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Abstract

Conjoint analysis is a common tool for studying political preferences. The method disen-
tangles patterns in respondents’ favorability toward complex, multidimensional objects, such
as candidates or policies. Most conjoints rely upon a fully randomized design to generate
average marginal component effects (AMCEs). These measure the degree to which a given
value of a conjoint profile feature increases, or decreases, respondents’ support for the overall
profile relative to a baseline, averaging across all respondents and other features. While the
AMCE has a clear causal interpretation (about the effect of features), most published conjoint
analyses also use AMCEs to describe levels of favorability. This often means comparing AM-
CEs among respondent subgroups. We show that using conditional AMCEs to describe the
degree of subgroup agreement can be misleading as regression interactions are sensitive to the
reference category used in the analysis. This leads to inferences about subgroup differences in
preferences that have arbitrary sign, size, and significance. We demonstrate the problem us-
ing examples drawn from published articles and provide suggestions for improved reporting
and interpretation using marginal means and an omnibus F-test. Given the accelerating use of
these designs in political science, we offer advice for best practice in analysis and presentation
of results.
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One aspect of the dramatic increase in the use of experiments within political sci-

ence (Druckman et al., 2006; Mutz, 2011) is the establishment of conjoint experimen-

tal designs as a prominent methodological tool. While survey experiments have tra-

ditionally examined just one or two factors that might shape outcomes (see, for re-

views, Gaines, Kuklinski, and Quirk, 2007; Sniderman, 2011), conjoint designs allow

researchers to study the independent effects on preferences of many features of com-

plex, multidimensional objects. These include many different types of phenomena,

such as political candidates (Campbell et al., 2016; Teele, Kalla, and Rosenbluth, 2018),

immigrant admissions (Hainmueller and Hopkins, 2015; Bansak, Hainmueller, and

Hangartner, 2016; Wright, Levy, and Citrin, 2016), and public policies (Gallego and

Marx, 2017; Hankinson, 2018). Factorial designs of this sort have a long history, but the

driving force behind this use of conjoint analysis has been the introduction by Hain-

mueller, Hopkins, and Yamamoto (2014) of a small-sample, fully randomized conjoint

design. The associated analytic approach emphasizes a single quantity of interest:

the average marginal component effect (AMCE). By capturing the multidimensional-

ity of target objects, the randomized conjoint design breaks any explicit, or implicit,

confounding between features of these objects. This gives the AMCE a clear causal

interpretation: the degree to which a given value of a feature increases, or decreases,

respondents’ favorability towards a packaged conjoint profile relative to a baseline.

While randomization of profile features gives the AMCE a causal interpretation,

most published conjoint analyses in political science use AMCEs not only for causal

purposes (interpreting AMCEs as effect sizes), but also for descriptive purposes. The

aim is to map levels of favorability toward a multidimensional object across its var-

ious features.1 In this sense, conjoints are often applied like list experiments, using

randomization to measure a sample’s preferences over something difficult to measure

with direct questioning. A positive AMCE for a given feature can be read as a descrip-

tive measure of high favorability towards profiles with that feature. The quantity is

causal, but it is often read descriptively.

1See Shmueli (2010) for an elaboration on the distinctions between explanatory (causal) modelling,
descriptive modelling, and predictive modelling.
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This is particularly the case for subgroup analyses of conjoint experiments. Such

exercises are an increasingly common feature of experimental analysis (Green and

Kern, 2012; Ratkovic and Tingley, 2017; Grimmer, Messing, and Westwood, 2017; Egami

and Imai, 2018). For example, the Hainmueller, Hopkins, and Yamamoto (2014) study

of immigration attitudes splits the sample in two using a measure of ethnocentrism

and then compares AMCEs for the two subgroups. Similarly, Bansak, Hainmueller,

and Hangartner (2016) compare preferences toward immigrants across number of bi-

nary respondent characteristics: age, education, left-right ideology, and income. Other

examples abound. Ballard-Rosa, Martin, and Scheve (2016) compare preferences over

tax policies across a number of subgroups defined by demographics and political ori-

entations; Bechtel and Scheve (2013) compare AMCEs on climate agreements across

four different countries, and across subgroups of respondents; and Teele, Kalla, and

Rosenbluth (2018) compare AMCEs for features of male and female political candi-

dates among male and female respondents. Most of these comparisons are visual or

informal. But some involve explicit estimation of the subgroup difference, such as

when Kirkland and Coppock (2017) compare conditional AMCEs across hypothetical

partisan and nonpartisan elections. Interpretation of subgroup AMCEs thus involves

an implied quantity of interest: the difference between two conditional AMCEs.

What is not necessarily obvious in such analyses is that differences-in-preferences

(that is to say, the difference in degree of favorability toward profiles containing a

given feature) are not directly reflected in subgroup differences-in-AMCEs. A differ-

ence in effect sizes is distinct from a difference in preferences. We show that a dif-

ference in two (or more) subgroups’ favorability toward a conjoint feature — like a

difference in willingness to support a particular type of immigrant between high and

low ethnocentrism respondents — is only rarely reflected in the difference-in-AMCEs.

In fact, no information about the similarity of the subgroups’ preferences is provided

by comparisons of subgroup AMCEs, yet such comparisons are commonly made in

practice.

As we will show, where preferences in subgroups toward the experimental ref-
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erence category are similar, the difference-in-AMCEs conveys preferences reasonably

well. The problem occurs when preferences between subgroups diverge in the refer-

ence category. Here, the difference-in-AMCEs is a misleading representation of un-

derlying patterns of favorability. Given most published conjoint studies report re-

sults based upon reference categories chosen for substantive reasons about the nature

or meaning of the levels rather than the configuration of preferences revealed in the

experiment, difference-in-AMCEs should not be assumed to be interpretable as dif-

ferences in subgroup preferences. The root of this error is likely familiar to many

researchers: it is simply a matter of regression specification for models involving inter-

actions between categorical regressors. Egami and Imai (2018), for example, provide

an extensive discussion of the implications of this property for interpreting causal in-

teractions between randomized features of conjoint profiles. The state of the published

literature would suggest the problem remains non-obvious when applied to descrip-

tive analysis of subgroups in conjoint designs.2

In what follows, we demonstrate the challenges of conjoint analysis and remind

readers of how reference category choice for profile features creates problems for com-

paring conditional AMCEs across respondent subgroups. We show how the use of

an arbitrary reference category means the size, direction, and statistical significance of

differences-in-AMCEs have little relationship to the underlying degree of favorability

of the subgroups toward profiles with particular features. Reference category choices

can make similar preferences look dissimilar and dissimilar preferences look similar.

We demonstrate this with examples drawn from the published political science litera-

ture (namely experiments by Hainmueller, Hopkins, and Yamamoto 2014; Bechtel and

Scheve 2013; Teele, Kalla, and Rosenbluth 2018). The paper then provides suggestions

for improved conjoint reporting and interpretation based around two quantities of in-

terest drawn from the factorial experimentation literature: (a) unadjusted marginal

means, a quantity measuring favorability toward a given feature, and (b) an omnibus

2Since this manuscript has been under review, we have been made aware of one working paper by
Clayton, Ferwerda, and Horiuchi (2018), on the topic of immigration preferences, that correctly notes
the need to address the arbitrary reference category in order to compare subgroup preferences.
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F-test, measuring differences therein. Software for the R programming language to

support our findings — and that can be used to examine sensitivity of conjoint analysis

to reference category selection, calculate AMCEs and marginal means, perform sub-

group analyses, and test for subgroup differences in any conjoint experiment (Leeper,

2018) — is demonstrated throughout using example data (Leeper, Hobolt, and Tilley,

2019). We conclude with advice for best practices in the analysis and presentation of

conjoint results.

Quantities of Interest in Conjoint Experiments

Conjoint analysis serves two purposes. One is to assess causal effects. Another is

preference description.3 In causal inference, fully randomized conjoints provide a de-

sign and analytic approach that allows researchers to understand the causal effect of a

given feature on overall support for a multidimensional object, averaging across other

features of the object included in the design. Such inferences can be thought of as state-

ments of the form: “shifting an immigrant’s country of origin from India to Poland

increases favorability by X percentage points.” In descriptive inference, conjoints pro-

vide information about both (a) the absolute favorability of respondents toward objects

with particular features or combinations of features, and (b) the relative favorability of

respondents toward an object with alternative combinations of features. Such infer-

ences can be thought of as statements of the form “Polish immigrants are preferred

by X% of respondents” or “Polish immigrants are more supported than Mexican im-

migrants, by X percentage points.” Thus both causal and descriptive interpretations

of conjoints are based upon the distribution of preferences across profile features and

differences in preferences across alternative feature combinations.

Analytically, a fully randomized conjoint design without constraints between pro-

file features is simply a full-factorial experiment (with some cells possibly, albeit ran-

3Here we use “preference” as Hainmueller, Hopkins, and Yamamoto (2014) do: that is, as a statement
of favorability or support for a profile, not the more narrow economic definition of a strict rank ordering
of objects by favorability.
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domly, left unobserved). All quantities of interest relevant to the analysis of conjoint

designs therefore derive from combinations of cell means, marginal means, and the

grand mean, as in the traditional analysis of factorial experiments. In a forced choice

conjoint design, the grand mean is by definition 0.5 (i.e., 50% of all profiles shown are

chosen and 50% are not chosen). Cell means are the mean outcome for each particular

combination of feature levels. In the full-factorial design discussed by Hainmueller,

Hopkins, and Yamamoto (2014) and now widely used in political science, many or

perhaps most cell means are unobserved. For example, in their candidate choice ex-

periment, there are 2 ∗ 6 ∗ 6 ∗ 6 ∗ 2 ∗ 6 ∗ 6 ∗ 6 = 186, 624 cell means, but only 3,466

observations. About 98% of cell means are unobserved. While this would be prob-

lematic for attempting to infer pairwise comparisons between cells, conjoint analysts

mostly focus on the marginal effects of each feature rather than more complex interac-

tions. Appendix A provides detailed notation and elaborations of these definitions of

quantities of interest.

In fully randomized designs, the average marginal component effects (AMCEs)

are simply marginal effects of changing one feature level to another, all else constant.

AMCEs therefore depend only upon marginal means: that is the column and row mean

outcomes for each feature level averaging across all other features. A marginal mean

describes the level of favorability toward profiles that have a particular feature level,

ignoring all other features. For example, in the common forced-choice design with two

alternatives, marginal means have a direct interpretation as probabilities. A marginal

mean of 0 indicates respondents select profiles with that feature level with probability

P(Y = 1|X = x) = 0. While a marginal mean of 1 indicates respondents select profiles

with that feature level with probability P(Y = 1|X = x) = 1, where Y is a binary

outcome and X is a vector of profile features.4 With rating scale outcomes, marginal

4It is not possible for the marginal mean to equal zero or one if pairs of profiles shown together are
allowed to have the same level of a given feature (for example, both immigrants are from Germany). In-
stead, the marginal mean can range from the probability of co-occurrence to 1 minus that probability. If
there are five levels of a feature, each shown with equal probability, then the probability of co-occurrence
is 1

5 ∗
1
5 = 0.04 such that the marginal mean can take values in the range (0.04, 0.96). If the design is

constrained so that features cannot be the same for both immigrants, then the marginal means fully
range from zero to one. This constraint on the range of the marginal means also constrains the range of
AMCEs. Notably, many conjoints provide features with only two levels, such as the male-versus-female
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Figure 1: Replication of Hainmueller et al. (2014) Candidate Experiment using AMCEs
and MMs
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means can vary arbitrarily along the outcome scale used.

Because levels of features are randomly assigned, pairwise differences between

two marginal means for a given feature (e.g., between candidates who are male versus

female) have a direct causal interpretation. For fully randomized designs, the AMCE

proposed by Hainmueller, Hopkins, and Yamamoto (2014) is equivalent to the aver-

age marginal effect of each feature level for a model where each feature is converted

into a matrix of indicator variables with one level left out as a reference category. This

is no different from any other regression context wherein one level of any categori-

cal variable must be omitted from the design matrix in order to avoid perfect multi-

candidate feature examined by Teele, Kalla, and Rosenbluth (2018) or Hainmueller, Hopkins, and Ya-
mamoto (2014) in their conjoints on candidate choice. In such cases, the probability of co-occurrence is
1
2 ∗

1
2 = 0.25 bounding the AMCE for female (as opposed to male) candidates to the range (−0.5, 0.5)

if both candidates can have the same sex. Caution is therefore needed in comparing the relative size of
features with few levels to features with many levels given that effects have different bounds.
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collinearity.5 This close relationship between AMCEs and marginal means is visible in

Figure 1 which presents a replication of the AMCE-based analysis of the Hainmueller

et al. candidate experiment (left panel) and an analogous examination of the results

using marginal means (right panel). Note, in particular, how marginal means convey

information about the preferences of respondents for all feature levels while AMCEs

definitionally restrict the AMCE for the reference category to zero (or undefined). For

example, the AMCE for a candidate serving in the military is 0.09 (or a 9-percentage

point) increase in favorability, reflecting marginal means for serving and non-serving

candidates of 0.46 and 0.54, respectively. Similarly, the zero effect size for candidate

gender reflects identical marginal means for male and female candidates (0.50 in each

case). AMCEs in fully randomized designs are simply differences between marginal

means at each feature level and the marginal mean in the reference category, ignoring

other features.

The AMCE is often described as an estimate of the relative favorability of profiles

with counterfactual levels of a feature. For example, Teele, Kalla, and Rosenbluth

(2018) summarize their conjoint on public support “female candidates are favored

[over men] by 7.3 percentage points” (6). Similarly, Hainmueller, Hopkins, and Ya-

mamoto (2014) describe some of the results of conjoint on preferences toward political

candidates:

We also see a bias against Mormon candidates, whose estimated level of

support is 0.06 (SE = 0.03) lower when compared to a baseline candidate with

no stated religion. Support for Evangelical Protestants is also 0.04 percentage

points lower (SE = 0.02) than the baseline. (19)

These examples make clear that despite the causal inference potentially provided by

the AMCE, the quantity of interest is frequently used to provide a characterization of

a preferences that has a distinctly descriptive flavor about the relative levels of support

5In designs that entail constraints between profile features, the average marginal effect is a weighted
average of effects across each combination of the constrained features where the weights on the effects
are arbitrary but typically uniform. We ignore this distinction in the remainder of this article, as all of
our results apply equally to fully randomized and to constrained designs.
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across profiles and also across subgroups of respondents. Indeed, this style of descrip-

tion is widespread in conjoint analyses. This use of conjoints to provide descriptive

inferences about patterns of preferences is important because AMCEs are defined as

relative quantities, requiring that patterns of preferences are expressed against a base-

line, reference category for each conjoint feature. A positive AMCE is read as higher fa-

vorability but it is only higher relative to whatever category serves as the baseline. For

example, in the Hainmueller, Hopkins, and Yamamoto candidate example, choosing

a non-religious candidate as a baseline and interpreting the resulting AMCES means

that the differences between other pairs of marginal means (e.g., evaluations of Mor-

mon and Evangelical candidates) are not obvious. The negative direction, and the size,

of the AMCEs for Mormon and Evangelical candidates would be different if the least-

liked category of Mormons were the reference group. More trivially, Teele, Kalla, and

Rosenbluth (2018) describe their comparisons about public preferences for female can-

didates relative to male candidates, but could have equivalent described patterns of

equal size but opposite sign comparing preferences over male relative to female can-

didates. Appendix B includes some additional illustrations of this point for interested

readers.

Consequences of Arbitrary Reference Category Choice

How do researchers decide which of tens of thousands of possible experimental cells

should be selected as the reference category? Examining recently published conjoint

analyses, it appears that the choice of reference category is either arbitrary or based

upon substantive intuition about the meaning of feature levels. For example, Hain-

mueller, Hopkins, and Yamamoto (2014) choose female immigrants as a baseline in

their immigration experiment, thus providing an estimate of the AMCE of being male,

while Teele, Kalla, and Rosenbluth (2018) choose male candidates as a baseline in their

conjoint, thus providing an estimate of the AMCE of being female. The choice is

seemingly innocuous. Sometimes choices of reference category appear to be driven
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by substantive knowledge: on language skills of immigrants in their immigration ex-

periment, Hainmueller, Hopkins, and Yamamoto (2014) choose fluency as a baseline;

on the prior trips to the US feature, “never” is chosen as the baseline.

While seemingly arbitrary and innocuous, the choice of reference category can

provide highly distorted descriptive interpretations of preferences among subgroups

of respondents. This occurs when researchers examine conditional AMCEs, wherein

AMCEs are calculated separately for subgroups of respondents and those conditional

estimates are directly compared (Hainmueller, Hopkins, and Yamamoto, 2014, 13).

Conditional AMCEs convey the causal effect of an experimental factor on overall fa-

vorability among the subgroup of interest. Consider, for example, a two-condition

candidate choice experiment where Democratic and Republican respondents are ex-

posed to either a male or female candidate and opinions toward the candidate serve

as the outcome. It is reasonable to imagine that effects of candidate sex might differ

for the two groups and therefore to compare the size of treatment between the two

groups. Perhaps Democrats are more responsive to candidate sex than are Republi-

cans, making the causal effect larger for Democrats than Republicans. When conjoint

analysts engage in subgroup comparisons, they are engaging in this kind of search for

heterogeneous treatment effects across subgroups, but across a much larger number

of experimental factors.

As Table 1 shows, discussions of conditional AMCEs in conjoint analyses often

compare the size, and direction, of subgroup causal effects. Given the common prac-

tice of descriptively interpreting conjoint experimental results, such subgroup analy-

ses seem perfectly intuitive. The set of subgroups listed in the last column of Table 1

contains some unsurprising covariates, such as partisanship, that are of obvious the-

oretical interest in almost any study of individual preferences. If interpreted as a dif-

ference in the size of the causal effect for two groups, such comparisons are perfectly

consistent with more traditional experimental analysis and a perfectly acceptable in-

terpretation of the conjoint results.

Yet, just as analysis of full sample conjoint data is often descriptive in nature, it
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Table 1: Uses of Subgroup Analysis Published in Political Science Journals

Paper Journal Topic Subgroup Comparisons

Bechtel and Scheve (2013) PNAS Climate agreement prefer-
ences

Environmentalism and Inter-
national Reciprocity Attitudes

Franchino and Zucchini (2014) PSRM Candidate preferences Political Interest, Left-right
self-placement

Hainmueller, Hopkins, and
Yamamoto (2014)

Political Analysis Immigration preferences Ethnocentrism

Hansen, Olsen, and Bech
(2014)

Politcal Behavior Policy preferences Partisanship

Carlson (2015) World Politics Candidate preferences Co-ethnicity

Bansak, Hainmueller, and
Hangartner (2016)

Science Immigration preferences Left-right self-placement, age,
education, income

Ballard-Rosa, Martin, and
Scheve (2016)

JOP Tax preferences Various

Campbell et al. (2016) BJPS Candidate preferences Partisanship

Carnes and Lupu (2016) APSR Candidate preferences Partisanship

Mummolo (2016) JOP News selection Various

Vivyan and Wagner (2016) EJPR Candidate preferences Political attitudes

Mummolo and Nall (2017) JOP Mobility preferences Partisanship

Bechtel, Genovese, and Scheve
(2017)

BJPS Climate agreement prefer-
ences

Employment sector emissions

Bechtel, Hainmueller, and
Margalit (2017)

EJPR International bailout prefer-
ences

Various

Gallego and Marx (2017) J. European Public Policy Labor market policy Left-right self-placement

Kirkland and Coppock (2017) Political Behavior Candidate preferences Partisanship

Sen (2017) PRQ Judicial candidate preferences Partisanship

Sobolewska, Galandini, and
Lessard-Phillips (2017)

J. Ethnic & Migration Studies Immigrant integration Various

Eggers, Vivyan, and Wagner
(2018)

JOP Candidate preferences Sex

Hankinson (2018) APSR Housing policy preferences Various

Oliveros and Schuster (2018) CPS Bureaucrat candidate prefer-
ences

Various

Teele, Kalla, and Rosenbluth
(2018)

APSR Candidate preferences Sex, Partisanship

Carey et al. (2018) Politics, Groups, and Identities Hiring preferences Various

All articles in this table use subgroup conditional AMCEs to make inferences about
differences in preferences between subgroups.
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is also the case that conjoint analysts frequently interpret differences in conditional

AMCEs descriptively rather than causally. For example, in one analysis Hainmueller,

Hopkins, and Yamamoto (2014) visually compare the pattern of AMCEs among high-

and low-ethnocentrism respondents and interpret that “the patterns of support are

generally similar for respondents irrespective of their level of ethnocentrism” (22).

Ballard-Rosa, Martin, and Scheve (2016) make similar comparisons in their tax policy

conjoint: “While there are few strong differences in preferences for taxing the lower

three income groups (the ‘hard work’ group has slightly lower elasticities for taxing

the poor), there are strong differences in preferences for taxing the rich” (12). In the

Bechtel and Scheve (2013) conjoint on support for international climate change agree-

ments in the United States, United Kingdom, Germany, and France, they summarize

their results as “We find that individuals in all four countries largely agree on which

dimensions are important and to what extent” (13765). In these examples, the differ-

ences between conditional AMCEs are used as a way of descriptively characterizing

differences in preferences (i.e. levels of support) between the groups rather than differ-

ences in causal effects on preferences in the groups.

The selection of a reference category, while earlier an innocuous analytic decision,

becomes substantially consequential for a descriptive reading of conditional AMCEs.

Most obviously, using AMCEs descriptively prevents any description of the levels of

favorability in the reference category. It can also lead to misinterpretations of pat-

terns in preferences. AMCEs are relative, not absolute, statements about preferences.

As such, there is simply no predictable connection between subgroup causal effects

and the levels of underlying subgroup preferences. Yet analysts and their readers

frequently interpret differences in conditional AMCEs as differences in underlying

preferences. AMCEs do provide insight into the descriptive variation in preferences

within-group and across-features, and conditional AMCEs do estimate the size of

causal effects of features within groups. But AMCEs cannot provide direct insight into

the pattern of preferences between groups because they do not provide information

about absolute levels of favorability toward profiles with each feature (or combination
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of features).

This additional information matters. Consider again the simple two-condition ex-

periment in which the effect of a male as opposed to female candidate, x ∈ 0, 1, is

compared across a single two-category covariate, z ∈ 0, 1 such as Democratic or Re-

publican self-identification. Subgroup regression equations to estimate effects for each

group are:

ŷ = β0 + β1x + ε, ∀z = 0

ŷ = β2 + β3x + ε, ∀z = 1

The effect of x when z = 0 is given by β1. The effect of x when z = 1 is given by

β3. These are, in essence, the conditional AMCEs in a conjoint analysis. Yet the dif-

ference in AMCEs (β3 − β1) is not equal to the difference in preferences between the

two groups, which is ȳz=1|x=1 − ȳz=0|x=1 (estimated by (β2 + β3) − (β0 + β1)). The

difference-in-AMCEs only equals the difference in preferences when β2 ≡ β0. Yet

the standard AMCE-centric conjoint analysis does not present absolute favorability in

the reference category. Similarity of conditional AMCEs only means similarity of the

causal effect of the feature across groups, not similarity of preferences unless preferences

toward profiles with the reference category are equivalent in both groups. Given the

reference category choice is typically arbitrary or driven by substantive knowledge of

the levels, there is never any reason to expect that the reference category satisfies this

equality requirement. When using a difference-in-AMCEs comparison to estimate a

difference in preferences, the size and direction of the bias is determined by the size of

the difference in preferences toward the reference category within each subgroup.

To draw this example out more fully, the upper panel of Figure 2 shows AMCEs

for Teele, Kalla, and Rosenbluth’s candidate choice experiment for the full sample of

respondents. The second panel shows full sample marginal means. Respondents’ pref-

erence for female candidates is very apparent in both forms of analysis in the upper
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Figure 2: Replication of Results for ‘Candidate Sex’ Feature from Teele et al. (2018)
Candidate Experiment using Full Sample AMCEs and MMs and Subgroup AMCEs
and MMs for Democrats and Republicans
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Figure 3: True Difference in Favorability and Implied Preference Differences between
High and Low Environmentalism Respondents for ‘Monthly Cost’ Feature from Bech-
tel and Scheve (2013) Climate Agreement Experiment for Each Possible Reference Cat-
egory
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two panels because the AMCE definitionally equals the difference in marginal means.

But how do Republicans and Democrats differ in their preferences over male and fe-

male candidates? The third panel shows conditional AMCEs separately for Demo-

cratic and Republican voters, as provided in the original paper and the lower panel

shows the results using conditional marginal means for Democratic and Republican

voters.6 By requiring a reference category fixed to zero, the conditional AMCE results

in the third panel suggest that there is a very large difference in favorability toward

female candidates between Republican and Democratic respondents. In reality, how-

ever, the difference in these conditional AMCEs (0.089) reflects the true difference in

favorability toward female candidates (difference: 0.045; Democrats: 0.537, Repub-

licans: 0.492) plus the difference in favorability toward male candidates (difference:

0.045; Democrats: 0.463, Republicans: 0.508). Because Democrats and Republicans ac-

tually differ in their views of profiles containing the reference (male) category, AMCEs

sum the true differences in preferences for a given feature level with the difference in

preferences toward the reference category.7

6We opt here for visual presentation of results; tabular presentation of AMCEs, marginal means, and
associated standard errors for all examples are included in the Appendix.

7Another example that clearly demonstrates the discrepancy between the differences in preferences
and the differences in conditional AMCEs can be seen very clearly in the “political experience” feature
of this experiment (see Appendix C).
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Visual or numerical similarity of subgroup AMCEs is therefore an analytical arte-

fact, not an accurate statement of the similarity of patterns of preferences. We can see

this bias in a reanalysis of Bechtel and Scheve’s four-country climate change agreement

experiment. Figure 3 shows an analysis for the feature capturing the monthly house-

hold cost for a potential international climate agreement. This replicates a portion

of their results which compare high- and low-environmentalism respondents pooled

across countries (Bechtel and Scheve, 2013, 13767 figure 4). The original analysis has

conditional AMCEs for the two subgroups with 28 Euro per month as the reference cat-

egory. Conditional AMCEs for both groups are presented as negative with conditional

AMCEs for low-environmentalism respondents being more negative than the condi-

tional AMCEs for high-environmentalism respondents at every feature level. This

implies positive differences in favorability toward each monthly cost between high-

and low-environmentalism respondents. Figure 3 presents the implied difference-in-

AMCEs from the original analysis as black circles, demonstrating the substantial and

positive apparent differences between the two groups. For example, the difference-in-

AMCEs for the 56 Euro per month level (incorrectly) implies that high-environmentalism

respondents are more favorable toward a 56 Euro per month household cost of an

agreement than are low-environmentalism respondents. Yet the opposite is actually

true: high environmentalism respondents are less favorable toward this option than

low environmentalism respondents. By using the 28 Euro per month level as the refer-

ence category, the original analysis implies that preferences are identical between the

two groups when in reality high-environmentalism respondents are much less favor-

able toward a 28 Euro per month cost than low-environmentalism respondents. The

black diamonds in Figure 3 show these true differences in favorability as marginal

means for the two groups.

Furthermore, the gray dots in Figure 3 represent the alternative differences-in-

AMCEs that could have been generated from alternative choices of reference category

using the same data. Not only is it possible for reference categories choice to signif-

icantly color the apparent size of differences between subgroup, that choice can also
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impact the direction and statistical significance of subgroup differences. An analyst

could easily choose a reference category that presents differences between these two

group as large and positive, small and positive, small and negative, large and nega-

tive, or negligible. The original analysis (again, black circles) happens to show large

and positive differences between the groups.

It is worth highlighting two further features in Figure 3. First, the alternative

differences-in-AMCEs estimates vary mechanically around the difference in marginal

means, as the reference category varies. The difference between marginal means for

two groups are always fixed in the data, so the differencing of subgroup AMCEs is

merely an exercise is centering those differences at arbitrary points along the range of

observed differences in marginal means. Second, and more practically, because there

is no category for which the preferences of the two subgroups in this example are iden-

tical, no choice of reference category would have led to inferences from differences-in-

AMCEs that accurately reflect the underlying difference in preferences. Even in the

84 Euro per month level, the difference between the two groups is slightly positive.

Were there a category for which subgroup preferences were exactly equal, then we

could choose that as the reference category and interpret differences-in-AMCEs as dif-

ferences in preferences. But there is never any guarantee that such a reference category

exists. Thus, there is no way to use conditional AMCEs or differences between those

conditional AMCEs to convey the underlying similarity or differences in preferences

across sample subgroups.

Improved Subgroup Analyses in Conjoint Designs

Researchers and consumers of conjoints interested in describing levels of respondent

favorability toward profiles with varying features can avoid the inferential errors that

accompany conditional AMCEs by focusing attention on (subgroup) marginal means,

differences between subgroup marginal means to infer subgroup differences in prefer-

ences toward particular features, and omnibus nested model comparisons to infer sub-
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Figure 4: Comparison of AMCEs for Low- and High-Ethnocentrism Respondents
Using Two Alternative Reference Categories Choices for Three Features from Hain-
mueller et al.’s (2014) Immigration Experiment
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group differences across many features. To demonstrate each of these three techniques

we provide a complete example based upon Hainmueller, Hopkins, and Yamamoto’s

analysis of their immigration conjoint by respondent enthnocentrism, which finds that

“the patterns of support are generally similar for respondents irrespective of their level

of ethnocentrism” (Hainmueller, Hopkins, and Yamamoto, 2014, 22). First, we show

how different reference categories could have led to distinctly different conditional

AMCEs and, therefore, interpretations of subgroup preference similarity. Second, we

show how differences in marginal means clearly convey the similarity of these two

subgroups without any sensitivity to reference category. Finally, we show how tested

model comparisons would have provided Hainmueller, Hopkins, and Yamamoto with

a statistic test of the claimed similarity in levels of support between these two respon-

dent subgroups.
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To begin, consider the left and right facets of Figure 4, which shows estimated

subgroup AMCEs for three features from the immigration study. In panel “A” (left),

all features are configured so that the reference category is the one with the largest

difference in levels of support between the two subgroups thus distorting the size of

differences at all other levels. In panel “B” (right), all features are configured so that

the reference category is the one with the smallest difference in preferences between

the two subgroups.

Panel A gives the impression that there are significant differences in preferences

between high and low ethnocentrism respondents toward immigrants from different

countries of origin, with different careers, and with different educational attainments

because the reference category choice cascades the difference in reference category

favorability into AMCEs for all other feature levels. By contrast, Panel B gives the

impression that these differences are negligible. The experimental data and analytic

approach in the two portrayals is identical; the only difference is the choice of reference

category. Given what we have shown about the relationship between differences in

conditional AMCEs and differences in conditional marginal means, Panel B is a more

“truthful” visualization, which Cairo (2016) uses to mean avoidance of self-deception

in the presentation of data, and a more “functional” visualization, by which Cairo

means choosing graphics based on how they will be interpreted by the visualization’s

consumers. The differences between subgroup AMCEs there more accurately convey

differences in underlying preferences because the reference categories used in Panel B

are the most similar between the two groups.

Next, making a comparison of levels of favorability toward different types of im-

migrants without using AMCEs would have been even more truthful. Figure 5 directly

shows that comparison of preferences as differences in subgroup marginal means be-

tween the two groups for these three features, with 95% confidence intervals for the

difference.8 The two groups indeed have similar preferences, something that would

have happened to be clear had the conditional AMCEs in the right panel of Figure 4

8A presentation of subgroup marginal means for all features can be found in Appendix E.
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Figure 5: Differences in Conditional Marginal Means, by Ethnocentrism, for Three
Features From Hainmueller et al.’s (2014) Immigration Experiment
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been presented but that would have been far less obvious were the conditional AM-

CEs in the left panel of that figure presented. Pairwise difference in means tests would

provide formal procedures for testing the statistical significance of these differences.

Yet, finally, the similarity of subgroup preferences in conjoints is often character-

ized in an omnibus fashion, as in the quote from Hainmueller, Hopkins, and Yamamoto

(2014) describing “patterns of support.” An appropriate test in such cases is one that

evaluates whether a model of support that accounts for group differences better fits the

data than a model of support with only conjoint features as predictors. This type of

test is known as a “nested model comparison” which compares the fit of a “restricted”

regression (the restriction being that interactions between features and a subgroup

identifier are held to be zero) nested within an “unrestricted” regression that allows

for arbitrary interactions between conjoint features and the subgroup identifier. For-

mally, a nested model comparison provides an F-test of the null hypothesis that all

interaction terms are equal to zero.9

9Like any ANOVA this hypothesis test may yield substantively different insight from a series of tests
of pairwise mean differences. Figure 5 shows three instances where the 95% confidence intervals for
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To make this concrete, for a feature with four levels (one treated as a reference

category), the first (restricted) equation would be:

Y = β0 + β1Level2 + β2Level3 + β3Level4 + u (1)

The second (unrestricted) equation would allow for interactions between feature levels

and the subgroup identifier:

Y =β0 + β1Level2 + β2Level3 + β3Level4 + β4Group+

β5Level2 ∗ Group + β6Level3 ∗ Group + β7Level4 ∗ Group + u
(2)

While Equation 1 imposes the constraint that β4 = β5 = β6 = β7 = 0, Equation 2

allows for subgroup differences in favorability. Testing this null entails computing an

F-statistic comparing the fit of each equation:

F =

SSRRestricted − SSRUnrestricted
r

SSRUnrestricted
n− k− 1

(3)

where SSRRestricted is the sum of squared residuals for Equation 1, SSRUnrestricted is the

sum of squared residuals for Equation 2, where r is the number of restrictions (in the

above example, 4), n is the number of cases, and k is the number of feature levels in

the unrestricted model.10

For the education feature, the resulting F-test for the model comparison in this case

again gives us little reason to believe there are subgroup differences: F(7, 11493)=0.68,

p ≤ 0.69. We could repeat such pairwise comparisons or omnibus comparisons for

each feature in the design — for country of origin (F(10, 11490)=1.56, p ≤ 0.11) or

job (F(11, 11489)=0.87, p ≤ 0.56) — or for all features as a whole (F(98, 11402)=1.16,

p ≤ 0.14).

pairwise differences in marginal means do not include zero even though the omnibus test fails to reject
the null at α = 0.05.

10Note that this test is not sensitive to reference category even though it requires specifying a regres-
sion equation.
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This visual display in Figure 5 and these statistical tests make clear what could not

be directly inferred from conditional AMCEs alone: there are indeed no sizeable and

only a few statistically apparent differences in preferences between the two groups.

This kind of nested model comparison test can also be used to assess heterogeneity

across conjoint features (see also Egami and Imai, 2018). For example, Teele, Kalla,

and Rosenbluth (2018) report just such a test for how effects of features other than

candidate sex may differ between male and female candidates, finding no such het-

erogeneity (8–9). Fortunately, the original analysis accurately detected an absence of

subgroup differences, yet a subtly different set of analytic decisions about reference

categories (as shown in Figure 4) could have led to quite different inferences. As an

example, Bechtel and Scheve (2013) argue that their conjoint results show “individ-

uals in all four countries [Germany, France, United States, United Kingdom] largely

agree on which dimensions are important and to what extent” (Bechtel and Scheve,

2013, 13765), but a nested model comparison shows the countries do differ in their

preferences F(54, 67982)=3.72, p ≤ 0.00. This cross-country variation is largely driven

by differences in sensitivity to monthly household costs feature, F(15, 67995)=3.80,

p ≤ 0.00, with the United Kingdom and United States being more cost sensitive than

Germany and France. Visual comparisons of conditional AMCEs can sometimes pro-

vide accurate insights into subgroup differences in preferences (as in the Hainmueller,

Hopkins, and Yamamoto case), but ultimately there is no guarantee that they do in

any particular analysis.

Conclusion

This article has identified several challenges related to the analysis and reporting of

conjoint experimental designs, particularly analyses of subgroup differences. We sug-

gest that conjoint analyses should report not only average marginal component effects

(AMCEs) but also descriptive quantities about levels of favorability that better convey

underlying preferences over profile features and better convey subgroup differences
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in those preferences. Marginal means contain all of the information provided by AM-

CEs and more. Consequently, our intention here is not to substantively undermine

any previous set of results, but instead to urge researchers moving forward to demon-

strate considerable caution in how they design, analyze, and present the results of

these types of descriptive experiments and how they test for differences in preferences

between subgroups.

We have relatively straightforward and hopefully uncontroversial advice for how

analysts of conjoint experiments should proceed:

1. Always report unadjusted marginal means when attempting to provide a descrip-

tive summary of respondent preferences in addition to, or instead of, AMCEs.

2. Exercise caution when explicitly, or implicitly, interpreting differences-in-AMCEs

across subgroups. Differences-in-AMCEs are differences in effect sizes for sub-

groups, not statements about the relative favorability of the subgroups toward

profiles with a given feature. Heterogeneous effects do not necessarily mean dif-

ferent underlying preferences. If differences in AMCEs are reported, the choice

of reference categories should be discussed explicitly and diagnostics should be

provided to justify it.

3. When descriptively characterizing differences in preference level between sub-

groups, directly estimate the subgroup difference using conditional marginal means

and differences between conditional marginal means, rather than relying on the

difference-in-AMCEs.

4. To formally test for group differences in preferences, regression with interaction

terms between the subgrouping covariate and all feature levels will generate esti-

mates of level-specific differences in preferences via the coefficients on the interac-

tion terms. A nested model comparison between this equation against one with-

out such interactions provides an omnibus test of subgroup differences, which

should be reported when characterizing overall patterns of subgroup differences.

Following this advice, we hope, will allow researchers to more clearly and more accu-
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rately represent descriptive results of conjoint experiments.

The popularity of conjoint analyses in recent years highlights the power of the de-

sign and the important contributions made by Hainmueller, Hopkins, and Yamamoto

(2014) in providing a novel causal interpretation of these fully randomized factorial

designs. Yet with new tools always come new challenges. The now-common prac-

tice of descriptively interpreting conjoints requires more caution than is immediately

obvious. To facilitate improved analysis and, especially, to provide easy-to-use tools

for calculating marginal means and performing reference category selection diagnos-

tics, we provide software called cregg (Leeper, 2018) available from the Comprehen-

sive R Archive Network. Additionally, this manuscript is written as a reproducible

knitr document (Xie, 2015) that contains complete code examples that will perform all

analyses and visualization used throughout this article. With these resources in-hand,

researchers should be well-equipped to analyze subgroup preferences in conjoint de-

signs without running into the analytic challenges discussed here.
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