field’s exponential model based on the spectral decomposition of the vari-
ance of the innovations or error term of the model. The criterion has some
similarities with statistics frequently employed for goodness-of-fit tests. We
have shown its consistency and examined its finite sample performance in a
Monte-Carlo experiment. A close inspection of the proofs suggests that it
is possible to show the validity using other criterion such as that of Hannan
and Quinn’s (1979) HIC, given by

arg min
p≤[log2 T ]

HIC (p;α) =WT (p;α) +
cp log2 T

T
with c > 2

proceeding as in Hidalgo (2002). Observe that in the last displayed expres-
sion the upper bound, although increases with the sample size, has changed
from [log T ] to [log2 T ].
We now discuss how our criterion can be used when the data is non-

stationary and/or strongly negative dependent in particular when the true
value of α can be greater than or equal to 1 or less than 0. That is, we
assume that α ∈ [−1, 2]. For that purpose, we define the taper periodogram

of a generic sequence {zt}
T
t=1 by

I̊z (λ) = |ẘz (λ)|
2 , λ ∈ [0, π] ,

where

ẘz (λ) =
1

(∑T
t=1 h

2 (t/T )
)1/2

T∑

t=1

h (t/T ) zte
−itλ

is the (taper) Discrete Fourier Transform, where h (z) is the taper function.
Then a standard estimator is the weighted periodogram

ǧx (λ) =
1

2m+ 1

m∑

j=−m

∣∣∣1− ei(λj+λ)
∣∣∣
α̌
I̊x (λ+ λj) ,
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where α̌ is an estimator of the long memory parameter α

(6.1) α̌ =
m∑

k=1

δk (m) log
(
I̊x,k

)
,

see Velasco (1999). From here we proceed as in Section 2 to compute the
estimators of the short memory parameter but replacing α̂ by α̌ there. That
is,

ζ̂j =
1

M

M−1∑

`=1

(log ǧx,2m`) cos (jλ2m`) , j = 0, 1, ...,M ,

Θ̂2mq = Θ̂−2mq = exp



−

M−1∑

j=1

ζ̂je
−ijλ2mq



 , q = 0, 1, ...,M ,

θ̂` =
1

2M

M∑

q=−M+1

Θ̂2mqe
i`λ2mq , ` = 1, ...,M , and

σ̂2ε = 2πe−ζ̂0 ,

where

ǧx (λ) =
1

2m+ 1

m∑

j=−m

∣∣∣1− ei(λj+λ)
∣∣∣
α̌
I̊x (λ+ λj) .

Hence we can estimate p0 as

p̂ = : arg min
p≤[log T ]

BIC (p) = W̊T (p; α̌) +
p log T

T

p̂ = : arg min
p≤[log2 T ]

HIC (p) = W̊T (p; α̌) +
cp log2 T

T
with c > 2

with

W̊T (p;α) =:
1

[T/2]

[T/2]∑

k=1

∣∣1− eiλk
∣∣α I̊x,k

gx,k (p)
,

which in view of results in Velasco (1999) and/or Velasco and Robinson
(2000), we envisage that p̂ should converge in probability to the true value
p0, proceeding as we did in the proof of Theorem 2.
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