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5

Fish stocks are managed within national boundaries and by regional organi-6

zations, but the interdependence of stocks between these jurisdictions remains7

poorly explored, especially as a result of larval dispersal (1, 2). We examine8

the international connectivity of 747 commercially fished taxonomic groups by9

building a global network of fish larval dispersal. We find that the world’s10

fisheries are highly interconnected, forming a small-world network (3), high-11

lighting the need for international cooperation. We quantify each country’s de-12

pendence on its neighbors in terms of landed value, food security, and jobs. We13

estimate that over $10 billion in annual catch from 2005 – 2014 is attributable14

to these international flows of larvae. The economic risks associated with these15

dependencies is greatest in the Tropics.16
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Marine fisheries supply food and livelihoods to millions of people around the world (4). Though17

fisheries are typically managed at the scale of national Exclusive Economic Zones (EEZs), many18

fish populations are connected beyond EEZ boundaries (5–9). While pelagic species can be19

tracked across international borders as adults (10), non-pelagic populations connect primarily20

via the dispersal of fish eggs and larvae that cannot yet swim by ocean currents (5, 11). Larval21

connectivity patterns have been analyzed at both the regional (2, 9, 12–14) and global levels22

(7,15,16), and have been used to suggest changes in spatial management and conservation (14,23

17). However, the impact on fisheries of larval connectivity across EEZs is not well-understood,24

even though over 90% of the world’s fish are caught within EEZs (18).25

On the scale of a single species or region, this connectivity can be analyzed empirically through26

genetic testing (12, 13). For analyses on larger scales, dispersal patterns can be estimated27

using biophysical models that combine oceanographic data with an understanding of the stocks’28

biology (7, 16). One challenge is that species vary widely in larval timing and duration, and29

currents vary with the seasons, so generalizations can be misleading. More realistic inputs can30

be achieved by using life history traits for each species, including time and place of spawning31

and larval duration. Sensitivity analyses can help to ensure that results are robust to changes in32

key assumptions (16), while empirical bounding can safeguard against predicting unrealistic33

dispersion outcomes (9).34

Network analysis has previously been applied to marine systems to describe the connectivity35

of plankton communities (19), local fishing communities (20, 21) and marine reserves (16).36

Networks of larval flows have been used to identify “hub” subpopulations for protection at a37

regional scale (14).38

In this study, we combined oceanographic and life history data for 706 species and 434 genera39

of commercially harvested fish to estimate their connectivity across 249 EEZs and construct40
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a network representing the larval flows between nations. Nations that depend heavily upon41

their neighbors for recruitment risk losing part of their catch if the fisheries in the source EEZs,42

which are outside their jurisdiction, are poorly managed. We quantified these risks in economic43

terms and identified regional “hotspots” of risk for catch, fishery employment, and food secu-44

rity.45

We used a particle-tracking system (22) with time-varying ocean currents (23) and species-46

specific life histories (24) to simulate the dispersal of eggs and larvae through a dynamic ocean.47

We placed multiple simulated particles for each species based on the timing and location of that48

species’ spawning, and let them drift for their larval duration to obtain a probabilistic estimate49

of species-specific larval trajectories. We used a random-walk parameterization (22) that adds50

a small velocity at every time step to account for turbulent motion at small scales (see SM51

3.1.2).52

We empirically bounded our results by discarding particles that arrive in regions where the53

species is not present in observed catch data (18). For a given EEZ, catch is attributed based54

on the proportion of particles arriving there from each spawning country (see SM 1.1). This55

proportionality forms the core assumption of our model. We test our main results with a se-56

ries of sensitivity analyses to this assumption. These include reducing spawn floating duration57

to account for uncertainties in spawning mortality (5, 25), introducing return adult spawning58

migration (26) (see SM 3.6), and distinguishing different levels of recruitment limitation.59

We estimate how much of each country’s observed catch comes from its neighbors by construct-60

ing for each species a transition matrix that describes the probability of its offspring dispersing61

from one EEZ to another. This transfer of biomass between nations’ EEZs is represented as a62

network in Fig. 1.63

Each connector of the network represents net flows of fish from one country to another. Coun-64
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Fig. 1 goes near here.

tries that depend on inflows of juvenile fish to maintain their local populations require inter-65

national cooperation to ensure sustainable fisheries. Our analysis of these flows reveals that a66

large proportion of marine fisheries within EEZs form a single, global network (Fig. 1).67

We find that the global network of marine fisheries is a scale-free, small-world network. The68

scale-free network property, common in natural systems (3), is characterized by an exponential69

distribution of the number of connections from each node (see SM 3.2). This exponential de-70

gree distribution results in a “hub-and-spoke” structure that is resilient to random disturbances71

because of the large number of less-connected countries from which disturbances do not easily72

propagate to other parts of the network. However, a disturbance to any of the highly-connected73

hubs in a scale-free network can affect numerous surrounding nodes. In this context, this sug-74

gests that habitat destruction, overfishing, or environmental change in a hub EEZ could have75

impacts that spread beyond its own boundaries. Conversely, targeted efforts to manage fisheries76

within these hub EEZs could benefit many nations.77

To demonstrate the relationship between currents and the network of larval dispersal, we zoom78

in on four regions (Fig. 2). The differences between the regional networks and average current79

speed arise from the details of current speeds during spawning, larval duration, and empirical80

observations of species presence or catch. The influence of the Guinea Current on the connec-81

tivity of West Africa’s fisheries can be seen in the large number of EEZs that act as sources to82

their eastward neighbors, especially between Guinea-Bissau and Nigeria. While the strongest83

connections are typically between adjacent EEZs, many connections also extend over longer84

distances. In contrast, the Baltic Sea has significantly weaker currents. Here, the largest outward85

flows originate from Sweden and Norway, which have the region’s longest coastlines. In the86
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Caribbean, the North Brazil Current flows northwestward along the South American coast, and87

consequently many of the EEZs lying along this current act as sources for the Lesser Antilles.88

Within the Lesser Antilles, the density of small EEZs gives rise to a highly-interconnected,89

complex network structure. The effect of the northward flow along this island chain can be in-90

ferred from the larger node sizes among the EEZs lying in its southern portion. In the Western91

Pacific, strong currents dominate in the equatorial ocean, with weaker currents at higher lati-92

tudes. The large areas encompassed by this region’s EEZs mean that, unlike the other regions,93

most connections are between immediate neighbors.

Fig. 2 goes near here.

94

The small-world property implies that it is possible to traverse the global network in a small95

number of steps, on average. Within this network, there exist smaller clusters or communities96

that are tightly connected. Most of these clusters internally exhibit the small-world property.97

In theory, this property of the global fisheries network suggests that disturbances to a large hub98

could propagate via cascading effects on the surrounding spokes.99

A key question is whether disruptions to a given EEZ actually propagate in this manner. A100

stock’s response to external shocks depends on both its population dynamics and mortality from101

fishing, which can be affected by management (27). Some fish stocks are biologically capable102

of replenishing themselves when their numbers dwindle, provided fishing pressure is relieved,103

reducing the likelihood that disturbances will propagate. However, “recruitment-limited” stocks104

are vulnerable to a decline in spawning population, making it more likely that disturbances will105

spread across the network even if the receiving fisheries are managed. We adopted Fishbase’s106

classification of stock resilience as a proxy for this type of density dependence. For high-107

resilience stocks, which are generally not recruitment-limited, our measure of stock dependence108
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overestimates the extent to which stocks will be reduced if recruitment inflows fail. For those109

classified as medium- and low-resilience, however, we found a strong correlation between our110

simulation’s predictions and observed variance in stock levels (see SM 3.5). Even for countries111

whose fisheries mostly comprise non-density-dependent stocks, these larval inflows serve as a112

buffer against fishery collapse within their waters.113

To contextualize our results, we estimated the economic significance of the network’s interna-114

tional connections. First, we considered the amount and value of catch that flows in and out115

of each EEZ (see Fig. 3). Japan, China, and Alaska are responsible for the greatest outflows,116

reflecting their productive waters. However, having fewer neighbors makes them smaller hubs117

(see Fig. 1). Indonesia has the most landed value attributable to other countries, due to its high-118

value catch and many neighbors. The countries with the greatest catch inflows are generally119

those with the largest fisheries. Next, we identified nations that are potentially most vulnerable

Fig. 3 goes near here.

120

to the management of neighboring waters in socioeconomic terms (see table S5). In Fig. 4, we121

highlight countries that depend the most on the spawning grounds of neighbors in terms of their122

total catch, GDP, jobs in the fishery industry, and a fishery food security dependence index (28).123

The most vulnerable nations are concentrated in the “hotspot” regions of the Caribbean, West124

Africa, Northern Europe, and Oceania. The risks to national GDP and labor force are gener-125

ally highest in the Tropics. However, our measure of food-security risk also identified a few126

European nations.127

Fig. 4 goes near here.

Our analysis shows that about 10 billion USD worth of annual marine catch may rely on transna-128

tional exchanges of fish offspring. These dependencies form a single global network, indicating129
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that marine fisheries, even within national boundaries, constitute an interconnected, globally130

shared resource.131

This network’s scale-free and small-world properties imply that fish stocks from a small number132

of EEZs provide benefits to a large number of “downstream” countries. The most vulnerable133

nations are clustered in a few “hotspot” regions (Fig. 4). This pattern lends further support to134

the use of international frameworks such as Large Marine Ecosystems and Marine Protected135

Area networks (29, 30).136

Further research is needed to understand how small-scale coastal processes, larval behaviour,137

and fisheries management impact this connectivity. Beyond the spawning connections studied138

here, national fisheries are interdependent through the movement of adult fish, population shifts139

under climate change, and international fishing treaties. In particular, the role of adult fish140

migration in driving international connectivity remains an important question. While a more141

detailed analysis is required to accurately describe dispersal pathways of individual species,142

this study highlights the role of larval connectivity across international boundaries and the need143

for multilateral cooperation for sustainable management of these shared resources.144
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Figure Legends214

Fig. 1 The network of spawn-attributed catch flows between EEZs. Each EEZ is a node215

(circle) of the network and its color represents its network community. The connectors or edges216

in this network flow clockwise from source to sink, with their thicknesses representing the mag-217

nitude of the net flow of caught biomass between the EEZs. Only the edges in the upper tercile218

of edge weights are shown here for clarity (see SM 3.2 for the full network). The size of each219

node represents its out-degree, i.e., the number of other EEZs for which it acts as a source of220

fish larvae, including connections not shown in this image.221

Fig. 2 Regional currents and community networks Panels A-D display the speed (colors,222

cm/s) and direction (arrows) of ocean surface currents in four regions with interconnected fish-223

eries (West Africa, Baltic Sea, the Caribbean, and Western Pacific) during the month of maxi-224

mum spawning activity in each (August, May, June, and May respectively). Panels E-H display225

the corresponding subset of the global network encompassed by these regions. Colors, node226

sizing, and connector directions are as in Fig. 1. Nodes are arranged to approximately corre-227

spond to geographic locations of the EEZs.228

Fig. 3 Countries with highest outflowing and inflowing catch. Top: Top 20 countries sorted229

by total outflowing catch (MT) and value (USD) at risk. Bottom: Top 20 countries sorted by230

total inflow of catch (MT) and value (USD) at risk. 2005 – 2014 values of catch and landed231

values are used, attributing them to larvae by species. Resilience levels represent the estimated232

decline a population can endure without being considered vulnerable to local extinction.233

Fig. 4 Hotspot map showing fishing dependency on spawning grounds in neighboring wa-234

ters by country. Countries are shaded by catch (mtons) at risk, with darker shades representing235

more catch. Icons depict EEZs that are the most dependent on their neighbors. The catch icon236

indicates that more than 30% of a country’s catch value is dependent on neighboring spawning237
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grounds, the GDP icon represents a risk to more than 0.8% of its GDP, the labor icon represents238

that more than 1.5% of its jobs are vulnerable, and the food security icon represents a value of239

greater than 1.1% of the food security dependence index.240
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SM 1 Method Summary248

Spawn dispersal was estimated with the Connectivity Modeling System, a Lagrangian sys-249

tem (22), applied to ocean surface velocities (23) from a 20-year climatological average span-250

ning the period from 1991 to 2010. At each location where spawning occurs, we release 100251

simulated particles to obtain probabilistic estimates of the effects of turbulence. Particle EEZ-252

to-EEZ transitions were then organized into transition probability matrices, Umf , for spawning253

in month m and a floating duration of f months, where row i, column j describes the portion of254

particles produced in EEZ i reaching EEZ j. We match fishery data from Sea Around Us (18)255

for 706 species and 434 genera across 280 regions with spawning region, month, and spawn256

characteristics from FishBase (24, 31), excluding anadromous species. The presence of spawn-257

ing for species k in EEZ i during month m, sikm, and the spawn floating durations, fk, are258

described in SM 2.2 and SM 2.3. We calculate the portion of species k that drifts from EEZ i259

to EEZ j as260

(Dk)ij =

{
pik∑
i pik

∑
m sikm(Um,fk

)ij∑
m sikm

if
∑

m sikm > 0

0 otherwise
261
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where pik is the estimated suitability of species k in EEZ i if it spawns in EEZ i and 0 otherwise262

(see further derivation nodes in SM 3.3).263

The distribution of the number of outward-directed spawn flows per EEZ (the out-degree dis-264

tribution) is a key parameter for classifying the spawning network. The distribution of node265

out-degrees in the global fisheries network follows a power law (exponent of 1.55 ± 0.1), with266

a large number of nodes having small out-degrees, along with a “fat tail” consisting of nodes267

with high out-degrees (see Fig. S7). The network edge weights are (W )ij =
∑

k(Dk)ijCatchkj ,268

where Catchkj is the average landed catch for species k in EEZ j from 2005 to 2014 from Sea269

Around Us (18).270

The portion of species k in EEZ j attributed to external spawning is then rkj = 1− (Dk)jj∑
i(Dk)ij

.271

Total biomass imported to EEZ j is
∑

k rkjCatchkj and the landed value imported is
∑

k rkjLandedValuekj .272

Landed values are similarly averaged from 2005 to 2014. The fraction of the EEZ j’s fishery273

considered at risk is:274 ∑
k rkjLandedValuekj∑
k LandedValuekj

275

the fraction of GDP at risk is:276 ∑
k rkjLandedValuekj

GDPj

277

the fraction of jobs at risk is:278 ∑
k rkjLandedValuekj

GDPj

FisheryJobsj
LaborForcej

279

and the index of food security dependency is:280 (
(Productionj − Exportj)

∑
k rkjpkCatchkj/∑k pkCatchkj + Importj

)
ProteinFromFishjProteinRequirement(

Productionj − Exportj + Importj
)

ProteinFromAny2
j

281

where ProteinFromFish is the amount of protein obtained from fish per capita, ProteinRequire-282

ment is the amount of protein required by adults, and ProteinFromAny is the total protein from283

all sources consumed per capita. (see SM 3.4 for interpretation).284
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Isolated	fisheries	

Larvae	origins	
(modeled)	

Observed	catch	
(attributed)	

With	transboundary	flow	

Fig. S1 A simple example to show the intuition behind our method. Dots represent modeled
flow particles, which represent the dispersal of larvae prior to settlement. On the left, two
isolated fisheries are shown, and all observed catch is attributed to spawn produced within
each fishery. After modeling transboundary flow, on the right, the right fishery has a mix of
larvae from local and foreign origins. The portion of catch attributable to each fishery equal the
portion of particles, assuming that local and foreign larvae are subject to the same mortality and
settlement success rates and have the same catchability.

SM 1.1 Intuition relating spawn to catch285

Our analysis made the simplifying assumption that catch is proportional to the final location of286

spawn, as modeled by particles subject to ocean currents. The intuition behind this assumption287

is shown in Fig. S1.288

After a period of floating, we assumed that spawn that originated within national boundaries are289

indistinguishable from those that originated elsewhere. Although most spawn will not survive290

to adulthood, we assumed that foreign and local spawn are subject to the same mortality rates.291

Since those that survive are furthermore indistinguishable to fishers and equally subject to fish-292

ing effort, the portion of caught fish attributable to each originating country match the portion293

of particles that arrive from each country.294

The average EEZ receives cross-boundary spawn from 86 different species, across 54 genera.295
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Throughout the paper, we focused on the consequences of these spawn floating dynamics for296

human appropriation. As a result, we study catch, rather than the underlying stock dynamics.297

However, it is important to note that these cross-boundary spawning effects play an important298

role in each region’s ecology and biodiversity, and future work should study their implications299

for conservation.300

SM 2 Data collection301

A summary of the data collected and the coverage of data sources across species is shown in302

Table S1. Of the 1398 species and 996 genera included in the Sea Around Us dataset, we were303

able to match 706 species and representatives of 434 genera to spawning data, and this is the304

subset that we used for our analysis. Of the genera, 41 are only represented in Sea Around305

Us at the genus level (as unspecified species), resulting in a total of 747 distinct taxonomic306

groups.307

SM 2.1 Fishery industry data308

From Sea Around Us (18), we collected species fished and their yearly catch and landed value.309

Sea Around Us includes reconstructions of industrial, artisanal, subsistence, and recreational310

fisheries (32). While the data quality of Sea Around Us is very heterogeneous across countries,311

it is the most widely used global data set on fish catch. Data is provided at the Exclusive312

Economic Zone (EEZ) level, and this formed the spatial unit of our analysis throughout.313

Sea Around Us identified the species or genus for 84.4% of global catch and 85.5% of global314

landed value. The remaining catch was lumped together, and cannot be modeled here. The fish315

included in our analysis represent 51% of total marine catch (about 60 billion USD) and 38%316
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Split by data available: SAU Spawning AquaMaps Larvae Level # Species # Genuses
X X X species 236 0
X X X genus 101 73
X X X family 109 145
X X X order 50 82
X X X class 54 71
X X X phylum 1 4
X X species 76 0
X X genus 18 7
X X family 24 19
X X order 15 17
X X class 22 16

Included Species 706 706 551 1780 706
Included Genera 434 434 375 18 434

Table S1 Data collection summary. The first 11 rows count the number of species and genera
for which each of the given collections of data is available. The last two rows sum the total
number of species for which data is available for each dataset. The Larvae Level column lists
the level at which larval floating durations are determined for each species or genus included
in that row. The totals for the Larvae Level column include both data drawn from Fishbase for
SAU species and additional records provided as an online supplement.
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of total marine landed value (about 55 million mtons).317

SM 2.2 Spawning information318

To estimate the total distance traveled during the dispersal period, we collected data on the319

location and month of fish spawning and the duration of the larval stage for each species. We320

retrieved the species summary information, larvae dynamics, egg development, and spawning321

regions and months from the FishBase database (24). From the summary information for each322

species, we identified anadromous species and exclude these from the dataset. We combined323

spawning data listed if FishBase with spawning countries and months from the Science and324

Conservation of Fish Aggregations (SCRFA) database (31).325

Within-country localities were matched to sub-country EEZs where available, and spawning326

regions spanning multiple countries were matched to all included EEZs. Some FishBase entries327

provide relative spawning abundance across months, between 0 and 100%. sikm is defined for328

the given EEZ i, species k, and month m as the maximum relative abundance across matching329

spawning entries, treating SCRFA spawning records and un-weighted FishBase records as a330

relative abundance of 100%.331

In our spawning data, 244 unique countries are observed (all coastal countries except Azerbaijan332

and Turkmenistan on the Caspian Sea). The maps in Figure S2 highlight the EEZs of countries333

which are identified as having spawning activity in each month, for the 2098 species and 499334

genera for which we have spawning location data, identified from all available species and335

genera represented in Sea Around Us. This species count is greater than the species count in336

the data table above, because we collect all available species-specific spawning data for genera337

that are not identified at the species level in Sea Around Us.338

19



Ja
n/

Fe
b

Ocean
current
speed

0 2 4 6 8 10

0
2

4
6

8
10

c(0, 10, 10)
c(

10
, 1

0,
 0

)

1.1e-04

5.4e-04

2.7e-03

0.014

0.068

0.34

1.7 m/s

M
ar

/A
pr

M
ay

/J
un

Ju
l/A

ug
Se

p/
O

ct
N

ov
/D

ec

Fig. S2 Ocean current speed maps and areas of active spawning in each month of the year.
Darkened masks show areas of active spawning in each month of the year. Colors represent
monthly average ocean current velocities, on a log scale.
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SM 2.3 Spawn floating characteristics339

Most marine fish species float for a period during their early development, as floating eggs and340

planktonic larva (33). The FishBase database contains the duration and characteristics of this341

period for 361 species and 9 genera from our species list (24). Durations for species in some top342

economically important fish groups with floating data in FishBase are shown in table SM 2.6343

and figure S3. Table SM 2.6 also shows the intermediate information used to determine these344

durations.345

Species Larval Duration Egg Duration Egg Floating Float Bounds
Clupea harengus 160 NA fixed 160
Decapterus pinnulatus NA 0.38 buoyant ≥ 0.38
Decapterus polyaspis NA 1.50 buoyant ≥ 1.5
Engraulis japonicus 47 1.50 buoyant 48.5
Engraulis ringens 74 NA buoyant > 74
Gadus morhua 100 25.00 buoyant 125
Katsuwonus pelamis 20 1.10 buoyant 21.1
Micromesistius poutassou 0 7.75 buoyant 7.75
Nemipterus virgatus NA 1.00 buoyant ≥ 1
Rastrelliger kanagurta NA NA buoyant > 0
Sardina pilchardus 40 NA buoyant > 40
Sardinella neohowii NA 1.00 buoyant ≥ 1
Scomber japonicus 17 2.06 buoyant 19.06
Scomber scombrus 40 6.00 buoyant 46
Scomberomorus cavalla 12 NA unknown ≥ 12
Scomberomorus maculatus 9 1.00 unknown 9 - 10
Sprattus sprattus NA 6.25 buoyant ≥ 6.25
Theragra chalcogramma 108 NA buoyant > 108
Thunnus albacares 25 1.40 buoyant 26.4
Trachurus symmetricus 0 1.5 buoyant 1.5
Trichiurus lepturus NA 6.00 buoyant ≥ 6

Table S2 Available information in the FishBase database on larvae dynamics and fish egg
development for some top commercial species. The Float Bounds column represents a sum-
mary of the other columns and is not a true representation of the bounds of possible range of
floating durations since the other columns only give approximate means.

The estimated duration for which species k is subject to floating along surface currents, fk, is346
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Fig. S3 Distribution of total floating time for recorded species, overlaid with the histogram
of applied durations across all species. The floating time is the larvae duration, plus egg
duration in the cases where the egg is floating and the data is available. Species without observed
larval characteristics use a Monte Carlo of durations from the lowest-taxonomic level at which
data is observed. The line shows the distribution for recorded species. The histogram is at the
monthly level, with durations as actually used in the analysis.
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the duration of the larval stage, plus the duration of its egg stage if the eggs are buoyant. If the347

eggs are buoyant but the egg stage duration is not provided, a floading egg period of 4 days is348

used, the average buoyant egg stage. These durations are then rounded to the nearest month in349

the analysis. If information on the larval duration was not available for species k, then a Monte350

Carlo across all durations available for the genus was used. Similarly, if no data is available351

at the genus-level, we used the family, order, class, or phylum of the species, stopping at the352

lowest level at which data is available.353

SM 2.4 Species prevalence354

The AquaMaps database describes estimated population distribution maps, which are further355

subject to expert review (34). The maps are based on observed relationships between species356

occurrence and environmental factors including bottom depth, temperatures, salinity, primary357

production, sea ice concentration, and distance to land. Prevalence data for each species is358

represented as a 0.5◦ by 0.5◦ grid, with values from 0 to 1. We calculate the sum of grid-359

level species prevalence by EEZ to produce pik. These data are used to scale spawning activity360

amongst observed spawning countries.361

SM 2.5 Ocean Velocity Data362

We used the Simple Ocean Data Assimilation (SODA) version 2.2.4 (Carton and Giese 2008),363

a widely-used product that assimilates available ocean observations from satellites as well as364

in-situ measurements and makes use of an ocean model to fill in gaps in the data to produce a365

complete dataset of monthly mean velocities on a 3-dimensional regular grid. The resolution of366

the dataset is 0.5◦ x 0.5◦ in the horizontal. Ocean velocities are resolved into three-dimensional367

vectors oriented zonally (i.e., parallel to latitude), meridionally (parallel to longitude), and ver-368
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tically (parallel to the radius of the Earth at each point) for each grid cell. We made use of369

monthly mean zonal and meridional velocities in the uppermost layer (from the sea surface to370

a depth of 10 m) of the grid, and neglected vertical velocities as they are small (typically 10−7371

ms−1 at their largest) compared to horizontal velocities (which are typically between 0.01 and372

0.1 ms−1) and unlikely to affect the trajectories of fish spawn.373

For our simulation, we made use of data from the years 1991 to 2010 to calculate climatological374

averages, i.e., an “average year” by computing the average zonal and meridional vectors at375

each spatial point for each calendar month over the 20-year period. This averaging removed376

the biases in ocean surface currents that can arise when a single year alone is used due to377

climate events such as El Nino and La Nina, which can cause large changes in current velocities378

within a single year, while preserving the month-to-month changes in ocean current speeds and379

directions that are characteristic of the annual cycle.380

SM 2.6 Average spawning month speeds381

Fig. displays the distribution of current speeds across spawning regions and months for the382

top species in Table , to given an indication the potentially considerable speeds to which these383

spawn are subject. The median velocity is 0.092m/s (95% CI 0.088 - 0.102).384

The average current speed in spawning regions was computed by the following steps.385

For each of the species, the spawning data specifies which months spawning has been reported386

within specified regions. We associated these regions with country EEZs.387

Of the species for which we have spawning data, 551 also have population distribution maps388

available in AquaMaps (34). Within each of these EEZs, let the population distribution of fish389

for a given species be Di(x, y) = D(x, y) ∩EEZi. Let the corresponding current speed across390
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space in monthm be Sm(x, y). The average spawn speed is calculated as
∫∫

x,y Di(x,y)Sm(x,y)∫∫
x,y Di(x,y)
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Fig. S4 Current speeds in spawning regions and months. Ocean current speeds in spawning
regions and months for some top commercial species. Each point represents a region-month
where the given species (displayed along the horizontal axis) is spawning.
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SM 3 Analysis392

SM 3.1 Estimation of connectivity393

SM 3.1.1 Lagrangian Scheme394

The estimates of larval connectivity between EEZs were made using the Connectivity Modeling395

System (CMS) (Paris et al 2013) Lagrangian scheme. The CMS is a software package which,396

given a time-evolving ocean velocity field resolved into 2- or 3-dimensional vectors and a set of397

initial particle positions, computes the trajectories of those particles through the ocean.398

The CMS performs a spatiotemporal interpolation in order to estimate the velocity, and thereby399

the position, of each particle in the simulation at each time step based on the input velocities. In400

order to simulate the effects of subgrid-scale stochastic motions, a random walk scheme is used401

to provide an additional velocity in a random direction to the particles. The additional velocity402

is scaled according to a diffusivity coefficient of 1000 m2/s. This value is appropriate for this403

resolution over large areas of the Earth’s surface, although the horizontal diffusivity coefficient404

can take significantly higher values in a few limited regions (35). While this scheme cannot405

provide an exact reconstruction of the particle trajectories that occurred, it can be used instead406

to obtain a probabilistic estimate of the effect of these motions by using multiple particles407

beginning at a single initial position.408

SM 3.1.2 Simulations409

We provided the CMS with zonal and meridional components of velocity at every grid point of410

the surface layer of the SODA dataset in order to arrive at our estimates of larval dispersal. The411

particles representing larval flows were introduced in the calendar months and locations where412

spawning is known to occur based on the data from sources described above, and allowed to413
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disperse for six months from initialization. As ocean surface currents undergo large variations414

between seasons, including complete reversals in direction over the course of each year in mon-415

soon regions, initializing the particles during the specific months of spawning for each species416

is crucial to obtaining the correct direction of larval flows. In order to estimate a distribution417

over the effects of the random-walk turbulence scheme, 100 particles were placed at each of418

the starting locations. The final location of each particle was ascertained as the location of the419

particle at the end of the drifting duration based on the larval drifting duration data available for420

its species. For floating durations greater than 6 months, a duration of 6 months was used.421

We do not assign a constant amount of biomass per particle in our simulation and instead per-422

formed the following procedure to estimate the flow of biomass. In each destination or “sink”423

EEZ, and for each species, we assessed the proportion of larvae that arrived from each of the424

origin or “source” EEZs, summed over all months. The amount of catch represented by the425

incoming particles from each source EEZ is then estimated as the corresponding proportion of426

the observed catch for the given species in that EEZ. Instead of assuming a mortality rate for the427

larvae, regarding which data is scarce, the particles that drift to regions where its species is not428

known to be caught were assumed not to have survived their journey. We exclude Diadromous429

fish.430

This procedure was repeated for each species found in each EEZ and summed over all species431

in order to arrive at an estimate of the net flow of catch between each pair of EEZs. These flows432

then formed the connections seen in the network shown in the main text.433

SM 3.1.3 Resolution434

The ocean currents dataset is at a 0.5◦ x 0.5◦ resolution, which does not allow features of the435

currents close to shore to be resolved. Figure S5 (a) shows the distribution of value attributable436
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to cross-boundary flow from our analysis, distributed according to the 90th percentile depth of437

the species. According to this metric, only 1.2% of this value is attributable to species that are438

confined to this zone close to shore.439

(a) Cross-boundary value by distance from shore (b) Distribution of species by depth
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Fig. S5 Distributions of species based on distance from shore and depth. (A) shows the
distribution of value of cross-boundary flow based on the distance from shore where species
are found. (B) shows the distribution of species ordered by the 90th percentile of the depths
at which they are found. The red line indicates 200 m, the depth which we use to define the
continental shelf.

We do distinguish between species that spawn and settle along the continental shelf and those440

that do so further out. In this case, we considered the ocean depths at which the species is found.441

About 20% of species have a 90th percentile depth beyond 200m (see figure S5 (b)). For these442

species, we allowed spawning and settling of particles across the whole EEZ; for the remaining443

species, we only used the portion of the EEZ on the continental shelf, defined as having an444

ocean depth less than 200m.445
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SM 3.2 Network Analysis446

SM 3.2.1 Summary of Network Properties447

Table S3 summarizes the properties of the global network of marine fisheries arising from lar-448

val dispersal. The network displays the small-world property, as seen by the weighted and un-449

weighted small-coefficients, which are both greater than one. The network’s mean path length,450

that is, the average shortest distance between all pairs of nodes in the network measured as the451

number of nodes crossed, is 5.14. This shows that the network, despite having 226 nodes, can452

be traversed in a small number of steps and highlights the highly-interconnected nature of the453

network of marine fisheries. Figure S6 shows the full network. Note that edges in this system454

can be as small as 10−12, meaning that the probability of larval dispersal along the thinnest455

edges shown in the figure are highly unlikely.456

Network Property Value

Number of Nodes 226
Number of Edges 2059
Mean Path Length 5.14

Clustering Coefficient 0.69
Weighted Clustering Coefficient 0.71

Small-Coefficient 2.99
Weighted Small-Coefficient 914

Average Out-Degree 8.83
Average In-Degree 8.72

Table S3 A summary of the properties of the global network of marine fisheries.

SM 3.2.2 Determination of Scale-Free Property457

The defining characteristic of scale-free networks is that their degree distributions follow a458

power law. For directed networks, the out-degree and in-degree distributions are considered459

separately as they may represent different phenomena. We consider the out-degree distribu-460
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tion in this study, as this represents the propagation of fish eggs and larvae outwards from the461

EEZ of spawning, and also contains information on the propagation of disturbances in the net-462

work.463

We fit a power-law to the weighted out-degree distribution in order to test whether this network464

is scale-free. As the shape of the curve can vary depending on the number of bins used to465

estimate the distribution, we performed the fit for every possible number of bins from 30 to 50.466

The exponent is found to remain stable within the range of bins tested, with a mean value of467

1.54 and standard deviation of 0.002. The p-values for the power-law fit within this range have a468

mean of 0.007 and standard deviation of 0.0015. The fit of a power-law curve for a distribution469

with 40 bins is shown in Figure S7.470

SM 3.2.3 Determination of Small-World Property471

The network is found to be a small world network by calculating its weighted small-coefficient,472

i.e., the ratio of the weighted clustering coefficient to the mean shortest path, relative to a random473

network of the same size (36, 37). Networks that have a small-coefficient greater than one are474

considered to have the small-world property. For the global network of fisheries, we found the475

value of the small-coefficient to be 914.476

The small-coefficient is given by the following formula:

C
L/CR

LR

whereL is the mean shortest path length in the network,C is the clustering coefficient of the net-477

work, LR is the mean shortest path length in a random network of the same size as the network478

of interest, and CR is the clustering coefficient of a random network of the same size as the net-479

work of interest. In a weighted network such as that being considered, the weighted clustering480

coefficient (38) and weighted mean path length were used (37) as C and L respectively.481
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Fig. S7 A log-log plot of the weighted out-degree distribution of the network. The dis-
tribution of weighted out-degrees of the network’s nodes is shown by blue dots and the fitted
power-law curve is shown as a black line.
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To compute LR and CR for comparable random networks, we generated 100 networks by ran-482

domly permuting the edges of the global network as in Bolanos et al., 2013. We then took483

the average mean shortest path length and clustering coefficients, respectively, over these 100484

networks.485

SM 3.2.4 Properties of Communities486

We detected the communities within the global network using the Louvain community-detection487

algorithm for undirected graphs (39). This results in twelve communities that correspond ap-488

proximately to geographic regions. For the individual communities within the global network,489

we computed the small-coefficient using the same procedure as above. Table S4 displays the490

properties of the complete network followed by those of each of the communities found within491

the network, listed in descending order of their small-coefficients. Only three of these com-492

munities – South America, East Africa, and Northern Europe – do not exhibit the small-world493

property (since the Antarctic community is too small to determine a weighted clustering co-494

efficient, we do not calculate its small-coefficient). The small-coefficients are highest for the495

Caribbean and West Pacific communities, where large hubs such as Barbados and Kiribati are496

visible in the network.497

SM 3.3 Species-level risk498

To determine socioeconomic risk, we first translated the physical transition matrix of particle

transitions, Umf , defined for each month m and floating duration f , into a spawning transition

matrix, Tk. Tk is the transition matrix of the spawn of species k, and is the weighted average of

the physical transition matrix over its spawning months. We used spawning observations (see

appendix SM 2.2) to construct sikm, which is 1 if species k spawns in EEZ i in month m. For
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Community Nodes Edges

Weighted
Clustering
Coefficient

Mean
Shortest Path

Length

Weighted
Small-

coefficient

Global 226 2059 0.71 5.41 914
Caribbean 18 214 0.998 1.55 4281000

West Pacific 25 142 0.714 2.15 124659
South Asia 9 45 0.829 1.40 22440

North America 21 170 0.774 1.69 18581
West Africa 22 162 0.785 2.01 3215

Mediterranean 24 160 0.773 2.24 938
Middle East 13 53 0.775 1.77 547
Asia Pacific 29 153 0.755 2.1 152

Northern Europe 28 221 0.762 1.86 0.181
East Africa 16 95 0.844 1.86 0.062

South America 16 57 0.737 2.6 0.003

Table S4 The small-world properties of the entire network and each of the communities
within it.

each species k, we calculated the spawn transition matrix

(Tk)ij =

∑
m sikm(Um,fk)ij∑

m sikm
if
∑

m sikm > 0

= 0 otherwise

where (·)ij is the element of that matrix at row i (representing the EEZ at the initial position)499

and column j (representing the EEZ at the final position), and fk is the floating duration for500

species k. In the case where species k uses a Monte Carlo over different duration estimates,501

(Tk)ij is an average of the matrices computed for each value of fk.502

Next, we generated a version of the transition matrix, Dk, which is weighted by the portion of

spawning that occurs in each EEZ in which species k spawns. The spawning records do not

provide a relative estimate of the amount of spawning occurring in each region, so we took the

product of spawning regions with species suitability to estimate relative spawning abundance.

We assumed that species spawn in proportion to their suitability across those EEZs in which
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they spawn. Let pik be the suitability of species k in EEZ i, from AquaMaps (34), if sikm > 0

for any month m, and 0 otherwise. Then, the relative spawning distribution for species k across

EEZs i is

qik =
pik∑
i pik

We defined the portion of species k that drifts from EEZ i to EEZ j:

(Dk)ij = qik(Tk)ij

Note that
∑

ij(Dk)ij = 1∀k.503

Although the calculations above are at the species level, with biological presence and spawning

characteristics available for individual species, catch records are often only available for com-

mercial groups. We defined Eg, the portion of commercial group g that drifts from EEZ i to

EEZ j, as the average across its component species:

(Eg)ij =

∑
k∈K(g)(Dk)ij

|K(g)|

where K(g) is the set of species contained in commercial group g and |K(g)| is the number of504

species in group g.505

The portion of the recruitment arriving in EEZ j that originated in EEZ i is a ratio of (Eg)ij to

all EEZs indexed by l.

(Fg)ij =
(Eg)ij∑
l(Eg)il

The portion of commercial group g caught in EEZ j that originated in other countries, and506

therefore may be at risk in the absence of international cooperation, is rjg = 1− (Fg)jj .507

To determine the socioeconomic impacts and risks of these spawning transitions, we applied508

each commercial group’s portion of spawning originating in other countries to its total landed509
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value and total catch. These values are collected from Sea Around Us (18) and averaged over510

2005 to 2014. The catch at risk in EEZ i is then EEZCatchRiski =
∑

k rigCatchig, where511

Catchig is the total catch (in mtons) of commercial group g in EEZ i. Similarly, EEZLandedValueRiski =512 ∑
k rigLandedValueig.513

Table S5 displays the results of this analysis for each EEZ region. Figure S8 displays the value514

and catch imported from other EEZs, ordered from most to least. Between the 9th and the 170th515

EEZs with the most imported catch and value from spawn, these quantities closely follow an516

exponential decay in rank, where each country has approximately (4.55± 0.02)% less value517

and (5.11± 0.03)% less catch attributable to other countries than the country before it.518

EEZ Sovereign Avg. te3 Avg. $M Risk te3 Risk $M
China China 9852.0 17293.7 928.4 751.6
Peru Peru 8582.6 3781.2 63.2 42.0
Indonesia Indonesia 7576.9 10621.7 729.2 1115.2
Russia Russian Federation 7199.8 4659.7 1276.8 572.9
Japan Japan 4809.8 10102.9 421.4 400.9
India India 4047.7 4962.8 16.0 25.9
Chile Chile 3458.2 2908.5 97.5 137.3
United States United States 3392.5 11317.0 50.5 53.8
South Korea Korea, Dem. Rep. 3353.8 4862.0 1060.9 802.3
Vietnam Vietnam 3274.5 3459.1 234.4 196.8
Malaysia Malaysia 3228.7 4677.3 81.5 152.8
Morocco Morocco 2909.0 4391.0 67.3 131.1
Alaska United States 2446.3 1769.4 52.8 54.5
Norway Norway 2287.6 3242.7 465.6 498.2
Mexico Mexico 2138.2 3030.3 484.2 145.1
Mauritania Mauritania 2088.4 2857.7 49.2 67.5
Philippines Philippines 2076.7 2468.8 85.1 163.8
Thailand Thailand 1875.8 2766.8 14.4 29.8
Myanmar Myanmar 1780.4 2242.7 129.3 100.0
United Kingdom United Kingdom 1631.1 3276.6 180.5 331.1
Argentina Argentina 1338.0 1510.0 46.1 79.4
Iceland Iceland 1162.0 1728.6 80.0 87.2
Canada Canada 1106.7 3151.0 65.8 85.1
Bangladesh Bangladesh 982.6 802.9 46.3 46.1
Cambodia Cambodia 893.5 919.8 0.0 0.0
Brazil Brazil 869.7 1937.4 2.8 5.5
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EEZ Sovereign Avg. te3 Avg. $M Risk te3 Risk $M
Guinea Guinea 857.9 1482.1 86.0 25.8
Pakistan Pakistan 839.5 853.4 188.0 160.5
Senegal Senegal 777.7 1315.2 12.9 35.6
Turkey Turkey 740.2 1154.8 120.8 128.8
New Zealand New Zealand 707.1 1402.3 9.3 22.4
Angola Angola 686.0 1473.2 1.8 3.7
South Africa South Africa 678.6 643.3 5.9 1.6
Ireland Ireland 590.4 1118.2 53.4 61.7
Namibia Namibia 570.9 600.2 8.7 9.8
Sri Lanka Sri Lanka 542.1 598.9 7.2 9.3
Guinea Bissau Guinea-Bissau 538.3 845.4 19.4 44.9
Faeroe Islands Denmark 519.0 935.5 80.6 123.0
Spain Spain 514.3 1610.4 34.6 113.1
Nigeria Nigeria 508.9 1082.0 2.2 5.4
Papua New Guinea Papua New Guinea 434.5 858.4 138.7 312.6
Ghana Ghana 431.0 498.6 13.6 15.1
Falkland Islands United Kingdom 419.1 1184.7 27.4 44.0
Yemen Yemen, Rep. 416.5 464.6 1.2 2.4
France France 392.9 1271.6 47.3 164.7
Italy Italy 373.1 2063.3 54.4 385.5
Iran Iran, Islamic Rep. 368.1 581.4 48.1 88.4
Taiwan China 348.6 531.1 114.3 186.1
Ecuador Ecuador 346.6 347.4 81.7 40.1
Sierra Leone Sierra Leone 296.0 221.4 2.2 3.3
Sweden Sweden 288.0 224.0 91.1 80.3
Greenland Denmark 277.1 795.6 32.2 76.1
Denmark Denmark 265.7 482.4 96.9 136.5
Algeria Algeria 250.0 549.3 12.6 29.9
North Korea Korea, Rep. 245.5 204.5 88.9 33.8
Venezuela Venezuela, RB 236.0 555.7 28.1 79.2
Portugal Portugal 227.1 478.2 18.4 63.2
Australia Australia 222.8 1126.0 8.6 39.0
Oman Oman 209.4 441.2 0.1 0.4
Gambia Gambia, The 203.4 233.6 4.3 6.0
Gabon Gabon 196.2 250.5 32.2 24.6
Micronesia Micronesia, Fed. Sts. 188.8 391.7 33.6 86.8
Germany Germany 188.4 502.2 45.9 69.1
Kiribati Kiribati 184.6 357.0 119.9 210.3
Greece Greece 184.3 964.6 12.8 121.4
Svalbard Norway 177.9 340.0 71.9 100.3
Solomon Islands Solomon Islands 170.5 375.9 10.7 19.5
Ivory Coast Côte d’Ivoire 167.3 200.9 2.2 4.1
Egypt Egypt, Arab Rep. 162.7 233.7 4.6 12.3
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EEZ Sovereign Avg. te3 Avg. $M Risk te3 Risk $M
Georgia Georgia 160.7 96.6 17.7 12.4
Somalia Somalia 154.2 268.4 7.0 4.6
Madagascar Madagascar 152.3 273.6 1.0 1.8
Cameroon Cameroon 145.2 151.4 56.2 21.3
Mozambique Mozambique 145.1 209.9 0.2 0.8
Panama Panama 143.2 208.4 0.1 0.1
Netherlands Netherlands 133.7 351.2 56.1 97.4
Uruguay Uruguay 132.7 159.1 91.8 95.7
Poland Poland 132.1 114.0 60.5 71.5
Tanzania Tanzania 115.4 203.7 6.1 3.5
Tunisia Tunisia 111.9 199.3 5.3 15.5
Finland Finland 109.5 61.1 49.5 17.0
Liberia Liberia 105.6 156.3 1.6 2.4
Ukraine Ukraine 102.2 66.5 29.8 13.0
Libya Libya 101.9 225.3 11.0 57.1
Maldives Maldives 98.6 191.5 18.2 39.7
Latvia Latvia 96.1 44.5 32.1 16.7
Saudi Arabia Saudi Arabia 95.1 317.6 5.6 17.1
République du Congo Congo, Rep. 89.2 128.0 0.4 1.0
Andaman & Nicobar India 85.3 78.0 9.3 11.0
Galapagos Islands Ecuador 85.1 119.1 3.6 5.2
Croatia Croatia 77.8 92.9 6.8 9.2
United Arab Emirates United Arab Emirates 75.9 260.1 0.2 0.6
Estonia Estonia 75.3 30.3 24.3 8.4
Benin Benin 75.2 88.6 14.7 6.3
Palau Palau 70.8 158.0 17.4 43.1
Guyana Guyana 68.0 87.9 12.3 27.3
Phoenix Group Kiribati 67.3 125.2 37.0 65.1
Suriname Suriname 66.5 98.8 13.4 26.4
Colombia Colombia 66.3 99.6 18.5 7.0
Canary Islands Spain 65.9 205.5 18.9 59.2
Nauru Nauru 65.4 139.7 52.2 98.8
Togo Togo 63.9 83.0 8.6 11.2
Costa Rica Costa Rica 62.2 96.5 3.3 7.0
Bahrain Bahrain 54.6 205.9 2.2 6.6
Dominican Republic Dominican Republic 50.8 103.1 0.5 1.0
SGSSI United Kingdom 43.7 83.2 1.4 4.1
Fiji Fiji 43.0 149.2 0.4 1.2
Tuvalu Tuvalu 41.5 77.9 5.4 10.1
Hawaii United States 41.3 202.4 0.0 0.0
Marshall Islands Marshall Islands 41.1 89.7 4.1 8.6
Guatemala Guatemala 41.0 56.8 2.5 5.1
Kuwait Kuwait 39.6 65.6 0.0 0.0
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EEZ Sovereign Avg. te3 Avg. $M Risk te3 Risk $M
Equatorial Guinea Equatorial Guinea 38.4 87.4 1.8 4.4
Nicaragua Nicaragua 37.8 83.9 0.3 0.6
Jamaica Jamaica 34.5 59.8 0.1 0.4
El Salvador El Salvador 34.3 35.3 0.0 0.0
Cuba Cuba 30.3 68.6 0.1 0.3
French Polynesia French Polynesia 28.0 103.1 0.1 0.2
Congo, Dem. Rep. Congo, Dem. Rep. 25.3 43.9 0.1 0.1
Haiti Haiti 25.2 42.9 1.6 3.1
Line Group Kiribati 24.2 67.3 0.5 2.0
Cape Verde Cabo Verde 23.5 58.5 0.0 0.1
Lithuania Lithuania 22.7 13.8 9.3 8.2
Trinidad & Tobago Trinidad & Tobago 21.1 49.3 0.6 1.2
Brunei Brunei Darussalam 21.1 31.6 0.4 0.5
Bahamas Bahamas, The 20.6 125.1 3.7 9.3
Vanuatu Vanuatu 19.1 30.5 0.3 0.5
Comoro Islands Comoros 18.9 29.3 4.7 7.0
Bulgaria Bulgaria 18.5 21.0 0.5 3.0
Azores Portugal 18.5 47.7 0.6 1.3
Mauritius Mauritius 18.2 50.8 0.0 0.1
Qatar Qatar 18.1 80.5 0.1 0.3
French Guiana France 18.0 44.9 2.5 6.9
Honduras Honduras 17.1 48.6 1.0 1.5
Samoa Samoa 16.2 30.7 0.5 0.7
Kenya Kenya 15.9 40.3 0.1 0.1
Sao Tome & Principe Sao Tome & Principe 15.1 33.5 1.5 3.4
New Caledonia France 13.8 52.4 0.1 0.2
Turks & Caicos Islands United Kingdom 11.2 31.8 0.1 0.3
Cook Islands New Zealand 11.1 22.6 0.0 0.0
Seychelles Seychelles 11.0 16.8 0.1 0.1
Guadeloupe France 11.0 24.4 0.6 3.0
Eritrea Eritrea 10.3 12.7 0.0 0.0
Tokelau New Zealand 9.8 19.3 0.0 0.1
Bassas da India France 9.2 13.6 2.4 3.5
Madeira Portugal 7.9 20.2 0.9 2.1
American Samoa American Samoa 7.9 20.1 0.1 0.2
Lebanon Lebanon 7.9 15.4 0.6 1.2
Clipperton Island France 7.5 13.4 0.0 0.0
Martinique France 7.3 20.5 0.3 1.3
Tonga Tonga 7.1 12.2 0.1 0.2
Belgium Belgium 7.1 27.8 3.5 12.4
Jan Mayen Norway 7.1 12.1 0.2 0.5
British Indian Ocean Territory United Kingdom 7.0 7.4 0.0 0.2
Belize Belize 6.9 11.3 0.3 0.7
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EEZ Sovereign Avg. te3 Avg. $M Risk te3 Risk $M
Iraq Iraq 6.7 19.1 0.0 0.0
Syria Syrian Arab Republic 6.2 12.9 1.0 2.1
East Timor Timor-Leste 6.2 10.9 0.3 0.3
Kerguelen Islands France 5.9 47.0 0.0 0.0
Trindade Brazil 5.5 11.1 0.0 0.0
Singapore Singapore 5.5 6.9 0.1 0.3
Barbados Barbados 4.9 5.6 0.2 0.4
Albania Albania 4.6 6.9 0.2 1.3
Cyprus Cyprus 4.2 15.1 0.6 3.3
Antigua & Barbuda Antigua & Barbuda 3.9 12.5 0.0 0.0
British Virgin Islands United Kingdom 3.8 19.2 0.3 2.0
Malta Malta 3.6 13.1 0.9 3.5
Howland Island & Baker Island United States 3.6 11.8 0.0 0.0
St. Pierre & Miquelon France 3.5 9.2 0.9 2.5
Djibouti Djibouti 3.4 7.3 0.0 0.0
Heard & McDonald Islands Australia 3.3 26.1 0.6 2.4
Réunion France 2.9 9.8 0.0 0.0
St. Vincent St. Vincent 2.9 8.9 1.0 2.1
Sudan Sudan 2.9 6.6 0.0 0.0
Grenada Grenada 2.7 5.0 0.6 0.9
Mayotte France 2.7 12.1 0.4 1.4
Ile Tromelin France 2.4 3.6 0.1 0.2
Aruba Netherlands 2.3 6.1 0.4 1.1
St. Lucia St. Lucia 2.2 3.9 0.5 1.0
Puerto Rico United States 2.0 5.5 0.0 0.0
Romania Romania 1.8 4.7 0.5 1.8
St. Kitts & Nevis St. Kitts & Nevis 1.6 6.9 0.1 0.5
Anguilla United Kingdom 1.6 10.3 0.0 0.0
Dominica Dominica 1.6 4.4 0.7 1.7
Wallis & Futuna France 1.5 5.9 0.1 0.4
Curaçao Netherlands 1.4 5.4 0.0 0.1
Johnston Atoll United States 1.4 2.1 0.0 0.0
Montenegro Montenegro 1.4 2.8 0.2 0.8
US Virgin Islands United States 1.3 4.5 0.1 0.2
Easter Island Chile 1.2 3.1 0.0 0.0
Crozet Islands France 1.0 7.1 0.0 0.0
Bermuda United Kingdom 0.9 5.8 0.0 0.1
Northern Saint-Martin France 0.9 4.6 0.1 0.5
Niue New Zealand 0.8 1.5 0.0 0.0
Sint-Maarten Netherlands 0.8 1.8 0.0 0.0
Slovenia Slovenia 0.8 2.0 0.0 0.0
Bonaire Netherlands 0.7 2.0 0.0 0.0
Amsterdam & St. Paul Islands France 0.6 1.7 0.0 0.0
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EEZ Sovereign Avg. te3 Avg. $M Risk te3 Risk $M
Northern Mariana & Guam United States 0.5 1.9 0.0 0.0
Jarvis Island United States 0.5 2.1 0.0 0.0
Tristan da Cunha United Kingdom 0.5 7.9 0.0 0.0
Prince Edward Islands South Africa 0.4 2.5 0.0 0.0
St. Helena United Kingdom 0.4 1.3 0.0 0.0
Saba Netherlands 0.4 3.0 0.0 0.0
Sint-Eustasius Netherlands 0.4 3.0 0.0 0.0
Jordan Jordan 0.3 0.5 0.0 0.0
Macquarie Island Australia 0.3 2.2 0.0 0.0
Cocos Islands Australia 0.2 1.1 0.0 0.0
Cayman Islands United Kingdom 0.2 0.4 0.1 0.2
Glorioso Islands France 0.2 0.3 0.0 0.0
Ascension United Kingdom 0.1 0.2 0.0 0.0
Norfolk Island Australia 0.1 0.2 0.0 0.0
Bouvet Island Norway 0.1 0.1 0.0 0.0
Palmyra Atoll United States 0.1 0.4 0.0 0.2
Bosnia & Herzegovina Bosnia & Herzegovina 0.1 0.1 0.0 0.0
Montserrat United Kingdom 0.1 0.2 0.0 0.0
Christmas Island Australia 0.1 0.2 0.0 0.1
Pitcairn United Kingdom 0.0 0.1 0.0 0.0
Wake Island United States 0.0 0.0 0.0 0.0

Table S5 Summary of the inflows of tonnage and landed value by region. For each country,
the Avg. te3 column reports the landed catch (in 1000 mtons), and the Avg. $M column reports
the landed value (in millions of 2010 USD), averaged over 2005 - 2014. Of this total, a portion
is attributable to inflows of spawn from other EEZs. These values are reported in the Risk
te3 and Risk $M columns (labeled as “at risk” since management outside of national control
can undermine them). For each region, we also list the sovereign country, at which results are
aggregated for the hotspot risk measures.

SM 3.4 Country-level risk519

Comprehensive risk measures are calculated at the sovereign country level, where GDP, fishery520

employment, and food scarcity measures are available. Let c index sovereign countries, and521

I(c) be the set of EEZs in country c. While I(c) includes only 1 EEZ for most countries, it522

includes more in cases like the United States and France.523

The catch at risk in country c is then CatchRiskc =
∑

i∈I(c) EEZCatchRiski, and LandedValueRiskc =524
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Fig. S8 The landed value (Left) and catch (Right) attributable to spawn from other coun-
tries, for each EEZ, ordered from the one with the most imported to the least. These follow
an exponential decline for the majority of the range (labeled “included”).

∑
i∈I(c) EEZLandedValuei. The countries with the most total catch and total fishery value at risk525

are generally those with the largest fisheries in total with 4 of the top 6 countries with the most526

catch at risk falling into the largest 5 fisheries globally by catch.527

The fraction of a fishery’s value at risk is LandedValueRiskc/∑i∈I(c)

∑
k LandedValueig.528

The fraction of country c’s GDP at risk is LandedValueRiskc/GDPc, where GDPc is the average GDP529

over 2005 to 2014.530

The fraction of country c’s jobs at risk is
(

LandedValueRiskc/
∑

i∈I(c)

∑
k LandedValueig

)
(FisheryJobsc/LaborForcec),531

where FisheryJobsc is from Teh and Sumaila (40) and the labor force statistics are from the532

World Bank, derived with data from the International Labour Organization, and averaged over533

2005 to 2014.534
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The risk to the country c’s food security is calculated as(
(Productionc − Exportc)(

∑
i∈I(c)

∑
k rkipkCatchki)/(

∑
i∈I(c)

∑
k pkCatchki) + Importc

)
ProteinFromFishcProteinRequirement

(Productionc − Exportc + Importc)ProteinFromAny2
c

This is derived as the product of the following terms:535

(
(Productionc − Exportc)(

∑
i∈I(c)

∑
k rkipkCatchki)/(

∑
i∈I(c)

∑
k pkCatchki) + Importc

)
(Productionc − Exportc + Importc)

which represents the fraction of the locally-consumed, locally-produced catch that is attributable536

to spawn originating in other nations’ waters, plus imported fish which is considered not at risk.537

The denominator of this term represents the baseline consumption of fish.538

Above, pk is a species-specific weighting factor based on protein composition, described below.539

The protein percentage of fish varies from less than 9% by mass to over 25% by mass. Since540

our quantification of food security risk depends on fish protein, not all fish should be weighted541

equally.542

For each species, we translated the catch into protein mass, using percent protein by weight543

factors from (41). Their dataset contains 57 species, including 6 arthropods, 5 mollusks, and544

18 orders of fish. To estimate the protein portion for species not in their dataset, we averaged545

across the lowest shared taxonomic level for which there is data.546

ProteinFromFishj/ProteinFromAnyj
ProteinFromAnyj/ProteinRequirement

This term is the food security dependency index as defined by Barange et al. (28). The numer-547

ator of this term represents the fraction of the country’s protein consumption that is from fish,548

and the denominator represents the fraction of the daily recommended protein intake i that is549
iThe daily recommended protein intake is 60 kg (average world weight (42)) times 0.8g protein per kg (The

Dietary Reference Intakes from http://nationalacademies.org/hmd/Activities/Nutrition/
SummaryDRIs/DRI-Tables.aspx)
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available to the country’s population. Thus, this index takes a larger value for those nations550

where the daily nutritional requirements of its population are not being met, indicating an out-551

size dependence on fish as a crucial source of protein.552

Table S6 shows the range of protein portions and the number of species from Sea Around Us553

matched at each taxonomic level. The interquartile range of protein shares across all observed554

species is 17.9% to 19.5% protein by mass.555

Taxonomic Level Count Protein (Range, %)
1 species 46 9.5 - 25.2
2 genus 110 10.3 - 25.2
3 family 236 9.5 - 23.2
4 order 1049 9.5 - 23.2
5 class 322 12.5 - 20.4
6 phylum 66 13.4 - 18.9
7 kingdom 49 17.8

Table S6 The range of protein portion, by mass, by the taxonomic level at which species
are matched to protein data.

Table S7 displays the results of these analyses for each country and figure S9 displays the556

metrics for countries with the most at risk.557
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By fishery value By GDP

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
Italy

Pakistan
Ukraine

Maldives
Cyprus

Micronesia, Fed. Sts.
Comoros

St. Vincent and the Grenadines
Libya

St. Lucia
Malta

Netherlands
Suriname

Palau
Estonia

Montenegro
Finland
Guyana
Sweden

Papua New Guinea
Romania

Latvia
Dominica
Belgium
Kiribati

Lithuania
Uruguay

Poland
Nauru

Korea, Dem. Rep.

Fishery value at risk

Fraction of the benefit at risk.
By jobs By protein

0% 5% 10% 15% 20% 0% 5% 10% 15% 20%

Fig. S9 Normalized values of well-being at risk, for the top 30 country’s as ranked by
the portion of their fishery sector at risk. By fishery value is the value at risk divided by the
country’s total landed value, averaged over the last 10 years. By GDP is the value at risk divided
by the country’s GDP, as a measure of the entire economy at risk. By Jobs takes the values in
the By fishery value column and multiplies them by the portion of the population involved in
direct and indirect fisheries work. By protein is an index of the risk in needed fishery protein for
health.
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SM 3.5 Empirics558

To empirically validate our model and evaluate the impacts of international shocks, we analyzed559

cross-country connections in the RAM Legacy Stock Assessment Database (43). We identified560

stocks for which we could evaluate how recruitment in one country related to spawning biomass561

fluctuations in another. The RAM database contains stock assessments for 343 stocks across562

12 countries. Of these, there are 58 instances where the same stock is assessed in multiple563

countries, including 21 cases where the stock was assessed within an individual country and by564

a multinational organization.565

Not all of these instances report recruitment. We identified 93 recruitment time series, across566

47 species, which can be related to biomass timeseries from at least one other country. Since567

biomass and recruitment are assessed differently in different regions and reported in different568

units, we analyzed the extent to which the variance in stock fluctuations explain cross-boundary569

fluctuations in recruitment.570

For each species and country combination, we performed the regression

rit = α +
∑
j

(β1jxjt + β2jxj,t−1) + εit

where rit is the recruitment in region i in year t, and it is explained by spawning stock levels571

from the recruitment year, xjt, and the year before it, xj,t−1, in each available country (including572

j = i, the country of recruitment). Recruitment values in the RAM database are reported with573

lags, so that rit represents the recruitment from the spawning biomass xjt, with the same year574

index, even though the spawning stock biomass for a given recruitment is often from a previous575

year. Stock predictors for which the coefficient is negative were dropped and the regression was576

re-run.577

Our goal in performing this regression was not to provide a full explanation of the drivers of578
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recruitment. The statistical relationship above is only useful to relate the total amount of varia-579

tion that is explanable by variation in local and remote stock levels. We perform an ANOVA on580

the regression results and sum over the portion of variance explained by local (β1i and β2i) and581

cross-boundary (β1j and β2j for j 6= i) stocks. This allowed us to produce a rough estimate of582

the extent to which stocks are dependent or otherwise connected.583

Table S8 shows correlations between the fraction of variance explained by local or cross-584

boundary stocks and other attributes of the stocks. In the first set of columns, labeled “Self-585

Supply”, the correlation was taken between the fraction of variance explained bu local stocks586

or cross-boundary stocks and an indicator for whether the variance in question describes self-587

supply (that is, the effect of a stock level on its own recruitment). These columns aimed to588

validate our resilience measure, which we adopted from Fishbase. Resilience measures the589

capacity of a stock to recover from a shock, and is based on the intrinsic growth rates and fe-590

cundity information. Stocks with high resilience are expected to be able to recover best from591

spawning biomass losses.592

In our results, high resilience stocks showed a much higher correlation, followed by medium re-593

silience, and followed by low resilience, implying that for high resilience stocks, shocks in other594

countries tend to have little explanatory power for variation in recruitment. This relationship is595

shown in figure S10.596

Next, we correlated our cross-boundary dependence measure against the fraction of variance597

explained by the corresponding stocks. In the correlation, the portion attributable to the local598

EEZ is associated with the local stock variance explained, and the portion attributable to other599

EEZs is associated with the sum of other stock variance explained portions. The dependence600

measure used is the portion of the total catch from each country. Across all RAM stocks,601

the correlation is 0.15 (and insignificant), suggesting poor predictive ability of our measure to602
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Resilience Self-Supply 95% CI Dependence 95% CI
All RAM 0.36 0.21 - 0.49 0.15 -0.09 - 0.37

High Resilience 0.53 0.27 - 0.72 0.07 -0.35 - 0.46
Medium Resilience 0.40 0.13 - 0.62 0.10 -0.37 - 0.53

Low Resilience 0.21 -0.03 - 0.42 0.24 -0.16 - 0.57

Table S8 Correlations between the fraction of variance explained and either an indicator
of self-supply or the simulated dependence measure. The self-supply indicator (left) vali-
dates our resilience measure, with high resilience stocks showing low responsiveness to shocks
in other countries. The correlation with the dependence measure (right) is correspondingly
higher for medium and low resilience stocks.

explain shocks. However, the weakest predictability comes from high resilience stocks, while603

medium and low resilience stocks show higher correlations.604

Low Resilience Medium Resilience High Resilience

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.25

0.50

0.75

1.00

Self-Supplying Indicator (boolean)

Fr
ac

tio
n 

of
 V

ar
ia

nc
e 

E
xp

la
in

ed

Fig. S10 Fraction of variance explained to each observation of spawning stock, split by
self-supply. Each observation is identified as representing self-supply or foreign supply. As
resilience increases, self-supply stocks dominate the variance explained.

The confidence intervals across all of these results are wide, due to the small number of ob-605

servations, but the results support a number of aspects of this work. First, resilience is a key606

criteria, where variations in non-recruitment-limited stocks within the RAM database are not607

well explained by our metric.608

Second, for stocks with lower resilience, our dependence measure can predict the extent to609

which countries support recruitment internally and for other countries.610
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Third, variation in recruitment appears to be explained by the stock levels in countries outside611

of the spawn drift flows that we measure (where simulated flow is 0). This suggests additional612

long-distance or cascading effects. In 25 of 70 cases, the simulated flow between the RAM613

countries is 0, but the fraction of variance explained is on average 28%.614

SM 3.6 Sensitivity analyses615

SM 3.6.1 Results for 1995 – 2004616

The results in the main paper applied flows to a baseline of catches from 2005 – 2014. In617

the absence of strong management, stocks are subject to considerable variability, and some are618

experiencing long-term decline. The decade-long average used in the paper represents approx-619

imate recent catches, removing some forms of variability. As a sensitivity analysis, we related620

estimated flows to a baseline of catches from 1995 – 2004, to see how longer-term fishery621

changes affect our results. We also applied 1995 - 2014 averages for sovereign-level baseline622

values for GDP, populations, and labor force, but kept all other values unchanged, including the623

flow climatology. For convenience, we refer to the 1995 – 2004 baseline as the 2000 baseline,624

and the 2005 – 2014 baseline as the 2010 baseline.625

Figure S11 shows the imports and exports for the 2000 baseline. The ranking of countries by626

their catch attributable to spawn imports is different, but the collection of countries that are627

in the top 7 remain unchanged. Two notable changes are a large decrease in imported value628

for Japan from 2000 to 2010, and a increase in value imported of low-resilience species for629

Indonesia. Similarly, the 8 EEZs with the most exported catch remain unchanged between 2000630

and 2010, although they are reordered. The greatest difference between 2010 and 2000 values631

in exported catch is in Alaska, which exported catch more than doubles.632

The socioeconomic risks corresponding to figure 4 in the main paper for the 2000 baseline are633
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Fig. S11 Result corresponding to figure 3 in the main text for a 1995 - 2004 baseline. Top:
Top 20 countries sorted by total outflowing catch (mtons) and value (USD). Bottom: Top 20
countries sorted by total inflow of catch (mtons) and value (USD) at risk. 1995 - 2004 values
of catch and landed values are used, attributing them to larvae by species. Resilience levels
represent the estimated decline a population can endure without being considered vulnerable to
extinction.
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By fishery value By GDP

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
Grenada
Denmark

Libya
Ukraine

Korea, Dem. Rep.
Comoros

St. Vincent and the Grenadines
Finland

Syrian Arab Republic
St. Lucia

Netherlands
Micronesia, Fed. Sts.

Palau
Malta

Estonia
Sweden
Kiribati
Cyprus

Guyana
Dominica

Timor−Leste
Uruguay

Montenegro
Latvia

Papua New Guinea
Albania
Belgium

Nauru
Lithuania

Poland

Fishery value at risk

Fraction of the benefit at risk.
By jobs By protein

0% 5% 10% 15% 20% 0% 5% 10% 15% 20%

Fig. S12 Results corresponding to SI figure S9. Normalized values of well-being at risk, for
the top 30 country’s as ranked by the portion of their fishery sector at risk. By fishery value is
the value at risk divided by the country’s total landed value, averaged over the last 10 years. By
GDP is the value at risk divided by the country’s GDP, as a measure of the entire economy at
risk. By Jobs takes the values in the By fishery value column and multiplies them by the portion
of the population involved in direct and indirect fisheries work. By protein is an index of the
risk in needed fishery protein for health.

shown in figure S12. In this case, there are greater changes and shifts. This is because the634

regions most at proportional risk tend to be smaller countries.635

SM 3.6.2 Annual variability636

Our main results are based on a climatology of ocean currents. This climatology removes eddies637

and annual variability that may be an important driver of connectivity.638

In order to examine the influence of climate variability on EEZ connectivity, three years of data639

were selected for our simulations based on climatic conditions. The years were chosen based on640
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El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) indices, as these641

are two dominant modes of variability that can significantly alter ocean surface velocities. The642

years used were the following:643

1. July 2005 to June 2006 – Neutral year644

2. July 2007 to June 2008 – La Nina, positive NAO645

3. July 2009 to June 2010 – El Niño, negative NAO646

Both ENSO events and NAO peak in the boreal winter (December to February). In order to647

capture the full development of these events continuously over the end of the calendar year, we648

began with the July before the event and ended with the following June.649

We then determined transition matrices for each year individually, and only average them to-650

gether when computing import and export attributable to catch. These results are shown in fig-651

ure S13. The results are very similar, with the top 8 exporting countries and the top 4 importing652

countries appearing in the same order and with very similar magnitudes. We also found that the653

network of flows in this case retains the small-world property, with a weighted small-coefficient654

of 1233.5.655

SM 3.6.3 Reduced mobility analysis656

The estimates for species-specific larval floating duration are very uncertain, and the average657

distance traveled may be significantly shorter because of larval mortality. To provide a sensitiv-658

ity test, we reduced the duration under which each species is subject to floating by 30%. This659

version of the network retains the small-world property, with a weighted small-coefficient of660

381.3.661
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Fig. S13 Result corresponding to figure 3 in the main text, when accounting for annual
variability. Top: Top 20 countries sorted by total outflowing catch (mtons) and value (USD).
Bottom: Top 20 countries sorted by total inflow of catch (mtons) and value (USD) at risk. 1995
- 2004 values of catch and landed values are used, attributing them to larvae by species. Re-
silience levels represent the estimated decline a population can endure without being considered
vulnerable to extinction.
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SM 3.6.4 Adult return movement analysis662

Many species return to the region they were spawned. In the analysis in the main paper, we663

assumed that fish recruit and are caught in the EEZ they float to. Here, we assumed that there is664

some amount of return movement. The net affect of this return movement is that 50% of the fish665

spawned in region i which drift to region j will return to region i before being caught.666

We implemented this by using a new set of species-specific transition matrices

(T ′k)ij =


0.5(Tk)ij if i 6= j

(Tk)ij + 0.5 if i = j and
∑

m sikm > 0

0 otherwise

In this case, the weighted small-coefficient of the network becomes 1157.667
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