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Summary A within-cluster resampling method is proposed for fitting a

multilevel model in the presence of informative cluster size. Our method is

based on the idea of removing the information in the cluster sizes by drawing

bootstrap samples which contain a fixed number of observations from each

cluster. We then estimate the parameters by maximising an average, over the

bootstrap samples, of a suitable composite log-likelihood. The consistency

of the proposed estimator is shown and does not require that the correct

model for cluster size is specified. We give an estimator of the covariance

matrix of the proposed estimator, and a test for the non-informativeness of

the cluster sizes. A simulation study shows, as in Neuhaus and McCulloch

(2011), that the standard maximum likelihood estimator exhibits little bias

for some regression coefficients. However, for those parameters which exhibit

non-negligible bias, the proposed method is successful in correcting for this

bias.
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1 Introduction

Multilevel models, such as generalized linear mixed models (McCulloch et

al., 2008), are widely used in the analysis of clustered data. In this setting,

cluster size is said to be informative if it is associated with cluster-level ran-

dom effects, conditional on cluster-level covariates. Although Neuhaus and

McCulloch (2011) have shown that standard maximum likelihood estimators

can often exhibit little bias under informative cluster size for some key co-

variate effects, there remains a need for methods which provide consistent

estimation of all the model parameters in this setting. See Seaman et al.

(2014) for a review.

One simple approach to controlling for informative cluster size is by in-

cluding cluster size as a covariate in the model, but the resulting modified

model may not be scientifically relevant (e.g. Dunson et al., 2003). Another

approach is to incorporate cluster size into the model as a joint outcome

alongside the random effects (Dunson et al., 2003; Gueorguieva, 2005; Chen

et al. 2011). This depends, however, on the specification of the condi-

tional distribution of the cluster size given the random effects and it is often

preferred to treat this part of the model as a nuisance and to avoid such

specification.

Hoffman et al. (2001) proposed a within-cluster resampling approach

to the related problem of estimating marginal regression models under in-

formative cluster size. Their method involves repeated estimation of the
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model from resampled datasets of one observation per cluster. Williamson

et al. (2003) and Benhin et al. (2005) show how the method converges

to a simple weighted estimation method. The method cannot be applied

directly to multilevel models, however, since these models are generally in-

estimable when there is only one observation per cluster. In this paper we

show how this approach can be extended to multilevel models by resampling

datasets containing a fixed number of at least two observations per cluster.

Consistent estimation is achieved without specifying a model for the cluster

sizes. A score test for non-informative cluster size is also developed. Chiang

& Lee(2008) also proposed resampling at least two observations per cluster,

but for the different problem of improving estimation efficiency in a marginal

regression model using information on within-cluster correlation. Pavlou et

al. (2011) discussed assumptions needed for this method to provide unbiased

inference.

2 Basic Setup

We consider clustered data consisting of pairs of values (yij, xij), j = 1, . . . , ni,

of a response variable y and a vector of individual-level covariates x for

ni elements in cluster i = 1, . . . , K, together with values zi of a vector

of cluster-level covariates z for these K clusters. We model the data by

introducing cluster-specific random effects ai, which may be vector val-

ued, and factoring the distribution of the data and ai in cluster i as

f(yi1, . . . , yini
| xi1, . . . , xini

, ni, ai, zi) f(xi1, . . . , xini
| ni, ai, zi) f(ni | ai, zi)

f(ai | zi) f(zi). We assume independence between clusters and conditional

independence of the yij given xi1, . . . , xini
, ni, ai and zi with f(yi1, . . . , yini

|
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xi1, . . . , xini
, ni, ai, zi) =

∏
j f1(yij | xij, ai; θ1). It is further assumed that yij

is conditionally independent of ni and zi given xij and ai:

yij | xij, ni, zi, ai ∼ f1(yij | xij, ai; θ1), (1)

where f1(. | .; θ1) is a fully specified parametric model. We assume condi-

tional independence of the xij and ai given ni and zi so that f(xi1, . . . , xini
|

ni, ai, zi) = f(xi1, . . . , xini
| ni, zi), that is there is no confounding by cluster.

We further assume that

ai | zi ∼ f2(ai | zi; θ2), (2)

ni | ai, zi ∼ g(ni | ai, zi), (3)

where f2(. | .; θ2)is a fully specified parametric model and g(· | ·, ·) is com-

pletely unspecified. The parameters θ1 and θ2 along with f1(. | .; θ1) and

f2(. | .; θ2) define the parts of this two-level model of interest, whereas

f(xi1, . . . , xini
| ni, zi), g(ni | ai, zi) and f(zi) represent nuisance parts of the

model. The cluster size ni is said to be informative if g(ni | ai, zi) 6= g(ni | zi),

that is ni and ai are not conditionally independent given zi. These and al-

ternative sets of assumptions are discussed by Seaman et al. (2014). For

likelihood-based inference, we assume that any parameters of the nuisance

parts of the model are not functionally related to θ1 or θ2. The standard max-

imum likelihood method based on (1) and (2), ignoring the relation between

ni and ai in (3), assumes the log-likelihood for (θ1, θ2) is

`(θ1, θ2) =
K∑
i=1

log

∫ ni∏
j=1

f1(yij | xij, ai; θ1)f2(ai | zi; θ2)dai.

This can lead to biased estimation unless ni is included in zi, because the

correctly specified log-likelihood function, up to an additive constant, is given
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by
K∑
i=1

log

∫ ni∏
j=1

f1(yij | xij, ai; θ1)g(ni | ai, zi)f2(ai | zi; θ2)dai. (4)

Thus, as pointed out by Neuhaus and McCulloch (2011), the informative

cluster size problem is essentially a model misspecification problem. As noted

in the Introduction, the approach of incorporating ni in zi as a covariate is

often unsatisfactory since it can lead to a model which is not scientifically

relevant. Moreover, the alternative approach of incorporating ni into the

model as a joint outcome may suffer from the effects of misspecification of

the cluster size model g(ni | ai, zi) in (3).

3 Proposed method

To estimate the parameters under informative cluster size, we note that

if the yij were generated from (1) for just a fixed number m of elements

j for each cluster i, then the sample would be free of the informative

cluster size problem. We shall show that we can use a within-cluster re-

sampling method to construct such a data set which overcomes the infor-

mative cluster size problem, provided we make the additional assumption

that f(xi1, . . . , xini
| ni, zi) =

∏ni

j=1 f(xij | zi). Our proposed resampling

method consists of selecting a bootstrap subsample of m ≤ mini ni elements

from each cluster by simple random sampling without replacement. Let

{(x∗ij, y∗ij), j = 1, . . . ,m} be the realized element-level data for the bootstrap

subsample in cluster i, drawn from {(xij, yij); j = 1, . . . , ni}. We assume

m ≥ 2 and that θ = (θ1, θ2) remains identified for such a subsample. The

observed log-likelihood function for θ constructed from the b-th bootstrap
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subsample is

`∗(b)(θ) =
K∑
i=1

log

∫ m∏
j=1

f1(y
∗(b)
ij | x

∗(b)
ij , ai; θ1)f2(ai | zi; θ2)dai.

We show in the Supplementary Materials that this is a valid log-likelihood,

free of the informative cluster size problem, for any such subsample, under the

assumptions in section 2 and the additional assumption above. Combining

the B bootstrap subsamples, we seek the maximizer of

`B(θ) =
1

B

B∑
b=1

`∗(b)(θ). (5)

Computational aspects of maximizing `B(θ) are discussed in §4. We now es-

tablish some asymptotic properties of the proposed estimator that maximizes

(5). The score function derived from (5), viewed as a likelihood function, is

SB(θ) =
∂

∂θ
`B(θ) =

1

B

B∑
b=1

K∑
i=1

S
∗(b)
i (θ), (6)

where

S
∗(b)
i (θ) =

∂

∂θ
log

∫ m∏
j=1

f1(y
∗(b)
ij | x

∗(b)
ij , ai; θ1)f2(ai | zi; θ2)dai. (7)

Our proposed method is based on B replications of a resampling prod-

edure in which one subsample {j1, . . . , jm}, is drawn from the
(
ni

m

)
possible

subsamples of size m within cluster i with equal probability, for each cluster

i = 1, . . . , K. Thus, given the original sample, SB(θ) converges to

SC(θ) =
K∑
i=1

1(
ni

m

) ∑
1≤j1<···<jm≤ni

Si(θ; yij1 , . . . , yijm), (8)
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as B →∞, where

Si(θ; yi1, . . . , yim) =
∂

∂θ
log fi(yi1, . . . , yim; θ),

fi(yi1, . . . , yim; θ) =

∫ m∏
j=1

f1(yij | xij, ai; θ1)f2(ai | zi; θ2)dai.

Note that SC(θ) is a composite score function (Varin et al., 2011). Since

SC(θ) is a sum of K independent random variables, under suitable moment

conditions, we can obtain the asymptotic normality of SC(θ) and, hence, the

asymptotic normality of the proposed estimator, denoted by θ̂B.

Theorem 1 Let θ̂B be the maximizer of `B(θ). Under some regularity

conditions stated in the Supplementary Materials, (i) θ̂B
p−→ θ0 and (ii)

√
K(θ̂B − θ0)

d−→ N(0, Vm(θ0)), as B → ∞ and K → ∞, where θ0 is the

true parameter value. Here, Vm(θ0) is a nonzero finite limit given by

Vm(θ) = lim
K→∞

Hm(θ)−1Jm(θ)Hm(θ)−1, (9)

where

Hm(θ) = − 1

K

K∑
i=1

E

{(
ni
m

)−1 ∑
1≤j1<...,jm≤ni

∂

∂θ′
Si(θ; yij1 , . . . , yijm)

}
,

Jm(θ) =
1

K

K∑
i=1

var

{(
ni
m

)−1 ∑
1≤j1<...,jm≤ni

Si(θ; yij1 , . . . , yijm)

}
.

A specific expression for Vm(θ) is given in the Supplementary Materials for

a linear mixed model where θ contains β1, the coefficient of xij in the within-

cluster model. The expression indicates that the asymptotic variance of the

proposed estimator of β1 is reduced by using a larger bootstrap subsample

size. In this sense, minini is the preferred choice of m.
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Using (9), the covariance matrix of θ̂∗ can be estimated by

V̂ ∗ = K−1H(θ̂∗)−1J(θ̂∗)H(θ̂∗)−1
′
,

where

J(θ) =
1

B(K − 1)

B∑
b=1

K∑
i=1

{
S
∗(b)
i (θ)− S̄∗(b)(θ)

}{
S
∗(b)
i (θ)− S̄∗(b)(θ)

}′
,

H(θ) = − 1

BK

B∑
b=1

K∑
i=1

∂S
∗(b)
i (θ)

∂θ′
,

S
∗(b)
i (θ) is defined in (7) and S̄∗(b)(θ) = K−1

∑K
i=1 S

∗(b)
i (θ).

4 Computation

To find the maximizer of lB(θ) in (5), we can use the Expectation Maxi-

mization algorithm of Dempster et al. (1977), treating the ai as the missing

data. Details of the algorithm are given in the Supplementary Materials. For

some models, it is possible to obtain closed form expressions for each step

of the algorithm. This is illustrated in the Supplementary Materials for a

linear mixed model. In general, the E-step of the algorithm involves Monte

Carlo methods to compute expectations. Fast computation can be achieved

using the parametric fractional imputation of Kim (2011), which introduces

fractional weights. In this method, M Monte Carlo imputed values of ai are

obtained from a proposal distribution once, and the fractional weights are as-

signed to the M Monte Carlo values. In each iteration of the algorithm, there

is no need to repeat the Monte Carlo imputation. Only the fractional weights

are updated. This approach is illustrated in the Supplementary Materials for

a generalized linear mixed model (McCulloch et al., 2008).
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5 Test for non-informativeness of the cluster

sizes

It is often of interest to test for non-informativeness of the cluster sizes. Pre-

vious approaches have focussed on a marginal model (Benhin et al., 2005;

Nevalainen et al., 2011). We propose a test in our multilevel model frame-

work, which is essentially a test of model misspecification. Let M1 be the

class of two-level models and let M2 ⊂ M1 be the subclass of these mod-

els with non-informative cluster sizes. We are interested in testing the null

hypothesis H0 : F0 ∈ M2, where F0 is the true data generating model.

For the true parameter of the two level model, θ0, let θ̂2 denote the max-

imum likelihood estimator under M2 and θ̂1 denote the proposed estima-

tor under M1. Under the null hypothesis of model M2, the two estima-

tors converge in probability to the same limit, θ0. Otherwise, θ̂2 does not

converge to the true value. Thus, we can consider a score test for test-

ing H0 : E{S1(θ0)} = E{S2(θ0)}, where S1(θ) and S2(θ) are the proposed

score function and the usual score function of θ under M1 and M2, respec-

tively. Since E{S1(θ0)} = 0 always holds, the null hypothesis reduces to

H0 : E{S2(θ0)} = 0. Thus, the score test statistic is given by

Q = {S2(θ̂1)}′
[
V̂ {S2(θ̂1)}

]−1
S2(θ̂1), (10)

where V̂ {S2(θ̂1)} denotes the variance estimator of S2(θ̂1). Under the null

hypothesis, the limiting distribution of Q is χ2
p, where p = dim(θ). In our

setup, we have

S1(θ) =
1

BK

B∑
b=1

K∑
i=1

S
∗(b)
i (θ), S2(θ) =

1

K

K∑
i=1

Si(θ),
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where S
∗(b)
i (θ) is defined in (7) and Si(θ) = ∂

∂θ
log
∫ ∏ni

j=1 f1(yij |

xij, ai; θ1)f2(ai; θ2)dai. To compute V̂ {S2(θ̂1)} in (10), we can use a Tay-

lor expansion to obtain

S2(θ̂1) ≈ S2(θ0)− E
{
∂

∂θ′
S2(θ0)

}
E

{
∂

∂θ′
S1(θ0)

}−1
S1(θ0),

=
1

K

K∑
i=1

{
Si(θ0)− κ(θ0)B

−1
B∑
b=1

S
∗(b)
i (θ0)

}
:=

1

K

K∑
i=1

ui(θ0),

where κ(θ0) = E {∂S2(θ0)/∂θ
′}E {∂S1(θ0)/∂θ

′}−1 . A consistent estimator of

var{S2(θ̂1)} is

V̂ {S2(θ̂1)} =
1

K(K − 1)

K∑
i=1

{ûi(θ̂1)− ū(θ̂1)}{ûi(θ̂1)− ū(θ̂1)}′,

where ū(θ) = K−1
∑K

i=1 ûi(θ), ûi(θ) = Si(θ) − κ̂(θ)B−1
∑B

b=1 S
∗(b)
i (θ), and

κ̂(θ) =
{
K−1

∑K
i=1 ∂Si(θ)/∂θ

′
}{

(BK)−1
∑B

b=1

∑K
i=1 ∂S

∗(b)
i (θ)/∂θ′

}−1
.

6 Simulation Study

We conduct a simulation study to compare the performance of the proposed

method with the usual maximum likelihood method, which ignores the in-

formative cluster size problem. The study has a 2× 2 factorial design: (1) a

linear mixed model and a generalized linear mixed model with logit link; (2)

informative and non-informative cluster sizes.

We first generate data from a linear mixed model, where yij = β0+β1xij+

ai + eij, ai ∼ N(0, σ2
a), eij ∼ N(0, σ2

e), xij ∼ N(1, 1) for j = 1, . . . , ni and

i = 1, . . . , K. We set β0 = 0·5, β1 = 1, σ2
e = 1, σ2

a = 0·25, and K = 50 and

100.
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For the informative cluster size case, we generate ni from the cluster size

model ni ∼ Poi(e1+γai) + C, where C is the minimum cluster size. We set

γ = 3 and C=5 in this simulation. For the non-informative cluster size case,

we generate data from the same linear mixed model but generate ni from the

model ni ∼ Poi(e1+γbi) + C, where bi ∼ N(0, σ2
a), that is bi follows the same

distribution of ai but is independent of ai.

For the simulation, we compute the proposed estimates using B = 50

bootstrap samples. As seen from Table 1, in the informative cluster size

case, our proposed method provides almost unbiased estimation, while the

maximum likelihood method has significant biases for the regression intercept

and variance component of the level two model. In the non-informative

cluster size case, both the proposed and maximum likelihood estimators are

unbiased for all parameters. As expected, the Monte Carlo standard errors of

the proposed estimator tend to be slightly larger than those of the maximum

likelihood estimator.

We next consider a generalized linear mixed model, where yij ∼ Ber(pij),

logit(pij) = β0 + β1xij + ai, ai ∼ N(0, σ2
a), xij ∼ N(1, 1) for j = 1, . . . , ni

and i = 1, . . . , K. We set β0 = −1, β1 = 1, σ2
a = 0·25, and K = 50 and 100.

Cluster sizes for the informative and non-informative cases are generated

from the same models used for the linear mixed model with γ = 3 and

C=10.

Table 2 shows that the proposed method removes the biases due to in-

formative cluster size, in line with the previous simulation study. In the

non-informative cluster size case, the proposed estimator is comparable with

the maximum likelihood estimator with respect to Monte Carlo bias, but has
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larger Monte Carlo standard errors.

We have also computed the sizes and powers of the proposed score test of

non-informativeness under the linear mixed model with nominal significance

levels α = 0·01, 0·05 and 0·10. Here, we set γ = 1, 2 and 3 in the cluster size

models. Table 3 shows that the test performs well with respect to both size

and power.

Table 1: Monte Carlo biases, standard errors (SEs) and root mean squared
errors (RMSEs) of estimators, based on 1,000 Monte Carlo samples under
Linear Mixed Model

Number Proposed Maximum Likelihood
of clusters Parameter Bias SE RMSE Bias SE RMSE

ICS

50

β0 0·002 0·086 0·086 0·071 0·089 0·114
β1 0·003 0·053 0·053 0·000 0·040 0·040
σ2
e -0·010 0·077 0·078 -0·009 0·057 0·058
σ2
a -0·008 0·072 0·073 0·009 0·069 0·070

100

β0 0·000 0·059 0·059 0·070 0·061 0·093
β1 0·002 0·038 0·038 0·002 0·029 0·029
σ2
e -0·003 0·056 0·056 -0·005 0·042 0·042
σ2
a -0·002 0·055 0·055 0·016 0·053 0·055

Non-ICS

50

β0 0·001 0·090 0·090 0·001 0·090 0·090
β1 0·001 0·055 0·055 0·002 0·052 0·052
σ2
e -0·003 0·079 0·079 -0·002 0·074 0·074
σ2
a -0·010 0·074 0·075 -0·009 0·073 0·074

100

β0 -0·000 0·061 0·061 -0·000 0·060 0·060
β1 0·001 0·042 0·042 0·001 0·039 0·039
σ2
e -0·002 0·059 0·059 -0·002 0·055 0·055
σ2
a -0·004 0·056 0·056 -0·004 0·055 0·055
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Table 2: Monte Carlo biases, standard errors (SEs) and root mean squared
errors (RMSEs) of estimators, based on 1,000 Monte Carlo samples under
Generalized Linear Mixed Model

Number Proposed Maximum Likelihood
of clusters Parameter Bias SE RMSE Bias SE RMSE

ICS

50
β0 -0·008 0·160 0·160 0·092 0·150 0·176
β1 0·004 0·111 0·111 0·009 0·093 0·093
σ2
a -0·013 0·141 0·142 0·047 0·121 0·129

100
β0 -0·000 0·110 0·110 0·100 0·105 0·145
β1 0·002 0·077 0·077 0·005 0·064 0·064
σ2
a -0·007 0·100 0·100 0·055 0·087 0·103

Non-ICS

50
β0 -0·008 0·153 0·153 -0·008 0·141 0·141
β1 0·007 0·104 0·104 0·006 0·092 0·092
σ2
a -0·009 0·137 0·138 -0·009 0·122 0·122

100
β0 -0·004 0·104 0·104 -0·002 0·096 0·096
β1 0·002 0·074 0·074 0·001 0·063 0·063
σ2
a -0·008 0·102 0·103 -0·005 0·090 0·090
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Table 3: Sizes and powers of the proposed test based on 2, 000 Monte Carlo
samples with pre-determined nominal levels α

Number
α

γ = 1 γ = 2 γ = 3
of clusters Size Power Size Power Size Power

50
0·01 0·015 0·318 0·010 0·840 0·011 0·942
0·05 0·067 0·639 0·055 0·970 0·045 0·992
0·10 0·119 0·780 0·108 0·992 0·010 0·997

100
0·01 0·013 0·823 0·009 0·999 0·012 1·000
0·05 0·069 0·951 0·052 1·000 0·054 1·000
0·10 0·126 0·977 0·106 1·000 0·097 1·000

description of the EM algorithm used for computation.
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