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A representation of shape that is low dimensional and
stable across minor disruptions is critical for object
recognition. Computer vision research suggests that such a
representation can be supported by the medial axis—a
computational model for extracting a shape’s internal
skeleton. However, few studies have shown evidence of
medial axis processing in humans, and even fewer have
examined how the medial axis is extracted in the presence
of disruptive contours. Here, we tested whether human
skeletal representations of shape reflect the medial axis
transform (MAT), a computation sensitive to all available
contours, or a pruned medial axis, which ignores contours
that may be considered “noise.” Across three experiments,
participants (N = 2062) were shown complete, perturbed,
or illusory two-dimensional shapes on a tablet computer
and were asked to tap the shapes anywhere once. When
directly compared with another viable model of shape
perception (based on principal axes), participants’ collective
responses were better fit by the medial axis, and a direct
test of boundary avoidance suggested that this result was
not likely because of a task-specific cognitive strategy
(Experiment 1). Moreover, participants’ responses reflected
a pruned computation in shapes with small or large
internal or external perturbations (Experiment 2) and
under conditions of illusory contours (Experiment 3). These
findings extend previous work by suggesting that humans
extract a relatively stable medial axis of shapes. A relatively
stable skeletal representation, reflected by a pruned
model, may be well equipped to support real-world shape
perception and object recognition.

The appearance of objects varies dramatically across
viewpoints, and yet, humans recognize objects rapidly
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and accurately with seemingly little effort. Researchers
have long known that object recognition begins by
extracting the shape of the object (Biederman, 1987,
Marr & Nishihara, 1978; Wagemans et al., 2008), but
the underlying computations involved in shape per-
ception remain poorly understood (for review, see
Elder, 2018). One model that has garnered much
attention posits that shape can be distilled down to its
internal skeletal structure, specifically its medial axis.
The medial axis is a summary representation of shape,
which may facilitate object recognition by providing a
low-dimensional set of properties that are stable across
different viewpoints (Blum, 1967, 1973; Kimia, 2003).
Although computer vision research has provided
successful demonstrations of the medial axis model in
object recognition (T.-L. Liu & Geiger, 1999; Sebas-
tian, Klein, & Kimia, 2004; Trinh & Kimia, 2011), there
are open questions about its biological plausibility,
particularly how the human visual system computes the
medial axes of shapes under variable viewing condi-
tions. To fill this gap in the literature, we used a unique
behavioral paradigm (described below as the “tap-the-
shape” paradigm; Firestone & Scholl, 2014; see also
Psotka, 1978) that attempts to capture how individuals
represent the internal structure of two-dimensional (2-
D) shapes. In addition to providing a replication of
recent research, in which participants’ responses were
consistent with the medial axis of different 2-D shapes,
we extended this work by determining how the medial
axis is represented in cases of perturbation and illusory
contours. As described below, we tested whether
participants’ responses in the tap-the-shape task reflect
a skeleton consistent with the medial axis transform
(MAT), a computation sensitive to every edge in a
shape (Blum, 1967, 1973; Ogniewicz & Kiibler, 1995),
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or a pruned medial axis, which shows stability across
contexts by ignoring edges considered “noise” (Blum &
Nagel, 1978; Kimia, 2003; Shaked & Bruckstein, 1998).

The medial axis is classically defined as the set of all
symmetry points within a shape having two or more
closest points along an object’s boundary (Blum, 1967,
1973). For most shapes, its structure is organized
hierarchically such that there is typically a parent
branch that describes the shape’s global geometry as
well as several secondary branches that “grow” off the
parent branch and describe the local geometry (e.g.,
corners; Pizer, Oliver, & Bloomberg, 1987). In many
contexts, the medial axis is a good summary represen-
tation because it represents the spatial configuration of
a shape’s contours with minimal information. The
original implementation of the medial axis—the
MAT—is a shape skeleton computed from all of the
available contour information in the object. Under the
MAT, the shape skeleton is altered drastically in
response to any change to the shape. For example, even
a subtle perturbation along the contour of an object
(due to partial occlusion or damage) alters the medial
axis in the form of additional branches. Consistent with
such sensitivity in the visual system is evidence of
medial axis processing in cortical regions known to be
edge sensitive (i.e., V1; Hubel & Wiesel, 1959). More
specifically, single-unit recordings with rhesus monkeys
have revealed a heightened response to the medial axes
of 2-D shapes from edge-detection neurons in V1 (Lee,
1996, 2003), and human participants have been found
to display greater contrast sensitivity (a known proxy
of activity in V1; Boynton, Demb, Glover, & Heeger,
1999) to Gabor patches as they neared the medial axis
of the shape (Kovacs, Fehér, & Julesz, 1998; Kovacs &
Julesz, 1994). Such findings suggest that the MAT
formulation may support low-level shape processes
such as figure-ground segmentation because it can
specify all of the edges that are part of the object rather
than the background (Ardila, Mihalas, von der Heydt,
& Niebur, 2012; Li, 2000).

Yet, a long-standing criticism of the MAT is that the
addition of axial branches in response to small shape
disruptions may lead to unnecessarily complex skeletal
structures. Such complexity could make object recog-
nition difficult across contexts and with visually similar
shapes (Feldman & Singh, 2006; Kimia, 2003; Shaked
& Bruckstein, 1998). To address this concern, re-
searchers have attempted to implement medial axis
models that “prune away” extraneous branches. The
purpose of pruning models is to reduce the complexity
of the medial axis by extracting only those branches
that succinctly describe an object’s overall shape, rather
than every local contour. Such descriptions are more
stable across contexts (Attali, Boissonnat, & Edels-
brunner, 2009; T.-L. Liu & Geiger, 1999; Sebastian et
al., 2004; Siddiqi, Shokoufandeh, Dickinson, & Zucker,
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1999) and may be better able to support object
recognition than the MAT (Feldman & Singh, 2006;
Kimia, 2003; Shaked & Bruckstein, 1998). Consistent
with such stability in human vision is research showing
that participants are tolerant to various changes to an
object’s component parts (e.g., nonaccidental proper-
ties) as long as the overall skeletal structure remains
intact (Ayzenberg & Lourenco, 2019; Lowet, Firestone,
& Scholl, 2018). Moreover, the medial axis structure of
three-dimensional objects has been decoded in the
inferior temporal (IT) cortex (Hung, Carlson, &
Connor, 2012; Lescroart & Biederman, 2013), an area
known for its tolerance to border disruptions (Kourtzi
& Kanwisher, 2001). In these studies, the decoding
withstood a variety of contour changes that would be
unlikely under a MAT computation. It has been
suggested that evidence of medial axis sensitivity in
early, edge-sensitive, visual areas may not reflect
encoding of the medial axis within these areas but
rather is the result of top-down feedback from IT
(Hung et al., 2012; Kimia, 2003; Lee, 2003).

Computer vision studies of object recognition (e.g.,
Siddiqi et al., 1999), as well as neural and behavioral
evidence of a medial axis computation (e.g., Hung et
al., 2012), provide crucial support for the viability of
skeletal representations in human vision. However,
there remains debate about whether the human visual
system extracts shape information exclusively in the
form of the MAT computation or whether there is
pruning of the medial axis. Recent work with human
participants would seem consistent with the MAT in
that participants’ skeletal representations of 2-D shapes
changed in response to perturbations along the shape’s
edge (Firestone & Scholl, 2014). Firestone and Scholl
(2014) adapted a task developed by Psotka (1978) that
involved participants tapping within an enclosed 2-D
shape presented on a tablet computer. In this task,
participants’ responses reflected the structure of the
medial axis in simple (e.g., rectangle and triangle) and
complex shapes (e.g., “guitar” shape). Moreover, when
participants were presented with shapes that included
external border perturbations, their responses seem-
ingly conformed to a skeleton with additional branches,
consistent with the MAT, in which all of the contours
were incorporated into the model.

In the current study, we used the tap-the-shape task
to test whether medial axis representations were better
described by a MAT or pruned model across various
conditions of noise (Firestone & Scholl, 2014; Psotka,
1978). Although computer vision has long dissociated
between MAT and pruned structures (Blum & Nagel,
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1978; Shaked & Bruckstein, 1998), surprisingly little
research has examined the biological plausibility of
each. Determining whether individuals represent the
medial axis according to a MAT or pruned formula-
tion, especially under conditions of noise, is important
for our understanding of shape perception, as well as
the role that skeletal representations may play in object
recognition.

As a first step toward filling this gap in the literature,
we began by providing a replication of previous research
that found that participants’ responses reflected the
medial axis of enclosed 2-D shapes on the tap-the-shape
task (Experiment 1). To anticipate, we found that
participants’ collective responses conformed to the medial
axis across different shapes (i.e., rectangle, T-shape,
square, and arc) and that the medial axis was a better
characterization of participants’ responses than the
shapes’ principal axes, another viable model of shape
perception (Marr & Nishihara, 1978; Sturz, Boyer,
Magnotti, & Bodily, 2017). Moreover, we also demon-
strated that these results could not be explained by an
alternative, task-specific cognitive strategy that empha-
sized boundary avoidance.

In two subsequent experiments, we directly tested
whether participants’ responses in the tap-the-shape task
were better characterized by an edge-sensitive MAT
computation or an edge-tolerant pruning computation
that removed extraneous medial axis branches in the
presence of perturbations (Experiment 2) or illusory
contours (Experiment 3). Under a MAT computation,
such conditions would cause drastic alterations to the
skeletal structure of a shape. That is, if the medial axis is
computed from all of the available edges, including those
that only minimally disrupt a shape, then participants’
responses should reflect these disruptions with additional
branches to the medial axis. By contrast, a medial axis
model that incorporates pruning should be more robust
to inconsistent edge information. That is, in the case of
pruning, participants’ responses would not reflect dis-
ruptions to the shape, such that changes to the medial
axis should be minimized.

Each participant was presented with a single shape
on a tablet computer and instructed to “tap the shape
anywhere you like.” Participants were first asked by an
experimenter whether they wanted to participate in “an
extremely short psychology experiment that will only
take two seconds.” If participants agreed, they were
then presented with the shape on the tablet (oriented
horizontally) and instructed to tap the shape. If
participants hesitated to tap the shape, follow-up
instructions were “just tap anywhere.” Following a
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Figure 1. Cropped photograph of the tablet and stimulus
display. In Experiments 1 and 2, each shape was presented as a
white silhouette on a black background, as illustrated here. In
Experiment 3, illusory shapes were presented using four black
crescents on a white background (see Experiment 3). The
location of the shape onscreen was randomized.

response, the shape disappeared (1,000 ms after
response) and then reappeared for the next participant.
Participants were given the opportunity to tap the
shape only once and were immediately thanked
following participation. We chose to collect a single
response per participant for consistency with prior
work (Firestone & Scholl, 2014) and to ensure
independence of responses, which we reasoned would
reduce the use of response strategies and could be
crucial for accurately capturing the underlying percep-
tual representation (cf. Vul, Hanus, & Kanwisher,
2009; Vul & Pashler, 2008).

Each shape was tested one at a time until at least 200
responses were collected. Responses that fell outside
the boundary of the shape were removed and replaced
until 200 valid responses remained. Every effort was
made to ensure that participants did not see the
location of other participants’ responses. The tablet
was cleaned periodically so that fingerprints were not
visible. All participants were adult pedestrians in public
places of a metropolitan city. No demographic
information was collected.

All stimuli were 2-D shapes presented as either white
silhouettes on a black background (see Experiments 1
and 2; see Figure 1) or an illusory shape defined by four
black crescents on a white background (see Experiment
3). We chose to present our shapes as silhouettes
instead of outlines in Experiments 1 and 2 (cf. Firestone
& Scholl, 2014) because the increased contrast made
the shapes more clearly visible outdoors and because
we wanted to ensure that perturbations were unam-
biguously perceived as a missing part of the shape
rather than an imperfection on the screen. Our shapes
were comparable in size to those used by Psotka (1978)
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but larger than those used by Firestone and Scholl
(2014). We chose to use larger shapes to ensure that
participants had sufficient room to respond in all parts
of the shape, even when perturbations were included.
Shapes were presented on an Asus tablet computer with
a capacitive 25.7-cm-diagonal touchscreen (1,200- X
800-px resolution; 21.7 X 14.6 cm) using a custom
program written in Visual Basic (Microsoft). All shapes
were presented in a random location onscreen.

General analyses

In all experiments, we first examined whether
participants’ collective responses differed from chance
responding. More specifically, we tested whether their
responses within each shape were closer to the model of
interest (Experiment 1: medial and principal; Experi-
ments 2 and 3: MAT and pruned) than would be
predicted by chance. We then used latent variable
analyses and goodness-of-fit metrics to compare the fit
of different models to participants’ responses. We also
implemented the density ridge algorithm (Chen, Ho,
Freeman, Genovese, & Wasserman, 2015) to better
visualize the pattern of participants’ responses and to
examine how well they matched each model.

Comparisons to chance followed the procedure of
Firestone and Scholl (2014). Using a Monte Carlo
simulation, we generated 50,000 data sets of 200
randomly and uniformly sampled points for each shape.
We then calculated the distance of each participant’s
response and each random point from the nearest point
on the axis structure. Finally, we compared the mean
distance of participants’ responses to the mean distance
of the best set of 200 random points from the simulation
(i.e., the set closest to the axis). A mean response
distance that is numerically smaller than the best set of
simulated points for a shape suggests that the axis
structure captured responses better than chance.

Latent variable models were implemented to determine
the best fitting model of participants’ responses (Exper-
iment 1: medial vs. principal vs. boundary avoidance;
Experiments 2 and 3: MAT vs. pruned). Comparing
models exclusively on the basis of response distance is not
appropriate because structures that occupy more area
within a shape incur a statistical advantage.' By contrast,
the latent variable models allowed us to estimate the fit of
participants’ responses to each structure while controlling
for length (see the Appendix for the notation of the latent
variable models). These analyses assume that if partici-
pants’ responses correspond to the model of interest, then
these responses should reflect a point along that model’s
structure and some tapping error (constrained by the
border of the shape). Maximum likelihood estimation
was used to determine the variance terms that best
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described the distribution of participants’ responses
around each point of a model’s respective structure (see
the Appendix for the notation of the likelihood
functions).

Participants’ responses were analyzed with two
latent variable models, each evaluated using a Bayesian
information criterion (BIC; Schwarz, 1978). The first
latent variable model assumed responses were sampled
from a normal distribution with equal frequency and
variance around every point for the structure of
interest. The second model assumed responses were
sampled with separate variance terms to the shape’s
center of mass and the remainder of the shape. This
specific statistical model was tested to control for a
known bias toward the centers of shapes (Huttenlocher
& Lourenco, 2007; Melcher & Kowler, 1999; Vishwa-
nath & Kowler, 2003), which has also been shown to
influence responses in the tap-the-shape task (Firestone
& Scholl, 2014). Moreover, we tested the center-
controlled model using both a truncated normal
distribution and, to account for response outliers, a t-
distribution, which is tolerant to outliers (Casella &
Berger, 2002). For each shape, we have displayed the
results of the statistical model (equally distributed or
center controlled) that produced the smallest BIC value
(see Experiments 1-3; see also Supplementary Tables
S1-S6 for results separated by latent variable model).
As an estimate of uncertainty, we also display
bootstrapped confidence intervals for the log-likelihood
values. The model that produced the largest log-
likelihood value and the smallest BIC value was taken
as the best fitting model of participants’ responses.

In a final analysis, we used a density ridge algorithm
to visualize the cumulative structure of participants’
responses (Chen et al., 2015). This data-driven ap-
proach determines the optimal smooth curves within a
shape that pass through the centers of data clusters
under a nonparametric statistical model. Regions with
greater concentrations of points form mountain-like
“ridges” upon which the curves are plotted. For each
shape, smooth curves were estimated by running 15
iterations of the algorithm and by using a progressive
variance parameter that ranged from 50 to 100 in steps
of 20. The variance parameter described the density of
the data (i.e., the expected “width” of the ridge) and
provided a threshold for creating additional smooth
curves. The density ridge algorithm allows for an
unbiased method of estimating the collective structure
of participants’ responses.

In a first experiment, we sought to replicate the
findings of two previous studies (Firestone & Scholl,
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Model comparison

Response Simulation
Shape Model distance (SD) distance Log-likelihood Cl-low Cl-high BIC
Rectangle Medial 39.92 (39.22) 67.71 —1590.30° —1611.66 —1562.81 3191.19
Principal 76.36 (80.06) 80.06 —1626.50° —1648.60 —1603.82 3263.59
Boundary — — —1607.44° —1634.38 —1577.34 3225.47
T-shape Medial 30.59 (26.76) 43.70 —1543.77° —1563.08 —1517.73 3098.14
Principal 59.17 (55.72) 67.44 —1575.05° —1591.97 —1553.65 3160.70
Boundary — — —1562.23° —1582.36 —1534.10 3135.06
Square Medial 26.52 (24.62) 46.25 —1429.33°% —1451.51 —1392.63 2869.25
Principal 61.48 (63.43) 63.43 —1451.65° —1480.26 —1420.37 2913.90
Boundary — — —1435.21° —1460.92 —1402.43 2881.01
Arc Medial 32.57 (29.64) 52.58 —1497.68° —1519.59 —1470.61 3005.96
Principal 44,91 (48.59) 56.90 —1530.91° —1552.22 —1501.40 3072.43
Boundary — — —1509.83° —1535.52 —1479.34 3030.26

Table 1. Results for Experiment 1. Notes: Mean participant response and simulation distances, as well as goodness-of-fit metrics,
are displayed for each shape and model (medial, principal, and boundary avoidance). A mean response distance smaller than the
simulation distance suggests that the model outperformed chance. Log-likelihood values indicate how well each axis structure or
boundary-avoidance model fit participants’ data, and confidence intervals (95% Cl) provide estimates of uncertainty. For each axis
structure and boundary-avoidance model, we display the results of the statistical model (center-controlled model: normal or t-
distribution) that produced the smallest BIC value. ? Log-likelihood and Cls using a center-controlled model following a t-
distribution. ® Log-likelihood and Cls using a center-controlled model following a normal distribution.

2014; Psotka, 1978) in which it was found that
participants’ responses reflected the medial axis of
enclosed 2-D shapes when they were simply instructed
to place one point (with their finger, as in Firestone &
Scholl, 2014; or a pencil, as in Psotka, 1978) within a
shape. To provide a stronger test of medial axis
extraction, we compared the medial axis to another
biologically plausible model of shape perception,
namely, the principal axis model (Marr & Nishihara,
1978). Although Psotka (1978) provided qualitative
evidence in favor of the medial axis, he did not
statistically compare the medial axis to other shape
models. Firestone and Scholl (2014) compared a
rectangle’s medial axis to its diagonal axes and found
that participants’ responses were numerically closer to
the medial axis. However, diagonal axes cannot be
extracted in most shapes, and no model of shape
perception (to our knowledge) emphasizes a shape’s
diagonal axes. Here, we compared a medial axis model
to one based on the principal axes, which can be
computed for any shape and which are thought to play
a role in shape perception (Humphrey & Jolicoeur,
1988, 1993; Sturz et al., 2017; Warrington & James,
1986; Warrington & Taylor, 1973).

A model of shape perception based on principal
axes suggests that humans extract shape via axes
bisecting an object’s center of mass (Chaisilprun-
graung, German, & McCloskey, 2019; Marr &
Nishihara, 1978). More specifically, each shape is
described by a major axis, which bisects the longest
axis of the object, as well as minor axes, which bisect
the shorter axes of the object (Marr & Nishihara,
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1978; Warrington & James, 1986; Warrington &
Taylor, 1973). Like the medial axis, the appeal of such
a structure is that it provides a low-dimensional
description of an object’s overall shape. However,
unlike the medial axis, the principal axes of a shape do
not provide any description of the object’s local
geometry such as curvature or corners (Ambosta,
Reichert, & Kelly, 2013; Cheng & Gallistel, 2005;
Kelly & Durocher, 2011).

We also tested each axis structure against a
boundary avoidance model to ensure that partici-
pants’ responses were not a by-product of a task-
specific cognitive strategy to simply tap inside the
shape and, therefore, away from the boundaries. To
address this possibility, we tested boundary avoidance
models that were based on the following two
assumptions. First, if participants’ responses are
systematically biased away from the boundary, then
they would be distributed across a smaller portion of
the shape’s area whose edges are equidistant from the
boundary. Second, if participants’ responses do not
correspond to any specific model of shape perception,
their responses would be randomly distributed within
that smaller region of the shape. Such a response
pattern would be best fit by a uniform distribution—
defined here as a grid of equally-spaced points inside
the shape. Because it was unclear to what extent
participants should avoid the boundary, we tested the
boundary avoidance model with multiple possible
degrees of avoidance.

In this experiment, we examined participants’
responses in one of four enclosed 2-D shapes.
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Participants were presented with either a rectangle (907
X 485 px; 16.5 X 8.8 cm), T-shape (638 X 682 px; 11.6 X
12.4 cm), square (480 X 480 px; 8.7 X 8.7 cm), or arc
(convex hull: 989 X 470 px; 18 X 8.5 cm). The rectangle
was chosen specifically to replicate previous studies that
found that participants’ responses were consistent with
the medial axis of a rectangle (Firestone & Scholl, 2014;
Psotka, 1978). We included a T-shape because it
allowed us to test whether participants’ responses
conformed to the medial axis in a more complex,
multipart shape. Moreover, overlap between the medial
and principal axes within the rectangle and T-shape
allowed for a strong test of specificity. If participants’
responses conformed to one axis structure over the
other within these shapes, despite their large overlap,
then it would provide strong evidence for a given axis
structure within the corresponding shape. As a different
test, we included a square for which there was no
overlap between the medial and principal axes. The
advantage of this comparison was that it allowed for an
unambiguous context to dissociate medial and princi-
pal axes. Finally, an arc was included as a test of
generalization. The rectangle, T, and square shapes are
exclusively composed of straight edges. The inclusion
of an arc in this experiment allowed us to compare axial
structures in the case of curvature.

See Figure 2 for illustrations of the medial and
principal axes, as well as the best-performing boundary
avoidance model for each shape tested in the current
experiment. As described in the General Methods
section, 200 valid responses were analyzed for each
shape. Additional responses were excluded for falling
outside the shape: one from the rectangle, two from the
square, and three from the arc. No responses were
excluded from the T-shape.

Results

See Figures 2 and 3 for the distribution of
participants’ responses within each shape and Table 1
for a summary of the response distances and model fit
metrics.

Consistent with the findings of Firestone and Scholl
(2014), we found that participants’ responses were
closer to the medial axes of each shape (rectangle, T,
square, and arc) than were the best 200 points from the
corresponding Monte Carlo simulations of 50,000
distributions (see Table 1). Participants’ responses were
also closer to the principal axes of each shape than the
simulations (see Table 1). Thus, comparisons of
participants’ responses to the medial and principal axes
within each shape revealed that both axis structures
captured participants’ responses better than would be
predicted by chance.
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As described in the General Analyses section above,
participants’ responses were also analyzed with latent
variable models that accounted for response distance
and axis length to determine whether participants’
responses were better fit by a medial or principal axis
model. As can be seen in Table 1, participants’
responses were best fit by the medial axis in every
shape, as indicated by the largest log-likelihood
estimates and smallest BIC values. Thus, although both
medial and principal axes captured participants’
responses better than chance, the medial axis described
participants’ responses better than the principal axes of
each shape (see Figure 2).

However, an alternative account of these results is
that participants’ responses instead reflected a bound-
ary-avoidance strategy. More specifically, it is possible
that their responses formed the medial axis as a by-
product of a cognitive strategy to tap inside the white
area on the tablet and away from the boundary of this
area. To address this possibility, we fit participants’
responses to boundary models with multiple scales of
avoidance (grids comprising 20% to 100% of the
shape’s area in 20% steps) and then tested whether the
best-performing boundary model (rectangle: 60%; T-
shape: 60%; square: 80%; arc: 40%; see Supplementary
Tables S4-S6 for the results of all boundary avoidance
models) provided a better fit to participants’ responses
than medial or principal axes models (see Table 1).
These analyses revealed that the boundary avoidance
model provided a better fit to participants’ responses
than the shapes’ principal axes (see Table 1). However,
and crucially, the medial axis model was a better fit to
participants’ responses than the best-performing
boundary model for each shape (see Table 1). These
results suggest that participants’ responses could not be
accounted for by a task-specific strategy to tap inside
the shape and away from the boundaries but, instead,
that participants may have extracted the medial axes of
the different shapes tested.

Finally, we examined the pattern of participants’
responses created by the density ridge algorithm. As
can be seen in Figure 3, the density ridges for the
different shapes formed smooth curves that were most
consistent with the medial axes of the shapes, providing
converging evidence for the medial axis as the best
description of participants’ responses in different 2-D
enclosed shapes. The density ridges were inconsistent
with the principal axis model and further rule out the
possibility of boundary avoidance as an explanation of
participants’ responses.

Discussion

The results of this first experiment provide a
replication and extension of prior research (Firestone &
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Figure 2. The different shapes used in Experiment 1: (a) rectangle, (b) T, (c) square, and (d) arc. Gray circles represent individual responses.
Participants’ responses for each shape are presented separately against the medial (left column, red dashed lines) and principal axes
(middle column, red dashed lines), as well as the best-performing boundary-avoidance model (right column, red grid). Shapes are
presented against a black background to mirror their presentation to participants on the tablet. Shapes are not drawn to scale.

Scholl, 2014; Psotka, 1978). We found that the medial
axis model best fit participants’ responses across all of
the shapes tested. The medial axis model characterized
the pattern of participants’ responses better than the
principal axis model, even in shapes with a high degree
of overlap between models, such as the rectangle and T-
shape. Moreover, the square provided a clear case of a
dissociation between medial and principal axes, and the
arc provided an example of generalization beyond
straight-edged shapes. Importantly, these results could
not be explained by a task-specific cognitive strategy to
simply tap the white area on the tablet by avoiding the
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boundaries because participants’ responses fit the
medial axis better than the best-performing boundary
avoidance model for each shape.

Although principal axes have been proposed as a
viable summary representation of shape (Chaisilprun-
graung et al., 2019; Marr & Nishihara, 1978; Sturz et
al., 2017), our data do not provide support for
extraction of principal axes of 2-D shapes. In this
experiment, the principal axis model was the worst-
performing model in all of the shapes tested—
demonstrating a worse fit than the medial axis model
and even against our control for boundary avoidance.



Journal of Vision (2019) 19(6):6, 1-21

Ayzenberg, Chen, Yousif, & Lourenco 8

50 70 90

100 130 150

Figure 3. Smooth curves from the density ridge algorithm with increasing variance parameters. Each row displays a single shape from
Experiment 1. Each column displays the smooth curves from each variance parameter (variance parameters displayed along the
bottom). Shapes are presented against a black background to mirror their presentation to participants on the tablet. Shapes are not

drawn to scale.

The above-chance performance of the principal axis
model likely reflected the fact that it bisects perceptu-
ally prioritized areas, such as the center (center not
controlled for in chance comparisons; Huttenlocher &
Lourenco, 2007; Melcher & Kowler, 1999; Vishwanath
& Kowler, 2003), or perhaps because it overlaps with
the medial axis in some shapes.

As already noted, an especially important compar-
ison in this experiment was between the medial axis
model and a cognitive strategy based on boundary
avoidance. This comparison was crucial because the
medial axis is, by definition, the collection of points
within the shape, equidistant from at least two points
on the boundary. Accordingly, much of an object’s
medial axis structure occupies areas that are maximally
distant from the borders of the shape such that
responses in these regions are also consistent with a
boundary avoidance strategy. However, the medial
axes of the shapes tested here also include branches that
are inconsistent with a boundary avoidance strategy,
such as those that extend into the corners of the shape.
If participants’ responses reflected a strategy to tap
“inside” and “away” from boundaries, then the more
parsimonious prediction would have been that the
location of their responses should have been random,
once they were a safe distance away from the shape’s
border. Yet the latent variable analyses suggest that
participants’ responses were best fit by the medial axes
of the shapes, not a boundary avoidance model.
Moreover, most iterations of the density ridge algo-
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rithm suggest that participants’ responses clustered
along the entire medial axis structure, including
branches to the corners. These results are consistent
with the findings of Firestone and Scholl (2014), who
found that participants’ responses adhered to the
medial axis of a perceived shape, not the prescribed
response area. Although it is possible that other
unknown strategies could be responsible for partici-
pants’ responses with these shapes, we have ruled out
an obvious nonperceptual account of the data on this
task. Thus, to the extent that the tap-the-shape task
reveals the structure of human shape representations,
our data are consistent with extraction of the medial
axis during 2-D shape perception (see the General
Discussion section for further discussion).

Having found that participants’ responses were most
consistent with the medial axes of different 2-D shapes,
we next tested which formulation of the medial axis was
best characterized by participants’ responses under
conditions of perturbation. More specifically, we tested
whether participants’ responses were better described
by the MAT formulation or a medial axis that
incorporates pruning (Shaked & Bruckstein, 1998). The
MAT predicts a medial axis that accommodates every
available contour of a shape, such that perturbations,
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regardless of size, lead to the growth of new axial
branches. By contrast, a pruned computation predicts
that the degree of medial axis accommodation will be
proportional to the degree of change induced by the
perturbation, thereby allowing for greater stability
across contexts (Kimia, Tannenbaum, & Zucker, 1995;
Shaked & Bruckstein, 1998). Importantly, the goal of
the current experiment was not only to provide an
answer to the general question of whether shape
skeletons in human vision are better described by
models that incorporate pruning but also to charac-
terize the degree of pruning by the perceptual system.
Although some models of pruning remove only those
branches that describe the perturbation, leaving the
remaining skeletal structure intact (e.g., Giblin &
Kimia, 2003; H. Liu, Wu, Zhang, & Hsu, 2013), other
models are more stringent such that they also remove
branches that describe other aspects of the local
geometry such as the corners of the shape (e.g., Ebert,
Brunet, & Navazo, 2002; Feldman & Singh, 2006;
Telea, Sminchisescu, & Dickinson, 2004). Because of
the diversity of algorithms in the literature, our pruning
models were created to exemplify two general classes of
models (cf. Attali et al., 2009; Wieser, Seidl, &
Zeppelzauer, 2017). More specifically, we tested a
lenient pruning model that included branches describ-
ing the local geometry and a stringent model without
these branches. Both types of pruning are consistent
with a hierarchical organization of the medial axis.
However, whereas parent branches (from which other
branches grow) and those describing larger portions of
the shape (e.g., branches to the corners) are less likely
to be pruned by a lenient model, both types of branches
are pruned by a stringent model. The lenient pruning
model was defined by first computing the skeletal
structure according to the MAT and then removing the
new branches elicited by the perturbation (those lowest
in the hierarchy). For the stringent pruning model, we
further removed branches describing the local geometry
(i.e., the outer corners).

Firestone and Scholl (2014) found that participants’
touches within enclosed 2-D shapes conformed to a
medial axis structure that accommodated an external
border perturbation, suggesting a MAT computation.
More specifically, they found that participants’ re-
sponses reflected a medial axis with additional branches
to the perturbation. However, they tested external
perturbations of only one size, leaving it unclear
whether participants would extract additional branches
in other conditions where the perturbation was smaller
or when the perturbation was placed internally.

Psotka (1978) found that the presence of perturbations
affected the placement of participants’ responses within
circles, but the pattern did not conform to any known
model of shape. More specifically, he found that
participants largely avoided responding near small dot-
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like internal perturbations, except when the perturbations
were placed on the circle’s medial axis (i.e., a point in the
center). It is difficult, however, to compare MAT and
pruned models for a circle because few algorithms (to our
knowledge) are able to accurately calculate its medial axis
when internal perturbations are introduced. Therefore, it
is not clear what MAT and pruned medial axes should
look like in a circle with internal perturbations.

To better understand medial axis extraction across a
variety of perturbation conditions, in the current
experiment we included externally and internally placed
perturbations. Importantly, we tested participants with
rectangular shapes that allowed us to compare MAT
and pruned models. If the MAT computation is the
better description of human skeletal representations,
then participants should extract additional branches
regardless of perturbation size or placement, because
the MAT is computed from all of the available edges.
By contrast, if a pruned medial axis structure provides
a better characterization of skeletal representations,
then no additional branches should be observed with
smaller perturbations or perturbations placed inter-
nally because they are minimally disruptive and the
added complexity of new branches in these cases does
not provide an improved shape description (Feldman &
Singh, 2006). It was less clear, however, how much
pruning there would be with the large external
perturbations. One possibility was that these pertur-
bations would elicit new branches as in Firestone and
Scholl (2014), with no pruning. Another possibility was
that there would be no additional branches, reflective
of pruning. Furthermore, to provide a better charac-
terization of how participants extract the medial axis in
the tap-the-shape task, we tested multiple degrees of
pruning for every condition.

Participants were tested in one of four conditions: a
rectangle (907 X 485 px; 16.5 X 8.8 cm) with a small
(225 X 15 px; 4.1 cm X 0.3 cm) or large (225 X 125 px;
4.1 cm X 2.3 cm) external perturbation along the
shape’s border (see Figure 4a,b); a rectangle (931 X 412
px; 16.9 X 7.5 cm) with a small (22 X 22 px; 0.4 X 0.4
cm) or large (225 X 125 px; 4.1 X 2.3 cm) internal
perturbation (see Figure 4c,d). Perturbations were
meant to simulate natural shapes with disrupted
contours as a result of damage, deletion, or partial
occlusion by another object (Leyton, 1989).

As described previously, 200 valid responses were
analyzed in each condition. Additional responses were
excluded for falling outside the boundaries of the
shape: two from the condition with the small external
perturbation, nine from the condition with the large
external perturbation, seven from the condition with
the small internal perturbation, and six from the
condition with the large internal perturbation. Of the
excluded responses, 10 fell inside the perturbations (two
in the large external perturbation condition, two in the
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Figure 4. The four conditions from Experiment 2: rectangle with (a) small and (b) large external perturbations, and rectangle with (c)
small and (d) large internal perturbations. Gray circles represent individual responses. Participants’ responses are presented against a
medial axis with lenient pruning (left column, red dashed lines), a medial axis with stringent pruning (middle column, red dashed
lines), and the MAT structure (right column, red dashed lines). Shapes are presented against a black background to mirror their
presentation to participants on the tablet. Shapes are not drawn to scale.

small internal perturbation condition, and six in the
large internal perturbation condition).

Results

See Figures 4 and 5 for the distribution of responses
within each shape and Table 2 for a summary of the
response distances and model fit metrics.

Comparisons with the best set of 200 points from the
Monte Carlo simulation revealed that participants’
responses in all conditions (small and large, external
and internal perturbations) were closer to the axes of
the MAT than would be predicted by chance (see Table
2). Likewise, participants’ responses in all conditions
were closer to both pruned medial axis models than the
best set of 200 points from the simulation (see Table 2).
These analyses demonstrate that both the MAT and
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pruned medial axes capture participants’ responses
better than chance but do not distinguish between the
axis structures of interest.

Next, participants’ responses were analyzed with the
latent variable models and compared on the basis of
their fit to each axis structure. As can be seen in Table
2, in all conditions, participants’ responses were best fit
by lenient pruning of the medial axis, as indicated by
larger log-likelihood estimates and smaller BIC values.
Moreover, the density ridge algorithm generated
smooth curves that were most consistent with lenient
pruning in all conditions, as indicated by the general
presence of branches describing the shapes’ corners but
not the perturbations (see Figure 5). Taken together,
the analyses suggest that a lenient pruning model best
characterizes participants’ responses in conditions of
perturbation for both sizes and in both external and
internal contexts.
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Figure 5. Smooth curves from the density ridge algorithm with increasing variance parameters. Each row displays a single shape from
Experiment 2. Each column displays the smooth curves from each variance parameter (variance parameters displayed along the
bottom). Shapes are presented against a black background to mirror their presentation to participants on the tablet. Shapes are not
drawn to scale.

150

responses did reflect branches to the outer corners.
Thus, participants’ responses were consistent with a
medial axis representation that is robust to noisy edges

Discussion

Our results show that participants’ responses were

best fit by a leniently pruned medial axis model in
every condition tested, not the MAT or a stringently
pruned model. Participants’ responses did not reflect
new branches in any perturbation condition, but

Comparison to chance

but retains a sensitivity to important aspects of the
local geometry. Such a representation creates a medial
axis that may be more stable across minor disruptions
to the shape while retaining enough information to

Model comparison

Response Simulation
Shape Model distance (SD) distance Log-likelihood Cl-low Cl-high BIC
Small external L. Prune 40.88 (36.87) 66.4 —1559.70° —1583.37 —1530.27 3129.99
S. Prune 90.19 (77.68) 131.22 —1594.53° —1618.83 —1564.93 3199.65
MAT 35.69 (34.11) 52.27 —1573.62° —1600.10 —1542.85 3157.84
Large external L. Prune 35.49 (32.69) 60.82 —1577.30° —1595.00 —1553.96 3165.19
S. Prune 60.21 (54.66) 95.54 —1603.09° —1628.29 —1574.79 3211.47
MAT 34.29 (30.54) 49.25 —1598.63° —1614.15 —1577.70 3207.86
Small internal L. Prune 38.55 (65.23) 65.23 —1558.91° —1577.33 —1536.19 3128.42
S. Prune 82.91 (63.17) 122.83 —1631.18° —1651.33 —1600.88 3272.96
MAT 33.43 (24.10) 46.65 —1580.35° —1597.07 —1558.50 3171.30
Large internal L. Prune 36.01 (34.44) 60.11 —1589.99° —1605.18 —1568.17 3190.57
S. Prune 62.01 (50.99) 90.61 —1599.86° —1618.97 —1575.33 3210.32
MAT 33.19 (28.00) 41.56 —1635.52° —1646.52 —1612.60 3281.63

Table 2. Results for Experiment 2. Notes: Mean participant response and simulation distances, as well as goodness-of-fit metrics,
are displayed for each shape and axis structure (L. Prune = lenient pruning, S. Prune = stringent pruning, and MAT). A mean
response distance smaller than the simulation distance suggests that the model outperformed chance. Log-likelihood values
indicate how well each axis structure fit participants’ data, and confidence intervals (95% Cl) provide estimates of uncertainty. For
each axis structure, we display the results of the statistical model (center-controlled model: normal or t-distribution; or equal
distribution model: normal distribution) that produced the smallest BIC value. ® Log-likelihood and Cls using a center-controlled
model following a t-distribution. ® Log-likelihood and Cls using an equal distribution model following a normal distribution. ¢ Log-
likelihood and Cls using a center-controlled model following a normal distribution.
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recover the shape’s unperturbed structure. These
characteristics may be especially important for object
recognition in cases where the object is partially
occluded or where there is damage to the object’s
contour (Montero & Lang, 2012; Shaked & Bruck-
stein, 1998).

Although perturbations did not elicit new medial
axis branches, they did cause some curvature to the
existing branches. It is possible that curvature, of the
parent branch in particular, may be an informative
descriptor of the object’s global shape and causal
history (Leyton, 1992; Sprote & Fleming, 2016; Sprote,
Schmidt, & Fleming, 2016). Indeed, even stringent
pruning models appear to incorporate some curvature
of the parent branch in the presence of a perturbation.
Nevertheless, because the focus in the current study was
on pruning of excess branches, we did not systemati-
cally assess the extent of curvature under these
conditions. Importantly, these findings suggest that,
even if skeletal representations show some accommo-
dation to the perturbations, this accommodation does
not increase the complexity of the medial axis in the
form of new branches.

Given previous findings (i.e., Firestone & Scholl,
2014; Psotka, 1978), one might have expected that the
perturbations in this experiment would have affected
participants’ responses to a greater degree. Firestone
and Scholl (2014) found that, in the presence of an
external perturbation, participants’ responses appeared
to conform to the MAT rather than the medial axis of
an unperturbed shape. Similarly, Psotka (1978) found
that the presence of internal perturbations influenced
participants’ responses within a circle, although they
did not correspond to any known model of shape. By
contrast, we found that perturbations had relatively
little impact on participants’ responses and were best fit
by a leniently pruned medial axis, not the MAT. What
might account for the differences between studies?

The first possibility is that the results found by
Firestone and Scholl (2014) reflect the statistical
advantage of the MAT under conditions of external
perturbations. More specifically, Firestone and Scholl
(2014) compared models on the basis of response
distance in which longer axis structures incur a
statistical advantage. Firestone and Scholl (2014) did
equate for the number of axis points in each model, but
this method may not have fully controlled for length.'
In the current study, we compared models on the basis
of their fit to participants’ responses, such that the
explanatory power of each axis point was considered in
combination with response distance (see the General
Analyses section and Appendix). When the length of
each model is controlled for using this method, we find
that participants’ responses are best fit by a leniently
pruned medial axis model with branches to the outer
corners but not to the perturbations.
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It is difficult to compare the results of our internal
perturbation conditions to those of Psotka (1978)
because, in his study, participants’ responses did not
correspond to any known model of shape, and he did
not statistically compare medial axis models. Indeed, as
mentioned previously, it is especially difficult to
compare MAT and pruned models in a circle contain-
ing internal perturbations. Nevertheless, one might
wonder why internal perturbations appeared to have
had a greater effect on participants’ responses in
Psotka’s (1978) study than they did here. It is possible
that the simple medial axis of a circle (a point in the
center) has a weaker influence on tapping behavior and
therefore may be more likely to be overshadowed by
other cognitive processes. Indeed, Psotka (1978)
speculated that participants’ responses in the perturbed
circle conditions consisted of two processes: (a) medial
axis extraction and (b) conscious effort by participants
to “balance” the dot-like perturbations with their own
responses to create a more symmetrical space within the
figure. Here, the effect of these cognitive processes may
be reduced because we used shapes with more extensive
medial axes. Indeed, using rectangles, which have
clearly distinguishable and extensive MAT and pruned
medial axes, we found that responses were most
consistent with a leniently pruned model for both
internal and external perturbations conditions.

Another notable difference across studies is the use
of shape silhouettes rather than outlines as in Firestone
and Scholl (2014) and Psotka (1978). Could this
difference in stimulus presentation have affected
participants’ responses? In the case of external pertur-
bations, one possibility is that the use of silhouettes
might have discouraged participants from responding
near the edge of the shape, including the perturbation.
Here, the black background could have created a
region that participants were less likely to tap, causing
them to respond farther from the perturbation than
they would have otherwise, thereby leading to a pruned
medial axis result. Although we cannot rule out this
possibility directly, we suggest that it is unlikely. More
specifically, if participants avoided responding near the
boundary of the shape, then they should have also
avoided responding near the outer corners, which
would have created a response pattern most consistent
with a stringently pruned model without branches to
the corners. However, we found that the stringently
pruned model provided the worst fit to participants’
responses in most of the shapes tested. Moreover, the
density ridge algorithm consistently created smooth
curves into the outer corners of the shape, suggesting
that participants did not avoid these areas.

In the case of internal perturbations, the use of
silhouettes may have caused the perturbations to be
seen as deletions (i.e., holes in the shape) rather than as
partial occlusions. Deletions and occlusions can cause
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different shape percepts (Bregman, 1981; Wagemans et
al., 2012), and this perceptual difference could have led
to a different pattern of responding in the tap-the-shape
task. However, if anything, a shape deletion should
have been more likely to create additional branches
(and thus be more consistent with the MAT) than a
partial occlusion. More specifically, symmetrical shape
deletions, like the ones used in the current experiment,
could be perceived as a permanent aspect of the shape
(Sprote et al., 2016) and therefore more likely to be
incorporated into participants’ medial axis representa-
tions. That we found evidence of medial axis pruning in
this case may suggest that pruning algorithms in
humans are especially robust to perturbations. Never-
theless, more research will be needed to better
understand how perturbation type (i.e., internal versus
external) and stimulus presentation (i.e., silhouettes
versus outlines) may influence participants’ responses
in the tap-the-shape task (see the General Discussion
section for further discussion).

In a third experiment, we asked whether physically
present contours are necessary to elicit the medial axis.
Classic work on illusory shapes suggests that shape
perception can take place without real contours
(Kanizsa, 1976). Perhaps the most famous examples are
Kanizsa shapes, in which it is found that individuals
infer a complete shape from crescent inducers specify-
ing the corners. In this case, the crescents form the
corners of a shape, inducing a percept of an actual,
complete shape. Thus, if participants incorporate
illusory contours in the tap-the-shape task, then the
prediction is that their responses should reflect the
medial axis of a complete shape. However, illusory
contours are another point of weakness for the MAT
computation, which creates a medial axis with branches
that extend toward the missing contours of the shape
(Johannes, Sebastian, Tek, & Kimia, 2001; Kimia,
2003; see Figure 6). By contrast, a pruned medial axis,
according to the lenient formulation found in Exper-
iment 2, would not include branches extending toward
the outside of the shape but instead would generate a
skeleton consistent with a complete shape (see Figure
6). Thus, in the current experiment, we examined
whether participants’ responses reflected the medial
axis in a shape defined by illusory contours, as well as
whether their responses were better fit by the MAT or
pruned formulation. This question is not only impor-
tant for understanding medial axis representations
under different conditions but also allows us to further
evaluate the validity of the tap-the-shape task as a
measure of shape perception. That is, if participants’
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responses in Kanizsa shapes reflect the medial axis of a
complete shape, this would provide further evidence
that the tap-the-shape task incorporates participants’
perception of shape rather than a response strategy
exclusively.

Participants were tested with two Kanizsa shapes—
rectangle (illusory shape: 907 X 485 px; 16.5 X 8.8 cm)
and square (illusory shape: 480 X 480 px; 8.7 X 8.7
cm)—Dbased on Experiment 1. The perceived shape was
defined by four black crescents presented on a white
background (see Figures 6 and 7). Although the MAT
predicts that the axial branches extend indefinitely
outside the shape, we limited our analyses to the
branches and responses that fell within the area of the
perceived shape. There were 13 excluded responses in
the Kanizsa rectangle and 19 for the Kanizsa square;
many of the excluded responses fell inside the crescents,
not outside the perceived shape (11 in the rectangle
condition and 9 in the square condition).

Results

See Figures 6 and 7 for the distribution of responses
within each shape and Table 3 for a summary of the
response distances and model fit metrics.

Comparisons with the best set of 200 points from the
Monte Carlo simulation revealed that participants’
responses were closer to the axes of the MAT
formulation for both the Kanizsa rectangle and square
(see Table 3). Likewise, participants’ responses were
closer to a pruned medial axis than the best set of 200
points in both shapes (see Table 3). Thus, as in our
previous experiments, these analyses demonstrate that
different axis structures capture participants’ responses
better than chance, but they do not distinguish between
them.

Next, participants’ responses were analyzed with the
latent variable models and compared on the basis of
their fit to each axis structure. As can be seen in Table
3, in both conditions, participants’ responses were best
fit by a lenient pruning model in both the Kanizsa
rectangle and square, as indicated by larger log-
likelihood estimates and smaller BIC values. Moreover,
the density ridge algorithm generated smooth curves
that were comparable to those of a pruned medial axis
(see Figure 7).

Discussion

The results of Experiment 3 suggest that partici-
pants’ responses reflect the medial axis of inferred
shapes defined by illusory contours (Kanizsa, 1976;
Wagemans et al., 2012), as we previously found for
real, complete 2-D shapes (Experiments 1 and 2). The
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Figure 6. Conditions from Experiment 3: Kanizsa (a) rectangle and (b) square. Gray circles represent individual responses. Participants’
responses are presented against pruned medial axes in these conditions (left column, red dashed lines) and the MAT computation
(right column, red dashed lines). As described in the main text, stimuli in this experiment were presented against a white background

on the tablet computer. Shapes are not drawn to scale.
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Figure 7. Smooth curves from the density ridge algorithm with increasing variance parameters. Each row displays a single shape from
Experiment 3. Each column displays the smooth curves from each variance parameter (variance parameters displayed along the
bottom). As described in the main text, stimuli in this experiment were presented against a white background on the tablet computer.

Shapes are not drawn to scale.
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Model comparison

Response Simulation
Shape Model distance (SD) distance Log-likelihood Cl-low Cl-high BIC
Rectangle Pruned 40.88 (36.87) 66.40 —1582.85° —1608.01 —1550.97 3176.30
MAT 35.69 (34.11) 52.27 —1593.19° —1617.90 —1562.76 3196.98
Square Pruned 35.49 (32.69) 60.82 —1332.70° —1367.57 —1293.03 2676.00
MAT 34.29 (30.54) 49.25 —1340.41° —1380.50 —1293.42 2691.41

Table 3. Results for Experiment 3. Notes: Mean participant response and simulation distances, as well as goodness-of-fit metrics, are
displayed for each shape and axis structure. A mean response distance smaller than the simulation distance suggests that the model
outperformed chance. Log-likelihood values indicate how well each axis structure fit participants’ data, and confidence intervals (95%
Cl) provide estimates of uncertainty. For each axis structure, we display the results of the statistical model (center-controlled model:
normal or t-distribution) that produced the smallest BIC value. ? Log-likelihood and Cls using a center-controlled model following a t-
distribution. ® Log-likelihood and Cls using a center-controlled model following a normal distribution.

medial axis of Kanizsa shapes followed a pruned
computation of uninterrupted contours, providing
further support for medial axis pruning in humans.
Although researchers have suggested that medial axis
representations would incorporate Gestalt principles of
perceptual completion (Johannes et al., 2001; Kimia,
2003), this hypothesis has not been empirically tested
with human participants. As with perturbed shapes,
participants’ responses reflected a pruned medial axis,
suggesting that skeletal representations describe an
object’s overall shape, rather than every contour. That
participants’ responses in the Kanizsa shapes reflected
the medial axes of complete shapes further suggests
that this task provides an assessment of shape
perception, not simply a task-specific response strategy.
Nevertheless, we acknowledge that the task instruc-
tions, which emphasized object shape (i.e., “tap the
shape™), may have influenced participants’ perception
of the Kanizsa shapes and therefore their responses.
Future research should consider minimizing task
instructions further so as to compare medial axis
models under conditions of illusory shape perception.

Across multiple experiments, we found that partic-
ipants’ responses within 2-D shapes reflected the medial
axes of the corresponding shapes. Participants’ re-
sponses were better described by a medial axis structure
than another viable model of shape perception or a
task-specific cognitive strategy (Experiment 1). More-
over, the medial axis structure characterizing partici-
pants’ responses reflected a lenient pruning
computation under conditions of perturbation (Exper-
iment 2) and illusory contours (Experiment 3). Our
findings not only replicate previous work suggesting
medial axis extraction using the tap-the-shape task
(Firestone & Scholl, 2014; Psotka, 1978), but they also
build upon this research by differentiating between
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computations that accommodate every available edge
and those that are more robust to noisy edges (Shaked
& Bruckstein, 1998). By demonstrating how individuals
extract the medial axis under conditions of perturba-
tions and illusory contours, our findings help to bridge
the gap between the many mathematical formulations
of shape skeletons in computer vision (Wieser et al.,
2017) and their potential biological implementation in
human perception (Kimia, 2003).

Relation between the tap-the-shape task and
visual shape perception

One might ask whether our conclusions about shape
perception are justified, given that the task used to
assess medial axis representation involved a tapping
response, rather than a direct measure of shape
perception. To address this concern, it was crucial to
rule out alternative explanations for participants’
responses. Here, we tested whether these results could
be explained by a cognitive strategy specific to the tap-
the-shape task, namely, a strategy to respond inside the
white area and away from boundaries. As another test
of visual shape representation, we also examined
participants’ responses in illusory shapes, and, finally,
we included a statistical control for a known center bias
in our model comparisons. In all cases, we found that
the medial axis, particularly a leniently pruned model,
provided the best fit to participants’ responses.

Yet one additional concern is that participants may
have used a response strategy that results in a pattern
resembling the medial axis, but they did not extract the
medial axis per se. For instance, instead of engaging in
a boundary-avoidance strategy across the whole shape,
participants’ boundary-avoidance strategy could have
been specific to local contour “neighborhoods” (e.g.,
between corners). This possibility makes predictions
that are almost identical to the medial axis and is
therefore difficult to rule out. However, one reason to
believe that it does not account for our findings is that
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such a strategy would more likely result in a response
pattern similar to the MAT, not a pruned model,
because the MAT describes all of the points in the
shape equidistant from neighboring contours.

Nevertheless, it remains unclear why participants’
taps would reflect the medial axes of different shapes in
the first place. In other words, extraction of the medial
axis by the perceptual system does not necessitate that
participants’ behavioral responses should reflect an
underlying shape representation. One possible account
for the observed behavior is that medial axis extraction
leads to increased attention for locations along the
medial axis of the shape. Thus, when participants are
asked to simply tap a shape once, without other
instructions, they may be biased to direct their taps to
these perceptually enhanced locations. Single indepen-
dent responses from different participants may capture
the entirety of a medial axis structure by sampling
across these locations. Similar perceptual enhancement
has been observed for contrast sensitivity (Kovacs et
al., 1998; Kovacs & Julesz, 1994) and texture segmen-
tation (Harrison & Feldman, 2009) when stimuli are
placed along the medial axis. Taken together, the
results from these tasks suggest that medial axis
extraction may occur automatically when participants
are presented with a shape and that such extraction
may influence behavior regardless of task relevance.
Nevertheless, more research will be needed to fully
understand the perceptual and cognitive mechanisms
that influence participants’ responses in the tap-the-
shape task.

Determinants and implementation of medial
axis pruning

The goal of pruning models is to provide a more
accurate description of an object’s shape by ignoring
edges that may be considered noise. However, it
remains unclear how the visual system determines
which contours constitute noise. One determinant may
be based on size. In the current study, we found
evidence for a lenient pruning model that ignored both
small and large perturbations but retained axial
branches corresponding to the outer corners of the
shape. On the one hand, our findings might suggest that
size is irrelevant. On the other hand, relative to the
corners of a shape, the perturbations used in the
current study comprised a relatively small portion of
the shape’s geometry. Thus, the possibility remains that
perturbations may affect the medial axis in direct
proportion to the size of the local geometry, such that
increasing the relative size of a perturbation would
increase the likelihood that new branches emerge.

Another possible determinant for what constitutes as
noise follows from rules governing object-part seg-
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mentation (Feldman et al., 2013). According to these
rules, a perturbation may be less likely to be treated as
noise if it is perceived as an object part. A particularly
strong indicator of an object part is the presence of
flanking points of concavity along the contour of a
shape, separated by a short distance (De Winter &
Wagemans, 2006; Hoffman & Richards, 1984; Singh,
Seyranian, & Hoffman, 1999). Moreover, a candidate
object part is less likely to be perceived as noise as it
becomes larger in proportion to the rest of the shape
(Dhandapani & Kimia, 2002). Although we did not test
this hypothesis directly, participants’ responses within
the T-shape are consistent with it being a multipart
shape, rather than a rectangle with extruding pertur-
bations or, alternatively, a rectangle with two intruding
perturbations. More specifically, the candidate parts of
the T-shape are marked by flanking points of concav-
ity. These points of concavity can be crossed by a
relatively short distance. Finally, the part segmented by
the points of concavity is comparable in size to the rest
of the shape. By contrast, the rectangles with border
perturbations in Experiment 2 had only single, non-
flanking points of concavity by which to designate a
part boundary (the inner corners of the perturbation),
and the candidate part would be small relative to the
rest of the shape. Thus, an intriguing possibility is that
the degree to which medial axis branches grow or are
pruned is related to whether perturbations delineate
object parts and thus are less likely to be considered
noise by the visual system (cf. Feldman et al., 2013).

Another determinant of the degree of pruning may
depend on the perceptual detail required by the task.
For instance, a skeletal structure consistent with the
MAT might be elicited for subordinate-level categori-
zation because it would describe the contours of a
shape in more detail than a pruned computation. The
type of lenient pruning observed in the current study
may reflect a “default” medial axis wherein participants
attend to the shape without engaging in a task that
requires detailed shape discrimination.

The findings from the current study also raise
questions about how pruning might be implemented by
the human visual system. One possibility is that the
visual system first computes a medial axis according to
the MAT and then prunes away extraneous branches,
with the result being the pruned skeleton observed in
our data. This possibility is consistent with evidence of
medial axis processing in early, edge-sensitive visual
areas (e.g., Lee, 1996). According to this view, medial
axis pruning occurs progressively as shape information
is sent along the visual processing hierarchy but,
crucially, reflects the structure of the MAT early in
human vision. An alternative possibility is that the
visual system extracts a medial axis consistent with
pruning models from the outset of processing, in which
case the term pruning may prove to be a misnomer. This
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possibility is consistent with evidence of medial axis
processing in higher-level visual areas that are less edge
sensitive (e.g., Hung et al., 2012). According to this
view, the medial axis is computed from a shape that has
already been filtered for noisy contours or undergone
perceptual completion (Kourtzi & Kanwisher, 2001)
and thus has no need to extract additional branches.
Some researchers have also suggested that a pruned
medial axis may arise in early visual areas via top-down
attentional mechanisms that extract only the relevant
properties of the shape (Ardila et al., 2012). According
to this account, feedback mechanisms may be recruited
in certain contexts (e.g., subordinate-level categoriza-
tion) to provide higher-resolution information about an
object’s contours (Lee, Mumford, Romero, & Lamme,
1998), such that, instead of being pruned, the medial
axis “grows” new branches during visual processing to
accommodate greater levels of detail. It is also possible
that the aforementioned accounts are not mutually
exclusive and that an object’s shape may be represented
simultaneously at multiple scales of detail by medial
axes with various degrees of pruning (Green, 2017;
Hummel, 2013).

Conclusion

Although it has long been known that shape
perception is important for object recognition, it
remains unclear how humans represent object shape,
particularly in the presence of noisy contours. To the
extent that the tap-the-shape task reveals the structure
of human shape representations, we have provided
evidence that humans extract a leniently pruned medial
axis, a low-dimensional skeletal representation that is
robust to various disruptions of shape. The results of
the current study suggest that the medial axis,
particularly a pruned formulation, may be important
for creating a stable representation of an object’s shape
across contexts.

Keywords: shape skeleton, medial axis, visual
perception, pruning, computation
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' A difficulty with comparing MAT and pruned
models is that the added length of the MAT confers a
statistical advantage when models are compared on the
basis of response distance alone. To address this issue,
Firestone and Scholl (2014) randomly sampled an
equal number of points from each model. However, in
comparisons of response distance, this approach does
not account for the statistical advantage of the longer
model. The points will still be distributed in a greater
portion of the shape and will therefore be more likely to
capture participants’ responses by chance. For exam-
ple, using this approach, a model consisting of evenly
spaced points across the shape would outperform any
of the axis models tested here because a participant’s
response would always be within close proximity of any
point on the grid, regardless of where it fell. Therefore,
as described in the main text, it is important that
models be evaluated on the basis of their fit to
participants’ responses, such that the explanatory
power of each axis point is considered in combination
with response distance.
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Latent Variable Model 1: Basic Model With
Equal Variance Assumed

This model assumes that participants’ responses
correspond to a point along a model’s structure and
some response (i.e., participants’ taps) error. Response
errors were assumed to be from a truncated normal
distribution with equal variance around every point of
the model’s structure.

For each shape and structure, let S and 7 denote the
two-dimensional subspace within a shape (i.e., feasible
response region) and the axis points, respectively. This
latent variable model assumes that each response is
generated as follows:

STEP 1: Sample a point = (6, 6,) uniformly from 7.

STEP 2: Given 6, sample a two-dimensional error ¢ =
(e1, &), where ¢; and &, are independently sampled
from a normal distribution with mean 0 and
standard deviation o.

STEP 3: Let X = 0 + ¢. If X is within the feasible
region S, stop. Otherwise, repeat STEP 2, until X
falls in S.
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STEP 4: Output X as the response.

This model assumes that each participant’s response
is a slight deviation from the model’s structure. More
specifically, the point @ in STEP 1 can be viewed as an
ideal point on the model’s structure that a participant
ideally would like to touch. This ideal point is not
observable, and therefore 0 is regarded as a latent
vector. It is @ plus some response error that is
observable. Here, the error follows a truncated
bivariate normal distribution that guarantees the
observation X to be in the feasible region S. Note that
o” is the only unknown parameter in this model that
quantifies the variation of the deviation from the axes.
Based on this model, the marginal distribution of X has
probability density function:

h(x[o?) = {%fedg(xwz;e)d& if x €S,
0, otherwise,

where x = (x1, x»), |7| denotes the length of axis 7" and

(x1=01)*+(x2-6,)*
exp(— 1—0 = ) )
’— 2 n—0H 2 ’
f(yl,yz)eS exp <_ 01 01)2-(‘:2(}2 0) )dJ/1dy2

Under this latent variable model and given data
X1, ..., X,, from » participants, the log-likelihood
function of unknown parameter ¢ is written as /(¢?)
=Y log(h(xi]a?).

The max1mum likelihood estlmate of ¢ is then
obtained by 6*> = arg max,./(¢?), and the value of
maximum likelihood function is /(6%). For each
experiment, different structures were compared based
on their maximum log-likelihood. The model with the
largest maximum log-likelihood is regarded as the best-
fitting model. To evaluate the uncertainty in /(6%), we
also constructed a nonparametric bootstrap confidence
interval (Davison & Hinkley, 1997; Efron & Tibshirani,
1994).

g(x[c*; 0) =

Latent Variable Model 2: Center-Controlled
Model

We adopt the same notation as Latent Variable
Model 1 (described above) and further denote ¢ = (¢,
¢) as the center of mass of the shape. The proposed
model assumes that each response is generated as
follows:

STEP 1: Sample a binary variable D € {0, 1}, with
P(D=1)=p.
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STEP 2: If D=1, let 6 =c. Otherwise, sample a point
0= (6, 6,) uniformly from 7.

STEP 3: If D=1, sample a two-dimensional error ¢ =
(e1, &), where ¢; and &, are independently sampled
from normal distribution with mean 0 and
standard deviation o; or from a t-distribution with
mean 0, scale parameter o, and degree-of-
freedom v. Otherwise, if D =0, sample & = (&1, &),
where ¢, and &, are independently sampled from
normal distribution with mean 0 and standard
deviation o.

STEP 4: Let X = 0 + &. If X is within the feasible
region S, stop. Otherwise, repeat STEP 3, until X
falls in S.

STEP 5: Output X as the response.

This model extends Latent Variable Model 1 by
allowing for additional weight at the center of the
shape. According to this model, the participant either
chooses the center of the shape (with probability p) or
randomly chooses a point on a model’s structure (with
probability 1 — p) as the ideal response point. Then,
response error is generated depending on whether the
ideal point is the center or sampled from the axis. We
considered in the analysis two response error distribu-
tions, namely, a truncated normal distribution and a
truncated t-distribution with one degree-of-freedom.
The log-likelihood function for this model is a function
of unknown parameters ¢°, 67, and p, written as

O' 01,]7 Zlog 1— X,|O' )+pf(xl|o-%))7
where
(x1—c1)*+(x2—2)?
exp(— 2—3)
fixla?) = :

Joimesexp (‘ %) dyy dy,

when the tapping error distribution is assumed to be a
truncated normal distribution and

((1+ \l (] )(1+ \7 (2)))7%
1
_vtl
f(}’l:}’z)ES ((1 + ("j]via?) ) (1 + (VVZ‘;%Z) )) ) dyl dy2

when the tapping error distribution is assumed to be a
truncated t-distribution with v degree-of-freedom (v >
0). Similar to the analysis of Model 1, parameter
estimation and model comparison were conducted by
making use of the log-likelihood function.

fx|at) =
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