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Abstract

In this paper, we introduce a new large family of Lévy-driven point processes with (and

without) contagion, by generalising the classical self-exciting Hawkes process and doubly

stochastic Poisson processes with non-Gaussian Lévy-driven Ornstein-Uhlenbeck type intens-

ities. The resulting framework may possess many desirable features such as skewness, leptok-

urtosis, mean-reverting dynamics, and more importantly, the "contagion" or feedback effects,

which could be very useful for modelling event arrivals in finance, economics, insurance and

many other fields. We characterise the distributional properties of this new class of point pro-

cesses and develop an efficient sampling method for generating sample paths exactly. Our sim-

ulation scheme is mainly based on the distributional decomposition of the point process and its

intensity process. Extensive numerical implementations and tests are reported to demonstrate

the accuracy and effectiveness of our scheme. Moreover, we apply to portfolio risk manage-

ment as an example to show the applicability and flexibility of our algorithms.
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1 Introduction

Doubly stochastic Poisson processes or Cox processes (Cox, 1955, 1972) have now been widely

applied as survival or event timingmodels inmany areas. They aremore capable than a simple Pois-

son process to capture event arrivals with complex dynamics structures. However, in reality, except

for the impact from external factors, event arrivals may often present "contagion", clustering, or

feedback effects, such as social media sharing online, trade transactions in market microstructure,

defaults in the credit market, jumps in investment returns, and loss claims in insurance businesses

to name a few. Das et al. (2007) and Duffie et al. (2009) provided evidences that, Cox models,

which are based on conditional independence assumption, can not fully capture credit contagion.

The phenomena of contagion became more evident in the credit market during the global financial

crisis of 2007-09 and European debt crisis since the end of 2009 (Giesecke et al., 2011b). A sem-

inal framework tailored for modelling event contagion is Hawkes process (Hawkes, 1971a,b). It is

a self-exciting point process where each arrival of events would trigger a simultaneous jump in its

own intensity and hence more events follow. Empirical evidence and econometric analysis can be

viewed from Bowsher (2007), Large (2007), Crane and Sornette (2008), Errais et al. (2010), Em-

brechts et al. (2011), Bacry et al. (2013), Aït-Sahalia et al. (2014, 2015) and Azizpour et al. (2018).

Recently, it has been extended in literature by being combined with Cox processes to enrich the

model eligibility, in the sense that both internal and external impacts can be facilitated in one single

framework, see Brémaud and Massoulié (1996, 2002) and Dassios and Zhao (2011, 2017b).

Meanwhile, from a micro perspective, it becomes more apparent that real financial data ex-

hibits deviations from normality with the availability of high-frequency data1. Barndorff-Nielsen

and Shephard (2001a,b) proposed a class of stochastic processes, namely non-Gaussian Ornstein-

Uhlenbeck (OU) models, which have gained extensive popularity for modelling the non-normality

presented in finance and economics. They could offer greater flexibility and possess many crucial

features, such as skewness, leptokurtosis and mean-reverting dynamics, which are often observed

from financial markets2. Moreover, this generality does not hinder their analytical tractability.

In particular, they become extremely popular for modelling stochastic volatilities, see Barndorff-

Nielsen et al. (1998), Barndorff-Nielsen and Shephard (2001a,b, 2002, 2003a,b) and Carr et al.

(2003). These stochastic volatility models have further led to other applications such as derivat-

ive pricing and risk analysis, see Nicolato and Venardos (2003) and Li and Linetsky (2014). On

the other hand, these processes can serve as stochastic intensity models for event arrivals. For in-
1See a pioneering investigation into the high-frequency financial data by Gençay et al. (2001) and recent advances

in financial econometrics in Aït-Sahalia and Jacod (2014).
2See empirical evidences from Poterba and Summers (1988) and Cont (2001).
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stance, they have been used tomodel irregularly-spaced trade-by-trade intraday data, mortality rates

in insurance, and default intensities for credit risk in finance, see Rydberg and Shephard (2000),

Centanni and Minozzo (2006), Hainaut and Devolder (2008) and Schoutens and Cariboni (2010).

In particular, for credit risk modelling, a mean-reverting OU intensity could be particularly useful

to capture business cycle effects on average industrial defaults, as obviously default rates would

increase in a recession and decrease in a boom (Elsinger et al., 2006, p.1306). This is similar as

the environment of interest rates, so, defaults and the associated losses in the credit market of-

ten present a mean-reverting pattern, see detailed analysis and evidence in Giesecke et al. (2011b)

from a long-term historical perspective. Duffie et al. (2009) also found a mean-reverting frailty that

would influence U.S. non-financial defaults. Moreover, empirical evidence shows that, the tails of

Gaussian distributions are often too thin to capture risk in the credit market, and fluctuations are

often sudden and jump-like, which are driven by unexpected news announcements. The distri-

bution of default rates is highly skewed towards large values (Giesecke et al., 2011b, p.236-239).

Therefore, macroeconomic shocks powered by a Lévy-driven non-Gaussian process rather than a

Gaussian one may be more appropriate to capture the dynamic structure of default intensities in

reality.

It is then natural for us to put these main streamlines above in the literature together to form a

unified and consistent framework. In this paper, we construct a new large family of Lévy-driven

point processes, termed self-exciting jump process with non-GaussianOU intensity, or, Lévy-driven

contagion process. It is fundamentally powered by a Lévy process. More precisely, its stochastic in-

tensity is a positive non-Gaussian process with additional self-exciting jumps. It can be also defined

as a branching process through the cluster process representation. Accordingly, the resulting mod-

els are analytically tractable, and intrinsically inherit the great flexibility as well as the desirable

features from the two original processes, including skewness, leptokurtosis, mean-reverting dy-

namics, and more importantly, the "contagion" or feedback effects. These newly-constructed pro-

cesses would then substantially enrich continuous-time models tailored for quantifying the "conta-

gion" of event arrivals in finance, economics, insurance, queueing and many other fields.

Simulation plays a crucial role in the implementation, simulation-based statistical inference

and empirical studies for new models. For instance, for modelling credit risk in practice, events of

extreme losses and defaults are rare, and data are scarce. The key quantities at the center of financial

risk management, such as the value at risk of an aggregate loss distribution for a heterogenous port-

folio, are often lack of closed-form formulas. Simulation-based approach then becomes a standard

technique. In particular, the exact simulation scheme is highly desirable as it has the primary ad-
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vantage of generating sample paths according to the underlying process law exactly (Broadie and

Kaya, 2006; Chen and Huang, 2013). To our knowledge, there is no exact simulation algorithms

in the literature even for our important special cases, the non-Gaussian OU stochastic intensity

models without contagion. We first propose a general sampling framework for exactly simulating

Lévy-driven contagion processes based on decomposition technique3. Then, we focus on exploit-

ing some very typical specifications of Lévy processes such as gamma process and tempered stable

subordinator, where remarkably the resulting point processes can be analytically decomposed into

several types of basic components, each of which can be exactly simulated, either directly, or via an

acceptance-rejection (A/R) scheme. Even though the underlying process possess a complex struc-

ture, neither procedure of truncation nor discretisation is required. Moreover, there is no numerical

inversion for the cumulative distribution function (CDF) or Laplace (Fourier) transform.

The paper is organised as follows. Section 2 gives the mathematical definitions of this new fam-

ily, and explains how they can be constructed from the classical non-Gaussian OU processes and

the self-exciting point process. In Section 3, we develop a general framework for exactly sampling

our new point processes. In Section 4, we derive the exact simulation algorithms based on de-

composition approach for two explicit cases when the driving Lévy processes are gamma process

and tempered stable subordinator, respectively. Extensive numerical implementations and tests are

reported in Section 5 to demonstrate the accuracy and effectiveness of our algorithms. Section 6

provides some financial applications to credit portfolio risk to show the applicability and flexibility

of our algorithms. Finally, Section 7 draws a brief conclusion and suggests plenty potential topics

for future research based on this new framework.

2 Lévy-driven Contagion Models

In this section, we construct a new framework for modelling event arrivals with contagion effects

based on Lévy processes. That is, the intensity of the point process is set up to be a non-Gaussian

OU process driven by a Lévy subordinator in cooperation with extra self-exciting jumps. Let us

first define a simpler version without the self-exciting component:

Definition 2.1 (Jump Process with Non-Gaussian Intensity). Jump process with non-Gaussian

intensity is a point processN ≡
¶
Ti
©
i=1,2,...

i.e. Nt =
∑
i≥1

1{Ti≤t} with the stochastic intensity λt

3This decomposition approach has also been recently used by Dassios and Zhao (2013, 2017a) to simulate the clas-
sical Hawkes process and point process with CIR intensity and Dassios et al. (2018); ?); ? to simulate tempered stable
distributions and gamma-driven Ornstein-Uhlenbeck processes.
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satisfying the stochastic differential equation

dλt = −δλtdt+ %dZt, t ≥ 0, (2.1)

where

• % > 0 is an arbitrary positive constant;

• δ > 0 is the constant rate of exponential decay;

• Zt, withZ0 = 0, is a Lévy subordinator, which is called the background driving Lévy process

(BDLP) of a non-Gaussian OU process.

This is a special case of Cox point processes. A slightly mathematical generalisation but very

useful for applications is to further incorporate a feedback mechanism in the framework by adding

a series of self-exciting jumps, i.e. simultaneous jumps (or "co-jumps") in the point process and

its intensity process. More precisely, this new framework, as a generalised version of the jump

process of Definition 2.1, is defined via the stochastic intensity representation as below:

Definition 2.2 (Self-exciting Jump Process with Non-Gaussian Intensity). Nt is a self-exciting

jump process with non-Gaussian intensity, if the intensity process of (2.1) is replaced by

dλt = −δλtdt+ %dZt + dJt, t ≥ 0, (2.2)

where the extra component Jt is a pure-jump process specified by

Jt :=
Nt∑
i=1

Xi, (2.3)

and {Xi}i=1,2,... are the sizes of self-exciting jumps4 with FT−
i
-measurable5 distribution function

G(z), z > 0, occurring at the associated (ordered) arrival times
¶
Ti
©
i=1,2,...

, respectively, and

they are independent of Zt.

Similar as theHawkes process (Hawkes and Oakes, 1974),Nt in Definition 2.2 can be equival-

ently redefined as a branching process via a cluster process presentation (Daley and Vere-Jones,
4It is called "self-exciting", as the expression (2.3) reveals that the jumps simultaneously occur in the point process

Nt and its intensity λt, and hence the arrivals of jumps trigger more jumps afterwards.
5It means that the functional form of the distribution function G(z) is revealed just before the arrival time Ti. This

distribution could have a highly general dependency structure G(z) = G(z | ·). For example, it could depend on the
initial intensity λ0, the past history of intensity at or just before the jump arrival times {Tk}k=1,2,...,i, all past jump
sizes {Xk}k=1,2,...,i−1, or the cumulated number of jumps Nt, and so on, as long as we can record these information,
for example,

G(z) = G
Ä
z | T1, T2, ..., Ti, λ0, λT−

1
, ..., λ

T−
i
, λT1 , ..., λTi−1

ä
. (2.4)

This is similar as the adaptive model setting of Giesecke et al. (2011a), but it is different from the classical Hawkes
process.
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2003, p.175-193). More precisely, Nt is a cluster point process which consists of two types of

points: immigrants and their offspring. The arrivals of immigrants follow a Cox process with non-

Gaussian OU intensity (2.1). Each immigrant generates its offspring, each offspring would further

generate offspring, and so on. The generation of any offspring follows a Cox process with expo-

nentially decaying intensity X∗e−δ(t−T ∗), where X∗ D=Xi and T ∗ is the arrival (birth) time of its

previous generation. The superposition (Daley and Vere-Jones, 2003, Theorem 2.4.VI) of all of

these points forms our new self-exciting point process Nt with the stochastic intensity (2.2).

Note that, given the initial intensity level λ0 > 0, the intensity process (2.2) can be equivalently

expressed as

λt = λ0e
−δt + %

t∫
0

e−δ(t−s)dZs

︸ ︷︷ ︸
Exogenous commonly-shared risk

+
Nt∑
i=1

e−δ(t−Ti)Xi,︸ ︷︷ ︸
Endogenous contagion risk

t ≥ 0,

which is positive and càdlàg. In fact, this new framework integrates twomajor types of risk sources.

For example, in the context of credit risk or systemic risk, the first part (i.e. the first two terms)

is to model the cyclical dependency of companies on some exogenous risk (e.g. movements of

interest or FX rates) commonly shared in the entire market, and the cyclical oscillation is captured

by the mean-reverting non-Gaussian OU process; fundamental common shocks are captured by the

pure-jump process Zt. The second part (i.e. the last term) is to model the endogenous contagion

risk due to the local interaction of companies in their business network, without which the overall

risk would be underestimated.

The interarrival intensity process {λt}Ti≤t<Ti+1 , for modelling exogenous commonly-shared

risk, is defined as the parts of intensity process excluding self-exciting jumps, i.e., (2.1), or,

λt = e−δtλ0 + %

t∫
0

e−δ(t−s)dZs, t ∈ [Ti, Ti+1).

For instance, a sample path of the interarrival intensity process (without self-exciting component)

within the time period t ∈ [0, 5] when the BDLP is a gamma process is represented in Figure 1.

This framework is the generalisation of several classical models in the literature: If there is no

self-exciting jumps, i.e. Xi ≡ 0 for any i, then, the intensity process (2.2) is a non-Gaussian OU

process (Barndorff-Nielsen et al., 1998; Barndorff-Nielsen and Shephard, 2001a,b, 2002, 2003a).

If there is no BDLP Zt, then, the point process Nt is a generalised Hawkes process (Hawkes,
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Figure 1: A sample path of interarrival intensity process (without self-exciting component) within the time
period t ∈ [0, 5] when the BDLP is a gamma process

1971a,b) with random marks. If the BDLP Zt is trivially a subordinator of compound Poisson,

then, Nt is a dynamic contagion process (Dassios and Zhao, 2011).

For notation simplicity, we denote the Lévy measure of BDLP Zt by ν, the associated Laplace

exponent and mean at the unite time by

Φ(u) :=

∞∫
0

Ä
1− e−uy

ä
ν(dy), µZ := E[Z1] =

∞∫
0

yν(dy), u > 0,

the Laplace transform, mean of self-exciting jump sizes and a constant respectively by

ĝ(u) :=

∞∫
0

e−uydG(y), µG :=

∞∫
0

ydG(y), η := δ − µG.

They are all assumed to be finite. In addition, we denote the (i+ 1)th interarrival time by

τi+1 := Ti+1 − Ti, i = 0, 1, 2, ..., T0 = 0,

and the cumulative intensity process at time t by Λt :=

t∫
0

λudu.

One may be interested in their basic distributional properties such as means and Laplace trans-

forms, and we provide some brief results for them in Appendix A with proofs. In particular, the

conditional expectation of point process is provided here in Proposition 2.1, as it will be used later

as a simple and general benchmark for numerically validating our newly-developed simulation al-
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gorithms.

Proposition 2.1 (Conditional Expectation of Point Process). The expectation of Nt+s conditional

on Nt and λt is given by

E [Nt+s | Nt, λt] =


Nt +

%µZ
η
s+

Å
λt −

%µZ
η

ã
1− e−ηs

η
, η 6= 0,

Nt + λts+
1

2
%µZs

2, η = 0,

s > 0.

3 General Framework for Exact Simulation

In this section, we outline an exact simulation framework based on exact distributional decom-

position for a general point process of Lévy-driven non-Gaussian OU intensity with and without

self-exciting jumps as defined in Definition 2.2 and 2.1, respectively. The entire simulation scheme

can be decomposed into three major steps:

1. Conditional on the current arrival time Ti and the associated intensity level λTi , generate the

next interarrival time τi+1;

2. Further conditional on the realisation of this interarrival time τi+1, generate the pre-jump

intensity level λTi+τ−i+1
right before the next arrival time Ti+1 = Ti + τi+1;

3. Add a self-exciting jump size Xi+1 upon the intensity process λt and one unit in the point

process Nt both at the next arrival time Ti+1 = Ti + τi+1.

By recursively implementing the three steps above, a full path of the point process Nt in any time

horizon can be exactly produced without bias. A graphical illustration for this proposed algorithm

design is provided in Figure 2.

The third step indeed is straightforward. In particular, ifXi+1 ≡ 0 for any i, then, it corresponds

to the version without self-exciting jumps. In order to execute the first two steps, we have first to

further investigate the joint distributional properties of the next interarrival time τi+1 and the next

pre-jump intensity level λTi+τ−i+1
, which can be characterised by the conditional joint transform as

below.

Theorem 3.1 (Joint Transform of Pre-jump Intensity and Cumulative Intensity). Conditional on

the intensity level λTi at the ith arrival time Ti, the joint transform of
(
λTi+τ− ,ΛTi+τ − ΛTi

)
for

any given period τ ∈ (0, τi+1) is given by

E
[
e
−vλTi+τ−e−(ΛTi+τ−ΛTi) | λTi

]
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Figure 2: Illustration on the exact simulation procedures for a path of point processNt and the skeleton of its
intensity process λt around the period [Ti, Ti+1]

= exp

Ü
−
ï

1

δ
+

Å
v − 1

δ

ã
w

ò
λTi − %

1
δ

+(v− 1
δ )w∫

v

Φ(u)

1− δu
du

ê
, τ ∈ (0, τi+1) , (3.1)

where w := e−δτ .

Proof. Given the ith arrival time Ti, the infinitesimal generator of (Λ, λ, t) within the period t ∈

[Ti, Ti + τi+1) acting on any function f(Λ, λ, t) within its domain Ω(A) is given by

Af(Λ, λ, t) =
∂f

∂t
− δλ∂f

∂λ
+ λ

∂f

∂Λ
+ %


∞∫
0

ñ
f(Λ, λ+ y, t)− f(Λ, λ, t)

ô
ν(dy)

 . (3.2)

Consider a function

f(Λ, λ, t) = e−ṽΛe−λA(t)eR(t), ṽ ∈ R+, (3.3)

where A(t) and R(t) are deterministic and differentiable functions with respect to t. Substituting

(3.3) into (3.2) and setting Af = 0, we have

−λA′(t) +R′(t) + δλA(t)− ṽλ− %Φ
Ä
A(t)

ä
= 0.

Since this equation holds for any λ and Λ, it is equivalent to the equations

A′(t) = δA(t)− ṽ, R′(t) = %Φ
Ä
A(t)

ä
.

9



Hence, for any time t ∈ [Ti, Ti + τi+1), we have

A(t) = keδt − ṽ e
δt − 1

δ
, R(t) = %

t∫
0

Φ

Ç
keδs − ṽ e

δs − 1

δ

å
ds, k ∈ R+.

By the basic property of infinitesimal generator (Dassios and Embrechts, 1989), we have the mar-

tingale

e−ṽΛt exp

Ñ
−
Ç
keδt − ṽ e

δt − 1

δ

å
λt + %

t∫
0

Φ

Ç
keδs − ṽ e

δs − 1

δ

å
ds

é
.

Setting ṽ = 1 and A (Ti + τ−) = v for any τ ∈ (0, τi+1) and using the martingale property, we

have

E
[
e
−vλTi+τ−e−(ΛTi+τ−ΛTi) | λTi

]
= exp

Ñ
−
ï

1

δ
+

Å
v − 1

δ

ã
w

ò
λTi − %

τ∫
0

Φ

Å
1

δ
+

Å
v − 1

δ

ã
e−δs

ã
ds

é
.

Hence, we can immediately obtain (3.1) by the change of variable u = 1
δ +
Ä
v − 1

δ

ä
e−δs.

Theorem 3.1 provides uswith a crucial tool for further investigating the distributional properties

of the interarrival time τi+1 and the pre-jump intensity level λTi+τ−i+1
, jointly and separately, which

later leads to their efficient algorithms for exact simulation as follows. Note that, however, the main

mathematical contribution of this paper is the exact distributional decomposition for our new point

processes via Theorem 3.1 rather than deriving the transform in Theorem 3.1.

3.1 Exact Simulation of Interarrival Time

Let us first outline how to simulate the interarrival time. Given the intensity level λTi at the ith

arrival time Ti, interestingly, the (i + 1)th interarrival time τi+1 can be exactly expressed as the

minimum of two much simpler random variables V ∗Ti and V
∗ where

1. V ∗Ti is a defective random variable, which can be directly generated by an explicit inverse

transform;

2. V ∗ is a well-defined random variable, which can be exactly simulated by a simplified version

of the classical thinning scheme (Lewis and Shedler, 1979).

Algorithm 3.1 (Exact Simulation of Interarrival Time). Conditional on the intensity level λTi , the
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next interarrival time τi+1 can be exactly simulated via

τi+1
D
=


V ∗ ∧ V ∗Ti , Di > 0,

V ∗, Di < 0,

(3.4)

where

• Di is simulated via

Di := 1 +
δ

λTi
lnU1, U1 ∼ U[0, 1];

• V ∗Ti is a simple defective random variable with Pr
¶
V ∗Ti =∞

©
= exp

Ä
−1
δλTi

ä
,

V ∗Ti
D
= − 1

δ
lnDi, Di > 0; (3.5)

• V ∗ is the first arrival time of a non-homogeneous Poisson process with the rate function

ζt := %Φ
Ä
G0(t)

ä
, G0(u) :=

1− e−δu

δ
, u ≥ 0, (3.6)

and it can be exactly simulated via the simplified thinning scheme of Algorithm 3.2.

Proof. Setting v = 0 in (3.1) of Theorem 3.1, we have

Pr
¶
τi+1 > τ | λTi

©
= E

[
e−(ΛTi+τ−ΛTi) | λTi

]
= Pr {V ∗ > τ} × Pr

¶
V ∗Ti > τ

©
,

where

Pr {V ∗ > τ} = exp

Ñ
−%

τ∫
0

Φ
Ä
G0(u)

ä
du

é
, Pr

¶
V ∗Ti > τ

©
= e−G0(τ)λTi . (3.7)

This implies that, the next interarrival time τi+1 conditional on the current intensity level λTi can

be expressed as the minimum of two independent random variables V ∗ and V ∗Ti . Note that, V
∗
Ti

is

a defective random variable that has a mass probability at the infinity, since the CDF of V ∗Ti is

FV ∗
Ti

(τ) = 1− e−G0(τ)λTi ,

with FV ∗
Ti

(∞) = 1− exp
Ä
−1
δλTi

ä
< 1, and the density fV ∗

Ti
(τ) > 0 for any τ > 0. Obviously, if

Di > 0, then V ∗Ti can be exactly simulated using the explicit inverse transform (3.5). Whereas V ∗

can be interpreted as the first arrival time from a non-homogeneous Poisson process, and it can be

exactly simulated via Algorithm 3.2 as below.
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Algorithm 3.2 (Simplified Thinning Scheme). V ∗ can be exactly simulated by the following steps:

1. Initialise the candidate time t̃ = 0;

2. Generate an exponential random variable E∗ ∼ Exp (ζ∞) where

ζ∞ := lim
t→∞

ζt = %Φ

Å
1

δ

ã
, (3.8)

and set t̃ = t̃+ E∗;

3. Generate a uniform random variable U2 ∼ U[0, 1],

• if U2 ≤ ζt̃/ζ∞, then, accept this candidate by setting V ∗ = t̃;

• if U2 > ζt̃/ζ∞, then, reject this candidate, and go back to Step 2 and continue.

Proof. Since ζt in (3.6) is a strictly increasing and concave function of time t with the initial value

ζ0 = 0 at time t = 0, the maximum level is ζ∞. Then, the algorithm above actually is a simplified

version of the classical thinning scheme (Lewis and Shedler, 1979) where only the first arrival time

within the period of [0, t] is recorded.

3.2 Exact Simulation of Pre-jump Intensity Level

Conditional the realisation of interarrival time τi+1 as generated by Algorithm 3.1, the Laplace

transform of the next pre-jump intensity level λTi+τ−i+1
is provided as follows.

Theorem 3.2 (Laplace Transform of Pre-jump Intensity). Conditional on the intensity level λTi
and the (i+ 1)th interarrival time τi+1, the Laplace transform of pre-jump intensity level λTi+τ−i+1

is given by

E
ï
e
−vλ

Ti+τ
−
i+1 | τi+1 = τ, λTi

ò
= e−vwλTi × exp

Ü
−%

1
δ

+(v− 1
δ )w∫

v

Φ(u)− Φ

Å
u− u− 1

δ

v− 1
δ

v

ã
1− δu

du

ê

×

%

δ

∞∫
0

e−vs

s
w∫
s

e
s
δ e−

y
δ ν(dy)ds+ wλTi

%

δ

∞∫
0

s
w∫
s

e
s
δ e−

y
δ ν(dy)ds+ wλTi

. (3.9)

Proof. Note that, the density function of the (i+ 1)th interarrival time conditional on the intensity

12



level λTi is

Pr
¶
τi+1 ∈ dτ | λTi

©
= E

λTi+τ− exp

Ö
−

Ti+τ∫
Ti

λudu

è
| λTi

dτ,

which implies that,

E
ï
e
−vλ

Ti+τ
−
i+11{τi+1∈dτ} | λTi

ò
= E

λTi+τ−e−vλTi+τ− exp

Ö
−

Ti+τ∫
Ti

λudu

è
| λTi

dτ.

Hence, we have

E
ï
e
−vλ

Ti+τ
−
i+1 | τi+1 = τ, λTi

ò
=

E
[
λTi+τ−e

−vλTi+τ−e−(ΛT+τ−ΛTi) | λTi
]

E
[
λTi+τ−e

−(ΛTi+τ−ΛTi) | λTi
] . (3.10)

The numerator of (3.10) can be obtained by differentiating the joint transform (3.1) w.r.t. v, i.e.,

E
[
λTi+τ−e

−vλTi+τ−e−(ΛTi+τ−ΛTi) | λTi
]

= − ∂

∂v
E
ñ
e
−vλTi+τ−e

−
Ä

ΛTi+τ−
−ΛTi

ä
| λTi

ô
= − ∂

∂v

exp

Å
−
ï

1

δ
+

Å
v − 1

δ

ã
e−δτ

ò
λTi

ã
× exp

Ñ
−%

τ∫
0

Φ

Å
1

δ
+

Å
v − 1

δ

ã
e−δu

ã
du

é
= − ∂

∂v

ñ
e−Gv(τ)λTi × e−%Fv(τ)

ô
= −

ï
%
∂

∂v
Fv(τ) +

∂

∂v
Gv(τ)

ò
× e−Gv(τ)λTie−%Fv(τ),

where

Gv(u) :=
1

δ
+

Å
v − 1

δ

ã
e−δu, Fv(τ) :=

τ∫
0

Φ
Ä
Gv(u)

ä
du,

and

∂

∂v
Gv(τ) = −λTie−δτ ,

∂

∂v
Fv(τ) =

τ∫
0

∞∫
0

ye−δue−[ 1δ+(v− 1
δ )e

−δu]yν(dy)du.

Note that, ν is the Lévy measure for a general BDLP Zt, therefore, we have

E
ï
e
−vλ

Ti+τ
−
i+1 | τi+1 = τ, λTi

ò
13



=

Ñ
%

τ∫
0

∞∫
0

ye−δue−[ 1δ+(v− 1
δ )e

−δu]yν(dy)du+ wλTi

é
× e−Gv(τ)λTie−%Fv(τ)Ñ

%

τ∫
0

∞∫
0

ye−δue−
1
δ (1−e−δu)yν(dy)du+ wλTi

é
× e−G0(τ)λTie−%F0(τ)

=

%

τ∫
0

∞∫
0

ye−δue−[ 1δ+(v− 1
δ )e

−δu]yν(dy)du+ wλTi

%

τ∫
0

∞∫
0

ye−δue−
1
δ (1−e−δu)yν(dy)du+ wλTi

×
E
[
e
−vλTi+τ−e−(ΛTi+τ−ΛTi) | λTi

]
E
[
e−(ΛTi+τ−ΛTi) | λTi

] . (3.11)

The first term of (3.11) can be calculated more explicitly as

%

τ∫
0

∞∫
0

ye−δue−[ 1δ+(v− 1
δ )e

−δu]yν(dy)du+ wλTi

%

τ∫
0

∞∫
0

ye−δue−
1
δ (1−e−δu)yν(dy)du+ wλTi

=

%

1
δ

+(v− 1
δ )w∫

v

∞∫
0

y
u− 1

δ

v − 1
δ

e−uyν(dy)
du

1− δu
+ wλTi

%

1
δ

+(v− 1
δ )w∫

v

∞∫
0

y
u− 1

δ

v − 1
δ

e
−
(
u−

u− 1
δ

v− 1
δ

v

)
y
ν(dy)

du

1− δu
+ wλTi

=

%

1− δv

1
δ

+(v− 1
δ )w∫

v

∞∫
0

ye−(u− 1
δ )ye−

y
δ ν(dy)du+ wλTi

%

1− δv

1
δ

+(v− 1
δ )w∫

v

∞∫
0

ye
−
(
u− 1

δ
−
u− 1

δ
v− 1

δ

v

)
y
e−

y
δ ν(dy)du+ wλTi

=

−%
δ

(1−δv)w∫
1−δv

∞∫
0

ye
(1−δv)zy

δ e−
y
δ ν(dy)dz + wλTi

−%
δ

(1−δv)w∫
1−δv

∞∫
0

ye
zy
δ e−

y
δ ν(dy)dz + wλTi

=

%

δ

∞∫
0

e−vs

s
w∫
s

e
s
δ e−

y
δ ν(dy)ds+ wλTi

%

δ

∞∫
0

s
w∫
s

e
s
δ e−

y
δ ν(dy)ds+ wλTi

. (3.12)

As the denominator of the second term of (3.11) can be also obtained nicely by setting v = 0 in

14



the joint transform (3.1), i.e.,

E
[
e−(ΛTi+τ−ΛTi) | λTi

]
= exp

Ü
−1− w

δ
λTi − %

1
δ

+(v− 1
δ )w∫

v

Φ

Å
u− u− 1

δ

v− 1
δ

v

ã
1− δu

ds

ê
.

So, the second term of (3.11) can expressed by

E
[
e
−vλTi+τ−e−(ΛTi+τ−ΛTi) | λTi

]
E
[
e−(ΛTi+τ−ΛTi) | λTi

]

=

exp
Ä
−
î

1
δ +
Ä
v − 1

δ

ä
w
ó
λTi
ä

exp

Ü
−%

1
δ

+(v− 1
δ )w∫

v

Φ(u)

1− δu
du

ê
exp
Ä
−1
δ (1− w)λTi

ä
exp

Ü
−%

1
δ

+(v− 1
δ )w∫

v

Φ

Å
u− u− 1

δ

v− 1
δ

v

ã
1− δu

du

ê
= e−vwλTi × exp

Ü
−%

1
δ

+(v− 1
δ )w∫

v

Φ(u)− Φ

Å
u− u− 1

δ

v− 1
δ

v

ã
1− δu

du

ê
. (3.13)

Finally, we obtain (3.9) immediately by combining the results from (3.12) and (3.13).

Apparently, given the ith arrival time Ti and the (i + 1)th interarrival time τi+1, the pre-jump

intensity level λTi+τ−i+1
can be simulated by the numerical inversion of Laplace transform (3.9) for

any Lévy-driven contagion process once the associated Lévy measure ν (and Laplace exponent Φ)

are specified. Indeed, exact simulation for stochastic processes based on the numerical inversion

of Laplace or Fourier transform has been widely adopted in the literature, see Broadie and Kaya

(2006), Glasserman and Liu (2010), Chen et al. (2012), Cai et al. (2017) and Kang et al. (2017).

However, for some subclasses such as the very popular specifications of gamma and tempered

stable BDLPs, quite remarkably, based on Theorem 3.2 the pre-jump intensity level can be exactly

decomposed into several simple elements, each of which can be easily simulated exactly without

any numerical inversion procedure. In fact, this exact decomposition approach appropriately breaks

the Lévy measure of subordinator, and thereby it can be achieved by developing an exact distribu-

tional decomposition through Laplace-transform representations. In this paper, our focus is mainly

on this decomposition approach, as it leads to a very efficient simulation algorithm for exactly

sampling the whole point process, and more importantly, it does not involve additional discretisa-

tion or truncation errors which are inevitable in the numerical inversion approach. We will present

our discovery based on the decomposition approach in much more details later in Section 4.
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3.3 Exact Simulation of Self-exciting Jumps

Based on our key results of Algorithm 3.1 for the interarrival time τi+1 and Theorem 3.2 for the

associated pre-jump intensity level λTi+τ−i+1
, now, it is straightforward to further integrate the self-

exciting jumps as the final step.

Algorithm 3.3 (Exact Simulation of Self-exciting Jumps). Conditional on (λTi , Ti) for any step

index i ∈ N+, the next self-exciting jumps occurring simultaneously in the intensity process and

the point process can be exactly simulated via the following steps:

1. Simulate the (i+ 1)th interarrival time τi+1 by thinning via Algorithm 3.1;

2. Set the (i+ 1)th arrival time by Ti+1 = Ti + τi+1;

3. Simulate the (i+1)th pre-jump intensityλT−
i+1

by numerical inversion or exact decomposition

for its Laplace transform in Theorem 3.2;

4. Add a self-exciting jump of size Xi+1 to the intensity process at the (i + 1)th arrival time

Ti+1, i.e.

λTi+1 = λT−
i+1

+Xi+1. (3.14)

5. Add one unit to the point process at the (i+ 1)th arrival time Ti+1, i.e. NTi+1 = NT−
i+1

+ 1.

By recursively implementing Algorithm 3.3, the skeleton of any non-Gaussian OU intensity

process λt and the associated full path of point process Nt in continuous time can be exactly gen-

erated. Moreover, there is almost no restriction on the size of self-exciting jump, Xi+1. It is very

flexible, as long as it would not overshoot the zero bound: it could be a constant, or, a random

variable having a highly general dependency on the past information before and at the arrival time

Ti.

Overall, the whole process can be decomposed into interarrival times, pre-jump intensity levels

and self-exciting jumps. In general, each of pre-jump intensity levels in Step 3 can be simulated

in general by numerically inverting (3.9) using the Fourier inversion technique, once we specify a

subordinator for the BDLP Zt. However, for some subclasses, even the numerical inversion can be

avoided. That is, the pre-jump intensity allows a further exact distributional decomposition, which

leads to an exact simulation algorithm without numerical inversion. The resulting scheme thereby

has no bias or truncation errors.
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4 Typical Examples: Gamma and Tempered Stable Contagion Mod-

els

For model implementation, one needs to further specify the BDLP in an explicit form. Probably the

most widely used and representative Lévy subordinators in the literature are gamma process and

tempered stable (TS) subordinator6. More precisely, they are two typical examples of Lévy pro-

cesses with stationary, independent and non-negative increments starting at 0 with finite variation

and infinite activity7, which behave very differently from the trivial case of compound Poisson pro-

cess. Due to this nature, they are impossible to be simulated exactly by some traditional methods

on discretising sample paths. We provide the definitions for them using Lévy measures (4.2) and

(4.5) in Definition 4.1 and 4.2, respectively.

Definition 4.1 (Gamma Distribution and Gamma Process). The gamma distribution with shape

parameter a and rate parameter b, denoted by Gamma(a, b), has the density function

fGamma(a,b)(s) =
ba

Γ(a)
sa−1e−bs, s > 0, a, b > 0, (4.1)

where Γ(·) is the gamma function, i.e. Γ(u) :=

∞∫
0

su−1e−sds. gamma process {Gt, t ≥ 0} is a

pure-jump increasing Lévy process with independently gamma distributed increments satisfying

G1 ∼ Gamma(a, b), G0 = 0, and it has Lévy measure

ν(ds) = as−1e−bsds, (4.2)

and the Laplace exponent

Φ(u) = a ln

Å
1 +

u

b

ã
, (4.3)

and the mean at unit time

µZ = E[Z1] =
a

b
. (4.4)

The gamma distribution, as a well-known right-skewed distribution, is approximated by a nor-

mal distribution when its mean is large, and it has many computational conveniences8 and thereby

is a very useful building block as the risk driver. Therefore, we provide applications for the gamma-

contagion model later in Section 6.
6The term "tempered stable" in the context sometimes refers to "exponential tilted stable", see Sato (1999) and

Rosiński (2007) for more information.
7Infinite activity means that there are infinitely many small jumps within any finite time interval, see some strong

evidence from financial data in Li et al. (2008), Aït-Sahalia and Jacod (2009, 2011) and Lee and Hannig (2010).
8A well-known convenience, similar to the normal distribution, is that, if {Yi}i=1,2,...,m are i.i.d. random variables

following a gamma distribution with mean µY and variance σ2
Y , then, the sum

∑m
i=1 Yi is gamma distributed with mean

mµY and variancemσ2
Y .

17



Definition 4.2 (Tempered Stable (TS) Distribution and Tempered Stable (TS) Subordinator). The

positive tempered stable (TS) distribution, abbreviated as TS(α, β, θ), is defined by its Lévy

measure

ν(dy) =
θ

yα+1
e−βydy, y ≥ 0, α ∈ (0, 1), β, θ ∈ R+, (4.5)

with the Laplace exponent

Φ(u) = −θΓ(−α)
î
(β + u)α − βα

ó
, (4.6)

the mean at unite time

µZ = E[Z1] = θβα−1Γ(1− α), (4.7)

where α is the stability index, θ is the intensity parameter and β is the tilting parameter. The

tempered stable (TS) subordinator is a Lévy process
¶
Zt : t ≥ 0

©
such that Z1 ∼ TS(α, β, θ) for

0 < α < 1 and β, θ > 0.

In fact, tempered stable distribution with three parameters is a very general and flexible distri-

bution. The stable index α determines the importance of small jumps for the process trajectories,

the intensity parameter θ controls the intensity of jumps, and the tilting parameter β determines the

decay rate of large jumps. In particular, if α = 1
2 , it reduces to a very important distribution, the

inverse Gaussian (IG) distribution, which can be interpreted as the distribution of the first passage

time of a Brownian motion to an absorbing barrier. So, this family of tempered stable subordinator

in Definition 4.2 also covers the inverse Gaussian (IG) subordinator as an important special case

(Barndorff-Nielsen, 1997, 1998). Conventionally, the IG distribution is denoted by IG (µIG, λIG)

where µIG is the mean parameter and λIG is the rate parameter, see a detailed introduction for IG

distributions in Chhikara and Folks (1989). The IG subordinator is a special TS subordinator such

that the BDLP Zt ∼ IG
( t
c , t

2
)
for any c, t ∈ R+, i.e.,

IG
Å
t

c
, t2
ã
D
= TS

Ç
1

2
,
c2

2
,

t√
2π

å
.

Many scholars adopted gamma, inverse Gaussian and tempered stable subordinators as the

building blocks to further construct other useful stochastic processes, and there are tremendous

relevant papers and work in the literature, see Barndorff-Nielsen and Shephard (2001a,b, 2003a),

Cont and Tankov (2004), Kyprianou (2006), Schoutens and Cariboni (2010) and Li and Linetsky

(2014) to name a few. Their main attractiveness is that, the resultingmodels could possess skewness

and leptokurtosis marginally, and meanwhile they remain highly mathematically tractable. Our

new models introduced in this paper can additionally incorporate the "contagion" property, which

18



is also very desirable from the point of view for applications.

Exact Simulation of Interarrival Time For each case, the interarrival time can be simulated via

the general algorithm of thinning scheme, Algorithm 3.2, by simply calculating ζ∞ in (3.8) from

(3.6) explicitly as

ζ∞ =


%a ln

Å
1 +

1

δb

ã
, for Gamma,

−%θΓ(−α)

ïÅ
β +

1

δ

ãα
− βα

ò
, for TS.

Exact Simulation of Pre-jump Intensity The pre-jump intensity level conditional on the real-

isation of interarrival time is characterised by the Laplace transforms (3.9) in Theorem 3.2, with

Lévy measures ν and Laplace exponents Φ specified by (4.2, 4.3) and (4.5, 4.6) for the gamma

and TS cases, respectively. For both cases, the integral transforms of the pre-jump intensity levels

actually can be broken into several simple elements.

The Laplace transform of pre-jump intensity level with three terms in (3.9) actually consists

two parts: (3.12) and (3.13). Strikingly, based on Theorem 3.2, the first two terms of (3.9), i.e.,

(3.13), can be further exactly decomposed for the specified TS and gamma cases respectively as

follows.

Algorithm 4.1 (Exact Simulation of Pre-jump Intensity Level forΓ-Contagion). For theΓ-contagion,

conditional on the intensity level λTi and the realisation of the (i+1)th interarrival time τi+1 = τ ,

the distribution of the (i+ 1)th pre-jump intensity level λTi+τ− can be exactly decomposed by

λTi+τ− | λTi
D
= wλTi + Γ̃ + ‹B × S +

Ñ∑
j=1

Sj , (4.8)

where Γ̃, ‹B,S, ‹N and {Sj}j=1,2,... are all independent of each other,

• Γ̃ is a gamma random variable of

Γ̃ ∼ Gamma
Å
−a%
δ

lnw,
ϑ

w
− 1

δ

ã
, ϑ := b+

1

δ
; (4.9)

• ‹B is a Bernoulli random variable taking 0 with probability p1 and 1 with probability p2, and

p1 =
wλTi

a%
δ C + wλTi

, p2 =
a%
δ C

a%
δ C + wλTi

, C := δ ln

Å
bδ + 1− w

bδ

ã
;
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• S is an exponential random variable of S ∼ Exp
Ä
ϑW0 − 1

δ

ä
and

W0
D
=
[
1− bδ

(
e
C
δ
U0 − 1

)]−1
, U0 ∼ U[0, 1]; (4.10)

• ‹N is a Poisson random variable of rate a%
δ ϑCw and

Cw :=

1
w∫

1

lnu

ϑu− 1
δ

du;

•
¶
Sj
©
j=1,2,...

are i.i.d. with Sj ∼ Exp
Ä
ϑW − 1

δ

ä
, and W can be exactly simulated via the

A/R scheme of Algorithm B.1.

Proof. In fact, Algorithm 4.1 is only an explicit specification of Theorem 3.2. Let us first calculate

the first two terms of (3.9), i.e., (3.13), by

E
ñ
e
−vλTi+τ−e

−
Ä

ΛTi+τ−
−ΛTi

ä
| λTi

ô
E
ñ
e
−
Ä

ΛTi+τ−
−ΛTi

ä
| λTi

ô
= e−vwλTi × exp

Ñ
−a%
δ

ln

Å
1

w

ã ∞∫
0

Ä
1− e−vs

ä
s−1e−( ϑw−

1
δ )sds

é
× exp

Ü
−aϑ%

δ

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

Å
ϑu− 1

δ

ã
e−(ϑu− 1

δ )s
lnu

ϑu− 1
δ

duds

ê
. (4.11)

Then, by calculating the whole equation (3.9) more explicitly, the conditional Laplace transform

of the pre-jump intensity level λTi+τ− can be decomposed into four parts:

E
ï
e
−vλ

Ti+τ
−
i+1 | τi+1 = τ, λTi

ò
= e−vwλTi × exp

Ñ
−%
δ

ln

Å
1

w

ã ∞∫
0

Ä
1− e−vs

ä
s−1e−( θw−

1
δ )sds

é
× exp

Ü
−aϑ%

δ

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

Å
ϑu− 1

δ

ã
e−(ϑu− 1

δ )s
lnu

ϑu− 1
δ

duds

ê
×

 a%C
δ

a%C
δ + wλTi

∞∫
0

e−vs

1
w∫

1

Å
ϑu+

1

δ

ã
e−(ϑu− 1

δ )s
1

C
Ä
ϑu2 − 1

δu
äduds+

wλTi
a%C
δ + wλTi

 . (4.12)

This decomposition of (4.12) indicates that the conditional distribution of λTi+τ− is the sum of

four independent simple elements of (4.8): (1) one deterministic trend, (2) one random variable
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‹B × S, (3) one gamma random variable, and (4) one compound Poisson random variable. Note

that, ‹B × S can be alternatively defined as just one single random variable by

‹B × S D
=


0, with probability p1 =

wλTi
a%
δ
C+wλTi

,

S ∼ Exp
Ä
ϑW0 − 1

δ

ä
, with probability p2 =

a%
δ
C

a%
δ
C+wλTi

.
(4.13)

The CDF ofW0 is

FW0(u) =
1

Cw(a+ 1
δ )

ln

ÑÄ
a+ 1

δ

ä
u− 1

δ

a

é
, u ∈

ï
1,

1

w

ò
,

which can be inverted explicitly, so we have (4.10). The compound Poisson random variable
Ñ∑
j=1

Sj

has the Laplace transform

exp

Ü
−aϑ%

δ
Cw

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

Å
ϑu− 1

δ

ã
e−(ϑu− 1

δ )s
lnu

Cw
Ä
ϑu− 1

δ

äduds

ê
,

so, the Poisson rate is aϑ%δ Cw, and jump-sizes {Sj}j=1,2,... follow an exponential distribution with

rate
Ä
ϑW − 1

δ

ä
. Here, W is a well-defined random variable with density (B.1), which can be

exactly simulated via the A/R scheme of Algorithm B.1. For more details on designing simulation

algorithms based onA/Rmechanism, seeGlasserman (2003) andAsmussen andGlynn (2007).

Algorithm 4.2 (Exact Simulation of Pre-jump Intensity Level for TS-Contagion). For the TS-

contagion, conditional on the intensity level λTi and the realisation of the (i + 1)th interarrival

time τi+1 = τ , the distribution of the (i + 1)th pre-jump intensity level λTi+τ− can be exactly

decomposed by

λTi+τ− | λTi
D
= wλTi + T̃ S + ‹B × S +

Ñ∑
k=1

Sk, (4.14)

where T̃ S, ‹B,S, ‹N and {Sk}k=1,2,... are all independent of each other,

• T̃ S is an TS random variable of

T̃ S ∼ TS
Å
α,

κ

w
− 1

δ
,
θ%

αδ
(1− wα)

ã
, κ := β +

1

δ
; (4.15)

• ‹B is a Bernoulli random variable taking 0 with probability p1 and 1 with probability p2, and

p1 :=
wλTi

θ%D
δ Γ(1− α) + wλTi

, p2 :=
θ%D
δ Γ(1− α)

θ%D
δ Γ(1− α) + wλTi

, D :=
δ

α

ïÅ
κ− w

δ

ãα
− βα

ò
;
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• S is a mixture-gamma random variable of S ∼ Gamma
Ä
1− α, κV0 − 1

δ

ä
and

V0
D
=

[
δβ + 1− δ

Å
αD

δ
U2 + βα

ã 1
α

]−1

, U2 ∼ U[0, 1]; (4.16)

• ‹N is a Poisson random variable of rate θ%
αδκΓ(1− α)Dw and

Dw :=

1
w∫

1

1− u−αÄ
κu− 1

δ

ä1−αdu; (4.17)

•
¶
Sk
©
k=1,2,...

are i.i.d. withSk ∼ Gamma
Ä
1− α, κV − 1

δ

ä
, andV can be exactly simulated

via the A/R scheme of Algorithm C.1.

Proof. Algorithm (4.2) is another explicit specification of Theorem 3.2. Similarly as the previous

gamma case in Algorithm 4.1, given the Lévy measure (4.5), we can identify that (3.12) is the

Laplace transform of ‹B × S from the calculation

%

δ

∞∫
0

e−vs

s
w∫
s

e
s
δ e−

y
δ ν(dy)ds+ wλTi

%

δ

∞∫
0

s
w∫
s

e
s
δ e−

y
δ ν(dy)ds+ wλTi

=

θ%

δ

∞∫
0

e−vs

1
w∫

1

s(1−α)−1e−(κu− 1
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ïÅ
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δ

ãα
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ò
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So, the outcome of ‹B×S is trivially equal to 0 with probability p1, or, the random variable S with

probability p2. S follows a mixture-gamma distribution with the shape parameter 1 − α and the
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rate parameter κV0 − 1
δ . Here, V0 is a well-defined random variable with density function

fV0(u) =
u−α−1

D
Ä
κu− 1

δ

ä1−α , u ∈
ï
1,

1

w

ò
. (4.18)

It can be directly simulated via the explicit inverse transform (4.16), as its CDF is

FV0(u) =
δ

αD

ï
u−α

Å
κu− 1

δ

ãα
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ò
, u ∈

ï
1,

1

w

ò
.

The first two terms of (3.9), i.e., (3.13), can be expressed by

E
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since the Lévy measure ν for the TS subordinator is specified in (4.5), and the Laplace exponent

of (3.13) can be rewritten by

%

1
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So, for (3.13), it consist three components: one deterministic trend, a TS process and a compound

Poisson process. In particular, the rate of the compound Poisson process is ‹N is θ%
αδκΓ(1−α)Dw,

and the jump sizes follow a mixture-gamma distribution with the shape parameter (1−α) and the
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rate parameter κV − 1
δ . Here, V is a well-defined random variable with density

fV (u) =
1− u−α
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Ä
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ï
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ò
. (4.19)

Overall, we have the conditional Laplace transform of pre-jump intensity level explicitly as
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We can identify from the Laplace transforms above that, the distribution of the (i+ 1)th pre-jump

intensity level λTi+τ− conditional on λTi is exactly equal in distribution to the sum of four simple

elements provided in (4.14). All these components can be simulated exactly. To simulate the

TS random variable, one could use existing algorithms provided in Brix (1999), Devroye (2009),

Hofert (2011) or Backward Recursive (BR) Scheme provided in Dassios et al. (2018) . And to

sample the compound Poisson random variable ‹N , one first needs to generate the intermediate

random variable V with density (4.19). Since there is no closed form for the inverse function of

the CDF of V , we have to rely on the A/R scheme of Algorithm C.1.

Exact Simulation of Self-exciting Jumps Conditional on the realisations of the interarrival time

and pre-jump intensity level as above, the associated self-exciting jump can be easily simulated by

just following Algorithm 3.3 in general both for gamma and TS contagion processes.

5 Numerical Experiments

In this section, let us take the TS-contagion model as an example, to illustrate the performance of

our exact scheme through extensive numerical experiments, and postpone the implementation for

the gamma-contagion model later in Section 6 with more financial applications. The simulation

experiments here and in the other parts of this paper are all conducted on a desktop PC with an
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Intel Core i7-3770S CPU@3.10GHz processor, 8.00GB RAM, Windows 7, 64-bit Operating Sys-

tem; the algorithms are coded and performed in MatLab (R2014a), and the computation time is

measured by the elapsed CPU time in seconds. The true value of the conditional expectation ofNT

for any fixed time T > 0 provided in Proposition 2.1 is used to numerically validate and test our

algorithms. The associated errors from the true values are reported by three standard measures:

1. Error = estimated value− true value;

2. Relative error (error %) = estimated value − true value
true value ;

3. Root mean square error RMSE =
√
bias2 + SE2, where the SE is the standard error of

simulation output, and the bias is the difference between the expectation of the estimator and

the associated true (theoretical) value; for the algorithm of exact simulation here, the bias is

conventionally set to zero.

We implement Algorithm 3.3 for the TS and IG cases in a fixed period of [0, T ] with and without

self-exciting jumps:

Case I: Jump process with non-Gaussian OU intensity (of Definition 2.1);

Case II: Self-exciting jump process with non-Gaussian OU intensity (of Definition 2.2).

Note that, as an intermediate step, we have to generate the random variable T̃ S of (4.15) in

Algorithm 4.2 for the general TS case. There are several algorithms available in the literature,

including approximation-based algorithms such as infinite series representation (Rosiński, 2001),

and exact algorithms such as simple stable rejection (SSR) (Brix, 1999), double rejection algorithm

(Devroye, 2009), fast rejection algorithm (Hofert, 2011) and backward recursive (BR) scheme

(Dassios et al., 2018). However, the choice of algorithms is indeed not our focus of this paper.

Just for the propose of demonstration here, we adopt the BR scheme. It works extremely efficiently

for some families including the one with stability index of binary fractions 1
2n , n = 1, 2, ..., which

can be easily simulated by recursively generating IG random variables without A/R mechanism.

For a general parameter setting, one could simply adopt other algorithms such as the SSR scheme

of Algorithm E.1.

For numerical implementation, we further assume that, the sizes of self-exciting jumps follow

an exponential distribution of rate γ > 0, i.e. Xi ∼ Exp(γ), and the stable index takes the values of,

say, α = 1/4 for the TS case and α = 1/2 for the IG case, respectively. T̃ S of (4.15) is simulated

using the BR scheme particularly designed for α = 1/4 in Algorithm D.1, and the parameters are

set by:
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1. TS Case I: (δ, %;α, β, θ;λ0) = (1.0, 0.5; 0.25, 0.2, 0.25; 0.5);

2. TS Case II: (δ, %;α, β, θ; γ;λ0) = (1.0, 0.5; 0.25, 0.2, 0.25; 5.0; 0.5);

3. IG Case I: (δ, %; c;λ0) = (1.0, 0.5; 0.5; 0.5);

4. IG Case II: (δ, %; c; γ;λ0) = (1.0, 0.5; 0.5; 4.0; 0.5).

Simulated sample paths of the point processes within a long period of t ∈ [0, 500] with the asso-

ciated histograms are plotted in Figure 3, where the clustering or "contagious" arrivals of jumps

can be clearly presented. Furthermore, to measure the accuracy and efficiency of our scheme, we

carry out the convergence analysis: Figure 4 presents log-log plots for the RMSE against the CPU

time for each case in two different time horizons T = 2, 5, respectively, and the associated results

in detail are reported in Table 3. Overall, from these numerical results reported in this section, it

is evident that our exact scheme can achieve a very high level of accuracy and efficiency.

To be even more prudent, the simulation for the interarrival time based on the simplified thin-

ning scheme of Algorithm 3.2, as an intermediate step, can be also tested separately. To numerically

assess its accuracy and efficiency, we compare the simulated results of V ∗ with its theoretical tail

distributionPr {V ∗ > τ} as specified in (3.7), which can be calculated explicitly by substituting the

Laplace exponentΦ from (4.6). We set the parameters by (δ, %;α, β, θ) = (0.5, 1.0; 0.9, 0.2, 0.25),

and each estimation is based on 105 replications. Error percentages (Error%) for measuring rel-

ative errors are reported in Table 2. The total CPU time for producing the whole Table 2 is only

12.64 seconds, and the error percentages are all very tiny.

6 Comprehensive Risk Analysis for A Large Portfolio Facing Conta-

gious Losses and Unexpected Exogenous Gamma Shocks

It has now been widely recognised among academics and financial practitioners that, risk spreads

through highly interconnected business networks, and defaults could trigger more defaults through

a "domino" effect. The resulting losses presented in financial markets could be amplified. As earlier

mentioned in Section 4, gamma distribution is a poplar building block in financial applications.

Especially, it plays an important role in credit risk modelling. For instance, both the widely-used

framework of CreditRisk+ (1997) in the banking industry and influential papers by Gordy (2000,

2003) and Elsinger et al. (2006) in the literature, assumed that, macroeconomic factors are driven

by independent gamma-distributed random variables9. More recent evidences have been found by
9Besides, it can be also equipped as a fundamental risk driver for price movements, e.g. the popular variance Gamma

model (Madan and Seneta, 1990; Madan et al., 1998).
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Figure 3: Simulated sample paths of the point processes and the associated time-series plots for Case I&II:
TS Case I (δ, %;α, β, θ;λ0) = (1.0, 0.5; 0.25, 0.2, 0.25; 0.5), TS Case II (δ, %;α, β, θ; γ;λ0) =
(1.0, 0.5; 0.25, 0.2, 0.25; 5.0; 0.5); IG Case I (δ, %; c;λ0) = (1.0, 0.5; 0.5; 0.5), IG Case II
(δ, %; c; γ;λ0) = (1.0, 0.5; 0.5; 4.0; 0.5)
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Table 1: Simulation results for Case I&II: TS Case I (δ, %;α, β, θ;λ0) = (1.0, 0.5; 0.25, 0.2, 0.25; 0.5),
TS Case II (δ, %;α, β, θ; γ;λ0) = (1.0, 0.5; 0.25, 0.2, 0.25; 5.0; 0.5); IG Case I (δ, %; c;λ0) =
(1.0, 0.5; 0.5; 0.5), IG Case II (δ, %; c; γ;λ0) = (1.0, 0.5; 0.5; 4.0; 0.5)

Case Paths True Simulation Error Error% RMSE CPU Time (sec)
TS Case

Case I, T = 2 100 1.0138 0.9300 -0.0838 -8.2683% 0.1281 0.11
400 1.0138 1.0525 0.0387 3.8146% 0.0834 0.36
1,600 1.0138 1.0363 0.0224 2.2118% 0.0398 1.37
6,400 1.0138 1.0184 0.0046 0.4548% 0.0208 5.29
25,600 1.0138 1.0167 0.0029 0.2853% 0.0099 20.53
102,400 1.0138 1.0133 -0.0005 -0.0509% 0.0049 81.74
409,600 1.0138 1.0127 -0.0012 -0.1147% 0.0024 321.78

Case I, T = 5 100 2.5488 2.5500 0.0012 0.0472% 0.2879 0.22
400 2.5488 2.4700 -0.0788 -3.0915% 0.1466 0.73
1,600 2.5488 2.6413 0.0925 3.6274% 0.0815 2.92
6,400 2.5488 2.5308 -0.0180 -0.7068% 0.0380 11.08
25,600 2.5488 2.5523 0.0035 0.1361% 0.0190 44.29
102,400 2.5488 2.5589 0.0101 0.3948% 0.0095 177.92
409,600 2.5488 2.5437 -0.0051 -0.1998% 0.0048 706.82

Case II, T = 2 100 1.1406 1.1500 0.0094 0.8281% 0.1520 0.14
400 1.1406 1.0925 -0.0481 -4.2133% 0.0909 0.36
1,600 1.1406 1.1581 0.0176 1.5404% 0.0453 1.48
6,400 1.1406 1.1233 -0.0173 -1.5145% 0.0228 5.71
25,600 1.1406 1.1468 0.0062 0.5472% 0.0114 23.21
102,400 1.1406 1.1305 -0.0101 -0.8835% 0.0056 90.92
409,600 1.1406 1.1454 0.0049 0.4282% 0.0028 365.82

Case II, T = 5 100 3.0290 2.9900 -0.0390 -1.2891% 0.3932 0.23
400 3.0290 3.0875 0.0585 1.9298% 0.1903 0.87
1,600 3.0290 3.0413 0.0122 0.4029% 0.0923 3.34
6,400 3.0290 3.0961 0.0670 2.2135% 0.0491 13.54
25,600 3.0290 3.0095 -0.0196 -0.6456% 0.0234 52.28
102,400 3.0290 3.0264 -0.0026 -0.0862% 0.0117 207.73
409,600 3.0290 3.0308 0.0017 0.0569% 0.0058 831.64

IG Case
Case I, T = 2 100 1.5677 1.5000 -0.0677 -4.3165% 0.1673 0.06

400 1.5677 1.6025 0.0348 2.2219% 0.0948 0.19
1,600 1.5677 1.6431 0.0755 4.8134% 0.0573 0.56
6,400 1.5677 1.5311 -0.0366 -2.3330% 0.0257 2.17
25,600 1.5677 1.5745 0.0068 0.4328% 0.0134 8.50
102,400 1.5677 1.5743 0.0066 0.4229% 0.0068 33.77
409,600 1.5677 1.5687 0.0011 0.0673% 0.0033 135.05

Case I, T = 5 100 4.5034 4.1500 -0.3534 -7.8468% 0.3880 0.11
400 4.5034 4.3075 -0.1959 -4.3494% 0.2118 0.27
1,600 4.5034 4.3394 -0.1640 -3.6416% 0.1026 1.06
6,400 4.5034 4.5084 0.0051 0.1125% 0.0546 4.23
25,600 4.5034 4.5268 0.0234 0.5202% 0.0272 16.83
102,400 4.5034 4.5236 0.0203 0.4500% 0.0135 67.08
409,600 4.5034 4.5037 0.0003 0.0067% 0.0068 268.24

Case II, T = 2 100 1.8035 1.7100 -0.0935 -5.1832% 0.21 0.11
400 1.8035 1.7925 -0.0110 -0.6087% 0.13 0.16
1,600 1.8035 1.7644 -0.0391 -2.1682% 0.06 0.58
6,400 1.8035 1.7758 -0.0277 -1.5357% 0.03 2.31
25,600 1.8035 1.8043 0.0008 0.0454% 0.02 9.31
102,400 1.8035 1.8025 -0.0010 -0.0569% 0.01 36.07
409,600 1.8035 1.8039 0.0004 0.0232% 0.00 145.36

Case II, T = 5 100 5.5817 5.2400 -0.3417 -6.1216% 0.4584 0.11
400 5.5817 5.4000 -0.1817 -3.2550% 0.2753 0.34
1,600 5.5817 5.6300 0.0483 0.8656% 0.1344 1.25
6,400 5.5817 5.5902 0.0085 0.1517% 0.0698 4.99
25,600 5.5817 5.5648 -0.0169 -0.3024% 0.0347 19.83
102,400 5.5817 5.5777 -0.0040 -0.0713% 0.0173 77.70
409,600 5.5817 5.5738 -0.0079 -0.1419% 0.0087 315.71
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Figure 4: Convergence analysis via RMSE v.s. CPU time by log-log plots for Case I&II: TS Case
I (δ, %;α, β, θ;λ0) = (1.0, 0.5; 0.25, 0.2, 0.25; 0.5), TS Case II (δ, %;α, β, θ; γ;λ0) =
(1.0, 0.5; 0.25, 0.2, 0.25; 5.0; 0.5); IG Case I (δ, %; c;λ0) = (1.0, 0.5; 0.5; 0.5), IG Case II
(δ, %; c; γ;λ0) = (1.0, 0.5; 0.5; 4.0; 0.5)

Table 2: Comparison between the theoretical formulas and the associated simulation results for the simplified
thinning scheme of Algorithm 3.2 with each estimation based on 105 replications

τ Pr {V ∗ > τ} Simulation Error%
0.1 98.66% 98.62% -0.0367%
0.2 94.87% 94.80% -0.0752%
0.3 89.10% 89.01% -0.0965%
0.4 81.85% 81.81% -0.0499%
0.5 73.66% 73.60% -0.0819%
0.6 65.01% 64.86% -0.2268%
0.7 56.35% 56.12% -0.3943%
0.8 48.00% 47.89% -0.2333%
0.9 40.24% 40.15% -0.2239%
1.0 33.22% 33.13% -0.2773%

Giesecke et al. (2011b) that, long periods with relatively few defaults follow by episodes of signi-

ficant clustering of defaults and the resulting distribution of default rates is highly skewed towards

large values. This motivates us to adopt our new model of gamma contagion as an example for

applications in risk management for a portfolio facing "domino" effect of losses. We assume that

exogenous commonly-shared risk is dynamically powered by a gamma process. More precisely,

we adopt the gamma distribution as the fundamental driver of randomness (or gamma shock) to

construct the OU-Γ interarrival intensity for a point process Nt in Definition 2.2. A simulated

path of this interarrival intensity process within the time period t ∈ [0, 5] based on the parameter

setting (δ, %; a, b;λ0) = (1.0, 1.0; 4.0, 0.5; 2.0) is earlier plotted in Figure 1, where we can ob-

serve relatively high-frequent and small-size shocks. In fact, it is named as the OU-Γ process by
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Barndorff-Nielsen and Shephard (2003a), which has become a very popular tool for modelling

stochastic volatilities in a continuous-time setup. Hainaut and Devolder (2008) used it as a spe-

cial case of Cox processes to model human-mortality rates, and applied to actuarial valuation in

insurance. Eberlein et al. (2013) treated it as a one-factor model for describing the evolution of

instantaneous interest rates.

In reality, contagion may be triggered by losses or defaults of banks or other financial institu-

tions through inter-institutional lendings in the interbank market, or, it may be further amplified

due to some common asset holdings of overlapping portfolios (Caccioli et al., 2014). We offer

some numerical examples of comprehensive risk analysis for a large portfolio facing contagious

defaults and losses. We construct a simple contagious loss process to capture the propagated de-

faults for a generic large pool of financial institutions (banks for short)10 within a financial system.

The aggregate loss process of this large portfolio by time t is

Lt =
Nt∑
i=1

Li, t ≥ 0,

where Nt is a Γ-contagion process, and Li ≥ 0 is the absolute value of the loss size for the ith

default, of which the mean is denoted by µL := E[Li] for any index i. We assume that the sizes of

self-exciting jumps in (2.3) generally satisfy

Xi = $i × g(Hi), (6.1)

where

• Hi is the history of the loss path until time t, i.e. Hi := {Lj}j<i ∪ {Tj}j≤i;

• $i > 0 is the amplification multiplier11, which might be dependent on the degree of fin-

ancial connectivity of the underlying company i to others, or, the effects of policymakers’

interventions to limit the extent of contagion;

• g(·) is a general non-negative function12 of the losses.
10The following framework of course would generically work for other types of similar institutions.
11The amplificationmechanisms during financial crises in detail were described and analysed in Brunnermeier (2009);

Brunnermeier and Pedersen (2009) and more recently in ?.
12Since the jump sizes in (6.1) follow a F

T−
i
-measurable distribution as explained earlier in Definition 2.2, similarly,

the function g(·) is also very general, and it can include all past losses, i.e.,

g(·) = g (T1, T2, ..., Ti, L1, ..., Li−1) ,

which could adopt functional forms, for example, assigning weight to each loss size according to its loss time or similarly
as autoregressive time series models.
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In fact, (6.1) provides a channel for contagion (or feedback) effects of market participants’ reac-

tions to adverse scenarios. The economic interpretation for this model is that, the impacts and the

timing of unexpected exogenous gamma shocks acting on the entire portfolio as macroeconomic

scenarios are modelled by a mean-reverting gamma-driven OU process. Each of the shocks may

not lead to an immediate default but acts on the underlying intensity via a positive jump, which

increases the default probability afterwards. Meanwhile, endogenic shocks, i.e. contagious losses

due to the propagated defaults, are modelled by self-exciting jumps, and the associated magnitudes

can be captured by jump sizes {Xi}i=1,2,....

The great flexility of our exact simulation scheme allows us to accurately and efficiently gen-

erate highly comprehensive scenarios for risk assessment. In general, our algorithms can simulate

sample paths when loss sizes Li may depend on the entire history of Nt and λt before or at time

Ti. We discuss several circumstances which can be captured by our models as follows.

6.1 A Simple Benchmark Model

The loss occurred within a financial institution may spread via various business channels and even-

tually trigger subsequent losses of others in markets. Intuitively, a larger loss may make a larger

impact. For illustration convenience, we assume that the sizes of self-exciting jumps satisfy

Xi = $̄ × Li,

where $̄ > 0 is the average amplification multiplier, meaning that each investment has a linear and

homogenous amplification effect. We further assume that each loss size is exponentially distrib-

uted, i.e. Li ∼ Exp(`), ` > 0 with mean µL := 1/`. To assess the overall risk of this portfolio, we

implement the exact simulation of Algorithm 3.3, 4.1 with (Case I) and without (Case II) contagion

in the fixed time period [0, t], respectively:

1. Case I: (δ, %; a, b;λ0) = (0.5, 0.5; 0.5, 2.0; 0.5);

2. Case II: (δ, %; a, b; `, $̄;λ0) = (0.5, 0.5; 0.5, 2.0; 8.0, 2.0; 0.5).

We concentrate on the default numberNt in the system. Case I or II can be considered as a bench-

mark model, as by Proposition 2.1 the expected default number has analytical forms:

Proposition 6.1 (Expectation of Nt). The expected default number until time t is given by

E[Nt | λ0] = λ0
1− e−ηt

η
+
%

η

Ç
t− 1− e−ηt

η

å
a

b
, η 6= 0, (6.2)
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where

η =

 δ, for Case I,

δ − $̄/`, for Case II.

To explore themodels, let us first carry out a sensitivity analysis for the expected default number

E[Nt | λ0]with respect to (w.r.t.) their key parameters for controlling the external gamma shocks, a

and b, with and without contagion, and the results are provided respectively in Figure 5. Numerical

tests for our algorithms are based on the true means (6.2). The associated errors are reported by

three standard measures are reported in Table 3. Convergence analysis via log-log plots of the

RMSE against the CPU time for Case I&II and t = 2, 5 is presented in Figure 6. We can observe

that, simulations are pretty fast with very tiny errors, which provides the numerical evidence of

accuracy and efficiency for our algorithms.
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Figure 5: Sensitivity analysis for the expected number of defaults E[Nt=5 | λ0] w.r.t. a and b based on the
parameters (δ, %; $̄;λ0) = (0.5, 0.5; 2.0; 0.5)

6.2 A Model with Contagion Threshold

In reality, each loss might not necessarily cause a contagion immediately throughout the entire

system. Contagionmay be only triggeredwhen the loss surpasses a certain high level, i.e. contagion

is likely to occur only in severe scenarios, which has also been reported in Elsinger et al. (2006).

This circumstance could be modelled by a mixture of Case I and II, by assuming that the sizes of

self-exciting jumps Xi satisfy

Xi = $i × (Li −Ki)
+, (6.3)
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Figure 6: Convergence analysis via the log-log plots of the RMSE v.s. the CPU time for Case I&II and
t = 2, 5: (δ, %; a, b;λ0) = (0.5, 0.5; 0.5, 2.0; 0.5) for Case I, and (δ, %; a, b; `, $̄;λ0) =
(0.5, 0.5; 0.5, 2.0; 8.0, 2.0; 0.5) for Case II

Table 3: Simulation results for Case I&II and time t = 2, 5: (δ, %; a, b;λ0) = (0.5, 0.5; 0.5, 2.0; 0.5) for
Case I, and (δ, %; a, b; `, $̄;λ0) = (0.5, 0.5; 0.5, 2.0; 8.0, 2.0; 0.5) for Case II

Case Paths True Simulation Error Error% RMSE CPU Time (sec)
Case I, t = 2 10,000 0.8161 0.8154 -0.0007 -0.08% 0.0094 5.00

40,000 0.8161 0.8151 -0.0010 -0.12% 0.0047 19.50
160,000 0.8161 0.8135 -0.0026 -0.31% 0.0024 80.13
640,000 0.8161 0.8159 -0.0001 -0.02% 0.0012 322.89
2,560,000 0.8161 0.8163 0.0003 0.03% 0.0006 1,280.63

Case I, t = 5 10,000 1.7090 1.7297 0.0207 1.21% 0.0152 9.66
40,000 1.7090 1.6993 -0.0097 -0.57% 0.0076 37.45
160,000 1.7090 1.7085 -0.0004 -0.02% 0.0038 148.38
640,000 1.7090 1.7079 -0.0010 -0.06% 0.0019 575.55
2,560,000 1.7090 1.7083 -0.0006 -0.04% 0.0009 2,291.14

Case II, t = 2 10,000 1.0000 0.9983 -0.0017 -0.17% 0.0128 5.94
40,000 1.0000 1.0054 0.0054 0.54% 0.0065 23.13
160,000 1.0000 1.0073 0.0073 0.73% 0.0032 92.63
640,000 1.0000 1.0000 0.0000 0.00% 0.0016 371.98
2,560,000 1.0000 0.9995 -0.0005 -0.05% 0.0008 1,489.06

Case II, t = 5 10,000 2.5000 2.5060 0.0060 0.24% 0.0263 13.06
40,000 2.5000 2.4964 -0.0036 -0.14% 0.0132 52.00
160,000 2.5000 2.4882 -0.0118 -0.47% 0.0065 201.44
640,000 2.5000 2.4972 -0.0028 -0.11% 0.0033 800.75
2,560,000 2.5000 2.4983 -0.0017 -0.07% 0.0016 3,197.61
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Table 4: Quantiles of the default number Nt=5, estimated from 106 replications based on the parameter set-
ting (δ, %; a, b; `, $̄;λ0) = (0.5, 0.5; 0.5, 2.0; 8.0, 2.0; 0.5), with homogenous contagion thresholds
K =∞, 1/8, 0, respectively

K
Quantile 5% 25% 50% 75% 95% Mean Min Max

∞ 0 1 1 2 5 1.7075 0 17
1/8 0 1 2 3 5 1.9417 0 22
0 0 1 2 4 8 2.5021 0 36

where Ki ≥ 0 is the contagion threshold (i.e. the threshold that triggers the contagion effect of

the ith loss Li), and the contagion has been partially capped. When a bank is more vulnerable, its

threshold is more easy to be reached. Alternatively, we may interpretKi as a capital buffer, and it

could be a certain quantile of the loss distribution Li. If we assign the same quantile to all banks,

it is equivalently meaning that, an identical economic capital applies to all banks, which is the

assumption made by Elsinger et al. (2006, p.1306-1308). If the magnitude of loss overshoots the

threshold, the bank may become insolvent, and this risk may then spread to other banks (through

the interbank market) resulting in a climb in the default intensity of the entire system (but would

not cause other banks default immediately). If the thresholds are very high comparing to the levels

of losses, then, it corresponds to a "weak contagion" environment; whereas if the thresholds are

very low, then, it is for a "strong contagion" environment.

With the contagion threshold, contagion could be partially or fully triggered. Here for numer-

ical illustration, we assume that, losses are exponentially distributed and the amplification multi-

pliers and contagion thresholds are homogeneous, i.e. Li ∼ Exp(`), ai ≡ $̄ and Ki ≡ K ≥ 0.

The expected default number can hardly capture the full picture of the risk, and we have to look at

the entire distribution. We chooseK =∞, 1/8, 0 and plot the estimated probability mass function

(PMF) of the total default number within the period of [0, t] in Figure 7, and the corresponding

quantiles are reported in Table 4. More specifically, CasesK =∞, 1/8, 0 correspond to the non-

contagion (i.e. Case I), partial contagion and full contagion (i.e. Case II), respectively. We can

clearly observe that, whenK decreases, the contagion would become more pronounced and the tail

of losses becomes heavier. The system could be more susceptible to contagion risk when capital

buffer K is eroded, and contagion effects magnify the content of risk. As summarised by Eisen-

berg and Noe (2001, p.1310), bank defaults may be driven by losses from market and credit risk

(i.e. fundamental default), and bank defaults may, however, also be initiated by contagion as a con-

sequence of other bank failures in the system (i.e. contagious default). The two types of defaults,

under our contagion model (i.e. the self-exciting jump sizes are not all equal to zeros), in fact, are

mixed and interacting with each other.
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Figure 7: Probabilitymass function (PMF) of the default numberNt=5, estimated from 106 replications based
on the parameter setting (δ, %; a, b; `, $̄;λ0) = (0.5, 0.5; 0.5, 2.0; 8.0, 2.0; 0.5), with homogenous
contagion thresholdsK =∞, 1/8, 0, respectively; the associated quantiles are reported in Table 4

6.3 A Model with Explosive Defaults

Contagion or feedback effects could be even further reinforced due to highly leveraged positions

(e.g. complicated credit derivatives), and the resulting system thereby becomes explosive, see dis-

cussions on the impacts of financial innovations in Corsi et al. (2016, p.1085). This scenario would

be extremely severe, rare but possible, i.e. the entire system is not stable and near the boundary

of crash. Mathematically, it corresponds to the non-stationary case when η < 0 in our models.

This may due to the "liquidity black holes" or "fire sales" of assets: it further depresses prices and

leads to a sharp drop in liquidity and may also bring other institutions to fail in a self-reinforcing

vicious spiral (?Krishnamurthy, 2010; Cont and Wagalath, 2013, 2016). All previous examples

were conducted under the stationary condition η > 0, and in fact our algorithms can also deal with

non-stationary cases. In Figure 8, we offer three representative examples of η = 1/4, 0,−1/2 (or

` = 8, 4, 2) for stationary, critical and explosive phases, respectively, and the associated quantiles

are reported in Table 5. In particular, η = 0 is the critical level of stability. The resulting loss

distributions could present heavy tails, which might be very desirable for many regulators and

practitioners.
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Figure 8: Probability mass function (PMF) of the default number Nt=5, estimated from 106 replications
based on the parameter setting (δ, %; a, b; $̄;λ0) = (0.5, 0.5; 0.5, 2.0; 2.0; 0.5), with ` = 8, 4, 2,
respectively; the associated quantiles are reported in Table 5

Table 5: Quantiles of the default numberNt=5, estimated from 106 replications based on the parameter setting
(δ, %; a, b; $̄;λ0) = (0.5, 0.5; 0.5, 2.0; 2.0; 0.5), with ` = 8, 4, 2, respectively

`
Quantile 5% 25% 50% 75% 95% Mean Min Max

8 0 1 2 4 8 2.4969 0 40
4 0 1 2 5 15 4.0628 0 130
2 0 1 4 16 73 15.5662 0 743
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6.4 Other Models

In fact, our models and the associated algorithms could be further extended in several other direc-

tions. Due to the space limit, we briefly discuss as follows.

• A model with credit improvement: In this setup, we allow for the possibility of credit

improvement or relief. For example, when a big loss occurs, a rescue plan may be released

such as a "bailout" or a large cash injection into the system to ensure liquidity provision. This

might significantly enhance the financial system in a relatively short term, and the intensity

level may have an immediate decline instead of a climb, i.e.,

λTi = diλT−
i
, (6.4)

where di > 0 is a multiplier (which could be assumed to be a positive random variable). This

model allows the intensity to jump in two sides, which can be simply generated by replacing

(3.14) in the Step 4 of Algorithm 3.3 by (6.4).

• A model with structure breaks: A severe financial failure could make a large impact to

the entire economic environment. For example, the collapse of the U.S. investment banking

giant Lehman Brothers in Fall 2008marked a clear tipping point of the entire financial market

around the world. This would immediately act on the default intensity process and cause a

structure break for the whole financial system. To model this pattern, we have to go beyond

the original definition of the underlying intensity process (2.2), but our algorithms still can

handle it easily, i.e. after each self-exciting jump, all parameters Θ afterward can be resetted

to mimic a structure break. We can assign a new parameter set Θi immediately after the ith

defaults. Θi could depend on the value of the size of the ith self-exciting jump Xi, or, even

its whole history. So, the underlying intensity process (2.2) should be redefined locally based

on the interarrival intensity (2.1) between two successive default times rather than globally

throughout the positive real line t ∈ R+. Let us illustrate a simple example, say, there

are two economic states after each self-exciting jump, one may correspond to a deteriorating

economic environment and the other is to an improved one. We can use the parameter settings

of Θ1 and Θ2 to model these two states respectively. We can choose one to be stable (i.e.

stationary case η > 0) and the other to be unstable (i.e. non-stationary case η > 0). Then, the

entire system could shift between locally stable and locally explosive phases. Analysis for

contagion risk based on the stability of branching processes and allowing for a shift between

two phases can also be found in Caccioli et al. (2014) and Corsi et al. (2016).
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• A model with multiple exogenous risk drivers: In practice, there may be multiple risk

factors, such as sector-wide or market-wide events, commonly shared by all institutions.

Multi-factor models then are required for modelling intensity processes, see e.g. Duffie and

Gârleanu (2001), Das et al. (2007) and Longstaff and Rajan (2008). We could use a su-

perposition of OU intensity processes driven by different gamma processes to capture the

corresponding multiple risk factors13. Accordingly, our algorithms may be extendable to

this version by using the superposition theory of point processes (Daley and Vere-Jones,

2003, Theorem 2.4.VI).

• A model with multilateral contagion: Contagion not only occurs within one market (or

system, network) but could also spread across different markets. For example, when the

loss contagion and investors’ fears occur in the options market, it may also spread to the

market of the underlying equity or futures on which the options are written. This type of

contagion can be captured by adding mutually-exciting jumps. Similar as the multivariate

Hawkes process, a multi-dimensional Γ-contagion process has to be developed to capture

self-contagion effects for each individual, as well as the mutual contagion effects among

them.

7 Conclusion

In this paper, we have introduced a new family of self-exciting jump processes whose intensities

are driven by non-Gaussian OU processes, namely, Lévy-driven contagion processes. Backed by

the very large family of Lévy subordinators, it indeed offers much richer choices beyond the clas-

sical Hawkes process for modelling the "contagion" of event arrivals in a continuous-time setup in

finance, economics and many other fields. We have derived some important distributional proper-

ties of these new processes which lead to an exact simulation framework in general. In particular,

we have developed exact simulation algorithms by decomposition approach for the gamma and

tempered stable cases as typical examples. The algorithms are accurate and efficient which have

been numerically verified and tested by extensive numerical experiments. We also provide applic-

ations to portfolio risk management, which again illustrate the efficiency, accuracy, applicability

and flexibility of our algorithms. As a class of reduced-form models, it could be easily extended

to pricing financial derivatives, particularly multiple-name credit products (e.g. collateralized debt

obligations and mortgage-backed securities). It can be employed empirically when input data is

available for parameter calibration. Furthermore, it could be widely applied to many other areas,
13Similarly, the superposition of OU stochastic volatility processes was proposed in Barndorff-Nielsen (2001) and

Barndorff-Nielsen and Shephard (2001b, 2002).
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for example, to describe high-frequency trading data in market microstructure, claim arrivals for

an insurance portfolio, or jump propagation, disclosure dynamics in financial markets (?). Their

statistical inference and econometric analysis for this new framework, and further extensions to

multidimensional point processes for modelling multilateral contagion, as well as further applica-

tions and empirical work for portfolio credit risk analysis, could be very interesting and meaningful

topics for future research.
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Appendices

A Basic Distributional Properties

In this section, we derive some basic distributional properties such as Laplace transforms and means to

characterise this new family in general. The means will also be used for validating the associated simulation

algorithms. First, let us provide the Laplace transform of intensity process as below.

Proposition A.1 (Laplace Transform of Intensity Process). Under the condition δ > µG, i.e. η > 0, the

Laplace transform of λt+s conditional on λt is given by

E
[
e−vλt+s | λt

]
= exp

Ö
−G−1v (s)λt − %

v∫
G−1
v (s)

Φ(u)

δu+ ĝ(u)− 1
du

è
, s > 0, (A.1)

where G−1v (·) is the well-defined inverse function of

Gv(x) :=

v∫
x

[
δu+ ĝ(u)− 1

]−1
du. (A.2)

The Laplace transform of the asymptotic and stationary intensity process is given by

lim
t→∞

E
[
e−vλt

]
= exp

Ñ
−%

v∫
0

Φ(u)

δu+ ĝ(u)− 1
du

é
. (A.3)
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Proof. The infinitesimal generator of (λt, Nt, t) acting on any function f(λ, n, t) within its domain Ω(A)

is given by

Af(λ, n, t) =
∂f

∂t
− δλ∂f

∂λ
+ %


∞∫
0

ï
f(λ+ z, n, t)− f(λ, n, t)

ò
ν(dz)


+λ

 ∞∫
0

f(λ+ y, n+ 1, t)dG(y)− f(λ, n, t)

 , (A.4)

see more details on using infinitesimal generators in Davis (1984, 1993) and Duffie et al. (2003). Using

the martingale approach similarly as Dassios and Zhao (2011, Theorem 3.2, p.819-821), it is easy to obtain

(A.1). Note that, we have G−1v (t) → 0 when t → ∞, then, the Laplace transform becomes independent of

the time and the initial intensity, so we have (A.3).

Note that, the interarrival intensity process, i.e, the intensity process between two consecutive self-

exciting jumps (excluding self-exciting jumps), is simply a Lévy-driven OU process. Hence, given the arrival

times {Ti}i=1,2,..., the Laplace transform of λTi+s conditional on the intensity level λTi for any fixed time

s within the time period (0, Ti+1 − Ti) can be expressed more nicely as below, by setting ĝ(u) = 1 in (A.1)

to eliminate all self-exciting jumps.

Corollary A.1 (Laplace Transform of Interarrival Intensity Process). Given the ith and the (i+1)th arrival

times Ti and Ti+1 respectively, the Laplace transform of λTi+τ conditional on λTi is given by

E
[
e−vλTi+τ | λTi

]
= exp

Ñ
−ve−δτλTi −

%

δ

v∫
wv

Φ(u)

u
du

é
, τ ∈ (0, Ti+1 − Ti) .

The mean of point process is provided in Proposition 2.1 with the proof as below.

Proof. The mean of Nt+s conditional on Nt and λt immediately follows by calculating

E [Nt+s | Nt, λt] = Nt + E

 t+s∫
s

λudu | λt

 = Nt +

t+s∫
s

E [λu | λt] du,

where

E[λt+s | λt] =


%µZ
η

+

Å
λt −

%µZ
η

ã
e−ηs, η 6= 0,

λt + %µZs, η = 0,

which can be derived by differentiating the conditional Laplace transform (A.1).
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B A/R Scheme for Exact Simulation of Random VariableW

Algorithm B.1 (A/R Scheme forW ). The random variableW with density

fW (u) =
1

Cw

lnu

ϑu− 1
δ

1{1, 1
w}, (B.1)

can be exactly simulated by the following A/R procedure:

1. Generate a random variable

Ee = w−
√
U0 , U0 ∼ U[0, 1]; (B.2)

2. Generate a standard uniform random variable U ∼ U[0, 1];

3. If

U ≤ bEe

ϑEe − 1
δ

,

then, accept and setW = Ee; Otherwise, reject this candidate and go back to Step 1.

Proof. Note that,

ϑu− 1

δ
= bu+

1

δ
(u− 1) ≥ bu, u ∈

ï
1,

1

w

ò
,

then, we have

fW (u) =
1

Cw

lnu

ϑu− 1
δ

≤ 1

Cw

lnu

bu
.

The density function of the envelop Ee is

fEe(u) =
1

Ew

lnu

u
, Ew :=

1

2
ln2 w, u ∈

ï
1,

1

w

ò
,

and the CDF is

FEe(u) =

Å
lnu

lnw

ã2
, u ∈

ï
1,

1

w

ò
,

which has the analytic inverse

F−1Ee
(x) = w−

√
x, x ∈ [0, 1].

Therefore, we have

fW (u)

fEe(u)
=

1
Cw

lnu
ϑu− 1

δ

1
Ew

lnu
u

≤
1
Cw

lnu
bu

1
Ew

lnu
u

=
1

b

Ew
Cw

=
ln2 w

2bCw
:= c̄w,

and the acceptance condition for the A/R scheme is

U ≤ 1

c̄w

fW (Ee)

fEe(Ee)
= b

Ee

ϑEe − 1
δ

.
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C A/R Scheme for Exact Simulation of Random Variable V

Algorithm C.1 (A/R Scheme for V ). The random variable V with density (4.19) can be exactly simulated

by the following A/R procedure:

1. Generate a random variable

Ee =

ß
1

2

ï(
αCwU3 + 2

)
+

√(
αCwU3 + 2

)2 − 4

ò™ 1
α

, U3 ∼ U[0, 1], (C.1)

where

Cw =
1

α

(
w−α + wα − 2

)
.

2. Generate a standard uniform random variable U4 ∼ U[0, 1].

3. If

U4 ≤
β1−α

Eα−1e − E−1−αe

1− E−αe(
κEe − 1

δ

)1−α ,
then, accept and set V = Ee; Otherwise, reject this candidate and go back to Step 1.

Proof. The density of V in (4.19) can be rewritten by

fV (u) =
1

Dw

1

κ1−α
1− u−α(
u− 1

δκ

)1−α , u ∈
ï
1,

1

w

ò
.

By introducing a constant ξ such that

ξ ≥ u1−α(
u− 1

δκ

)1−α , ∀u ∈
ï
1,

1

w

ò
,

we have

fV (u) <
1

Dw

ξ

κ1−α

î
u−(1−α) − u−(1+α)

ó
, ∀u ∈

ï
1,

1

w

ò
.

Since the function u1−α

(u− 1
δκ )

1−α is a strictly decreasing function of u ∈
[
1, 1

w

]
, i.e.

d

du

[
u1−α(

u− 1
δκ

)1−α
]

= (α− 1)
1

δκ
u−α
Å
u− 1

δκ

ãα−2
< 0,

we have ξ ≥
Ä
κ
β

ä1−α
for any u ∈

[
1, 1

w

]
, and then,

ξ ≥ max
1≤u≤ 1

w

{
u1−α(

u− 1
δκ

)1−α
}

=

Å
κ

β

ã1−α
.

We choose Ee to be the envelop random variable with density

gEe(u) =
1

Cw

î
u−(1−α) − u−(1+α)

ó
, u ∈

ï
1,

1

w

ò
.
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Its CDF is

FEe(u) =
1

αCw

(
u−α + uα − 2

)
, u ∈

ï
1,

1

w

ò
,

which has an explicit inverse function

F−1Ee
(x) =

ß
1

2

ï(
αCwx+ 2

)
+

√(
αCwx+ 2

)2 − 4

ò™ 1
α

, x ∈ [0, 1] .

Hence, Ee can be exactly simulated via the explicit inverse transform (C.1). Setting ξ =
Ä
κ
β

ä1−α
, we have

the acceptance rate (i.e. the expected number of candidates generated until one is accepted)

c̄w =
ξ

κ1−α
Cw
Dw

= β1−α Cw
Dw
≥ fV (u)

gEe(u)
.

We have also carried out some numerical tests for Algorithm C.1 and have found that it can achieve a

high level of efficiency and accuracy. For example, it only takes about 7 seconds to generate 106 replications

with percentage error 0.1% for the parameter setting (δ, %, α, β, θ) = (0.5, 1, 0.9, 0.2, 0.25).

D Backward Recursive (BR) Scheme for Stable Index α = 1/4

AlgorithmD.1 (BackwardRecursive (BR) Scheme). For simulating one random variable ofTS
(
α = 1

4 , β, θ
)
:

1. Simulate an IG random variable

S2 ∼ IG

(
2θβ−

1
4 Γ

Å
3

4

ã
, 8θ2Γ2

Å
3

4

ã)
;

2. Conditional on one realisation of S2, simulate another IG random variable

S1 | S2 ∼ IG

(
1

2
β−

1
2S2,

1

2
S2
2

)
;

3. The resulting random variable S1 is exactly equal in distribution to TS
(
α = 1

4 , β, θ
)
.

Note that, IG random variables can be very efficiently simulated without A/R mechanism using the

classical algorithm developed by Michael et al. (1976). See the proof of this algorithm and other choices of

the stable index α in Dassios et al. (2018).

E Simple Stable Rejection (SSR) Scheme

Algorithm E.1 (Simple Stable Rejection (SSR) Scheme). For simulating one random variable TS ∼

TS(α, β, θ):
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1. Generate a stable random variable S(α, θ) via

S(α, θ)
D
=
(
− θΓ(−α)

) 1
α

sin
(
αUs + 1

2πα
)(

cos (Us)
) 1
α

ñ
cos
(
(1− α)Us − 1

2πα
)

Es

ô 1−α
α

, (E.1)

where Us ∼ U
[
− 1

2π,
1
2π
]
, Es ∼ Exp(1), and they are independent;

2. Generate a uniformly distributed random variable U ∼ U[0, 1];

3. If U ≤ e−βS(α,θ), then, accept and set TS = S(α, θ); otherwise, reject and go back to Step 1.
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