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essentially an investment in match quality, implying that moving depends on macroeconomic

developments and housing-market conditions. The number of transactions has implications
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1 Introduction

Transactions in the housing market generate gains from trade by reducing mismatch between houses

and their owners’ preferences. There are sizeable fluctuations in the aggregate number of transac-

tions of a comparable magnitude to fluctuations in house prices. The objective of this paper is to

understand what drives these changes in aggregate housing-market transactions.

Housing transactions can be decomposed as the product of how quickly houses are sold and how

many houses are on the market for sale. The stock of houses for sale depends not only on past sales

rates, but also on how frequently houses come on to the market. This frequency is affected both by

changes in the total housing stock and homeowners’ decisions to put existing houses up for sale.

The first contribution of this paper is to present evidence establishing that the main driver

of transactions is changes in how frequently houses come on to the market. Furthermore, U.S.

data show that the dominant factor in explaining the number of houses coming on to the market

is homeowners’ decisions to move house, rather than changes in the total housing stock. Thus

understanding the decision to move house is crucial for explaining changes in transactions. The

second contribution of the paper is to build a model based on the idea that moving house constitutes

an investment in the quality of the match between a homeowner and a particular house. When

calibrated to the U.S. economy, the model of moving house is able to generate a substantial increase

in housing-market transactions as seen during the housing-market boom of 1995–2003 in response

to changes in macroeconomic conditions.

The claim that the moving rate of homeowners is of much greater importance for transactions

than the selling rate of houses on the market can be understood with some minimal empirical

discipline combined with a basic stock-flow accounting identity. Compared to the average time

homeowners spend in a house (more than a decade), the average time taken to sell a house is very

short (a few months). This means the average sales rate is around thirty times larger than the

average moving rate, and the stock of houses for sale is about thirty times smaller than the stock of

all occupied houses. An increase in the sales rate with no change in the moving rate would rapidly

deplete the stock of houses for sale leaving little overall impact on transactions, except during a

short transitional period. On the other hand, an increase in the moving rate adds to the stock of

houses for sale, which increases transactions even with no change in the sales rate.

Measures of the moving and sales rates are constructed for the period 1989–2013 using data on

sales and inventories of existing single-family homes and the total housing stock. A counterfactual

exercise derives the number of transactions that would have occurred if only one of the sales rate,

moving rate, or housing stock had varied as in the data, while the other two were held constant at

their average values. This exercise confirms the claim that the moving rate is the dominant factor

in explaining changes in transactions. It also shows that changes in the housing stock account for

less than a third of the rise in transactions. Since variation in the owner-occupied housing stock is

due either to new construction or houses switching from being rented to being owner occupied, this

counterfactual exercise reveals the limited role played by the construction boom and the rise of the

homeownership rate in explaining the boom in transactions.

1



To understand what might drive changes in the moving rate, this paper presents a search-and-

matching model of endogenous moving. Central to the model is the idea of match quality: the

idiosyncratic values homeowners attach to the house they live in. This match quality is a persistent

variable subject to occasional idiosyncratic shocks representing life events such as changing jobs,

marriage, divorce, or having children.1 These shocks degrade existing match quality, following which

homeowners decide whether or not to move. Eventually, after one or more shocks, current match

quality falls below a ‘moving threshold’ which triggers moving to a new house and a renewal of

match quality.

Moving house is a process with large upfront costs that is expected to deliver long-lasting benefits,

and hence is sensitive to macroeconomic and policy variables such as interest rates that influence

other investment decisions.2 These variables affect the threshold for existing match quality that

triggers moving. Thus, while idiosyncratic shocks are the dominant factor in understanding moving

decisions at the individual level, changes in the moving threshold lead to variation in the aggregate

moving rate. In contrast, in a model of exogenous moving, the aggregate moving rate is solely

determined by the arrival rate of an idiosyncratic shock that forces moving.

The endogeneity of moving generates new transitional dynamics that are absent from models

imposing exogenous moving. Endogenous moving implies that those who choose to move are not

a random sample of the existing distribution of match quality: they are the homeowners who

were only moderately happy with their match quality. Together with the persistence over time in

individuals’ match quality, endogenous moving gives rise to a ‘cleansing effect’. An aggregate shock

that changes the moving threshold leads to variation in the degree of cleansing of lower-quality

matches. Since more cleansing now reduces the likelihood of future moves, the moving rate and

transactions overshoot the levels they would settle at in the long run.3

The importance of the decision to move house is shown through a quantitative application of

the model to the boom in the U.S. housing market between 1995 and 2003. The period 1995–2003

in the U.S. housing market is noteworthy as one of rapidly rising activity. Three stylized facts

emerge during those years: transactions rise, houses are selling faster, and houses are put up for sale

more frequently.4 This period featured a number of developments that have implications for moving

decisions according to the model, such as the post-1995 surge in productivity growth, the rise of

internet-based property search, and cheaper and more easily accessible credit. These developments

are represented in the model by changing parameters, and the model is solved analytically to conduct

1These are the main reasons for moving according to the American Housing Survey. Match quality is modelled as
a persistent variable because there are many dimensions to what is considered a desirable house, and a life event will
typically affect some but not all of those dimensions.

2The implication that interest rates have a negative impact on mobility is consistent with the empirical evidence
presented by Quigley (1987) and Ferreira, Gyourko and Tracy (2010).

3The persistence of match quality and its implications differentiate the endogenous moving decision here from the
endogenous job-separation decision in the labour market studied by Mortensen and Pissarides (1994). There, when
an existing match is subject to an idiosyncratic shock, a new match quality is drawn independently of the match
quality before the shock, that is, the stochastic process for match quality is ‘memory-less’. Here, idiosyncratic shocks
degrade match quality, but an initially higher-quality match remains of a higher quality than an initially lower-quality
match hit by the same shock.

4The increase in the aggregate moving rate is consistent with the independent empirical finding by Bachmann and
Cooper (2014) using household-level PSID data of a substantial rise in the own-to-own moving rate.
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a series of simulations.

The prediction of the model is that all three developments unambiguously increase the moving

rate. This rise in the moving rate works through a higher moving threshold, which means that

homeowners’ tolerance of mismatch is reduced. An increase in productivity growth raises income

and increases the demand for housing, which raises the marginal benefit of a better match and

increases the incentive to move to a house with a higher match quality. The adoption of internet

technology reduces search frictions, making it cheaper for homeowners to move in order to invest in

a better match. Finally, lower mortgage rates, interpreted as a fall in the rate at which future payoffs

are discounted, create an incentive to invest in improving match quality because the capitalized cost

of moving is reduced.

The model is calibrated to match features of the U.S. housing market to quantify its predic-

tions. More specifically, the cost parameters match data on transaction costs, search costs, and

maintenance costs; while the parameters related to the search process match average time-to-sell

and the average number of viewings per sale. The model is enriched to allow for heterogeneity in

the parameters describing shocks to match quality. These parameters are chosen to fit an empirical

estimate of the aggregate hazard function for moving house.

The three developments together generate a large and long-lasting 24% increase in transactions,

explaining most of the 27% rise observed in the data that is not accounted for by the increase in

the owner-occupied housing stock. This success is due to the model’s prediction of a 25% rise in

the moving rate, which accounts for most of the 34% rise in the data. It is not obvious whether

homeowners expected the decline in mortgage rates to persist, but even after removing the effects

of lower mortgage rates, the first two developments still imply a 17% rise in transactions and an

18% rise in the moving rate, explaining more than half of the increases seen in the data. With

house prices determined through simple Nash bargaining, the predicted rise in the moving rate and

transactions is accompanied by an increase in house prices.

These predictions of the model are the long-run effects once a new steady state is reached. In

the shorter term, the model actually predicts a considerable amount of overshooting with even

larger effects on the moving rate and transactions. This is due to cleansing of the match quality

distribution, which is a slow process lasting for around a decade. The three developments together

imply a 39% rise in the moving rate in the short run, which is 1.6 times larger than the long-run

effect; and a 33% rise in transactions in the short run, which is 1.4 times the long-run effect.

There is a large literature (starting from Wheaton, 1990, and followed by many others) that

studies frictions in the housing market using a search-and-matching model as done here. That

extensive literature is surveyed by Han and Strange (2015).5 The novel feature of this paper is in

studying moving house and showing its importance in understanding the dynamics of transactions.

The key empirical finding, using data from NAR, that changes in the number of listings are crucial for

5See, for example, Albrecht, Anderson, Smith and Vroman (2007), Anenberg and Bayer (2013), Caplin and Leahy
(2011), Coles and Smith (1998), Dı́az and Jerez (2013), Krainer (2001), Head, Lloyd-Ellis and Sun (2014), Moen,
Nenov and Sniekers (2015), Ngai and Tenreyro (2014), Novy-Marx (2009), Piazzesi and Schneider (2009), and Piazzesi,
Schneider and Stroebel (2015). See also Davis and Van Nieuwerburgh (2015) for a survey of housing and business
cycles, including models without search frictions.
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understanding the dynamics of transactions, is confirmed in a recent paper by DeFusco, Nathanson

and Zwick (2017) using U.S. data from a different source (CoreLogic).6

The focus of the paper is on analysing the dynamics of transactions where homeowners move

from one home to another within the same housing market. This type of transaction is shown to be

the predominant source of fluctuations by Anenberg and Bayer (2013) using data from Los Angeles

between 1988 and 2008. Taking moving as the exogenous outcome of a mismatch shock, they study

homeowners’ choice of whether to buy first or sell first. The order of transactions is also the focus

of Moen, Nenov and Sniekers (2015), who emphasize strategic complementarity in the sequencing

decisions of mismatched owners as a source of multiple equilibria that could explain housing cycles.

They also make use of two datasets from Copenhagen to construct a time series for the proportion

of existing owners who buy first or sell first. The present paper complements these two papers

by analysing the moving decision itself, abstracting from decisions about whether to buy first or

sell first. A key contribution is to allow for an endogenous degree of housing mismatch: instead

of imposing an exogenous two-state classification of homeowners as either matched or mismatched,

match quality is a continuous variable here.

Burnside, Eichenbaum and Rebelo (2016) build a model where homeowners have different beliefs

about the value of owning (relative to renting) and thus have different probabilities of putting their

houses up for sale. As in the present paper, their mechanism also implies positive co-movement

between transactions and prices, which is an important feature of the housing market first empha-

sized by Stein (1995).7 Their quantitative model generates a change in transactions about 17 times

smaller than the change in prices, whereas this ratio is approximately 2 in the baseline results of the

present paper, which is much closer to the data for the period 1995–2003.8 While they give a key

role to buyers’ speculative motives during the substantial house-price appreciation of 2003–2006,

this paper provides a complementary mechanism based on the incentives of homeowners to invest

in match quality.9 For this reason, in the application to the housing boom, the focus here is on the

period 1995–2003.10

The plan of the paper is as follows. Section 2 uses NAR data to substantiate the claim that

changes in the moving rate are the key determinant of housing-market dynamics. Section 3 presents

6More explicitly, DeFusco, Nathanson and Zwick (2017) find this claim is true for the period 1995–2003 studied
here. They argue the decline in transactions between 2005 and 2006 was driven primarily by the sales rate, which
does not contradict the claims in this paper because that is an example of a large shock occurring in a short space
of time. Dı́az and Jerez (2013) also show that housing-supply and moving-rate shocks are essential in understanding
the observed cyclicality of transactions. Both of these shocks are closely related to changes in the listing rate.

7Guren (2014) and Hedlund (2016) also allow for a moving decision but do not quantify the effect on transactions.
8To be precise, Burnside, Eichenbaum and Rebelo (2016) predict a 289% increase in prices and a 17% increase in

transactions for the period 1995–2006 (Figure 5 in their paper). Note that they compare their house price prediction
to the 144% increase in the Case-Shiller price index for Boston, Los Angeles, and San Francisco. Using data from
FHFA and NAR for the U.S. as a whole, the increases in real house prices and transactions are both around 60%.

9DeFusco, Nathanson and Zwick (2017) also emphasize the role of investment motives in the dynamics of prices
and transactions volume during the housing bubble period. In line with the findings here, they show that the increase
in transaction volume is mainly due to the increase in the listing rate, which is modelled as a shortening of the holding
periods of real-estate investors.

10As shown in Figure 9a of Burnside, Eichenbaum and Rebelo (2016), the fraction of affirmative responses in the
Michigan Survey of Consumers to the question “Is it a good time to buy a house because it is a good investment?”
was either falling or flat in the period 1997–2003.
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the model of endogenous moving, and section 4 derives the equilibrium analytically. Section 5

calibrates the model to study the quantitative importance of the decision to move house during the

1995–2003 U.S. housing boom. Section 6 concludes.

2 The importance of changes in the moving rate

This section presents evidence showing that the decisions of homeowners to put their houses up for

sale are crucial for understanding the dynamics of housing transactions.

2.1 The basic idea

A stock-flow accounting identity is a natural starting point when thinking about any market with

search frictions:

U̇t = Nt − St, where Nt = n(Kt − Ut) and St = sUt, [2.1]

with Ut denoting the number of existing houses for sale, U̇t the derivative of Ut with respect to

time t, Nt the number of existing houses newly put on the market for sale, and St the number of

transactions. The stock of all owner-occupied houses (including those for sale) is Kt. The rate at

which homeowners decide to move is n, so n(Kt − Ut) is the number of existing houses put on the

market for sale at time t. The rate at which houses for sale are sold is s. The variable Ut is defined

as existing houses for sale (excluding newly constructed houses) to make it consistent with the data

from NAR used below. The growth rate of Kt is denoted by g, where changes in Kt are due to

newly constructed houses being bought by owner-occupiers, or existing houses switching from being

rented to being owner occupied.

Let ut denote existing houses for sale Ut as a fraction of the total housing stock Kt, which satisfies

the following differential equation:

u̇t = n(1− ut)− (s+ g)ut. [2.2]

Given the flow rates s, n, and g, there is a steady state for the fraction of houses for sale u:

u =
n

n+ s+ g
, and S∗t =

sn

s+ n+ g
Kt, [2.3]

where S∗t is the number of transactions when ut is at its steady-state value.

Convergence to the steady state for ut occurs at rate s+ n+ g (the coefficient of ut in 2.2), and

given that houses sell relatively quickly (a few months on average), s is large enough that transitional

dynamics are of limited importance. Therefore, understanding the evolution of transactions over

any period of time longer than a few months is mainly a question of understanding how changes in
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s, n, g, and Kt affect transactions S∗t in equation (2.3). The total derivative of S∗t is:

dS∗t
S∗t

=
s+ g

s+ n+ g

dn

n
+

n+ g

s+ n+ g

ds

s
− g

s+ n+ g

dg

g
+

dKt

Kt

. [2.4]

This implies the relative size of the effects on transactions of a one percent change in n and a one

percent change in s largely depends on the ratio of the sales rate s to the moving rate n, given that

g is rather small empirically. Any change in the level of Kt has a proportional effect on transactions.

The average time taken to sell a house is 1/s, and the average time homeowners spend living in

a house is 1/n. The impact of a change in the moving rate relative to the same proportional change

in the sales rate is therefore related to the ratio of the average time homeowners spend living in a

house to the average time to sell. The former is more than a decade and the latter is a few months,

suggesting s is around 200%, n is about 7%, and the ratio of the two is approximately 30. Any

plausible value of g would be far smaller than s + n. Since this means (n + g)/(s + n + g) is very

small, huge changes in sales rates would be required to have any significant effect on transactions,

except during a short transitional period.

Intuitively, with no change in the moving rate, the stock of houses for sale would be rapidly

depleted by faster sales, leaving overall transactions only very slightly higher. On the other hand,

since (s + g)/(s + n + g) is close to one, changes in the moving rate can have a large and lasting

impact on transactions. This is because even if the moving rate increased slightly, as the stock of

potential movers is so large relative to the stock of houses for sale (the ratio (1 − u)/u is equal to

(s+ g)/n), this can have a sustained impact on transactions.

This simple exercise establishes that any attempt to understand sustained changes in transactions

only through changes in the sales rate will founder. This leaves two potential explanations: changes

in the moving rate, or changes in the housing stock. The next section uses U.S. data to show that

changes in the housing stock contribute relatively little to understanding transactions compared to

changes in the moving rate.

2.2 Empirical evidence

A quantitative analysis of stocks and flows in the housing market can be performed by using data

on transactions and inventories of unsold houses to construct a measure of new listings (the number

of houses newly put up for sale). The National Association of Realtors (NAR) provides monthly

estimates of transactions during each month and inventories of houses for sale at the end of each

month for existing homes including single-family homes and condominiums. The NAR data on

transactions and inventories are for existing homes, so sales of newly constructed houses are excluded.

The focus here is on data for single-family homes, which represent around 90% of total sales of

existing homes. Monthly data on transactions and inventories covering the period from January

1989 to June 2013 are first deseasonalized.11 The data are then converted to quarterly series to

smooth out excessive volatility owing to possible measurement error. Quarterly transactions are the

11Multiplicative monthly components are removed from the data.
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sum of the monthly transaction numbers, and quarterly inventories are the level of inventories at

the beginning of the first month of a quarter.

Let Nt denote the inflow of houses that come on to the market during quarter t (new listings),

and let St denote the outflow from the market (transactions) during that quarter. If It denotes the

beginning-of-quarter t inventory (or end-of-quarter t− 1), the stock-flow accounting identity is:

Nt = It+1 − It + St. [2.5]

A quarterly listings series Nt is constructed to satisfy the accounting identity above.12 Assuming

inflows Nt and outflows St both occur uniformly within a time period, the average number of houses

Ut available for sale during quarter t is equal to:

Ut = It +
Nt

2
− St

2
=
It + It+1

2
. [2.6]

Since the time series for inventories It is quite persistent, the measure Ut of the number of houses for

sale turns out to be highly correlated with inventories (the correlation coefficient is equal to 0.99).

This way of measuring of houses for sale is an improvement on the usual measure based on the

‘vacant for sale’ series from the American Housing Survey (AHS) because most houses for sale are

not actually vacant (on average, ‘vacant for sale’ is less than half of inventories). More importantly,

there is considerable variation over time in the ratio between ‘vacant for sale’ and inventories. Using

the constructed series Ut for houses for sale, the sales rate is measured as st = St/Ut.

The listing rate nt is measured as the ratio of new listings Nt to the stock of owner-occupied

houses not already for sale, that is, nt = Nt/(Kt − Ut). The housing stock Kt is defined as the

stock of single-family homes excluding renter-occupied houses and homes for rent.13 These data are

available only at a biennial frequency, so linear interpolation is used to produce a quarterly series.

Figure 1 plots transactions, listings, houses for sale, and the total housing stock in the upper panel,

and the sales and listing rates and the fraction of houses for sale in the lower panel. All series are

plotted as differences in log points relative to the first quarter of 1989.

The figure shows that both the sales rate and the listing rate rise and fall with transactions.

At first sight, the rise in the listing rate between 1993 and 2007 might seem inconsistent with the

long-run decline in the U.S. mobility rate. Empirical work by Bachmann and Cooper (2014) has

shown that the declining mobility rate is accounted for by a fall in the rent-to-rent moving rate,

while they find that the own-to-own moving rate actually rises over this period.14

12The measure of listings may not perfectly correspond to moving because unsold houses might be withdrawn from
the market and subsequently relisted, or because St and It include non-owner-occupied houses. The first issue is
addressed in section 2.3 and the second in appendix A.1.

13The housing stock is the sum of one-unit structures in the ‘owner occupied’, ‘vacant for sale’, and ‘vacant, but
rented or sold’ categories of Table 1A–1 in the AHS. The third category is included because it is likely houses that
are sold are the dominant component of that category. In any case, the third category is tiny compared to the first
two.

14Bachmann and Cooper (2014) use PSID data and an approach similar to many studies of the labour market to
compute transition rates between and within the renter-occupied and owner-occupied segments of the housing market.
As shown in their Figure 13, the own-to-own moving rate rises by approximately 30% during the period considered
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Figure 1: Housing-market activity
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Notes: Series are logarithmic differences from the initial data point. Monthly data (January 1989–
June 2013), seasonally adjusted, converted to quarterly series. Definitions are given in section 2.2.
Sources: National Association of Realtors, American Housing Survey.

A simple counterfactual exercise is used to quantify the importance of the listing rate for un-

derstanding changes in transactions. Given that convergence to the steady state in equation (2.3)

occurs within a few months, the evolution of transactions over time can be understood through the

lens of the following equation:

S∗t =
stnt

st + nt + gt
Kt, [2.7]

here. Moreover, they point out that the CPS data used by most studies of mobility do not include information on
households’ previous tenancy status, so they cannot be used to compute disaggregated moving rates. They show that
their aggregate moving rate is comparable to those derived from CPS data, suggesting that the disaggregated moving
rates they compute using PSID data are a good representation of U.S. trends.
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where st and nt are the empirical sales and listing rates and gt = (Kt −Kt−1)/Kt−1 is the growth

rate of the housing stock. The variable S∗t is what the steady-state transactions volume would be

at each point in time given the (time-varying) sales and listing rates and the housing stock. The

correlation between S∗t and actual transactions St is very high (the correlation coefficient is 0.90),

which is not surprising given that convergence to the steady-state fraction of unsold houses is fast.

To see the relative importance of the sales rate, the listing rate, and the housing stock, consider

what (2.7) would be in turn if only one variable at a time (one of the sales rate st, listing rate nt,

or the stock of houses for sale Kt) is allow to vary as in the data:

S∗s,t =
stn̄

st + n̄
K̄, S∗n,t =

s̄nt
s̄+ nt

K̄, and S∗K,t =
s̄n̄

s̄+ n̄+ gt
Kt,

where s̄, n̄, and K̄ are the average sales rate, listing rate, and stock of houses for sale. The time

series of S∗t , S
∗
s,t, S

∗
n,t, and S∗K,t are plotted in Figure 2 below as log differences. The series S∗n,t (the

blue line) closely resembles S∗t (the grey line), whereas S∗s,t (the red line) misses most of the variation

in S∗t . It is striking, yet consistent with the basic idea set out earlier, that even the large increase

in the sales rate seen in Figure 1 cannot explain why there is a large increase in transactions.

Figure 2: Counterfactuals for transactions using steady-state houses for sale
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Notes: The construction of these series is described in section 2.2. The series are reported as log
differences relative to their initial values.

The counterfactuals in Figure 2 assume that the fraction of houses for sale adjusts instantaneously

to its new steady-state value when the sales or listing rates change. The counterfactual exercise can

also be done without requiring any variable to have reached its steady state. Observe that equations

(2.5) and (2.6) and the definitions of the sales and listing rates imply the following identity:

It+1 =

(
1− st+nt

2

)
It + ntKt

1 + st+nt
2

. [2.8]
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Given time series for the sales rate st, the listing rate nt, and the total housing stock Kt, this equation

can be applied recursively to generate a series for inventories It starting from an initial value I1.

The initial value of inventories is assumed to be at its steady state, that is, I1 = n1K1/(s1 +n1 +g1),

though for subsequent dates t there is no such requirement. With the series for It, houses for

sale Ut can be calculated using (2.6), which yields a counterfactual series for transactions using

St = stUt. The actual transactions series and the three counterfactuals out of steady state are

shown in Figure 3. The findings are largely consistent with those seen in Figure 2 in that variation

in the listing rate is crucial for understanding the actual transactions series.15

Figure 3: Actual and counterfactual transactions out of steady state
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Notes: The series are plotted as log differences relative to their initial values.

Holding both the sales and listing rates constant, the series S∗K,t (the orange line in both Figure 2

and Figure 3) shows that changes in the housing stock account for less than a third of the rise in

transactions during the boom. This reveals the limited role played by the construction boom and

the rise in the homeownership rate during the period when transactions were increasing. The

homeownership rate is defined as the stock of owner-occupied homes divided by the stock of all

occupied homes (including those that are rented). Changes in the housing stock as defined and

measured earlier can thus occur either through new construction or houses switching from being

rented to being owner occupied. Both the construction boom and the rise in the homeownership

rate are therefore captured by the housing stock series, and this accounts for relatively little of the

change in transactions.

15The claim that sales rates have relatively little impact on transactions holds everything else constant. It does
not imply the correlation between time-on-the-market and transactions is weak. In fact, the correlation between
the sales rate and transactions is 0.74, while the correlation between the listing rate and transactions is 0.79. The
high correlation between the sales rate and transactions is consistent with the claim because the sales rate is highly
correlated with the listing rate (correlation coefficient 0.67).
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2.3 Withdrawals and relistings

In the previous section, all outflows from the stock of unsold houses were due to sales. However,

some houses are withdrawn from the market without being sold. Since sales and inventories are

measured directly in the NAR data, the accounting identity (2.5) counts withdrawals as ‘negative

listings’. Some houses that are withdrawn from the market will subsequently be relisted, and these

relistings are also part of the overall measure of listings derived from the accounting identity (2.5).

Using 1.9 million listings for nine large MSAs between 2008 and 2012 from the Multiple Listing

Service (MLS) database, Anenberg and Laufer (2017) find that approximately half of all delisted

properties were not sold at the point of delisting. However, around 60% of the unsold and delisted

properties were relisted within six months. The analysis of repeat listings in Carrillo and Williams

(2015) reveals a similar pattern of delisting and relisting using 1.4 million listings for fourteen MSAs

in the period 2004–2013 from the MLS database.16 They find about 50% of the ‘not sold’ properties

are subsequently relisted.

If listings Nt is interpreted as the net change in listings then the stock-flow accounting identity

(2.1) for Ut remains valid. Net listings Nt can be decomposed into the following components:

Nt = Mt −Wt +Rt, where Mt = m(Kt − Ut).

Listings associated with a new decision to move house are Mt, and m is the corresponding moving

rate. Wt denotes withdrawals of houses from the market without a sale, and Rt denotes relistings

of houses that previously failed to sell.

The occurrence of withdrawals implies there is a subset of houses Kt − Ut not currently on the

market that have previously failed to sell, but where the owner hopes to make another attempt to

sell in the future. The number of such houses is denoted by Lt, which has the following stock-flow

accounting identity:

L̇t = Wt −Rt − At −mLt, where Wt = wUt, Rt = ρLt, and At = αLt.

The variable Wt denotes the inflow due to withdrawals, which are assumed to occur at rate w while

a house is on the market. Outflow can occur because of relistings, which occur at rate ρ, or because

of reasons that would have triggered a new moving attempt irrespective of the past failed attempt

(rate m as before), or finally because the homeowner entirely gives up on selling the house (rate α).

The link between the moving rate m and the net listing rate n in the case of no change in the

housing stock (g = 0) is:

n =
m

1 + φ(1−β)
1−φ

, where β =
ρ

ρ+ α +m
and φ =

w

s+ w
. [2.9]

16Figures 1 and 2 from Carrillo and Williams (2015) report the fraction of properties listed in a particular period
that were ‘not sold’ by the first quarter of 2013, that is, where the listing had either expired or the property was
withdrawn from the market.
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The term β is the fraction of eventually relisted houses, and φ is the fraction of listings that end with

a withdrawal rather than a sale.17 The general formula applicable for any g is derived in appendix

A.2, which also shows that as g is very small relative to s and n, the simple formula (2.9) for g = 0

provides a very good approximation.

Conditional on the net listing rate n given by (2.9), all the analysis done in section 2.2 still

applies, though the net listing rate n now depends also on withdrawals φ and relistings β as well

as the moving rate m. However, observe that the only reason withdrawals φ matter is because not

all houses withdrawn from sale are relisted (β < 1). If β = 1 then the net listing rate n equals the

moving rate m irrespective of withdrawals and all the earlier conclusions would be unaffected.

Since the stock-flow accounting identity (2.5) continues to hold with the new interpretation of

Nt, the net listing rate nt can be recovered from the data exactly as before. But equation (2.9) shows

that finding the moving rate mt requires knowing the fractions of withdrawals φt and relistings βt.

There is no publicly available time series for βt, either at the national or local level. All that can be

done here is to set βt to the average of the relisting fractions found in the studies by Anenberg and

Laufer (2017) and Carrillo and Williams (2015), which are in a range from 50% to 60%. β = 0.5 is

taken as the baseline value in what follows because any higher value would only reduce the difference

withdrawals make to the earlier analysis.

For the withdrawal fraction φt, Carrillo and Williams (2015) plot time series for five MSAs

from 2004 to 2013 and one county for the period 1997–2010, but no national-level data is publicly

available. The series are plotted alongside time-to-sell, and the figures suggest that φt and time-

to-sell move in the same direction with an elasticity of approximately 0.6. Taking this elasticity

and the national-level time-series data on the sales rate from NAR (the inverse of time-to-sell), an

estimated national-level time series for φt is obtained. With φt and β, the time series for the moving

rate mt can be recovered from knowledge of nt using (2.9).

A counterfactual exercise similar to that from section 2.2 is performed using the time series for

the sales rate st, the moving rate mt, and withdrawals φt. The first counterfactual varies the sales

rate st and holds mt and φt constant at their average values. The second counterfactual varies

the moving rate and holds st and φt constant. The third counterfactual varies withdrawals φt and

holds st and mt constant.18 Using the method in appendix A.2 for the case where gt 6= 0, another

counterfactual can be calculated where the housing stock Kt varies while st, mt, and φt are held

constant. Each of these counterfactuals implies a hypothetical series for the net listing rate nt, and

this can be used to compute the implied level of transactions using the formula in (2.7).

The counterfactuals for steady-state transactions are shown in Figure 4, which generalizes the

earlier analysis in Figure 2 by accounting for withdrawals and relistings. As before, the moving rate

is very important in explaining the observed variation in transactions. But now some significant

17Carrillo and Williams (2015) provide evidence in Figures 1 and 2 that φ tends to be higher when time-to-sell 1/s
is high. However, as (2.9) demonstrates, this finding does not reveal whether the withdrawal rate w rises, falls, or
remains the same when the sales rate s varies. Even if w were completely constant, a lower sales rate automatically
means houses will linger on the market for longer, making an eventual withdrawal more likely and thus increasing φ.

18The φt series is generated from the sales rate series, but after deriving φt, the sales rate is held constant in this
counterfactual.
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portion of the variation in transactions can be explained even when the moving rate is constant. A

comparison of the first and third counterfactuals shows that this comes from changes in the fraction

of withdrawals, not from changes in the sales rate itself.

Figure 4: Counterfactual transactions after accounting separately for withdrawals
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Notes: The series are plotted as log differences relative to their initial values.

What lies behind the difference between the listing rate and moving rate counterfactuals in

Figure 2 and Figure 4? The importance of the moving rate in explaining changes in transactions

declines because less of the variation in the listing rate is attributed to the moving rate, but not

because a given change in the moving rate has a smaller effect on transactions.19 Equation (2.9)

shows that the elasticity of n with respect to m is always one, irrespective of the values of φ and β,

and the elasticity of transactions with respect to n is unchanged.20

In summary, this section has shown evidence that understanding changes in moving rates is

important in explaining changes in the number of transactions in the housing market.

19The elasticity of φt with respect to time-to-sell used in this analysis was based on a small set of data. Ideally,
this elasticity would be estimated using a regression, and using data with broader geographical coverage. If the
elasticity were higher, the importance of withdrawals would increase and the importance of the moving rate would
decline. As explained above, this would be due to claiming that changes in the moving rate were smaller. However,
direct evidence from Bachmann and Cooper (2014) shows that the own-to-own moving rate increased by 33% during
the period 1995–2003. This is close to the increase in the listing rate n of 34% found in the NAR data, suggesting
withdrawals φt could not have fallen by too much in response to the decrease in time-to-sell during that period.

20It is important to note relistings βt most likely has a positive correlation with time-to-sell, just like the pattern
for φt documented by Carrillo and Williams (2015). This is because when it takes a long time to sell a property, the
listing is either more likely to reach its expiry date, or the seller becomes more likely to withdraw the property so
as to avoid the stigma of the property remaining unsold for too long. In both cases, the seller would be expected to
relist the property soon after to show the property as new to the market. By fixing relistings βt to be a constant
instead of varying it in line with time-to-sell, Figure 4 provides a lower bound for the importance of the moving rate.
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3 A model of investment in housing match quality

This section presents a search-and-matching model of the housing market that studies both the

decision of when to move for an existing homeowner, and the buying and selling decisions of those

already in the market. This means that both the moving rate and the sales rate are endogenous.

The model focuses on the market for existing houses. It abstracts from new entry of houses either

due to new construction or previously rented houses becoming owner occupied, and it abstracts

from entry of first-time buyers to the market.

3.1 Houses

The economy contains a unit continuum of families and a unit continuum of houses. Each house is

owned by one family (families can in principle own multiple houses). Each house is either occupied

by its owning family and yields a stream of utility flow values, or is for sale on the market while the

family searches for a buyer.21 If a family is not occupying a house (any house it owns is for sale),

the family is in the market searching for a house to buy and occupy.

It is implicit in the model that families moving house might temporarily use the rental market in

between selling and buying. However, there is no explicit modelling of the rental market: effectively,

this is treated as a distinct segment of the housing market. This view is consistent with Glaeser

and Gyourko (2007), who argue that there is little evidence in support of significant arbitrage

between the rental and owner-occupied segments of the housing market because owner-occupied

homes typically have different characteristics from rental units, as is also the case for homeowners

themselves in comparison to renters. More recently, Bachmann and Cooper (2014) use PSID data

to calculate gross flows across and within groups of owners and renters. They conclude that the

rental and owner-occupied markets are distinct segments owing to the dominance of moves within

the same tenure category. Moreover, between 1970 and 2009, they find that most transactions

are associated with own-to-own moves, rather than own-to-rent moves (the former is 2.3 times the

latter), suggesting the majority of owners selling their houses are buying another house.22

3.2 Search behaviour and the role of match quality

The mere existence of an inventory of houses for sale together with a group of potential buyers

indicates the presence of search frictions in the housing market. The model focuses on two types of

search frictions. First, it is costly and time-consuming for buyers and sellers to arrange viewings of

houses. Second, buyers need to view a property before knowing how desirable it is.

21The model abstracts from the possibility that those trying to sell will withdraw from the market without com-
pleting a sale.

22Using a different data source (AHS data from 2001), Wheaton and Lee (2009) find 42.6% of house purchases are
by existing homeowners, as opposed to renters and newly formed households. To reconcile this with the conclusion
drawn from Bachmann and Cooper’s (2014) facts that the majority of owners selling their houses are buying another
house, note the following observations. First, using Wheaton and Lee’s (2009) data, 57.1% of listings of existing
houses occur through own-to-own transitions, rather than through own-to-rent or owner exit. Second, some own-to-
rent and rent-to-own transitions may be extremely short lived as part of what is effectively an own-to-own move, for
example, someone who lives temporarily in a rented home while a newly purchased home is under refurbishment.
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The first search friction is modelled using a meeting function.23 Let ut denote the measure of

houses available for sale and bt the measure of buyers. At any instant, each buyer and each house

can have at most one viewing. The arrival rate of viewings is determined by a constant-returns-to-

scale meeting function V(ut, bt). For houses, viewings have Poisson arrival rate V(ut, bt)/ut (time is

continuous). For buyers, the corresponding arrival rate is V(ut, bt)/bt. Given the unit measure of

houses, there are 1−ut houses that are matched in the sense of being occupied by a family. As there

is also a unit measure of families, there must be ut families not matched with a house, and thus in

the market to buy. This means the measures of buyers and sellers are the same (bt = ut).
24 The

arrival rates of viewings for buyers and sellers are then both equal to the constant v = V(ut, ut)/ut.

This arrival rate summarizes all that needs to be known about the frictions in locating houses to

view.

Viewings are essential because the desirability of a property is not easily determined simply by

knowing objective features such as size. What is desirable is a good match between the idiosyncratic

preferences of the buyer and the idiosyncratic characteristics of the house for sale. The second search

friction is that this match quality only becomes known to a buyer when a house is actually viewed.

A measure of the importance of match quality is the average number of viewings per transaction.

Genesove and Han (2012) report data on the number of homes visited and the time taken to sell

using the ‘Profile of Buyers and Sellers’ surveys from NAR in the U.S. for various years from 1989

to 2007. In the UK, monthly data on time-to-sell and viewings-per-sale are available from the

Hometrack ‘National Housing Survey’ for the period from June 2001 to July 2013.25 The data are

shown in Figure 5.

Figure 5 reveals that viewings-per-transaction are far greater than one, indicating there is sub-

stantial uncertainty about match quality prior to a viewing. It also shows that variation in time-

to-sell is associated with movements in viewings-per-transaction in the same direction, and is not

simply due to variation in the time taken to meet buyers. In other words, a meeting function alone

is not sufficient. As in Jovanovic (1979), the second search friction is modelled with a stochastic

match quality that only becomes known to a buyer when a house is actually viewed.26 When a view-

ing takes place, match quality ε is drawn from a distribution with cumulative distribution function

G(ε). For analytical tractability, new match quality is assumed to have a Pareto distribution (with

minimum value 1, a normalization, and shape parameter λ satisfying λ > 1):

G(ε) = 1− ε−λ. [3.1]

When a viewing occurs, the value of ε that is drawn becomes common knowledge among the

23The term ‘matching function’ is not used here because not all viewings will lead to matches.
24It is important to note that a rise in the homeownership rate does not imply there is an upward trend in market

tightness (bt/ut). The homeownership rate is defined in terms of the fraction of owner-occupied houses, so a rise in
the homeownership rate does not mean that there are more buyers relative to the number of houses.

25Hometrack data are based on a monthly survey starting in 2000. The survey is sent to estate agents and surveyors
every month. It covers all postcodes of England and Wales, with a minimum of two returns per postcode. The results
are aggregated over postcodes weighted by the housing stock.

26The two search frictions are also present in the labour-market model of Pissarides (1985), and the housing-market
models of Novy-Marx (2009) and Genesove and Han (2012).
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Figure 5: Viewings per transaction and time to sell
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Notes: Upper panel, U.S. data, annual frequency (years in sample: 1989, 1991, 1993, 1995, 2001,
and 2003–2007); Lower panel, U.K. data, monthly frequency (June 2001–July 2013). Time-to-sell is
measured in weeks.
Sources: U.S. data, Genesove and Han (2012); U.K. data, Hometrack (www.hometrack.co.uk).

buyer and the seller. The value to a family of occupying a house with match quality ε starting from

time t is Ht(ε). By purchasing and occupying this house, the buyer loses the option of continuing

to search, with the value of being a buyer denoted by Bt. If the seller agrees to an offer to buy, the

gain is the transaction price, and the loss is the option value of continuing to search, with the value

of owning a house for sale denoted by Ut (‘unsatisfied owner’). The buyer and the seller directly

bear transaction costs Cb and Cu respectively. If a house with match quality ε is sold at a price

pt(ε), the surpluses of the buyer and seller are:

Σb,t(ε) = Ht(ε)− pt(ε)− Cb −Bt, and Σu,t(ε) = pt(ε)− Cu − Ut. [3.2]

The Bellman equations for the buyer and seller value functions are:

rBt = −F + v

∫
yt

Σb,t(ε)dG(ε) + Ḃt, and rUt = −D + v

∫
yt

Σu,t(ε)dG(ε) + U̇t, [3.3]

where r is the discount rate, Ḃt and U̇t denote the derivatives of the value functions with respect

to time, and yt is the threshold for transactions defined below. Buyers incur flow search costs F

during this process of search. Homeowners incur maintenance costs D irrespective of whether or

not a house is up for sale. The total surplus resulting from a transaction with match quality ε at
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time t is given by

Σt(ε) = Σb,t(ε) +Σu,t(ε) = Ht(ε)− Jt − C, [3.4]

where Jt = Bt + Ut is the joint buyer and seller value function and C = Cb + Cu is the combined

transaction cost. As is shown later, Ht(ε) is increasing in ε, hence purchases will occur if match

quality ε is no lower than a threshold yt, defined by Σt(yt) = 0. This is the ‘transaction threshold’.

Intuitively, given that ε is observable to both buyer and seller, and the surplus is transferable between

the two, the transactions that occur are those with positive surplus. The transaction threshold yt

satisfies the following equation:

Ht(yt) = Jt + C. [3.5]

Using the Bellman equations for the buyer and the seller in (3.3), the joint value Jt itself satisfies

the following Bellman equation:

rJt = −F −D + v

∫
yt

(Ht(ε)− Jt − C) dG(ε) + J̇t. [3.6]

Intuitively, the first term on the right-hand side captures the flow costs of being a buyer and a seller,

while the second term is the combined expected surplus from searching for a house and searching

for a buyer.

3.3 Price determination

While the equations (3.5) and (3.6) for the transaction threshold yt and the value function Jt do not

depend on the specific price-setting mechanism, this section briefly discusses price determination

under Nash bargaining.

Suppose the seller has bargaining power ω. Using the surplus equations in (3.2) and the

Bellman equations in (3.3), the Nash bargaining solution implies the surplus-splitting condition

(1− ω)Σu,t(ε) = ωΣb,t(ε), which determines the transaction price pt(ε). As shown in appendix A.4,

the average transactions price Pt is

Pt =
ω

1−G(yt)

∫
yt

Ht(ε)dG(ε) + (1− ω)Cu − ωCb +
ωF − (1− ω)D

r
. [3.7]

The ratio of the seller’s transaction cost Cu to total transaction costs C is subsequently denoted by

κ, and the model will be parameterized in terms of C and κ rather than Cb and Cu.

3.4 Moving decisions of homeowners

To understand the decision to move, the key variable for homeowners is their current match quality

ε, which is compared to owners’ outside option of search. A homeowner with match quality ε receives
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a utility flow value of εξ over time while the house is occupied, where ξ is a variable representing the

exogenous economy-wide level of housing demand. Housing demand ξ is common to all homeowners,

whereas ε is match specific. Moving decisions will lead to an endogenous distribution of match quality

across homeowners.

A family’s match quality ε is a persistent variable subject to occasional idiosyncratic shocks that

degrade match quality. These shocks can be thought of as life events that make a house less well

suited to the family’s current circumstances. The arrival of these shocks follows a Poisson process

with arrival rate a. If no shock occurs, match quality remains unchanged. If a shock occurs, match

quality ε is scaled down from ε to δε, where δ is a parameter that determines the size of the shocks

(δ < 1). Match quality following a shock is still positively related to match quality before the shock

because there are many dimensions to what is considered a desirable house, only some of which will

be affected by a particular life event. For example, a new job might affect commuting time, but

leave other desirable aspects of a particular house unchanged. Note that while the arrival time of

the shocks is stochastic, the size of the shock δ is deterministic. If homeowners are ever to consider

moving it must be the case that δ < 1.

Following the arrival of an idiosyncratic shock, a homeowner can decide whether or not to move.

Those who move become both a buyer and a seller simultaneously. Those who do not experience an

idiosyncratic shock face a cost Z if they decide to move.27 For tractability, the model is set up so

that a homeowner will always choose not to move in the absence of an idiosyncratic shock (formally,

this is done by assuming the limiting case of Z →∞).28

The decision of whether to move for those who receive shocks depends on all relevant variables

including homeowners’ own idiosyncratic match quality, and current and expected future conditions

in the housing market. The Bellman equation for the homeowner value function Ht(ε) is

rHt(ε) = εξ −D + a (max {Ht(δε), Jt} −Ht(ε)) + Ḣt(ε). [3.8]

The value function Ht(ε) is increasing in ε. Hence, when a shock to match quality is received, a

homeowner decides to move if match quality ε is now below a ‘moving threshold’ xt defined by:

Ht(xt) = Jt. [3.9]

This equates the value of a marginal homeowner to the outside option of selling an existing house

and searching for a new one.

27This cost represents the ‘inertia’ of families to remain in the same house, which is in line with empirical evidence.
According to the American Housing Survey and the Survey of English Housing, common reasons for moving include
being closer to schools, closer to jobs, or because of marriage or divorce.

28The assumption of a positive Z for those who do not receive idiosyncratic shocks has no consequences for the
analysis of the steady state of the model. Furthermore, even in the analysis of the model’s dynamics, if aggregate
shocks are small in relation to the size of transaction costs then the assumption of a positive Z has no consequences
for those homeowners who have not yet received an idiosyncratic shock.
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3.5 Stocks and flows

Let nt denote the rate at which the stock 1−ut of houses occupied by their owners are listed (put up

for sale), and let st denote the rate at which the stock ut of houses for sale are sold. The accounting

identity that connects stocks and flows is

u̇t = nt(1− ut)− stut. [3.10]

The listing (inflow) and sales (outflow) rates nt and st are endogenously determined by the moving

decisions of individual homeowners and the transactions decisions of individual buyers and sellers.

Given that transactions occur when the match quality ε from a viewing exceeds the transaction

threshold yt, by using the Pareto distribution of new match quality (3.1) the sales rate st is:

st = vπt, with πt = y−λt , [3.11]

where πt is the proportion of viewings for which match quality is above the transaction threshold yt.

This term represents the second search friction due to buyers’ idiosyncratic tastes. The first friction

is represented by the viewing rate v.

The moving rate nt is derived from the distribution of existing match quality among homeowners

together with the moving threshold xt. The evolution over time of the distribution of match quality

depends on the idiosyncratic shocks and moving decisions. The derivation of the moving rate is

much more complicated than the sales rate. Surviving matches differ along two dimensions: (i) the

initial level of match quality, and (ii) the number of shocks received since the match formed. By

using the Pareto distribution assumption (3.1) for new match quality, the following formula for the

moving rate nt is obtained in appendix A.5:29

nt = a− aδλx−λt v

1− ut

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)uτdτ. [3.12]

This equation demonstrates that given the moving threshold xt, the moving rate nt displays history

dependence. The reason is the persistence in the distribution of match quality among existing

homeowners.

The distribution of match quality across all current homeowners can be summarized by its first

moment Qt. The law of motion for average match quality Qt is shown in appendix A.5 to be:

Q̇t = st
ut

1− ut

(
λ

λ− 1
yt −Qt

)
− (a− nt)

(
Qt −

λ

λ− 1
xt

)
. [3.13]

29The tractability that results from the Pareto distribution assumption comes from the property that a truncated
Pareto distribution is also a Pareto distribution with the original shape parameter. Together with the nature of the
idiosyncratic shock process, this is what allows the explicit expression (3.12) to be derived. This property of the
truncated Pareto distribution is also useful in calculating the expected surplus from searching for a new house taking
into account future moving decisions. Since matches receiving idiosyncratic shocks will survive only if δε > x, the
calculation of the value function involves only an integral starting from x/δ. This integral can easily be obtained
with the Pareto distribution (ε, λ) because its probability density function is only a function of ε/ε.
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Average match quality Qt is a state variable owing to the persistence of individual match qualities.

The rate of change of match quality is increasing in both the moving and transaction thresholds xt

and yt, that is, the qualities of new and ongoing marginal matches capture changes in the overall

degree of mismatch.

4 The equilibrium of the model

The equilibrium of the model is derived in two stages. First, moving and transaction thresholds

x and y are obtained. The transaction threshold y determines the sales rate s, and both moving

and transaction thresholds x and y together determine the moving rate n. These then determine

transactions and listings, and thus the stock of houses for sale. Throughout, the focus is on the case

of perfect foresight with respect to the parameters of the model, that is, changes to parameters are

treated as permanent and no changes to these parameters are anticipated.30

4.1 The moving and transaction thresholds

The analysis assumes a case where one idiosyncratic shock is large enough to induce a homeowner

with match quality y (a marginal homebuyer) to move, that is, δy < x.

When δy < x, it follows from homeowners’ value function (3.8) that the value H(y) for a marginal

homebuyer satisfies:

(r + a)H(y) = ξy + aJ. [4.1]

Using equation (3.8) again, the value H(x) for a marginal homeowner (in the sense of being indif-

ferent between remaining a homeowner or moving) satisfies:

(r + a)H(x) = ξx+ aJ. [4.2]

The two values H(y) and H(x) are related as follows using the definitions of the transaction and

moving thresholds in (3.5) and (3.9):

H(y) = H(x) + C. [4.3]

Equations (4.1)–(4.3) together imply that:

y − x =
(r + a)C

ξ
, [4.4]

which is the first equilibrium condition linking the moving and transaction thresholds x and y.

30The model can be solved exactly for both its steady state and the out-of-steady-state transitional dynamics when
perfect foresight is assumed. The perfect foresight assumption is more suited to analysing long-lasting shifts in the
economy, and would not be appropriate for studying a version of the model augmented with shocks at business-cycle
frequencies.
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A second equilibrium condition connecting x and y is obtained by deriving the joint buyer and

seller value J as a function of the moving and transaction thresholds. First, from the definition of

the moving threshold x, equations (3.9) and (4.2) imply that:

H(x) = J =
xξ

r
. [4.5]

Second, the value J can be obtained directly from the flow value equation (3.6) by computing the

surplus from a match. The expected surplus from a new match is shown in appendix A.3 to be

given by:

∫
y

(H(ε)− J − C)dG(ε) =
ξ
(
y1−λ + aδλ

r+a(1−δλ)x
1−λ
)

(r + a)(λ− 1)
. [4.6]

Allowing for moving decisions means that the expected surplus of a new match depends not only

on the transaction threshold y but also on the moving threshold x. Combining this equation with

(3.6) and (4.5) yields the second equilibrium condition linking the thresholds x and y:

x =
v
(
y1−λ + aδλ

r+a(1−δλ)x
1−λ
)

(r + a)(λ− 1)
− F

ξ
. [4.7]

Together, equations (4.4) and (4.7) can be jointly solved for the thresholds x and y without

reference to state variables such as the number of houses for sale or the distribution of existing

match quality. Figure 6 depicts the determination of the moving and transaction thresholds as the

intersection of an upward-sloping equation (4.4) and a downward-sloping equation (4.7). Intuitively,

the upward-sloping line ties the value of a marginal homebuyer to that of a marginal homeowner

together with the transaction cost (which is sunk for someone who has decided to become a buyer,

but not for an existing homeowner who can choose to stay). This line is referred to as the ‘homebuyer’

curve. The downward-sloping curve ties the value of the marginal homeowner to the expected value

of becoming a buyer. This line is referred to as the ‘homeowner’ curve.

In (x, y) space, these two curves pin down the equilibrium values of x and y. If an equilibrium

exists, it must be unique. The conditions for existence are derived in appendix A.3.

4.2 Efficiency

The equilibrium of a search-and-matching model is often Pareto inefficient owing to the presence of

externalities. For example, a ‘congestion externality’ occurs when individuals do not take account

of the extra difficulty faced by others in finding a match when they enter the market. Furthermore,

there is typically a ‘hold-up’ problem whereby one party is able to extract surplus from another

after sunk costs of search have been incurred, which when anticipated reduces the incentive of the

other to enter the market.

It turns out that the equilibrium here is Pareto efficient. The equilibrium is the solution of the
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Figure 6: Determination of the moving (x) and transaction (y) thresholds

Transaction
threshold (y)

Moving
threshold (x)

Homeowner

Homebuyer

Notes: The homebuyer and homeowner curves represent equations (4.4) and (4.7) respectively.

following social planner’s problem with objective function

ΩT =

∫ ∞
t=T

e−r(t−T ) (ξ(1− ut)Qt − Cstut − Fut −D) dt, [4.8]

where Qt, st, and ut are the average match quality, sales rate, and stock of unsold houses resulting

from the planner’s choice of the moving and transaction thresholds. It is shown in appendix A.6

that maximizing this objective function subject to the laws of motion derived earlier leads to exactly

the same moving and transaction thresholds as in the equilibrium of the model.

Intuitively, the usual congestion externality is not present here because homeowners who decide

to move enter the market simultaneously on both sides as a buyer and as a seller. Owing to the

constant-returns meeting function, entry has no effect on the likelihood of any other participant

in the market meeting a buyer or a seller. Furthermore, the hold-up problem is also absent, again

because homeowners enter on both sides of the market. If participants on one side of the market are

able to extract surplus from participants on the other side then homeowners entering the market

know that they will face hold up, but will also be able to hold up others. Ex ante, when moving

decisions are made, these two effects are expected to cancel out. Private moving and transaction

decisions thus result in a socially efficient allocation.

4.3 Steady state

Taking as given the moving and transaction thresholds x and y, there exists a unique steady state

for all stocks and flows. This steady state naturally has u̇t = 0, but also the distribution of existing

match quality must have converged to its ergodic limit, which in practice requires that both ut and

nt are constant over time.

First, the transaction threshold y directly pins down the sales rate s using equation (3.11):

s = vy−λ. [4.9]
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The steady-state moving rate can be derived from (3.10) and (3.12) using u̇t = 0 and ṅt = 0:

n =
a

1 + δλ

1−δλ
(
y
x

)λ . [4.10]

Observe that there is a positive relationship between the moving threshold x and the moving rate n.

The transaction threshold y also influences moving and has a negative effect because it is positively

related to initial match quality. In the special case where λ is very large, that is, a degenerate

distribution G(ε) of initial match quality, the thresholds x and y have no effect on the moving rate,

which would be equal to the arrival rate a of the exogenous shocks. Intuitively, if everyone starts

with the same match quality then all families who receive a shock must move otherwise no moving

would take place. Put differently, there are no marginal homeowners in that case. A distribution of

match quality is thus an essential ingredient in endogenizing the moving rate.

Given the steady-state sales and moving rates s and n, the steady state for houses for sale follows

immediately from (3.10):

u =
n

s+ n
. [4.11]

The steady-state average transaction price P from (3.7) is:

P = Cu −
D

r
+ ω

(
1

r
+
yλ

v

)
(ξx+ F ). [4.12]

4.4 Transitional dynamics and overshooting

Following a change to the moving and/or transaction thresholds, the housing market will begin a

process of convergence to a new steady state for the volume of transactions, the moving rate, and

the stock of houses for sale. There are two facets of these transitional dynamics. First, there is

convergence in the stock of houses for sale given the inflow and outflow rates, which is a common

feature of most search models. Second, endogenous moving together with persistence in existing

match quality gives rise to a novel source of transitional dynamics as the distribution of match

quality converges to its ergodic limit.

The second source of transitional dynamics is manifested through the backward-looking be-

haviour of the aggregate moving rate. In this sense the moving rate n is also a state variable in

addition to the usual state variable u. For any given levels of the moving and transaction thresholds

(x, y), which are control variables, appendix A.7 shows that the dynamics of the state variables

(u, n) are governed by a pair of first-order linear differential equations. Figure 7 depicts the phase

diagram for these two state variables in the empirically relevant case where the sales rate is large

compared to the moving rate.

Consider a rise in the moving threshold with no change in the transaction threshold. On impact,

the moving rate must increase as homeowners are less tolerant of low match quality. Furthermore,

since subsequent match quality will be higher on average after this cleansing of the distribution,
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Figure 7: Phase diagram of the model

nt

ut

n

u

ṅt = 0

u̇t = 0

Notes: The red and blue solid lines depict respectively the points where nt and ut are individually
stable, and the intersection of the two lines is the steady state. The two dashed lines depict the
two eigenvectors of system of differential equations (the eigenvector associated with the dominant
eigenvalue is the short dashed line), and the solid curves depict example dynamic paths starting from
some initial conditions. These properties are derived analytically in appendix A.7.

the initial moving rate will be higher than in the new steady state, which is itself higher than the

original steady state. In this sense, there is overshooting of the moving rate. After the overshooting,

the phase diagram confirms that convergence to the steady-state moving rate is monotonic.

There is no immediate change in the stock of houses for sale on impact. However, owing to the

higher moving rate, the new steady-state level of houses for sale is higher. The phase diagram shows

that houses for sale gradually rises above the new steady state and then falls back towards it. This

reflects the gradual clearance of the unsold stock of additional houses that come on to the market.

With no change in the sales rate, the dynamics of transactions follow the same overshooting pattern

as houses for sale.

Second, consider a fall in the transaction threshold with no change to the moving threshold. In

the very short term this creates a boom in low match-quality transactions, but this quickly comes to

an end as houses on the market are sold. However, in the future, the new low-quality matches will

result in more moving, including in the new steady state. This replenishes the stock of houses for

sale and leads to a recovery in the number of transactions, including in the new steady state. This

process means there is overshooting in transactions also for a change in the transaction threshold.

The dynamics described here are explored quantitatively once the model is calibrated in section 5.
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5 The importance of the decision to move house

This section presents an application of the model to the U.S. housing-market boom between 1995 and

2003. During that time, houses were selling faster, more houses were sold, and at the same time, more

houses were put up for sale.31 The application highlights the importance of the endogenous moving

decision by contrasting the predictions of the model to those of an alternative model with exogenous

moving. The role of persistence in individuals’ match quality is illustrated by quantifying the

overshooting dynamics of the model. Finally, there is a brief assessment of the model’s predictions

for the whole boom-bust period 1995–2009.

5.1 The 1995–2003 housing-market boom

Figure 1 shows that during the period 1995–2003, housing transactions rose by 43%, while the sales

rate increased by 14% (for consistency with Figure 1, all percentage changes referred to in this

section are the log point changes of variables between their 1994 and 2003 averages). In spite of the

rise in the sales rate, the stock of houses for sale did not fall, and in fact increased by 29%, while the

fraction of houses for sale increased by 13%. The time series of listings plays a key role in reconciling

the behaviour of transactions, the sales rate, and houses for sale. During this period, the volume of

listings rose by 50% and the listing rate increased by 34%. Not only were houses selling faster (the

rise in the sales rate), but at the same time homeowners decided to move more frequently. This

increase in listings generated a rise in the stock of houses for sale, which also boosted transactions.

It is well known that there was a boom in construction and a rise in the homeownership rate

during the period in question. As explained in section 2.2, both of these factors are captured by

the increase in the owner-occupied housing stock series. Equation (2.4) shows that changes in the

housing stock have an approximately proportional effect on transactions, which is seen in the 16% rise

in the housing stock (the grey dotted line in Figure 1) and the 16% contribution of the housing stock

to transactions (the yellow dotted line in Figure 2). Thus, net of the contribution from the larger

housing stock, transactions rose by 27% and the number of listings increased by 34%. There remains

a substantial rise in transactions even after accounting for changes in the owner-occupied housing

stock. Finally, note that real house prices increased by 31% during the 1995–2003 period according

to the purchase-only price index from the Federal Housing Finance Agency (FHFA) deflated by the

personal consumption expenditure (PCE) price index.

There are at least three features of the economic environment during the period 1995–2003 that

have implications for moving decisions according to the model and which are consistent with the

rise in listings. These are the increase in productivity growth, the adoption of internet technology,

and cheaper and more easily accessible credit.

An increase in productivity raises incomes and increases the demand for housing ξ (the reason

31It is well known that rapid increases in house prices continued until 2006–2007, while transactions started to fall
during 2005. It is likely the 2003–2006 period was affected by factors outside of the model, most prominently, the
speculative motive of real-estate investors (Haughwout, Lee, Tracy and van der Klaauw, 2011, Burnside, Eichenbaum
and Rebelo, 2016, DeFusco, Nathanson and Zwick, 2017).
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why higher productivity growth can be interpreted as an increase in the preference parameter ξ

is explained in appendix A.13). The adoption of internet technology reduces search frictions in

arranging viewings by distributing information about available houses and their general character-

istics more widely among potential buyers. This raises the meeting rate v implied by the meeting

function. Finally, lower mortgage rates reduce the opportunity cost of capital and thus lower the

discount rate r in the model (the reason why interest rates can be linked to the preference parameter

r in the model is also explained in appendix A.13). Easier access to credit such as a fall in the fixed

cost of obtaining a mortgage can be interpreted as a reduction in total transaction costs C (buyers’

transaction costs Cb are lower). Another relevant factor that effectively lowered transaction costs

during this period is the Taxpayer Relief Act of 1997, which reduced the tax payable on moving for

some existing homeowners (lower transaction costs Cs for sellers).32

Using the diagram in Figure 6 that depicts equations (4.4) and (4.7), and which shows how

the moving and transaction thresholds are determined, both a rise in ξ and a fall in r imply the

two curves shift to the right. This is illustrated in the left panel of Figure 8 below. A rise in v

implies the curve representing (4.7) shifts to the right, as shown in the middle panel. Last, a fall

in C implies a downward shift of the line representing (4.4), as shown in the right panel. In all

cases, the moving threshold x increases, which represents a reduction in the acceptable degree of

mismatch for existing homeowners. The increase in x is larger than y, and hence x/y increases,

which leads to an unambiguous increase in the moving rate n according to equation (4.10). The

sales rate unambiguously rises when C falls, but the effect is ambiguous in the other cases.

The intuition for these effects is as follows. Take the case of lower mortgage rates r. This increases

the present discounted value of flows of housing services, so it increases the incentive to invest in

match quality, reducing the tolerance for low current match quality (a higher moving threshold x),

resulting in more frequent moves. However, there are two offsetting effects on transactions decisions.

On the one hand, buyers are more keen to make a purchase to receive the higher discounted sum of

flow values, so they become less picky (a lower transaction threshold y). On the other hand, owing

to the reduced tolerance for low-quality matches as a homeowner, the expected duration of a match

is shortened, which makes buyers more picky (higher y). The intuition is essentially the same for

the effects of an increase in housing demand ξ.

In the case of the higher viewing rate v, the effect is to raise the expected surplus from searching.

This increases the incentive to search both for existing homeowners and homebuyers, making both

more picky (higher moving and transaction thresholds x and y). Finally, a lower transaction cost

C shrinks the gap between the least acceptable current match and the least acceptable new match,

resulting in more moving and more transactions.

Figure 8 demonstrates that all three factors lead to an increase in the moving rate and the

number of transactions. Quantifying these predictions requires a calibration of the parameters,

which is the goal of the next section.

32Shan (2011) and Heuson and Painter (2014) present evidence showing that this policy change led to an increase
in mobility and transactions.
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Figure 8: Comparative statics of moving and transaction thresholds
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5.2 Calibration

The parameters of the model are calibrated to match key features of the U.S. housing market. Some

parameters are directly matched to the data, while others are determined indirectly by choosing

values that make the predictions of the model consistent with some empirical targets. For the

parameter ω, a value of 0.5 is directly imposed to give buyers and sellers equal bargaining power.

The (annual) discount rate r is set to 5.7% (r = 0.057), which is the 1994 average of the HP-filtered

30-year real mortgage rate series (subtracting PCE inflation from the nominal mortgage rate).

5.2.1 Shocks to match quality

Parameters related to match quality shocks are chosen to fit the empirical aggregate hazard function

for moving house derived from the American Housing Survey (AHS). This is the aggregate rate at

which existing homeowners move house as a function of the duration of time they have spent in their

current home. Table 3.9 from the AHS reports data for current owner-occupied housing units on ‘the

year householder moved into unit’ given as a frequency distribution over cohorts of homeowners, for

example, those that moved in from 1985 to 1989. Each cohort appears in multiple surveys, so the

hazard rate can be estimated by comparing the numbers of remaining homeowners from a cohort

in two adjacent survey years. For example, of the cohort that moved in 1985–1989, the number

reported in the survey year 2003 was 7.3 million, while in the survey year 2005 it was 6.4 million.

This gives an estimate of 0.9 million homeowners out of 7.3 million who move during those two

years, which implies an annualized moving rate of 6% for that group.

This exercise can be done for every cohort in every pair of survey years. In what follows, all

biennial surveys from 1985 to 2015 are used. The hazard function expresses the hazard rate as

a function of the duration of stay, and this duration is computed in the data as the difference

between the average of the two survey years and the midpoint of the range of years in which a

cohort moved in.33 For example, taking the 1985–1989 cohort in the survey years 2003 and 2005,

33For the cohort ‘1939 or earlier’ the midpoint is taken as 1935.
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the duration associated with the hazard rate 6% is 16.5 years (2004 minus 1987.5). This method

yields a collection of duration-hazard rate pairs that are displayed as a scatterplot in Figure 9. Note

that where there are multiple hazard rates associated with a given duration, the hazard rates are

averaged and appear as a single point in the figure. The data suggest the aggregate hazard function

displays a ‘u-shaped’ pattern whereby it first declines from around 9% per year to 4% and then rises

above 10% as the duration of time a house has been lived in increases.

Figure 9: Empirical and fitted model hazard functions
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Notes: The parameters of the model are chosen to minimize the sum of squared deviations between
the empirical and model-implied aggregate hazard functions weighted by the sizes of the groups of
homeowners used to calculate each point of the empirical hazard function.
Source: Authors’ calculations using data from the American Housing Survey.

In order to rationalize the downward-sloping portion of the aggregate hazard function, the model

of section 3 is enriched to allow for heterogeneity in the arrival rates and sizes of the idiosyncratic

shocks faced by families. This extension of the model is described in full in appendix A.8 and the

new equations of the model are derived there. In short, after a transaction is complete, a family

draws a type i = 1, . . . , q, where the types have probabilities θ1, . . . , θq (
∑q

i=1 θi = 1).34 Each

type i can have its own distribution of idiosyncratic shocks parameterized by arrival rate ai and the

scaling factor δi applied to match quality ε when a shock is received. The types can be interpreted as

different family compositions, different occupations, or different preferences. The key modification

compared to the basic model of section 3 is that families face ex-ante differences in risks to housing

match quality, rather than just ex-post differences in the realizations of the idiosyncratic shocks.

Such ex-ante differences are likely in light of the most common reasons for moving house reported

in the AHS, namely changing jobs, changing schools, marriage, divorce, and having children.

34This is computationally more tractable than the alternative of families having different types permanently, but
the implications of the heterogeneity for the aggregate hazard function are similar.
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It is shown in appendix A.8 that the model-implied aggregate hazard function h(T ) is:

h(T ) =

∑q
i=1 θiaie

−aiT
(

1 +
(
y
x

)λ (
(1− δλi )

(
eaiδ

λ
i T − 1

)
− δλi

))
∑q

i=1 θie
−aiT

(
1 +

(
y
x

)λ
(eaiδ

λ
i T − 1)

) , [5.1]

where h(T ) is the average moving hazard rate for families that lived in a house for T years. This

depends on the idiosyncratic shock parameters {θi}, {ai}, and {δi}, the parameter λ describing the

distribution of initial match quality, and the moving and transaction thresholds x and y, which turn

out to be common to all types. The thresholds x and y are determined by a pair of equations that

replace (4.4) and (4.7):

y − x =

(
1∑q

i=1
θi
r+ai

)
C

ξ
; [5.2a]

x =
v
∑q

i=1
θi

r+ai

(
y1−λ +

aiδ
λ
i

r+ai(1−δλi )
x1−λ

)
λ− 1

− F

ξ
. [5.2b]

These equations reduce to (4.4) and (4.7) in the special case q = 1, which represents the original

model where the distribution of idiosyncratic shocks is the same for all families.

There are two features of the model that can make it consistent with the u-shaped pattern of

the aggregate hazard function seen in the data. An increasing section of the hazard function can

be generated by a model with a moving decision where there is persistence in match quality. This

is because an idiosyncratic shock that does not immediately trigger moving nonetheless makes it

more likely a subsequent shock will cause a move. A decreasing section of the hazard function can

be generated by heterogeneity in the distributions of idiosyncratic shocks. This is because those

with a higher arrival rate or larger size of idiosyncratic shock will move sooner on average, so the

aggregate moving rate can be decreasing in duration owing to a compositional effect.

5.2.2 Search frictions

The average time-to-sell is the reciprocal of the average sales rate (Ts = 1/s). The sales rate is

measured using data from NAR on transactions and inventories (for existing single-family homes),

as described in section 2.2. The implied value of average time-to-sell over the period 1991–2013 is

6.5 months, hence Ts = 6.5/12. Previous research on housing markets has used a variety of sources

for data on time-to-sell, and there is considerable dispersion in these estimates. This evidence is

discussed in detail in appendix A.10. In summary, most studies find that average time-to-sell is

less than three months in cases where there is a potential withdrawal bias which is not controlled

for. Most studies that are not subject to this bias, or attempt to control for it, find time-to-sell

to be more than four months. Since the predictions of the model will be compared to variables

constructed from the NAR transactions and inventories data, a measure of time-to-sell consistent

with these data is used.
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The empirical target for average time-to-sell provides information about the parameter λ. The

reason is that λ determines the amount of dispersion in the distribution of potential match quality,

and thus the incentive to continue searching. A low value of λ indicates a high degree of dispersion,

in which case families will be willing to spend longer searching for an ideal house, all else equal.

The next empirical target is for viewings per sale, that is, the reciprocal of the probability of a

transaction conditional on a viewing (Vs = 1/π). The target is set to 10 (Vs = 10) on the basis of

the evidence on viewings per transaction presented in section 3.2. Together with time-to-sell, this

target provides information about the parameter v. This is because v is the reciprocal of the average

time between viewings, which is equal to the ratio of average time-to-sell and average viewings per

sale (see equation 3.11), and hence v = Vs/Ts.

5.2.3 Costs parameters

The parameters C, F , D, and κ are calibrated to match the costs of owning a house and the costs

involved in buying and selling houses, and how those costs are distributed between buyers and

sellers. Let c = C/P , f = F/P , and d = D/P denote the costs C, F , and D relative to the average

house price P . The data provide information on costs relative to price, so calibration targets for c,

f , and d are adopted that will determine C, F , and D indirectly. The cost-to-price ratios predicted

by the model are derived in appendix A.11, where it is shown that the parameters C, F , and D

appear only as ratios to ξ. This is true in all other equations of the model, so the value of ξ can be

normalized to 1.

Following Poterba (1991), the flow cost D of owning a house is set so that in equilibrium it is

4.5% of the average house price (d = 0.045). This cost is made up of a 2.5% maintenance cost and a

2% property tax. The maintenance cost is interpreted as the cost required perpetually to maintain

a house in the same physical condition as when it was first purchased.

The costs incurred in buying and selling houses comprise the one-off transactions cost C and

the flow costs of search F . For transaction costs, Quigley (2002) estimates total costs as being in

the range 6–12% of price in the U.S., with about 3–6% being the realtor’s fee paid by the seller.

Ghent (2012) summarizes recent research and uses a total transaction cost of 13.1%, where 5.1% is

the realtor’s fee borne by the seller. In light of these findings, the total transaction cost C is set so

that it is 10% of the price (c = 0.1), and the share κ of these costs borne by the seller is set to 1/3.

There are almost no estimates of the flow costs F of searching. The approach taken here is to

base an estimate of F on the opportunity cost of the time spent searching. Assuming one house

viewing entails the loss of a day’s income, the value of F can be calibrated by adding up the costs

of making the expected number of viewings. In the model, time-to-buy is equal to time-to-sell, so

buyers will incur search costs TsF per housing transaction on average. With viewings per sale equal

to the average number of viewings made by a buyer, the total search cost should be equated to

VsY/365, where Y denotes average annual income. Thus, the calibration assumes TsF = VsY/365,

and by dividing both sides by PTs, this implies f = (1/365)(Y/P )(Vs/Ts). Using a house-price to

income ratio of 2 as a reasonable average value (Case and Shiller, 2003) together with the values of
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Ts = 6.5/12 and Vs = 10 discussed earlier, the ratio of the flow cost of search to the average price is

calibrated to be 2.5% (f = 0.025). Note that 2.5% should be interpreted as the hypothetical cost

of spending a whole year searching.35

5.2.4 Calibration procedure

Table 1 lists five empirical targets that provide information about the five parameters {λ, v, C, F,D}.
While each target is intuitively linked to one parameter, the calibration of the parameters to match

the targets must be done jointly. Furthermore, the link between these parameters and the targets also

depends on the other parameters q, {θi}, {ai}, and {δi} describing the distributions of idiosyncratic

shocks. It turns out that conditional on q, θi, ai, and δλi , it is possible to find values of λ, v, C, F ,

and D to match Ts, Vs, c, f , and d exactly (the method is described in appendix A.11). This leaves

only the idiosyncratic shock parameters to be determined.

Table 1: Targets used in the calibration

Target description Notation Value

Average time-to-sell Ts 6.5/12
Average viewings per sale Vs 10
Ratio of transaction cost to average price c 0.10
Ratio of flow search costs to average price f 0.025
Ratio of flow maintenance costs to average price d 0.045

Notes: The data sources for these empirical targets are discussed in section 5.2.
The other calibration target is the aggregate hazard function shown in Figure 9.

The idiosyncratic shock parameters all appear in the expression for the aggregate hazard function

in (5.1), along with λ and the moving and transaction thresholds x and y, where the latter are

endogenous variables. Given q, θi, ai, and δλi , the procedure to set the other parameters to match

Ts, Vs, c, f , and d exactly pins down both λ and the thresholds x and y. Thus, the model-implied

hazard function can be calculated given values of {θi}, {ai}, and {δi}. These parameters are chosen

to match the empirical hazard function as closely as possible, conditional on a number of types q.

Formally, for a given q, the procedure is to minimize a weighted sum of squared deviations between

the points on the empirical aggregate hazard function and the model-implied hazard function. While

q cannot be chosen in this way because that would result in an infinite-dimensional parameter space,

it is possible to start from q = 1 and then increase the number of types, stopping when there is only

a negligible improvement in the goodness of fit to the aggregate hazard function. The details of this

procedure are provided in appendix A.11.

The weights used to calculate the sum of squared deviations of the model-based aggregate hazard

function from its empirical counterpart are the sizes of the groups of homeowners from which each

35The calibration of costs ignores any non-pecuniary costs of search and moving. A sensitivity analysis considering
higher costs is performed in appendix A.15.
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point of the empirical hazard function is derived. This weighting scheme attaches greater importance

to matching the parts of the aggregate hazard function which are estimated using more data points.36

Starting from q = 1, the minimized weighted sum of squared deviations between the empirical

and model-implied aggregate hazard functions is 1.120. By considering a model with two types,

the sum of squared deviations is reduced to 0.682, so the hazard function data strongly prefer some

heterogeneity. However, adding more than two types has a negligible impact on the fit to the

aggregate hazard function (there is no change to the minimized sum of squares up to three decimal

places) and the estimated proportions of the additional types in the population are negligible (zero

up to three decimal places). Therefore, the number of types is set to q = 2 in what follows.

The model-implied aggregate hazard function with two types that minimizes the weighted sum

of squared deviations is shown in Figure 9 alongside the data. The model-implied hazard has both

a downward-sloping section and an upward-sloping section, reflecting the pattern seen in the data.

Quantitatively, the model matches the downward-sloping section of the aggregate hazard function

quite closely. It is less successful in matching the upward-sloping section, which is significantly

steeper than the model is able to generate. The full set of parameters minimizing the weighted

sum of squared deviations between the empirical and model-implied hazard functions and exactly

matching the calibration targets in Table 1 is shown in the ‘Model I’ column of Table 2 (the other

columns are discussed later).

It turns out that heterogeneity in the distributions of idiosyncratic shocks is found only in the

arrival rates ai. 49.6% of families have a quiet life and only receive shocks to their housing match

quality on average after 13.5 years (a1 = 0.074). The other 50.4% have more eventful lives and

receive shocks every 2.9 years on average (a2 = 0.346).37 For both types, an idiosyncratic shock

is estimated to reduce match quality by 11% (δ1 = δ2 = 0.895). As explained earlier, the role of

heterogeneity is in generating a downward-sloping portion of the aggregate hazard function, which

the model with two types already does very well. The upward-sloping section of the hazard function

is due to homeowners making moving decisions and persistence in match quality, and the logic for

that is not significantly affected by heterogeneity.

The reason why there is no heterogeneity in the calibrated values of δi is that the restriction

δiy ≤ x is binding (ensuring one single shock is large enough to induce someone who was a marginal

homebuyer to move). Relaxing this constraint would allow for smaller idiosyncratic shocks, resulting

in a steeper hazard function.38 It is this constraint that prevents the model-implied hazard function

matching closely the upward-sloping portion of the empirical aggregate hazard function.

36It is also possible to weight the deviations in proportion to the model-implied survival rates for different durations
of homeownership. This alternative method delivers almost identical results.

37Given the common reasons cited for moving house, one interpretation of the two groups could be as young and
old families.

38Solving the model with higher δi (smaller idiosyncratic shocks) would involve significantly greater technical
complexity owing to non-differentiabilities.
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Table 2: Calibration of the parameters

Model I Model II Model III
Parameter description Notation Value Value Value

Parameters derived from hazard function
Number of types q 2 2 1
Fraction of type-1 families θ1 0.496 0.639 1
Fraction of type-2 families θ2 0.504 0.361 -
Arrival rate of shocks for type 1s a1 0.074 0.044 0.116
Arrival rate of shocks for type 2s a2 0.346 0.168 -
Size of shocks for type 1s δ1 0.895 0 0.903
Size of shocks for type 2s δ2 0.895 0 -

Parameters matching other calibration targets
Steady-state distribution of match quality λ 15.9 14.7 17.6
Arrival rate of viewings v 18.5 18.5 18.5
Total transaction cost C 0.611 0.643 0.611
Flow search costs F 0.153 0.161 0.153
Flow maintenance costs D 0.275 0.289 0.275

Directly measured parameters
Share of transaction cost directly borne by seller κ 1/3 1/3 1/3
Discount rate r 0.057 0.057 0.057

Imposed parameters
Bargaining power of seller ω 1/2 1/2 1/2
Normalization of homeowner flow value ξ 1 1 1

Notes: Model I has heterogeneity in the distributions of idiosyncratic shocks; it is calibrated to minimize
the weighted sum of squared deviations between the empirical and model-implied aggregate hazard functions
shown in Figure 9, and to match exactly the five calibration targets in Table 1. Model II has two types of
idiosyncratic shocks and is restricted so that moving is exogenous (which requires δi = 0); the other parameters
are calibrated to match exactly the targets in Table 1. Model III has a single idiosyncratic shock distribution;
it is calibrated to match exactly the moving rate elasticity η and average time-to-move Tn implied by the
hazard function of Model I, as well as the other calibration targets in Table 1.

5.3 The housing boom generated by the model

Having calibrated the model, it is now possible to examine its quantitative predictions for the

housing market following the three developments discussed earlier: the productivity boom, the rise

of internet-based property search, and cheaper credit.

A simple measure of productivity growth is the increase in real GDP per person, which grew by

a total of 21% between 1995 and 2003. This is identical to the growth in the HP-filter trend line.

A rise in income naturally leads to an increase in housing demand (the parameter ξ in the model),

with the extent of the increase also depending on the income-elasticity of housing. That elasticity

is assumed to be unity here.39

39Harmon (1988) finds an income elasticity of housing demand in the range 0.7–1.
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The rise of internet-based property search would be expected to improve the efficiency of search

as captured by the meeting function (the parameter v in the model). Since v = Vs/Ts, data on time-

to-sell and viewings-per-sale can be used to infer the rise in v. According to data from Genesove

and Han (2012), the rise in Vs/Ts over the period 1995–2003 was 17%, and this is taken as the size

of the efficiency gains.

Mortgage rates (30-year conventional) declined from 8.4% in 1994 to 5.8% in 2003, while inflation

(PCE) decreased from 2.1% to 2.0%.40 To abstract from transitory movements in interest rates, the

focus is on the HP-filter trend fitted to the real mortgage rate. This trend real mortgage rate fell

from 5.7% to 4.0%, which is a 36% drop. The assumption is that all the changes considered here

are expected to be permanent.

The quantitative effects of each of these developments individually and taken together are given

in Table 3. The results show that macroeconomic variables have a large impact on moving and

buying decisions in the calibrated model, which is able to explain a significant proportion of the

movements seen in the data. As discussed earlier, it is changes in moving rates that are the main

driver of transactions in the longer term. The model is consistent with large changes in transactions

precisely because it is able to explain large changes in moving rates. A sensitivity analysis of the

results to changes in some of the calibration targets can be found in appendix A.15.

Table 3: Quantitative results

Transactions Listings Sales Moving Houses Prices
Factor rate rate for sale

Productivity boom 17% 17% 11% 17% 6% 32%
Improved search efficiency 1% 1% 1% 1% 0% 2%
Lower mortgage rates 10% 10% −7% 11% 18% 36%

Productivity & search 17% 17% 11% 18% 6% 33%
Productivity, search, & mortgages 24% 24% 2% 25% 23% 70%

Data (1995–2003) 27% 34% 14% 34% 13% 31%

Notes: The table shows the long-run steady-state effects of the shocks. The combined effects are not the sum
of the individual effects because the model is not linear.

The analysis assumes the observed change in the HP-filter trend of the real mortgage rate is

taken to be permanent by homeowners in the model. This provides an upper bound for the effects

of lower interest rates. It is debatable whether homeowners at the time expected the decline in

mortgage rates to be permanent (the HP-filter trend is estimated using data from 1971 to 2015,

which has the benefit of hindsight), and if mortgage rates were expected to be mean reverting, it

would not be correct to take the observed change as permanent.41 For this reason, Table 3 separately

40The 10-year Treasury rate declined by a very similar amount, and inflation expectations as measured by the
Michigan survey showed almost no change.

41Glaeser, Gottlieb and Gyourko (2010) argue that accounting for mean reversion in interest rates means that
cheap credit explains only a small proportion of the boom in house prices. Fuster and Zafar (2015) also show that
mortgage rates have only a small impact on house prices.
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reports the combined effects with and without the change in mortgage rates, which give an upper

and a lower bound for the combined effects. Excluding the effects coming from mortgage rates, the

model accounts for two thirds of the increase in transactions and the sales rate, and half of the

increase in the moving rate. The prediction for prices is very close to what is found in the data.42

5.4 Unbundling the mechanisms of the model

This section illustrates the importance of the decision to move and the role played by the distribution

of match quality. It also explores the aggregate effects of heterogeneity.

5.4.1 The role of endogenous moving

The results presented above show that the model does a good job of accounting for the 1995–2003

housing boom, but it is natural to ask what is the value added of a model with endogenous moving

compared to one where moving is exogenous. To answer this question, note that the general model

embeds an exogenous-moving model as a special case when δi = 0 for all types. In this case, any

homeowner will always move house after an idiosyncratic shock because match quality drops to zero.

The other parameters are chosen to minimize the distance between the model-implied and empirical

aggregate hazard functions as before, as well as the calibration targets in Table 1. The resulting

parameters are listed as ‘Model II’ in Table 2.

Table 4 shows the combined effects of the productivity boom and internet search for both

endogenous- and exogenous-moving versions of the model (the change in mortgage rates is ex-

cluded because of uncertainty about whether mean reversion was expected, as discussed earlier).

The results in the first row are the same as those in Table 3 and the second row shows the results

for the calibrated exogenous-moving model. As with the endogenous-moving model, house prices

rise owing to the direct effect of higher housing demand ξ, but the sales rate actually falls when

moving is exogenous. More importantly, the exogenous-moving model predicts a negligible change

in transactions because it predicts no change in the moving rate.

This analysis confirms the basic point that changes in the moving rate are necessary to explain

the boom in transactions. Since the moving rate in an exogenous-moving model depends only on

the exogenous arrival rates ai of idiosyncratic shocks and nothing else, changes in macroeconomic

conditions such as credit availability or income growth have no effect on the moving rate. Thus, such

a model cannot account for changes in housing transactions as a response to changes in macroeco-

nomic conditions. The only way to generate an increase in transactions is to assume an exogenous

increase in the aggregate moving rate either by increasing the arrival rates ai of idiosyncratic shocks

or increasing the size of the group that moves more frequently. The results of these two exercises

are shown in the third and fourth rows of Table 4 respectively.

42As discussed earlier, easier access to credit might be interpreted as a reduction in buyers’ transaction costs Cb.
This is more difficult to quantify. As an illustrative example, appendix A.14 considers the case where Cb is reduced by
one quarter, which alone can account for a substantial increase in both the sales and moving rates (and consequently,
transactions too), but its impact on prices is muted.
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Table 4: The role of endogenous moving

Transactions Listings Sales Moving Houses Prices
Model rate rate for sale

Endogenous moving 17% 17% 11% 18% 6% 33%
Exogenous moving 0% 0% −1% 0% 1% 34%
Exogenous moving, a1 & a2 ↑ 34% 33% 33% 17% 34% 16% −5%
Exogenous moving, θ2 0.36 → 0.65 34% 34% 20% 34% 13% −6%

Data (1995–2003) 27% 34% 14% 34% 13% 31%

Notes: ‘Endogenous moving’ is the row ‘Productivity & search’ from Table 3. ‘Exogenous moving, a1 & a2 ↑
34%’ shows the effects of an increase in both arrival rates a1 and a2 that replicates the long-run increase in
the aggregate moving rate in the exogenous-moving model, while ‘Exogenous moving, θ2 0.36 → 0.65’ does the
same by increasing the fraction of frequent movers (type 2s).

As can be seen in the third row of the table, an exogenous rise of both a1 and a2 by 34% to match

the observed increase in the aggregate moving rate is able to replicate the increase in transactions.

However, it is harder to understand why the arrival rates of idiosyncratic shocks should increase

like this at the aggregate level. Is it due to a drastic change in shocks to circumstances such as job

reallocation, marriage or divorce, or family size? If so, what would explain the sudden reversal of

moving rates during the bust?

The alternative approach of matching the aggregate moving rate by exogenously increasing the

size of the group that moves more frequently (type 2s) requires almost doubling the size of this group

(from 0.36 to 0.65 of the population). The results are shown in the fourth row of the table. It can

be seen that this too replicates the increase in transactions, but again, the underlying source of this

drastic change is less clear. Could it be a large change in demographic structure? If so, what accounts

for the reversal during the bust? In contrast to these approaches, the model with endogenous moving

provides a reason why aggregate moving rates should be sensitive to macroeconomic conditions such

as income growth, search technology, and credit availability.

Furthermore, the last two rows of Table 4 show that when the increase in transactions results

from exogenous changes in idiosyncratic moving shocks it would be accompanied by declines in

house prices. The reduction in house prices is because the effective discount rate rises when the

expected time spent living in a house is shorter.43 On the other hand, the endogenous-moving

model presented in this paper shows that the factors explaining the rise in the moving rate and

transactions also push up house prices. It would be necessary to introduce additional factors into

an exogenous-moving model to explain the behaviour of house prices.44

43If the exogenous moving rate increased only temporarily then there would be a short-lived increase in transactions.
In that case, there would be no change in house prices, but this too is inconsistent with the data.

44For example, to generate a simultaneous rise in prices and transactions from an exogenous rise in the moving
rate, Dı́az and Jerez (2013) require positively correlated housing demand and supply shocks, while Ngai and Tenreyro
(2014) require a thick-market externality that improves the distribution of new match quality when there are more
buyers and houses on the market.
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5.4.2 The match quality distribution and overshooting dynamics

As discussed in section 4.4, because of persistence in match quality, the model of endogenous mov-

ing predicts the moving rate overshoots its steady-state value following a shock. This is due to the

cleansing effect of moving house on the match quality distribution. This section studies quantita-

tively the full dynamic response of the housing market to the three developments studied earlier:

the productivity boom, the rise of internet-based property search, and cheaper credit. An analytical

solution for the model’s out-of-steady-state dynamics is derived in appendix A.7 and this is used

here to plot impulse response functions.

Figure 10 shows the impulse responses of transactions, listings, the sales rates, the moving rate,

houses for sale, and house prices to one-time permanent shocks to productivity, search efficiency, and

interest rates. The sizes of these shocks are set to match the changes in the three factors during the

1995–2003 housing boom as explained in section 5.3. The changes in the variables are reported as

log deviations from their initial values in line with the earlier steady-state results shown in Table 3

and Table 4.

There are no transitional dynamics for the sales rate and house prices because these two vari-

able are purely forward-looking. All the other variables display the overshooting pattern discussed

intuitively in section 4.4 and derived analytically in appendix A.7. These dynamics are due to

the persistence of housing match quality, which gives rise to a ‘cleansing effect’ when the moving

threshold changes: an increase in moving improves the subsequent distribution of match quality all

else equal, which leads to a smaller change in moving in the long run.

The calibrated model shows that overshooting is also quantitatively important, especially fol-

lowing a change in interest rates. The duration of the transitional dynamics seen in Figure 10 is also

quite prolonged. It takes around 4–5 years for about half of the overshooting to dissipate. These

dynamics are much more persistent than would be found in an exogenous-moving model where only

the stock of houses for sale is a state variable, not the distribution of housing match quality.

The extent of overshooting is measured by taking the ratios of the maximum effects from Fig-

ure 10 and the steady-state changes in Table 3. Table 5 reports the maximum effects and the

maximum-to-long-run ratios for the productivity boom and improvement in search technology to-

gether, and for all three developments together. The sizes of the transitional effects of the shocks

are now closer to matching the boom in housing transactions in the period 1995–2003.

5.4.3 The aggregate effects of heterogeneity

The results presented earlier show that the model does a good job of accounting for the 1995–2003

housing boom. Since it is changes in moving rates that are driving the changes in transactions, the

aggregate implications of the model depend crucially on the elasticity of the moving rate with respect

to the moving threshold. This elasticity is determined by the proportion of ‘marginal movers’, that

is, those homeowners who are close to the threshold for moving. The following expression for the
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Figure 10: Dynamic responses to shocks
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Notes: The impulse response functions show the dynamic responses of the variables to unexpected and
permanent shocks to productivity, search technology, and mortgage rates as discussed in section 5.3.

steady-state value of this elasticity, denoted by η, is derived in appendix A.9:

η =
∂ log nt
∂ log xt

∣∣∣∣
ut=u,nt=n

= λ
(y
x

)λ q∑
i=1

θi
δλi

1− δλi
. [5.3]
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Table 5: The quantitative extent of overshooting

Transactions Listings Sales Moving Houses Prices
Factor rate rate for sale

Productivity & search 21% 23% 11% 23% 10% 33%
[1.2] [1.3] [1] [1.3] [1.5] [1]

Productivity, search, & mortgages 33% 39% 2% 39% 31% 70%
[1.4] [1.6] [1] [1.6] [1.4] [1]

Data (1995–2003) 27% 34% 14% 34% 13% 31%

Notes: The table shows the maximum size of each effect during the transition to the new steady state. The
ratio of the maximum transitional effect to the ultimate long-run effect is given in brackets below.

The formula reveals that the parameters δi controlling the sizes of the idiosyncratic shocks play a

key role in understanding the value of the moving-rate elasticity. Using the calibration of the model

presented earlier, the elasticity η is equal to 19.2.

It turns out that the calibration of the idiosyncratic shock parameters {θi}, {ai}, and {δi} largely

matters through the implied value of the elasticity η together with a measure of how long on average

families expect to remain in the same home. The latter is related to the average level of the aggregate

hazard function h(T ) and is referred to as time-to-move Tn:

Tn =

∫ ∞
T=0

Th(T )e−
∫ T
τ=0 h(τ)dτdT =

q∑
i=1

θi
ai

(
1 +

δλi
1− δλi

(y
x

)λ)
. [5.4]

The calibrated parameters imply a value of time-to-move Tn equal to 18 years.45

It is possible to calibrate the basic version of the model without ex-ante heterogeneity in such

a way that it has exactly the same values of η and Tn as the full model with heterogeneity, as well

as matching the other calibration targets in Table 1. To do this, note that both formulas (5.3) and

(5.4) are also applicable to the basic model with a single distribution of idiosyncratic shocks when

q = 1. The parameters a and δ for the single distribution of idiosyncratic shocks are then chosen to

match the values of η and Tn implied by the earlier calibration, rather than finding the best fit to

the empirical aggregate hazard function.46 This procedure is described in appendix A.12 and the

resulting parameter values are listed as ‘Model III’ in Table 2.

The quantitative predictions of the basic model calibrated in this way are shown in the second

row of Table 6 alongside the results for the heterogeneous model in the first row for comparison.

These results are for the productivity boom and better search efficiency studied earlier (see the row

‘Productivity & search’ from Table 3). The effects in the two rows are very similar, so the exercise

confirms that knowing the moving-rate elasticity η and time-to-move Tn is largely sufficient to gauge

45Time-to-move could also be estimated by taking the reciprocal of the average listing rate n computed from the
NAR sales and inventories and AHS housing-stock data in section 2.2, that is, Tn = 1/n. This leads to an estimated
Tn of 15 years, which is close to the average time-to-move derived from the aggregate hazard function.

46This will match the overall level but not the shape of the empirical aggregate hazard function.
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the aggregate implications of endogenous moving for the sales rate, moving rate, and transactions.

Table 6: The aggregate effects of heterogeneity

Transactions Listings Sales Moving Houses Prices
Model rate rate for sale

Endogenous moving (heterogenous) 17% 17% 11% 18% 6% 33%
Endogenous moving (homogenous) 16% 16% 10% 16% 6% 33%

Data (1995–2003) 27% 34% 14% 34% 13% 31%

Notes: ‘Endogenous moving (heterogeneous)’ is the row ‘Productivity & search’ from Table 3. ‘Endogenous
moving (homogenous)’ is the case of ‘Productivity & search’ under a homogenous model (q = 1). The two
models have the same moving-rate elasticity η and time-to-move Tn.

5.5 The boom-and-bust cycle

The model has been applied to the U.S. housing market between 1995 and 2003. This period

was chosen with caution because others have documented the important role played by real-estate

investors and buyers’ speculative motives during the 2003–2006 period of substantial house-price

appreciation (Burnside, Eichenbaum and Rebelo, 2016, DeFusco, Nathanson and Zwick, 2017).47

However, it is of interest to see an assessment of the model throughout the whole boom-and-bust

period 1995–2010 because some of the forces that were responsible for the boom could be contributing

to the downturn. Two potential factors are the decline in housing demand due to lower incomes

and tighter credit availability.

While the decline in income can be measured by the fall in GDP per person, it is not straight-

forward to quantify the tightening of credit availability. This cannot simply be measured by the rise

in mortgage rates as the 30-year conventional mortgage rate actually declines during the period of

falling income. Another parameter in the model that can represent credit availability is the trans-

action cost Cb for a buyer (see the analysis in appendix A.14). However, there is limited data to

translate the change in credit availability into a specific positive shock to Cb.

Given these difficulties, the following simple exercise is performed to examine the model’s quanti-

tative predictions for the whole boom-and-bust period. As before, it is assumed there are unexpected

improvements in income and search technology that lead to a boom in the period 1995–2006, then

there is an unexpected decline in income between 2007 and 2009, but search technology remains the

same.48 The results of this exercise are reported in Table 7. Productivity and search together can

account for two thirds of the boom in transactions and about 80% of the boom in prices. For the

47It took 9 years for house prices to increase by 31%, but prices jumped up by another 16% between 2004 and
2006, while transactions only increased by a further 3% during that period.

48More precisely, income increases unexpectedly by 25% (in log points) to match the rise in GDP per person
between the 1995 average and the 2006 average, and the improvement in search technology is the same as before.
Income then unexpectedly declines by 5% to match the decline in GDP per person between 2007 and 2009.
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bust, the decline in income can account for about a quarter of the fall in transactions and about

40% of the fall in prices.

Table 7: Boom-and-bust cycle

Boom (1995–2006) Bust (2007-2009)
Model Data Model Data

Transactions 20% 30% −3% −13%
Price 39% 47% −7% −17%

To supplement this exercise, appendix A.14 studies the role of easier credit during the boom and

the tightening of credit availability during the bust. These changes are represented by a one-quarter

fall in buyers’ transaction costs Cb during the period 1995–2006 and then a one-quarter increase

between 2007 and 2009. Adding these changes in Cb allows the model to account for all of the boom

and bust in transactions, but has only a negligible incremental effect on house prices. Though the

precise effect of credit availability on buyers’ transaction costs Cb is open for debate, this exercise

confirms that the mechanisms proposed in the model can account for a fair amount of the observed

boom and bust over the housing cycle. The model misses part of the boom during 2004–2006 as it

abstracts from the speculative motives of particular concern during that period, and consequently,

it also misses part of the subsequent bust.

6 Conclusions

The number of transactions in the housing market quantifies the reallocation of the housing stock

among households which has consequences for efficiency and welfare because of the resulting degree of

housing misallocation. This paper presents evidence that transaction dynamics are largely explained

by changes in the frequency at which houses are put up for sale rather than changes in the length

of time taken to sell them. The paper builds a tractable model to analyse moving house where

a homeowner’s decision to move is an investment in housing match quality to reduce the degree

of mismatch. Since moving house is an investment with upfront costs and potentially long-lasting

benefits, the model predicts that the aggregate moving rate depends on macroeconomic variables.

The endogeneity of moving means that those who move come from the bottom of the existing match

quality distribution, and the non-random selection of movers gives rise to a cleansing effect that

leads to overshooting of housing-market variables. The calibrated model can successfully account

for aggregate housing-market dynamics during the 1995–2003 boom.
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A Appendices

A.1 Measurement of transactions and inventories

The transactions and inventories data from NAR include all existing single-family homes, so homes that are
rented out are counted in this data. An estimate of the fraction of single-family homes that are not rented
out can be computed from the AHS. This fraction is around 78% on average over the period 1989–2013.
If the fraction were constant over time, the counterfactuals presented in section 2.2 would be unaffected
and the only change would be to the average level of the listing rate. The effect on the average level of the
listing rate would change the implied average time between moves from 15 years to 19.4 years.

However, the data show some changes over time in the fraction of homes that are not rented out. The
fraction rises from 77% to 80% during the boom period, and then falls to 75% by 2013. A simple robustness
check is to scale the NAR data on transactions and inventories by the fraction of non-rented homes and
then recompute the counterfactuals. The results are shown in Figure 11, which are almost identical to
those in Figure 2.

Figure 11: Actual and counterfactual transactions (adjusted for rented homes)
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Notes: The series are reported as log differences relative to their initial values.

A.2 Withdrawals and relistings

Consider the framework introduced in section 2.3. Suppose that the net listing rate nt = Nt/(Kt − Ut) is
equal to a constant n. The sales rate is s, so St = sUt, and the total housing stock grows at rate g, that is,
K̇t/Kt = g. This implies that equation (2.1) will hold as in section 2.1 and that the fraction of houses for
sale ut = Ut/Kt will converge to its steady state u = n/(n+ s+ g).

Let lt = Lt/Kt denote the stock of houses that have failed to sell but might be relisted relative to the
stock of all houses. Using the formula for L̇t, the implied law of motion for lt is:

l̇t = wut − (ρ+ α+m+ g)lt.

Given that ut is equal to its steady-state value u, there is a steady state l for lt:

l =
wu

ρ+ α+m+ g
, [A.2.1]
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and convergence to this steady state takes place at rate ρ + α + m + g. Since this rate is strictly greater
than the sum of the relisting rate ρ and the rate α at which homeowners give up on attempting a future
sale, convergence to the steady state is presumed to be sufficiently fast that lt is set equal to l in what
follows, just as ut converges quickly enough to u to set ut = u.49

Dividing both sides of the accounting identity for net listings by Kt − Ut implies:

n = m− w ut
1− ut

+ ρ
lt

1− ut
.

If ut and lt have reached their steady-state values u and l then the net listing rate n is indeed constant as
supposed earlier:

n = m− w u

1− u + ρ
l

1− u,

and noting u/(1− u) = n/(s+ g) and using the expression for l from (A.2.1):

n = m− wn

s+ g

(
1− ρ

ρ+ α+m+ g

)
= m− n w

s+ g

(
α+m+ g

ρ+ α+m+ g

)
.

Divide numerator and denominator of the term in parentheses by ρ+α+m, and numerator and denominator
of its coefficient by s:

n = m− 1

1 + g
s

w

s

(
α+m
ρ+α+m + g

ρ+α+m

1 + g
ρ+α+m

)
n. [A.2.2]

The formulas for the eventual fraction of withdrawals φ and the eventual fraction of relistings β imply that:

φ

1− φ =
w

s
, and 1− β =

α+m

ρ+ α+m
.

These expressions can be substituted into (A.2.2) to deduce:

n = m−
(

φ

1− φ

)(
1− β + g

ρ+α+m

1 + g
ρ+α+m

)(
1

1 + g
s

)
n. [A.2.3]

This is the exact link between the moving rate m and the net listing rate n. In addition to φ and β, it
depends on the sales rate s, the growth rate g, the relisting rate ρ, and the abandonment rate α.

If the growth rate of the total housing stock g is small in relation to the sales rate s, and the sum of the
relisting, abandonment, and moving rates ρ+ α+m then the terms g/s and g/(ρ+ α+m) are negligible.
The equation (A.2.3) linking n and m can then be well approximated by:

n ≈ m− φ(1− β)

(1− φ)
n.

Collecting terms in n on one side, this equation simplifies to:

n ≈ m

1 + φ(1−β)
1−φ

,

which confirms equation (2.9) in section 2.3. Given knowledge of the eventual fraction of withdrawals φ
and the eventual fraction of relistings β, the moving rate m can be calculated from the net listing rate n,
or vice versa, the net listing rate can be calculated from the moving rate.

49Confirming this assumption would require an empirical measure of the abandonment rate α.
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A.3 Value functions and thresholds

Moving and transaction thresholds

The value functions Ht(ε) and Jt and the thresholds xt and yt satisfy the equations (3.5), (3.6), (3.8), and
(3.9). No other endogenous variables appear in these equations. Given constant parameters, there is a
time-invariant solution Ht(ε) = H(ε), Jt = J , xt = x, and yt = y. The time-invariant equations are:

rH(ε) = εξ −D + a (max{H(δε), J} −H(ε)) ; [A.3.1]

H(x) = J ; [A.3.2]

rJ = −F −D + v

∫
y
(H(ε)− J − C)dG(ε); [A.3.3]

H(y) = J + C. [A.3.4]

Attention is restricted to parameters where the solution will satisfy δy < x.
Evaluating (A.3.1) at ε = x, noting that δ < 1 and H(ε) is increasing in ε:

rH(x) = ξx−D + a(J −H(x)).

Since H(x) = J (equation A.3.2), it follows that:

J = H(x) =
ξx−D

r
. [A.3.5]

Next, evaluate (A.3.1) at ε = y. With the restriction δy < x, it follows that H(δy) < H(x) = J , and hence:

rH(y) = ξy −D + a(J −H(y)).

Collecting terms in H(y) on one side and substituting the expression for J from (A.3.5):

(r + a)H(y) = ξy −D +
a

r
(ξx−D) = ξ(y − x) +

(
1 +

a

r

)
(ξx−D),

and thus H(y) is given by:

H(y) =
ξx−D

r
+
ξ(y − x)

r + a
. [A.3.6]

Combining the equation above with (A.3.4) and (A.3.5), it can be seen that the thresholds y and x must
be related as follows:

y − x =
(r + a)C

ξ
. [A.3.7]

Using the expression for the Pareto distribution function (3.1) and using (A.3.4) to note H(ε)−J−C =
H(ε)−H(y), the Bellman equation (A.3.3) can be written as:

rJ = −F −D + vy−λ
∫ ∞
ε=y

λ

y

(
ε

y

)−(λ+1)

(H(ε)−H(y))dε, [A.3.8]

which assumes y > 1. In solving this equation it is helpful to define the following function Ψ(z) for all
z ≤ y:

Ψ(z) ≡
∫ ∞
ε=z

λ

z

( ε
z

)−(λ+1)
(H(ε)−H(z))dε. [A.3.9]

Since δy < x is assumed and z ≤ y, it follows that δz < x, and thus H(δz) < H(x) = J . Equation (A.3.1)
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evaluated at ε = z therefore implies:

rH(z) = ξz −D + a(J −H(z)).

Subtracting this equation from (A.3.1) evaluated at a general value of ε leads to:

r(H(ε)−H(z)) = ξ(ε− z) + a (max{H(δε), J} −H(ε))− a(J −H(z))

= ξ(ε − z) − a(H(ε) −H(z)) + amax{H(δε) − J, 0}.

Noting that J = H(x) and solving for H(ε)−H(z):

H(ε)−H(z) =
ξ

r + a
(ε− z) +

a

r + a
max{H(δε)−H(x), 0}. [A.3.10]

The equation above can be substituted into (A.3.9) to deduce:

Ψ(z) =
ξ

r + a

∫ ∞
ε=z

λ

z

( ε
z

)−(λ+1)
(ε− z)dε+

a

r + a

∫ ∞
ε=z

λ

z

( ε
z

)−(λ+1)
max{H(δε)−H(x), 0}dε. [A.3.11]

First, observe that:∫ ∞
ε=z

λ

z

( ε
z

)−(λ+1)
(ε− z)dε =

z

λ− 1
. [A.3.12]

Next, make the change of variable ε′ = δε in the second integral in (A.3.11) to deduce:

∫ ∞
ε=z

λ

z

( ε
z

)−(λ+1)
max{H(δε)−H(x), 0}dε =

∫ ∞
ε′=δz

λ

δz

(
ε′

δz

)−(λ+1)

max{H(ε′)−H(x), 0}dε′

=

∫ x

ε′=δz

λ

δz

(
ε′

δz

)−(λ+1)

0dε′ +

∫ ∞
ε′=x

λ

δz

(
ε′

δz

)−(λ+1)

(H(ε′)−H(x))dε′

=

(
δz

x

)λ ∫ ∞
ε=x

λ

x

( ε
x

)−(λ+1)
(H(ε) −H(z))dε =

(
δz

x

)λ
Ψ(x),

where the second line uses δz < x (as z ≤ y and δy < x) and H(ε′) < H(x) for ε′ < x, and the final
line uses the definition (A.3.9). Putting the equation above together with (A.3.11) and (A.3.12) yields the
following for all z ≤ y:

Ψ(z) =
ξz

(r + a)(λ− 1)
+

a

r + a

(
δz

x

)λ
Ψ(x). [A.3.13]

Evaluating this expression at z = x (with x < y):

Ψ(x) =
ξx

(r + a)(λ− 1)
+

a

r + a
δλΨ(x),

and hence Ψ(x) is given by:

Ψ(x) =
ξx

(r + a(1− δλ))(λ− 1)
. [A.3.14]

Next, evaluating (A.3.13) at z = y and using (A.3.14) to substitute for Ψ(x):

Ψ(y) =
ξy

(r + a)(λ− 1)
+

a

r + a

(
δz

x

)λ( ξx

(r + a(1− δλ))(λ− 1)

)
,
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and simplifying this equation yields the following expression for Ψ(y):

Ψ(y) =
ξ

(r + a)(λ− 1)

(
y +

aδλyλx1−λ

r + a(1− δλ)

)
. [A.3.15]

Using the definition (A.3.9), equation (A.3.8) can be written in terms of Ψ(y):

rJ = −F −D + vy−λΨ(y),

and substituting from (A.3.5) and (A.3.15) yields:

ξx−D = −F −D + vy−λ
(

ξ

(r + a)(λ− 1)

(
y +

aδλyλx1−λ

r + a(1− δλ)

))
.

This equation can be simplified as follows:

x+
F

ξ
=

v

(λ− 1)(r + a)

(
y1−λ +

aδλ

r + a(1− δλ)
x1−λ

)
. [A.3.16]

The two equations (A.3.7) and (A.3.16) confirm (4.4) and (4.7) given in the main text. These can be solved
for the thresholds x and y.

Existence and uniqueness

By using equation (A.3.7) to replace x with a linear function of y, the equilibrium threshold y is the solution
of the equation:

I(y) ≡ v

(λ− 1)(r + a)

(
y1−λ +

aδλ

r + a(1− δλ)

(
y − (r + a)C

ξ

)1−λ
)
− y+

(r + a)C

ξ
− F
ξ

= 0. [A.3.17]

It can be seen immediately (since λ > 1) that I ′(y) < 0, so any solution that exists is unique. A valid
solution must satisfy x > 0, y > 1, and δy < x. Using equation (A.3.7), the inequality δy < x is equivalent
to:

δy < y − (r + a)C

ξ
,

which is in turn equivalent to:

y >
(r + a)C

(1− δ)ξ .

Thus, to satisfy y > 1 and δy < x, the equilibrium must feature:

y > max

{
1,

(r + a)C

(1− δ)ξ

}
. [A.3.18]

Observe that limy→∞ I(y) = −∞ (using A.3.17 and λ > 1), so an equilibrium satisfying (A.3.18) exists if
and only if:

I
(

max

{
1,

(r + a)C

(1− δ)ξ

})
> 0. [A.3.19]

If the condition (A.3.18) is satisfied then by using (A.3.7):

x > max

{
1,

(r + a)C

(1− δ)ξ

}
− (r + a)C

ξ
>

(r + a)C

(1− δ)ξ −
(r + a)C

ξ
=
δ(r + a)C

(1− δ)ξ > 0,
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confirming that x > 0 must hold. Therefore, (A.3.19) is necessary and sufficient for the existence of a
unique equilibrium satisfying all the required conditions. Using equation (A.3.17), (A.3.19) is equivalent
to:

max

{
1,

(r + a)C

(1− δ)ξ

}1−λ
+

aδλ

r + a(1− δλ)

(
max

{
1,

(r + a)C

(1− δ)ξ

}
− (r + a)C

ξ

)1−λ

− (λ− 1)(r + a)

v

(
max

{
1,

(r + a)C

(1− δ)ξ

}
− (r + a)C

ξ
+
F

ξ

)
> 0. [A.3.20]

Surplus and selling rate

Given x and y, the value functions J , H(x), and H(y) can be obtained from (A.3.5) and (A.3.6). The
average surplus can be found by combining (A.3.5) and (A.3.8) to deduce:∫ ∞

ε=y

λ

y

(
ε

y

)−(λ+1)

(H(ε)−H(y))dε =
yλ

v
(ξx+ F ). [A.3.21]

Given x and y, the probability π that a viewing leads to a sale, and the expected number of viewings before
a sale Vs = 1/π are:

π = y−λ, and Vs = yλ. [A.3.22]

The selling rate s and the expected time-to-sell Ts = 1/s are given by:

s = vy−λ, and Ts =
yλ

v
. [A.3.23]

A.4 Prices

Nash bargaining

The price pt(ε) is determined by combining the Nash bargaining solution ωΣb,t(ε) = (1 − ω)Σu,t(ε) with
the expressions for the buyer and seller surpluses in (3.2):

ω(Ht(ε)− pt(ε)− Cb −Bt) = (1− ω)(pt(ε)− Cu − Ut),

from which it follows that:

pt(ε) = ωHt(ε) + (1− ω)Cu − ωCb + ((1− ω)Ut − ωBt). [A.4.1]

The surplus-splitting condition implies Σb,t(ε) = (1−ω)Σt(ε) and Σu,t(ε) = ωΣt(ε), with Σt(ε) = Σb,t(ε) +
Σu,t(ε) being the total surplus from (4.6). The Bellman equations in (3.3) can thus be written as:

rBt = −F + (1− ω)v

∫
yt

Σt(ε)dG(ε) + Ḃt, and rUt = −D + ωv

∫
yt

Σt(ε)dG(ε) + U̇t,

and a multiple ω of the first equation can be subtracted from a multiple 1 − ω of the second equation to
deduce:

r((1− ω)Ut − ωBt) = ωF − (1− ω)D + ((1− ω)U̇t − ωḂt).

The stationary solution of this equation is:

(1− ω)Ut − ωBt =
ωF − (1− ω)D

r
,
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and by substituting this into (A.4.1):

pt(ε) = ωHt(ε) + (1− ω)Cu − ωCb +
ωF − (1− ω)D

r
. [A.4.2]

Integrating this equation over the distribution of new match quality yields equation (3.7) for the average
transaction price.

Average transactions price

In an equilibrium where the moving and transaction thresholds xt and yt are constant over time, the value
function Ht(ε) is equal to the time-invariant function H(ε). This means that prices pt(ε) = p(ε) are also
time invariant. Using the Pareto distribution function (3.1) and equation (3.7), the average price is:

P = ω

∫
y

λ

y

(
ε

y

)−(λ+1)

H(ε)dε+ (1− ω)Cu − ωCb +
ωF − (1− ω)D

r
.

By using equation (3.5) and (A.3.5), the above can be written as:

P = ω

∫
y

λ

y

(
ε

y

)−(λ+1)

(H(ε)−H(y))dε+ ω

(
ξx−D

r
+ C

)
+
ωF − (1− ω)D

r

+ (1 − ω)Cu − ωCb,

and substituting from (A.3.21) yields:

P = ω
yλ

v
(ξx+ F ) + ωC +

ωξx

r
+ (1− ω)Cu − ωCb +

ωF −D
r

.

Simplifying and using C = Cb + Cu, the following expression for the average price is obtained:

P = Cu −
D

r
+ ω

(
1

r
+
yλ

v

)
(ξx+ F ),

which confirms the formula in (4.12). With the definition of κ = Cu/C, this equation can also be written
as:

P = κC − D

r
+ ω

(
1

r
+
yλ

v

)
(ξx+ F ). [A.4.3]

A.5 Stocks and flows

The moving rate

The formula (3.12) for the moving rate can also be given in terms of inflows Nt = nt(1 − ut), where ut is
the stock of unsold houses:

Nt = a(1− ut)− aδλx−λt v

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)uτdτ. [A.5.1]

The first term a(1−ut) is the quantity of existing matches that receive a shock (arrival rate a). The second
term is the quantity of existing matches that receive a shock now, but decide not to move. The difference
between these two numbers (under the assumption that only those who receive a shock make a moving
decision) gives inflows Nt.

Now consider the derivation of the second term in (A.5.1). The distribution of existing matches (measure
1 − ut) can be partitioned into vintages τ (when matches formed) and the number k of previous shocks
that have been received. At time τ , a quantity uτ of houses were for sale, and viewings arrived at rate
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v. Viewings were draws of match quality ε from a Pareto(1, λ) distribution, and those draws with ε ≥ yτ
formed new matches, truncating the distribution at yτ . In the interval between τ and t, those matches that
have received k shocks now have match quality δkε. Some of these matches will have been destroyed as a
result of these shocks, truncating the distribution of surviving match quality. Because the distribution of
initial match quality is a Pareto distribution, these truncations also result in Pareto distributions with the
same shape parameter λ.

Consider the matches of vintage τ . All of these were originally from a Pareto distribution truncated
at ε ≥ yτ . Subsequently, depending on the arrival of idiosyncratic shocks (both timing and number), this
distribution may have been truncated further. Let z denote the last truncation point in terms of the original
match quality ε (at the time of the viewing). This is z = yτ if no shocks have been received, or z = δ−kxT
if k shocks have been received and the last one occurred at time T when the moving threshold was xT .
Conditional on this last truncation point z, it is shown below that the measure of surviving matches
is z−λvuτ . Furthermore, the original match quality of these surviving matches must be a Pareto(z, λ)
distribution.

Now consider the distribution of the number of previous shocks j between τ and t. Given the Poisson
arrival rate a, k has a Poisson distribution, so the probability of j is e−a(t−τ)(a(t − τ))j/j!. If a shock
arrives at time t, matches of current quality greater than xt survive. If these have received j shocks earlier,
this means the truncation threshold in terms of original match quality ε is ε ≥ δ−(j+1)xt. Of these matches
that have accumulated j earlier shocks, suppose last relevant truncation threshold (in terms of original
match quality) was z (this will vary over those matches even with the same number of shocks because
the timing might be different), so the distribution of surviving matches in terms of their original match
quality is Pareto(z, λ). The probability that these matches then survive the shock at time t is given by
(δ−(j+1)xt/z)

−λ, and multiplying this by z−λvuτ gives the number that survive:

(δ−(j+1)xt/z)
−λz−λvuτ = (δλ)j+1x−λt vuτ ,

noting that the terms in z cancel out. This is conditional on z, j, and τ , but since z does not appear above,
the distribution of the past truncation thresholds is not needed. Averaging over the distribution of j yields:

∞∑
j=0

e−a(t−τ)
(a(t− τ))j

j!
(δλ)j+1x−λt vuτ = δλx−λt vuτe

−a(t−τ)
∞∑
j=0

(aδλ(t− τ))j

j!

= δλx−λt vuτe
−a(t−τ)eaδ

λ(t−τ) = δλx−λt vuτe
−a(1−δλ)(t−τ),

where the penultimate expression uses the Taylor series expansion of the exponential function ez =∑∞
j=0 z

j/j! (valid for all z). Next, integrating over all vintages τ before the current time t leads to:∫ t

τ→−∞
δλx−λt e−a(1−δ

λ)(t−τ)dτ = δλx−λt

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)vuτdτ.

Multiplying this by the arrival rate a of the idiosyncratic shocks confirms the second term of the expression
for Nt in (A.5.1).

This leaves only the claim that the measure of vintage-τ surviving matches with truncation point z
(in terms of the original match quality distribution ε) is z−λvuτ . When these matches first form, they
have measure y−λτ vuτ and a Pareto(yt, λ) distribution, so the formula is correct if no shocks have occurred
and z = yτ . Now suppose the formula is valid for some z and truncation now occurs at a new point
w > z (in terms of original match quality). Since matches surviving truncation at z have distribution
Pareto(z, λ), the proportion of these that survive the new truncation is (w/z)−λ, and so the measure
becomes (w/z)−λz−λvuτ = w−λvuτ (with the term in z cancelling out), which confirms the claim.

The distribution of match quality

Now consider the derivation of the law of motion for average match quality Qt in (3.13). Let total match
quality across all families be denoted by Et (those not matched have match quality equal to zero), with
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Et = (1 − ut)Qt by definition. Total match quality Et changes over time as new matches form, when
matches are hit by shocks, and when moving decisions are made. With transaction threshold yt and new
match quality drawn from a Pareto(1;λ) distribution, new matches have average quality (λ/(λ − 1))yt.
The contribution to the rate of change of total match quality is that average multiplied by stut. Shocks to
existing matches arrive randomly at rate a. If no shock is received then there is no change to match quality
and no moving decision. For those who receive a shock, let E t denote the total match quality of those
matches that survive (with matches that dissolve counted as having zero match quality). The contribution
of the shocks and moving decisions to the rate of change of total match quality is to subtract a(Et − E t).
The differential equation for Et is therefore:

Ėt =
λ

λ− 1
ytstut − a(Et − E t). [A.5.2]

Using this formula requires an expression for E t.
Consider the distribution of all matches that formed before time t, survived until time t, and now

receive an idiosyncratic shock at time t, but one that is not sufficient to trigger moving. The distribution
of surviving matches can be partitioned into vintages τ (when the match formed) and the number of
shocks j that have been received previously (not counting the shock at time t). At time τ , a quantity uτ
of houses were for sale, and viewings arrived at rate v. Viewings were draws of match quality ε from a
Pareto(1;λ) distribution, and those draws with ε ≥ yτ formed new matches, truncating the distribution
at yτ . Subsequently, a number j of idiosyncratic shocks have occurred, with j having a Poisson(a(t − τ))
distribution, and these shocks resulting in the distribution of surviving match quality being truncated. With
a shock now occurring at time t after j earlier shocks, match quality is now δj+1ε, and the distribution is
truncated at xt. In terms of the original match quality ε, survival requires ε ≥ δ−(j+1)xt.

Consider matches of vintage τ that have previously accumulated k shocks for which the last truncation
threshold was z in terms of original match quality (this threshold will depend on when the previous shocks
occurred). Since the Pareto distribution is preserved after truncation with the same shape parameter, these
matches have a Pareto(z;λ) distribution in terms of their original match quality. It was shown above that
the measure of surviving vintage-τ matches with truncation point z is z−λvuτ (conditional on z, the number
of shocks j is irrelevant, though the number of shocks may be related to the value of z). The measure that
remain (ε ≥ δ−(j+1)xt) after moving decisions are made at time t is:(

δ−(j+1)xt/z
)−λ

z−λvuτ = (δλ)j+1x−λt vuτ ,

noting that the terms in z cancel out. The probability of drawing j shocks in the interval between τ and t
is e−a(t−τ)(a(t− τ))j/j!, and hence averaging over the distribution of j for vintage-τ matches implies that
the surviving measure is:

∞∑
j=0

e−a(t−τ)
(a(t− τ))j

j!
(δj+1)λx−λt vut = δλx−λt vuτe

−a(1−δλ)(t−τ),

which is confirmed by following the same steps as in the derivation of the moving rate above. Integrating
these surviving measures over all cohorts:∫ t

τ→−∞
δλx−λt vuτe

−a(1−δλ)dτ = vδλx−λt

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)uτdτ,

and since the average match quality among the survivors after the shock at time t is (λ/(λ− 1))xt for all
cohorts, it follows that:

E t =
vδλλ

λ− 1
x1−λt

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)uτdτ.
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Substituting this and equation (3.11) into (A.5.2) implies:

Ėt =
vλ

λ− 1
y1−λt ut − a

(
Et −

vδλλ

λ− 1
x1−λt

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)uτdτ

)
. [A.5.3]

The integral can be eliminated by defining an additional variable Υt:

Υt =

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)uτdτ, [A.5.4]

and hence (A.5.3) can be written as follows:

Ėt =
vλ

λ− 1
y1−λt ut − aEt +

avδλλ

λ− 1
x1−λt Υt. [A.5.5]

The evolution of the state variable ut is determined by combining equations (3.10), (3.11), and (3.12):

u̇t = a(1− ut)− avδλx−λt
∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)uτdτ − vy−λt ut,

where the integral can again be eliminated by writing the equation in terms of the new variable Υt from
(A.5.4):

u̇t = a(1− ut)− avδλx−λt Υt − vy−λt ut. [A.5.6]

Differentiating the integral in (A.5.4) shows that Υt must satisfy the differential equation:

Υ̇t = ut − a(1− δλ)Υt. [A.5.7]

These results can be used to obtain the differential equation for average match quality Qt in (3.13).
Since the definition implies Qt = Et/(1− ut), it follows that:

Q̇t =
Ėt

1− ut
+

Etu̇t
(1− ut)2

=
Ėt

1− ut
+Qt

u̇t
1− ut

.

Substituting from the differential equations (A.5.5) and (A.5.6) leads to:

Q̇t =

(
vλ

λ− 1
y1−λt

ut
1− ut

− aQt +
avδλλ

λ− 1
x1−λt

Υt
1− ut

)
+Qt

(
a− avδλx−λt

Υt
1− ut

− vy−λt
ut

1− ut

)
,

noting that the terms in Qt on the right-hand side cancel out, so Q̇t can be written as:

Q̇t = vy−λt

(
λ

λ− 1
yt −Qt

)
ut

1− ut
− avδλx−λt Υt

1− ut

(
Qt −

λ

λ− 1
xt

)
.

Comparison with equations (3.11), (3.12), and the definition of Υt in (A.5.4) confirms the differential
equation for Qt in (3.13).

Steady state

Given the moving rate n and the sales rate s, the steady-state stock of houses for sale is:

u =
n

s+ n
. [A.5.8]
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The steady-state moving rate n can be derived from the formula (3.12):

n = a− aδλx−λv u

1− u

∫ ∞
τ=0

e−a(1−δ
λ)τdτ = a− aδλ

(y
x

)λ
vy−λ

n

s

1

a(1− δλ)
,

where the final equality uses u/(1−u) = n/s, as implied by (A.5.8). Since s = vy−λ according to (A.3.23),
the equation above becomes:

n = a− δλ

1− δλ
(y
x

)λ
n.

Solving this equation for n yields:

n =
a

1 + δλ

1−δλ
( y
x

)λ , [A.5.9]

which confirms the claim in (4.10).

A.6 Efficiency

The social planner’s objective function from (4.8) can be written in terms of total match quality Et, the
transaction threshold yt, and houses for sale ut by substituting Et = (1− ut)Qt and using equation (3.11):

ΩT =

∫ ∞
t=T

e−r(t−T )
(
ξEt − Cvy−λt ut − Fut −D

)
dt. [A.6.1]

This is maximized by choosing xt, yt, Et, ut, and Υt subject to the differential equations for Et, ut, and
Υt in (A.5.5), (A.5.6), and (A.5.7) (the variable Υt defined in A.5.4 is introduced because the differential
equations A.5.5 and A.5.6 are written in terms of Υt). The problem is solved by introducing the (current-
value) Hamiltonian:

Jt = ξEt − Cvy−λt ut − Fut −D + ϕt

(
vλ

λ− 1
y1−λt ut − aEt +

avδλλ

λ− 1
x1−λt Υt

)
+ ϑt

(
a(1− ut)− avδλx−λt Υt − vy−λt ut

)
+ γt

(
ut − a(1− δλ)Υt

)
, [A.6.2]

where ϕt, ϑt, and γt are the co-state variables associated with Et, ut, and Υt. The first-order conditions
with respect to xt and yt are:

∂Jt
∂xt

= avδλλx−λ−1t Υtϑt − avδλλx−λt Υtϕt = 0; [A.6.3a]

∂Jt
∂yt

= vλCy−λ−1t ut − vλy−λt utϕt + vλy−λ−1t utϑt = 0, [A.6.3b]

and the first-order conditions with respect to the state variables Et, ut, and Υt are:

∂Jt
∂Et

= ξ − aϕt = rϕt − ϕ̇t; [A.6.3c]

∂Jt
∂ut

= −Cvy−λt − F +
vλ

λ− 1
y1−λt ϕt − (a+ vy−λt )ϑt + γt = rϑt − ϑ̇t; [A.6.3d]

∂Jt
∂Υt

=
avδλλ

λ− 1
x1−λt ϕt − avδλx−λt ϑt − a(1− δλ)γt = rγt − γ̇t. [A.6.3e]

By cancelling common terms from (A.6.3a), the following link between the moving threshold xt and the
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co-states ϕt and ϑt can be deduced:

ϕt =
ϑt
xt
. [A.6.4]

Similarly, cancelling common terms from (A.6.3b) implies a link between the transaction threshold yt and
ϕt and ϑt:

C

yt
+
ϑt
yt

= ϕt. [A.6.5]

The differential equation for ϕt in (A.6.3c) is:

ϕ̇t = (r + a)ϕt − ξ,

and since r + a > 0, the only solution satisfying the transversality condition is the following constant
solution:

ϕt =
ξ

r + a
. [A.6.6]

With this solution for ϕt, equation (A.6.5) implies that ϑt is proportional to the moving threshold xt:

ϑt =
ξ

r + a
xt. [A.6.7]

Eliminating both ϕt and ϑt from (A.6.5) by substituting from (A.6.6) and (A.6.7) implies that yt and xt
must satisfy:

yt − xt =
(r + a)C

ξ
. [A.6.8]

Using (A.6.3d) to write a differential equation for ϑt and substituting the solution for ϕt from (A.6.6):

ϑ̇t = (r + a+ vy−λt )ϑt − γt + F + Cvy−λt −
ξ

r + a

vλ

λ− 1
y1−λt . [A.6.9]

Similarly, (A.6.3e) implies a differential equation for γt, from which ϕt can be eliminated using (A.6.6):

γ̇t = (r + a(1− δλ))γt + avδλx−λt

(
ξ

r + a
xt

)
− avδλλ

λ− 1
x1−λt

(
ξ

r + a

)
,

which can be simplified as follows:

γ̇t = (r + a(1− δλ))γt −
ξ

r + a

avδλ

λ− 1
x1−λt . [A.6.10]

It is now shown that there is a solution of the constrained maximization problem where the co-states
ϑt and γt are constant over time. In this case, equations (A.6.7) and (A.6.8) require that xt and yt are
constant over time and related as follows:

y − x =
(r + a)C

ξ
. [A.6.11]
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With ϑ̇t = 0 and γ̇t = 0, (A.6.9) and (A.6.10) imply the following pair of equations:

(r + a+ vy−λ)ϑ− γ + F + Cvy−λ − ξ

r + a

vλ

λ− 1
y1−λ = 0; [A.6.12]

(r + a(1− δλ))γ − ξ

r + a

avδλ

λ− 1
x1−λ = 0. [A.6.13]

Equation (A.6.13) yields the following expression for γ in terms of x:

γ =
ξavδλ

(λ− 1)(r + a)(r + a(1− δλ))
x1−λ,

and substituting this and (A.6.7) into (A.6.12) leads to:

ξ(r + a+ vy−λ)

r + a
x− ξavδλ

(λ− 1)(r + a)(r + a(1− δλ))
x1−λ + F + Cvy−λ − ξvλ

(λ− 1)(r + a)
y1−λ = 0.

Since (r+a)C = ξ(y−x) according to (A.6.11), multiplying the equation above by (r+a) and substituting
for (r + a)C implies:

ξ(r + a+ vy−λ)x− ξavδλ

(λ− 1)(r + a(1− δλ))
x1−λ + (r + a)F + ξv(y − x)y−λ − ξvλ

(λ− 1)
y1−λ = 0.

Dividing both sides by ξ and grouping terms in (r + a) on the left-hand side:

(r + a)

(
x+

F

ξ

)
=

vλ

λ− 1
y1−λ − vy1−λ +

avδλ

(λ− 1)(r + a(1− δλ))
x1−λ,

and dividing both sides by r + a and simplifying the terms involving y1−λ leads to:

x+
F

ξ
=

v

(λ− 1)(r + a)

(
y1−λ +

aδλ

r + a(1− δλ)
x1−λ

)
. [A.6.14]

The pair of equations (A.6.11) and (A.6.14) for x and y are identical to the equations (4.4) and (4.7)
characterizing the equilibrium values of x and y. The equilibrium is therefore the same as the solution to
the social planner’s problem, establishing that it is efficient.

A.7 Transitional dynamics and overshooting

Transitional dynamics out of steady state

Equation (3.12) for the moving rate nt = Nt/(1− ut) implies that the quantity of new listings Nt is:

Nt = a(1− ut)− aδλx−λt v

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)uτdτ, [A.7.1]

and equation (3.10) implies the differential equation for the stock of houses for sale ut is:

u̇t = Nt − St, where St = stut and st = vy−λt . [A.7.2]

In the equation above, St is the number of transactions and st is the sales rate, which is taken from (3.11).
Now suppose that the moving and transaction thresholds xt and yt are constant from some date T

onwards, that is, xt = x and yt = y for all t ≥ T . Using (A.7.2), the number of transactions St and the
sales rate st are given by:

St = sut, and st = s = vy−λ. [A.7.3]
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Equation (A.7.1) for new listings becomes:

Nt = a(1− ut)− aδλx−λv
∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)uτdτ, [A.7.4]

where (A.7.3) and (A.7.4) are valid for all t ≥ T . By taking the derivative of both sides of (A.7.4) with
respect to time t:

Ṅt = −au̇t − aδλx−λvut + a(1− δλ)

(
aδλx−λv

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)uτdτ

)
,

and using (A.7.4) to substitute for the integral above an expression involving the current levels of Nt and
ut:

Ṅt = −au̇t − aδλx−λvut + a(1− δλ) (a(1− ut)−Nt) .

This differential equation can be simplified as follows:

Ṅt = −au̇t − a
(

(1− δλ)Nt +

(
a(1− δλ) + δλ

(y
x

)λ
s

)
ut − a(1− δλ)

)
, [A.7.5]

where s is the constant sales rate from (A.7.3). Substituting equation (A.7.3) into (A.7.2):

u̇t = Nt − sut, [A.7.6a]

and in turn substituting this equation into (A.7.5) and simplifying:

Ṅt = −a
((

1 + (1− δλ)
)
Nt +

(
a(1− δλ) + δλ

(y
x

)λ
s− s

)
ut − a(1− δλ)

)
. [A.7.6b]

Equations (A.7.6a) and (A.7.6b) comprise a system of linear differential equations for the stock of houses
for sale ut and new listings Nt.

Now consider a steady state of the system (A.7.6), that is, a solution ut = u and Nt = N where u̇t = 0
and Ṅt = 0 for all t. Equation (A.7.6a) implies N = su, and substituting this into (A.7.6b):((

1 + (1− δλ)
)
s+

(
a(1− δλ) + δλ

(y
x

)λ
s− s

))
u = a(1− δλ),

which can be solved for a unique value of u:

u =

a

1+ δλ

1−δλ ( yx)
λ

s+ a

1+ δλ

1−δλ ( yx)
λ

=
n

s+ n
, where n =

a

1 + δλ

1−δλ
( y
x

)λ . [A.7.7]

This is of course the steady state found in section 4.3, where s is the steady-state sales rate from (3.11)
and n is the steady-state moving rate (3.12). Steady-state new listings are N = su = n(1− u).

Now define the percentage deviations of the variables ut and Nt from their unique steady-state values
u and N :

ũt =
ut − u
u

, and Ñt =
Nt −N
N

, or equivalently ut = u(1 + ũt), and Nt = N(1 + Ñt), [A.7.8]

and the time derivatives of ut and Nt and ũt and Ñt are related as follows:

˙̃ut =
u̇t
u
, and ˙̃Nt =

Ṅt

N
. [A.7.9]
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Using (A.7.8), (A.7.9), and N = su, the differential equation (A.7.6a) can be written in terms of ũt and Ñt

as follows:

˙̃ut = sÑt − sũt. [A.7.10a]

Likewise, (A.7.8), (A.7.9), and u/N = 1/s imply that the differential equation (A.7.6b) is equivalent to:

˙̃Nt = −a
((

1 + (1− δλ)
)
Ñt +

(
a(1− δλ)

s
+ δλ

(y
x

)λ
− 1

)
ũt

)
. [A.7.10b]

Make the following definition of a variable ñt:

ñt = Ñt +
n

s
ũt, and hence Ñt = ñt −

n

s
ũt and ˙̃nt = ˙̃Nt +

n

s
˙̃ut, [A.7.11]

where the final equation follows from taking the time derivative of the definition of ñt. The variable ñt
is also approximately the percentage deviation of the moving rate nt = Nt/(1 − ut) from its steady-state
value n, but here, ñt is simply taken as the definition of a new variable. The differential equation (A.7.10a)
can be written exactly in terms of ũt and ñt by using the second equation in (A.7.11):

˙̃ut = sñt − (s+ n)ũt. [A.7.12a]

Substituting (A.7.10b) and (A.7.12a) into the third equation from (A.7.11):

˙̃nt = −a
(

1 + (1− δλ)
)(

ñt −
n

s
ũt

)
− a

(
a(1− δλ)

s
+ δλ

(y
x

)λ
− 1

)
ũt +

n

s
(sñt − (s+ n)ũt)

= −
(

(a− n) + a(1− δλ)
)
ñt −

(
(a− n)

s
a(1− δλ) + aδλ

(y
x

)λ
− (a− n)− (a− n)

n

s

)
ũt.

Rearranging the equation for the steady-state moving rate n in (A.7.7) leads to:

aδλ
(y
x

)λ
=

(a− n)

n
a(1− δλ),

and substituting this into the equation for ˙̃nt above implies that the coefficient of ũt can be simplified:

˙̃nt = −
(

(a− n) + a(1− δλ)
)
ñt −

(a− n)(s+ n)

s

(
a(1− δλ)

n
− 1

)
ũt. [A.7.12b]

Equations (A.7.12a) and (A.7.12b) form a system of differential equations in the variables ũt and ñt. This
system can be written in matrix form as follows:(

˙̃ut
˙̃nt

)
=

( −(s+ n) s

−n(s+n)χu
s −nχn

)(
ũt
ñt

)
, [A.7.13]

where the coefficients χu and χn are defined by:

χu =
a− n
n

(
a(1− δλ)

n
− 1

)
, and χn =

a− n
n

+
a(1− δλ)

n
. [A.7.14]

The sum of the coefficients χu and χn is:

χu + χn = (1− δλ)
(a
n

)2
. [A.7.15]
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The expression for n in (A.7.7) implies:

a− n
n

=
δλ

1− δλ
(y
x

)λ
, and

a(1− δλ)

n
= (1− δλ) + δλ

(y
x

)λ
,

and hence the coefficients χu and χn from (A.7.14) are equal to the following:

χu =
δλ
(
δy
x

)λ (( y
x

)λ − 1
)

1− δλ , and χn =
(1− δλ)2 + (1− δλ)

(
δy
x

)λ
+
(
δy
x

)λ
1− δλ . [A.7.16]

The coefficient χn is strictly positive, as is χu because it is always the case that y > x. Since (δy/x)λ < 1
and (δy/x)λ − δλ < 1− δλ, it follows that χu < 1. As χn is larger than 1− δλ + δλ(y/x)λ, which is greater
than 1 because y > x, it must be the case that χn > 1.

The set of points where ˙̃ut = 0 is given by:

−(s+ n)ũt + sñt = 0, and hence ñt =
s+ n

s
ũt,

which is an upward-sloping straight line with gradient (s + n)/s in (ũt, ñt) space. To the left and above,
ũt is increasing over time, and to the right and below, ñt is decreasing. The set of points where ˙̃nt = 0 is
given by:

−n(s+ n)χu
s

ũt − nχnñt = 0, and hence ñt = −(s+ n)

s

χu
χn
ũt.

This is a downward-sloping straight line with gradient −(s+ n)χu/sχn, which is less than the gradient of
the ˙̃ut = 0 line in absolute value because χu < χn. Given that both χu and χn are positive, ñt is increasing
over time to the left and below the line, and decreasing to the right and above.

The characteristic equation for the eigenvalues ζ of the system of differential equations (A.7.13) is:

(ζ + (s+ n))(ζ + nχn) + n(s+ n)χu = 0, [A.7.17]

which is a quadratic equation in ζ:

ζ2 + ((s+ n) + nχn)ζ + n(s+ n)(χu + χn) = 0. [A.7.18]

The two eigenvalues ζ1 and ζ2 are the roots of this quadratic equation. The eigenvalues are either both
real numbers or a conjugate pair of complex numbers. The sum and product of the eigenvalues are:

ζ1 + ζ2 = − ((s+ n) + nχn) , and ζ1ζ2 = n(s+ n)(χu + χn).

Since χu and χn are both positive, the sum of the eigenvalues is negative and the product is positive. If
both are real numbers then both must be negative numbers. If both are complex numbers then the sum is
equal to twice the common real component of the eigenvalues, which must therefore be negative. Hence,
in all cases, the real parts of all eigenvalues are negative. This establishes that there is convergence to the
steady state in the long run starting from any initial conditions.

The condition for the quadratic equation (A.7.18) to have two real roots is:

((s+ n) + nχn)2 ≥ 4n(s+ n)(χu + χn), or equivalently
( s
n

+ 1 + χn

)2
≥ 4(χu + χn)

( s
n

+ 1
)
,

where the latter is derived by dividing both sides by the positive number n2. By expanding the brackets,
this condition can be expressed as a quadratic inequality in the ratio of the sales rate to the moving rate:( s

n

)2
+ 2(1 + χn)

s

n
+ (1 + χn)2 ≥ 4(χu + χn)

s

n
+ 4(χu + χn),
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which can be simplified as follows:( s
n

)2
+ 2 (1− (χu + χn)− χu)

s

n
+
(
1 + χ2

n − 2(χu + χn)− 2χu
)
≥ 0.

It can be verified directly that the inequality can be factorized:( s
n

+ 1−
(√
χu + χn −

√
χu
)2)( s

n
+ 1−

(√
χu + χn +

√
χu
)2) ≥ 0, [A.7.19]

which provides a test in terms of the ratio s/n for whether the eigenvalues of the system of differential
equations (A.7.13) are all real (if the test is not satisfied then they are a conjugate pair of complex numbers).

There are three cases. The first case is where the sales rate relative to the moving rate is above the
following threshold:

s

n
>
(√
χu + χn +

√
χu
)2 − 1, [A.7.20]

noting that the right-hand side is strictly positive because χn > 1. If this holds then the condition (A.7.19)
is satisfied and both eigenvalues ζ1 and ζ2 are real numbers. Since χu > 0, it follows that

√
χu + χn >

√
χn

and hence (A.7.20) implies s/n > χn − 1. This means s + n > nχn, and as ζ1 and ζ2 are roots of the
equation (A.7.17), it must be the case that the negative eigenvalues satisfy ζ1 > −(s+n) and ζ2 > −(s+n),
recalling that χu is always positive.

In a model where the moving rate n is exogenous and constant, the only dynamics would come from
the differential equation ˙̃ut = −(s + n)ũt (see A.7.12a), so s + n would be the rate of convergence to the
steady state. In the general model, the speed of convergence is determined by the negative of the real
components of the eigenvalues. When (A.7.20) is satisfied, it follows that |ζ1| < s + n and |ζ2| < s + n,
which means the new dynamics coming from match quality dominate the usual dynamics coming from the
evolution of the stock of houses for sale. Convergence is therefore slower than it would be in an exogenous
moving model with the same moving rate. As (A.7.20) shows, this case corresponds to the sales rate being
sufficiently large, which will make it the empirically relevant one. Using

√
χu + χn +

√
χu < 2

√
χu + χn

and the expression for χu + χn in (A.7.15), a sufficient condition for (A.7.20) is:

s

n
> (1− δλ)

(a
n

)2
− 1,

which holds for the calibrated version of the model.
The second case is where the sales rate is relatively low, specifically s/n < (

√
χu + χn−√χu)2−1. The

condition in (A.7.19) will be satisfied, so both eigenvalues would be negative real numbers. In this case,
s/n < χn − 1 since

√
χu +

√
χn >

√
χu + χn, which means that s + n < nχn. Given that the eigenvalues

are roots of equation (A.7.17), it follows that ζ1 < −(s + n) and ζ2 < −(s + n) and hence |ζ1| > s + n
and |ζ2| > s+ n. Convergence to the steady state is actually faster than an exogenous moving model, and
the new dynamics of match quality do not play an important role compared to the usual dynamics coming
from the evolution of the stock of houses for sale. This case is not empirically relevant because the required
sales rate would need to be too low compared to the moving rate.

The third case is where the dynamics of match quality and the dynamics of the stock of houses for sale
are of similar importance, which occurs when s/n lies between (

√
χu + χn −√χu)2 − 1 and (

√
χu + χn +√

χu)2 − 1. In this case, condition (A.7.19) does not hold and both eigenvalues ζ1 and ζ2 are complex
numbers. This case features damped oscillations around the steady state, but is not empirically relevant
because the required sales rate is too low compared to the moving rate. In what follows, attention is
restricted to the empirically plausible case where the sales rate is sufficiently high that condition (A.7.20)
holds.

There are two eigenvectors of the form (1, ν) associated with the two eigenvalues (as will be seen, the
first element can be normalized to 1). The values of ν in the eigenvectors are solutions of the following
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equations:

(−(s+ n)− ζ) + sν = 1, and hence ν =
(s+ n) + ζ

s
. [A.7.21]

This equation holds for ν1 when ζ = ζ1 and for ν2 when ζ = ζ2. Without loss of generality, let ζ1 denote
the eigenvalue with the greater absolute value. Consequently, as both are negative, ζ1 < ζ2. Since it has
been shown above that ζ1 > −(s + n) and ζ2 > −(s + n), equation (A.7.21) implies that both ν1 and ν2
are positive, with ν1 < ν2. Geometrically in (ũt, ñt) space, both eigenvectors are upward-sloping straight
lines, and since both ζ1 and ζ2 are negative, their gradient is less than the ˙̃ut = 0 line. The eigenvector
associated with the dominant eigenvalue ζ2 has a steeper gradient than the eigenvector associated with ζ1.

Having found the eigenvalues and eigenvectors of the system of differential equations (A.7.13), the
solution can be stated as follows:

ũt = k1e
ζ1(t−T ) + k2e

ζ2t−T , and ñt = k1ν1e
ζ1(t−T ) + k2ν2e

ζ2(t−T ), [A.7.22]

where T is the date from which the moving and transaction thresholds will be constant at x and y respec-
tively, and k1 and k2 are coefficients to be determined. Since there is convergence to the steady state for
any initial conditions, the coefficients k1 and k2 are pinned down by knowing the values of ũT and ñT :

ũT = k1 + k2, and ñT = k1ν1 + k2ν2,

and these equations can be solved for k1 and k2:

k1 =
ν2ũT − ñT
ν2 − ν1

, and k2 =
ñT − ν1ũT
ν2 − ν1

.

Substituting these expressions into (A.7.22) yields the solution conditional on given initial conditions at
date T :

ũt = (ν2ũT − ñT )

(
1

ν2 − ν1

)
eζ1(t−T ) + (ñT − ν1ũT )

(
1

ν2 − ν1

)
eζ2t−T ; [A.7.23a]

ñt = (ν2ũT − ñT )

(
ν1

ν2 − ν1

)
eζ1(t−T ) + (ñT − ν1ũT )

(
ν2

ν2 − ν1

)
eζ2(t−T ). [A.7.23b]

As T tends to infinity, the vector (ũt, ñt) must approach the origin approximately along the eigenvector
associated with the dominant eigenvalue ζ2, that is, (1, ν2).

Given the initial values of ũT and ñt, (A.7.23) gives an exact solution of the system of differential
equations (A.7.13) for variables ũt and ñt defined in (A.7.8) and (A.7.11). Using the definition in (A.7.11),
this implies an exact solution for Ñt as well. The exact solution for the variables ut and Nt can then be
recovered using the definitions in (A.7.8). Once ut and Nt are known, the exact solution for the moving
rate can be computed using the definition nt = Nt/(1−ut). Finally, the sales rate st is simply equal to the
constant s, and transactions St = stut can be found given the solution for ut.

Overshooting

Next, consider how the initial values of ũT and ñT are determined following a change to the moving or
transaction thresholds xt and yt. Suppose that xt and yt were previously constant at x0 and y0, and then
move permanently to x and y from date T onwards. The previous sales rate was s0, and the steady-state
values of the moving rate and houses for sale were n0 and u0. After the change to x and y, there is a
new steady-state sales rate s that is reached immediately at date T . Houses for sale is a stock that cannot
instantaneously jump, so this variable remains equal to its old steady-state value initially, that is, uT = u0.
The new steady state for ut is u, and this can be used to compute ũT = (u0 − u)/u.

Using (4.10) and (4.11), an increase in the moving threshold x implies a higher moving rate n and a
higher u compared to u0, and thus a negative value of ũT . Using (4.9), (4.10), and (4.11), an increase in y
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implies a lower ratio s/n, which means a higher value of u compared to u0, and thus a negative value of
ũT . Therefore, either an increase in x or an increase in y implies ũT < 0.

Now consider the moving rate at date T when the moving and transaction thresholds change. With
houses for sale ut at its old steady-state value of u0 for t < T , equation (3.12) implies:

nT = a− aδλx−λT v0
1− uT

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)u0dτ = a− aδλx−λv0
1− u0

u0
a(1− δλ)

= a− δλ

1− δλ
u0

1− u0
v0x
−λ,

which uses xT = x and uT = u0, and where v0 denotes the old value of the parameter v (which may change
at date T ). Noting that u0 = n0/(s0 + n0), where s0 and n0 are the old sales and moving rates, it can be
seen that u0/(1− u0) = n0/s0, where s0 = v0y

−λ
0 . Substituting this into the equation above:

nT = a− δλ

1− δλ
(y0
x

)λ
n0, [A.7.24]

and substituting the expression for the old steady state n0 from (4.10):

nT = a−
a
(

δλ

1−δλ
(y0
x

)λ)
1 + δλ

1−δλ

(
y0
x0

)λ =

(
1 +

δλ

1− δλ y
λ
0

(
1

xλ0
− 1

xλ

))
n0. [A.7.25]

This implies that an increase in y has no impact on the initial value of nT , while an increase in x raises nT
above n0.

Next, the value of nT is compared to the new steady-state value n. When y increases, equation (4.10)
implies the steady-state value of n is lower. Therefore, n < nT = n0 following an increase in y, and thus
ñT > 0. Now suppose x increases with no change in y. As explained above, (A.7.25) implies nT > n0.
Combined with (A.7.24):

nT > a− δλ

1− δλ
(y0
x

)λ
nT , and therefore nT >

a

1 + δλ

1−δλ
(y0
x

)λ .
After the increase in x, the right-hand side is equal to the new steady-state moving rate n, so the inequality
above implies nT > n. This means the moving rate overshoots its new steady state in the short run.
Therefore, following either an increase in x or an increase in y, the initial deviation of the moving rate from
its new steady state is such that ñT > 0.

In summary, an increase in either x or y leads to ũT < 0 and ñT > 0, and a decrease in x or y leads to
ũT > 0 and ñT < 0. The transitional dynamics therefore follow the example paths illustrated in Figure 7.

A.8 Model with heterogeneous distributions of idiosyncratic shocks

The search process is the same as in the basic model. ut denotes the measure of houses for sale, bt denotes
the measure of buyers, and V(ut, bt) denotes the meeting function. The viewing rate for both buyers and
sellers is v = V(ut, bt)/ut given that ut = bt in equilibrium. Following a viewing, the buyer draws a match-
specific quality ε from the Pareto distribution G(ε) in (3.1). If the match quality is sufficiently high then a
transaction takes place with the price determined by Nash bargaining.

Value functions, thresholds, and prices

The new aspect of the model with heterogeneity emerges after a transaction occurs. After the buyer has
moved in, a type i ∈ {1, . . . , q} is drawn from a distribution with probabilities θi, where

∑q
i=1 θi = 1. The

number of types is q ≥ 1, and the special case q = 1 corresponds to the basic version of the model. A type-i
homeowner faces idiosyncratic shocks that scale down match quality ε by a factor δi, with these shocks
arriving at rate ai. The value of occupying a house with match quality ε for a type-i homeowner is Hi,t(ε).
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The Bellman equations (the equivalent of 3.8) are:

rHi,t(ε) = εξ −D + ai (max{Hi,t(δiε), Jt} −Hi,t(ε)) + Ḣi,t(ε), for all i ∈ {1, . . . , q}. [A.8.1]

The moving threshold xi,t for type-i households is the solution of the equation:

Hi,t(xi,t) = Jt = Bt + Ut, [A.8.2]

for each i = 1, . . . , q, which is the equivalent of (3.9), but now each threshold xi,t depends on a type-specific
value function Hi,t(ε). The value Jt is the sum of values from being a buyer Bt and a seller Vt as in the basic
version of the model. The Bellman equations for Bt and Vt are the same as the basic version of the model
(the equations in 3.3). The surpluses Σb,t(ε) and Σu,t(ε) are also as given in (3.2), but in the model with
heterogeneity, the value function Ht(ε) is a weighted average of the type-specific value functions Hi,t(ε):

Ht(ε) =

q∑
i=1

θiHi,t(ε). [A.8.3]

The total surplus Σt(ε) is also as given before in (3.4), with Ht(ε) specified by (A.8.3) here. Using (3.4),
the equation Σt(yt) = 0 for the transaction threshold is the same as the basic version of the model, namely
equation (3.5), which depends on the Ht(ε) given in (A.8.3). The Bellman equation (3.6) for Jt is also
unchanged. Assuming Nash bargaining over transaction prices, the same method in appendix A.4 can be
used to show the expression in (3.7) for the average price is unchanged.

Stocks and flows

The stock-flow accounting identity (3.10) for houses for sales ut is the same as in the basic version of the
model. The process by which transactions occur is also the same as in the basic model, so equation (3.11)
for the sales rate st holds as before. Let σi,t denote the measure of homeowners of type-i at time t. The
stock-flow accounting identity for σi,t and the link with houses for sale ut are:

σ̇i,t = θiSt −Ni,t, and

q∑
i=1

σi,t = 1− ut, [A.8.4]

where Ni,t denotes the number of type-i homeowners who put their houses up for sale at date t. The same
steps used in deriving equation (A.5.1) in appendix A.5 can be applied to show that the Ni,t are given by:

Ni,t = aiσi,t − θiaiδλi x−λi,t v
∫ t

τ→−∞
e−ai(1−δ

λ
i )(t−τ)uτdτ, [A.8.5]

which holds for i = 1, . . . , q. The aggregate number of houses newly put up for sale is Nt =
∑q

i=1Ni,t, and
by using equation (A.8.5), the moving rate nt = Nt/(1− ut) is:

nt =

∑q
i=1 aiσi,t
1− ut

−
v
∑q

i=1 θiaiδ
λ
i x
−λ
i,t

∫ t
τ→−∞ e

−ai(1−δλi )(t−τ)uτdτ

1− ut
. [A.8.6]

Equilibrium

As in section 4, if the parameters are constant over time, the equilibrium of the model has constant moving
and transaction thresholds, so time subscripts are dropped in what follows.

Using the definition of the moving threshold xi in (A.8.2) and evaluating the type-i homeowner’s value
function Hi(ε) at ε = xi:

(r + ai)Hi(xi) = ξxi −D + aiJ, [A.8.7]
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which holds for all i = 1, . . . , q. Together with (A.8.2) this implies:

xi =
rJ +D

ξ
= x, [A.8.8]

which means that all types of homeowners share a common moving threshold xi = x in equilibrium. The
value J can be written in terms of parameters and the common threshold x:

J =
ξx−D

r
. [A.8.9]

As in the basic model, idiosyncratic shocks are assumed large enough so that all marginal homebuyers
would move upon receiving a shock. This must be true for all types of homeowner, that is, δiy < x. It then
follows by evaluating the type-i homeowner’s value function (A.8.1) at ε = y that:

(r + ai)Hi(y) = ξy −D + aiJ.

Substituting J from (A.8.9) and rearranging yields:

(r + ai)Hi(y) = ξy −D + ai
ξx−D

r
= ξ(y − x) +

(
ai + r

r

)
(ξx−D),

and thus the type-i homeowner value function evaluated at the transaction threshold is:

Hi(y) =
ξ(y − x)

r + ai
+
ξx−D

r
.

Averaging across all types of homeowners:

H(y) = ξ(y − x)

q∑
i=1

θi
r + ai

+
ξx−D

r
. [A.8.10]

An equation linking the moving and transaction thresholds x and y can be derived from (3.5), (A.8.9),
and (A.8.10):

ξ(y − x)

q∑
i=1

θi
r + ai

+
ξx−D

r
=
ξx−D

r
+ C,

which can be rearranged as follows:

y − x =

(
1∑q

i=1
θi
r+ai

)
C

ξ
. [A.8.11]

This reduces to the equilibrium condition (4.4) of the basic model if there is only one type of homeowner
(q = 1). Another equilibrium condition linking x and y can be obtained by combining equation (3.5) for
the transaction threshold with the Bellman equation (3.6) for the value J :

rJ = −F −D + vy−λ
∫ ∞
ε=y

λ

y

(
ε

y

)−(λ+1)

(H(ε)−H(y)) dε, [A.8.12]

which uses the Pareto distribution of new match quality ε from (3.1). Given the expression for H(ε) in
(A.8.3), this equation can be rewritten as follows:

rJ = −F −D + vy−λ
q∑
i=1

θiΨi(y), where Ψi(z) =

∫ ∞
ε=z

λ

z

( ε
z

)−(λ+1)
(Hi(ε)−Hi(z))dε. [A.8.13]
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Expressions for the functions Ψi(z) defined above when evaluated at z = y can be found explicitly using
the same steps used to derive equation (A.3.15) in appendix A.3:

Ψi(y) =
ξ

(λ− 1)(r + ai)

(
y +

aiδ
λ
i y

λx1−λ

r + ai(1− δλi )

)
. [A.8.14]

By substituting (A.8.9) and (A.8.14) into the Bellman equation from (A.8.13):

ξx−D = −F −D + vy−λ
q∑
i=1

ξθi
(λ− 1)(r + ai)

(
y +

aiδ
λ
i y

λx1−λ

r + ai(1− δλi )

)
,

which simplifies to:

x =
v
∑q

i=1
θi

r+ai

(
y1−λ +

aiδ
λ
i

r+ai(1−δλi )
x1−λ

)
λ− 1

− F

ξ
. [A.8.15]

This is the second equilibrium condition involving x and y. It reduces to the equivalent condition (4.7)
from the basic model when q = 1.

The equilibrium thresholds x and y are solutions of the equations (A.8.11) and (A.8.15). By substituting
for x in (A.8.15) using (A.8.11), any equilibrium value of y is a solution of the equation I(y) = 0, where
the function I(y) is given below:

I(y) =
v

λ− 1

q∑
i=1

θi
r + ai

y1−λ +
aiδ

λ
i

r + ai(1− δλi )

y −
 1∑q

j=1
θj

r+aj

 C

ξ

1−λ


− y +

(
1∑q

i=1
θi

r+ai

)
C

ξ
− F

ξ
,

which is the equivalent of (A.3.17) when q = 1. This function is such that I ′(y) < 0 and limy→∞ I(y) = −∞
because λ > 1. Since I(y) is strictly decreasing in y, any solution (if it exists) must be unique. A solution
must satisfy x > 0, y > 1, and δiy < x for all i = 1, . . . , q. Generalizing the argument used to derive
(A.3.18), the inequalities involving y are equivalent to:

y > max

1,
C(

1−maxi∈{1,...,q} δi
)
ξ

 1∑q
j=1

θj
r+aj

 .

Thus, there exists a solution of the equation I(y) = 0 (which is unique) if and only if the function I(y)
is positive when evaluated at the right-hand side of the inequality above. The same argument following
(A.3.19) can be used to show that the inequality for y implies x > 0, so all the requirements for an
equilibrium are satisfied.

Average transaction price

Using the Pareto distribution from (3.1) and the definitions of C = Cb + Cu and κ = Cu/C, the average
transaction price in (3.7) can be written as:

P = ω

∫ ∞
ε=y

λ

y

(
ε

y

)−(λ+1)

(H(ε)−H(y))dε+ ωH(y) + (κ− ω)C +
ωF − (1− ω)D

r
.

Using the definition of the transaction threshold from (3.5) and equations (A.8.9) and (A.8.12):

P = ω
(ξx−D) + F +D

vy−λ
+ ω

(
C +

ξx−D
r

)
+ (κ− ω)C +

ωF − (1− ω)D

r
,
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which can be simplified to:

P = κC − D

r
+ ω

(
1

r
+
yλ

v

)
(ξx+ F ). [A.8.16]

Given a moving threshold x, this is the same equation for P as (4.12) in the basic model.

Average moving rate

Consider a steady state where ut = u, σi,t = σi, and Ni,t = Ni for all t. Using the result xi,t = xi = x from
(A.8.8), equation (A.8.5) for the number of houses put up for sale by type-i homeowners becomes:

Ni = aiσi − θiaiδλi x−λv
(

u

ai(1− δλi )

)
.

In steady state, equation (A.8.4) implies Ni = θiS = θisu, where S = su is the number of transactions.
Substituting into the equation above and dividing both sides by ai:

su
θi
ai

= σi − x−λvuθi
δλi

ai(1− δλi )
.

Sum over all i = 1, . . . , q and make use of the link between σi and u from (A.8.4):

su

q∑
i=1

θi
ai

= 1− u− x−λvu
q∑
i=1

θi
δλi

ai(1− δλi )
.

Dividing both sides by 1− u and noting that (4.11) implies u/(1− u) = n/s:

s
n

s

q∑
i=1

θi
ai

= 1− nx−λv

s

q∑
i=1

θi
δλi

ai(1− δλi )
,

and substituting the expression for the sales rate s from (4.9):

n

q∑
i=1

θi
ai

= 1− n
(y
x

)λ q∑
i=1

θi
δλi

ai(1− δλi )
.

This can be rearranged to give a formula for the steady-state moving rate n:

n =
1∑q

i=1
θi
ai

+
( y
x

)λ∑q
i=1 θi

δλi
ai(1−δλi )

. [A.8.17]

The basic model is a special case of this when q = 1.

A.9 The hazard function and the elasticity of the moving rate

The analysis here considers the general model with heterogeneity in the distributions of idiosyncratic shocks
across q types of homeowners. The results are applicable to the basic model by considering the special case
q = 1.

The distribution of time spent in a house

Consider an equilibrium where parameters are expected to remain constant. In this case, the moving and
transaction thresholds x and y are constant over time. Let ψi(T ) denote the survival function for new
matches of type-i homeowners, in the sense of the fraction of matches forming at time t that survive until
at least t+T . Each cohort starts with a match quality distribution ε ∼ Pareto(y;λ) at T = 0. Now consider
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some T > 0. Moving occurs only if the value of ε after shocks have occurred (ε′) is such that ε′ < x. Shocks
arrive at a Poisson rate ai, so the number k of shocks that would occur to a match over an interval of time
T has a Poisson(aiT ) distribution, which means the probability that j shocks occur is e−aiT (aiT )j/j!. If no
shocks occur, ε′ = ε, so no moving occurs. If j ≥ 1 shocks have occurred then ε′ = δji ε, where ε is the initial

draw of match quality. These matches survive only if ε′ ≥ x, that is, ε ≥ x/δji . Since the original values
of ε are drawn from a Pareto distribution truncated at ε = y with shape parameter λ, this probability is
((x/δji )/y)−λ (this expression is valid for all j ≥ 1 since δy < x). Therefore, the survival function ψi(T ) is
given by:

ψi(T ) = e−aiT +
∞∑
j=1

e−aiT
(aiT )j

j!

(
x/δji
y

)−λ

= e−aiT +
(y
x

)λ
e−aiT

∞∑
j=1

(aiδ
λ
i T )j

j!
= e−aiT +

(y
x

)λ
e−aiT eaiδ

λ
i T ,

where the final equality uses the (globally convergent) series expansion of the exponential function. Con-
ditional on each type i = 1, . . . , q, the survival function ψi(T ) is thus:

ψi(T ) =

(
1−

(y
x

)λ)
e−aiT +

(y
x

)λ
e−ai(1−δ

λ
i )T .

Given the random assignment of types with probabilities θ1, . . . , θq, the survival function ψ(T ) for all
members of a cohort of new homeowners is:

ψ(T ) =

q∑
i=1

θiψi(T ) =

(
1−

(y
x

)λ) q∑
i=1

θie
−aiT +

(y
x

)λ q∑
i=1

θie
−ai(1−δλi )T , [A.9.1]

observing that ψ(0) = 1.
For new matches, the distribution µ(T ) of the time T until the next move can also be obtained from

the survival function ψ(T ) using µ(T ) = −ψ′(T ). Hence, by taking the derivative of the survival function
ψ(T ) from (A.9.1) with respect to the duration T :

µ(T ) = −ψ′(T ) =

(
1−

(y
x

)λ) q∑
i=1

θiaie
−aiT +

(y
x

)λ q∑
i=1

θiai(1− δλi )e−ai(1−δ
λ
i )T . [A.9.2]

The definition of the hazard function h(T ) is the proportional decrease in the survival function for a small
change in duration, that is, h(T ) = −ψ′(T )/ψ(T ). Using (A.9.1) and (A.9.2):

h(T ) =

(
1−

( y
x

)λ)∑q
i=1 θiaie

−aiT +
( y
x

)λ∑q
i=1 θiai(1− δλi )e−ai(1−δ

λ
i )T(

1−
( y
x

)λ)∑q
i=1 θie

−aiT +
( y
x

)λ∑q
i=1 θie

−ai(1−δλi )T
, [A.9.3]

and by simplifying this expression, equation (5.1) is confirmed.
The expected time Tn between moves is the expected value of the probability distribution µ(T ):

Tn =

∫ ∞
T=0

Tµ(T )dT =

(
1−

(y
x

)λ) q∑
i=1

θi
ai

+
(y
x

)λ q∑
i=1

θi

ai(1− δλi )
, [A.9.4]

which can be simplified to derive the expression for Tn in (5.4). It is also the case that Tn is equal to the
reciprocal of the average moving rate n, as can be seen by comparing equations (A.8.17) and (A.9.4).

The elasticity of the moving rate

Imposing a common moving threshold xt = xi,t for all i = 1, . . . , q (as shown in appendix A.8) and
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differentiating the moving rate nt from (A.8.6) with respect to xt:

∂nt
∂xt

=
λx−λ−1t v

∑q
i=1 θiaiδ

λ
i

∫ t
τ→−∞ e

−ai(1−δλi )(t−τ)uτdτ

1− ut
.

Let η denote the elasticity of the moving rate nt with respect to xt evaluated at the steady state. The
partial derivative above implies:

η =
∂ log nt
∂ log xt

∣∣∣∣
ut=u,nt=n

=
λx−λvu

∑q
i=1 θiaiδ

λ
i

∫ t
τ→−∞ e

−ai(1−δλi )(t−τ)dτ

n(1− u)
. [A.9.5]

Note that the integrals appearing in the expression above are:∫ t

τ→−∞
e−ai(1−δ

λ
i )(t−τ)dτ =

1

ai(1− δλi )
,

and by substituting these into (A.9.5):

η =
λx−λv

∑q
i=1 θi

aiδ
λ
i

ai(1−δλi )

n(1− u)
= λx−λv

u

n(1− u)

q∑
i=1

θi
δλi

1− δλi
.

Equation (4.11) implies u/(1− u) = n/s, and by substituting this and the expression for s from (4.9) into
the above:

η = λ
vx−λn

nvy−λ

q∑
i=1

θi
δλi

1− δλi
= λ

(y
x

)λ q∑
i=1

θi
δλi

1− δλi
. [A.9.6]

This confirms the formula for η given in (5.3).

A.10 Estimates of time-to-sell

This section provides further discussion of alternative estimates of time-to-sell. Using the ‘Profile of Buyers
and Sellers’ survey collected by NAR, Genesove and Han (2012) report that for the time period 1987–2008,
the average time-to-sell is 7.6 weeks, the average time-to-buy is 8.1 weeks, and the average number of homes
visited by buyers is 9.9. They also discuss other surveys that have reported similar findings.

These numbers are significantly smaller than the 6 months estimate of time-to-sell derived from the
NAR data on sales and inventories. However, the estimates of time-to-sell and time-to-buy derived from
survey data are likely to be an underestimate of the actual time a new buyer or seller would expect to spend
in the housing market. The reason is that the survey data include only those buyers and sellers who have
successfully completed a house purchase or sale, while the proportion of buyers or sellers who withdraw
from the market (at least for some time) without a completed transaction is substantial.

To understand the impact withdrawals can have on estimates of time-to-sell, suppose houses on the
market have sales rate s and withdrawal rate w as in section 2.3. Let T̃s denote the average time taken to
sell among those houses that are successfully sold, measuring the time on the market from the start of the
most recent listing. Let Ts denote the average of the total time spent on the market by houses that are
successfully sold, ignoring the times between listings when houses are off the market. The two measures of
time-to-sell are:

T̃s =
1

s+ w
, Ts =

1

s
, and hence Ts =

T̃s
1− φ.

The final equation gives the relationship between the two measures in terms of the fraction φ of houses
eventually withdrawn from sale. Estimates of time-to-sell based on survey data are typically measuring T̃s.
On the other hand, the NAR data provide an estimate of the sales rate s, and taking the reciprocal yields
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a measure of Ts.
The studies by Anenberg and Laufer (2017) and Carrillo and Williams (2015) discussed in section 2.3

suggest that the fraction of properties eventually withdrawn from sale lies between 50% and 60%. Using
these numbers, the formula above suggests that estimates of Ts should be around 2 to 2.5 times higher
than estimates of T̃s. This simple observation goes a long way in reconciling the magnitudes of the different
estimates. Carrillo and Williams (2015) also show directly that controlling for withdrawals substantially
increases the estimated value of average time-to-sell. Similarly, in comparing the efficiency of different
platforms for selling properties, Hendel, Nevo and Ortalo-Magné (2009) explicitly control for withdrawals
and report a time-to-sell of 15 weeks (using the Multiple Listing Service for the city of Madison).

An alternative approach to estimating time-to-sell unaffected by withdrawals is to look at the average
duration for which a home is vacant using data from the American Housing Survey. In the years 2001–2005,
the mean duration of a vacancy was 7–8 months. However, that number is likely to be an overestimate of
the expected time-to-sell because it is based on houses that are ‘vacant for sale’. Houses that are for sale
but currently occupied would not be counted in this calculation of average duration. Another approach
that avoids the problem of withdrawals is to look at the average time taken to sell newly built houses. Dı́az
and Jerez (2013) use the Census Bureau ‘New Residential Sales’ report to find that the median number of
months taken to sell a newly built house is 5.9 (for the period 1991–2012). This is only slightly shorter than
the average of the time-to-sell number constructed using NAR data on existing single-family homes, but
there is reason to believe that newly built homes should sell faster than existing homes owing to greater
advertising expenditure and differences in the target groups of buyers.

A.11 Calibration of the model with heterogeneity

This section shows how the parameters of the model with heterogeneity can be set to give the best fit
to the empirical aggregate hazard function for moving house, as well as matching other empirical targets.
There are parameters q, {θi}, {ai}, and {δi} that describe the distributions of idiosyncratic shocks faced
by homeowners, and parameters λ, v, C, F , D, κ, ω, and r that are related to other aspects of the model.

The number of types q determines the dimension of the parameter space, and as discussed in section 5.2,
this can be chosen to be large enough to give a sufficiently good fit to the aggregate hazard function. Here,
q is taken as given. Three of the other parameters (κ, ω, and r) are also set directly. The remaining
parameters are chosen to minimize a weighted sum of squared deviations between the empirical hazard
function and the hazard function h(T ) implied by the model, and to match five empirical targets exactly:
time-to-sell Ts, viewings per sale Vs, the transaction cost to price ratio c, the flow search cost to price ratio
f , and the flow maintenance cost to price ratio d.

The calibration procedure has two stages. First, a numerical search over parameters θi, ai, and δλi to
find the solution to:50

min
{θi}qi=1,{ai}

q
i=1,{δ

λ
i }
q
i=1

s.t.
∑q
i=1 θi=1

∑
T

$(T )(ĥ(T )− h(T ))2, [A.11.1]

where T denotes a duration for which data on the hazard function is available, ĥ(T ) is the estimated
hazard rate described in section 5.2.1, h(T ) is the model-implied hazard function given in (5.1), and $(T )
is the weight assigned to duration T . The weights $(T ) are assumed to be proportional to the number of
data points available to calculate the empirical hazard rate ĥ(T ). An alternative weighting scheme makes
the weights proportional to the model-implied survival function ψ(T ) from (A.9.1) (initialized with the
parameters obtained from the first weighting scheme, and then iterating until convergence). There are
3q − 1 independent parameters given that

∑q
i=1 θi = 1, and the parameters must satisfy the restrictions

0 < θi ≤ 1, ai > 0, and 0 ≤ δλi < 1. The procedure specifies δλi rather than δi because this turns out to be
more convenient, and the admissible range of δλi is the same as that of δi.

50The numerical method used is to draw many initial conditions at random from the parameter space, and then
perform a search for the minimum using a simplex algorithm starting from each initial condition, before finally
choosing the parameter vector with the smallest value of the objective function from among all the searches.
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To compute the model-implied hazard function h(T ) using (5.1) it is necessary to know the value of
the parameter λ and the values of the endogenous variables x and y in addition to {θi}, {ai}, and {δλi }.
Conditional on the parameters given at the first stage, the values of λ, x, and y are pinned down by the
requirement of matching the other five empirical targets: Ts, Vs, c, f , and d. This is the second stage of
the calibration procedure.

By dividing the cost parameters C, F , and D (search, transactions, and maintenance) by the average
transaction price P from equation (A.8.16), the model’s predictions for the targets c, f , and d are:

c =

C
ξ

κCξ − D
rξ + ω

(
1
r + yλ

v

)(
x+ F

ξ

) ; [A.11.2a]

f =

F
ξ

κCξ − D
rξ + ω

(
1
r + yλ

v

)(
x+ F

ξ

) ; [A.11.2b]

d =

D
ξ

κCξ − D
rξ + ω

(
1
r + yλ

v

)(
x+ F

ξ

) . [A.11.2c]

Note that the model contains one other parameter ξ in addition to those listed earlier, but in all equa-
tions determining observables, ξ enters only as a ratio to other parameters. The parameter ξ is therefore
normalized to ξ = 1. Now take equation (A.8.16) for the average price and divide both sides by P :

κc− d

r
+ ω

(
1

r
+
yλ

v

)( x
P

+ f
)

= 1.

Using the expression for Ts in (A.3.23), the equation above can be solved for x/P as follows:

x

P
=

1− κc+ d
r

ω
(
1
r + Ts

) − f. [A.11.3]

Now take the linear equation (A.8.11) involving the thresholds x and y and divide both sides by P (recalling
that ξ = 1):

y

P
=
x

P
+

c∑q
i=1

θi
r+ai

=
1− κc+ d

r

ω
(
1
r + Ts

) +
c∑q

i=1
θi

r+ai

− f, [A.11.4]

and then dividing both sides by x/P and using (A.11.3):

y

x
=
y/P

x/P
= 1 +

c∑q
i=1

θi
r+ai

1−κc+ d
r

ω( 1
r
+Ts)

− f
. [A.11.5]

Dividing both sides of the second equation (A.8.15) for the thresholds x and y by P
∑

i=1 θi/(r + ai) and
rearranging leads to:∑q

i=1
θi

r+ai

(
1 +

aiδ
λ
i

r+ai(1−δλi )

( y
x

)λ−1)
(λ− 1)

∑q
i=1

θi
r+ai

=
yλ
(
x
P + f

)
v yP
∑q

i=1
θi

r+ai

.

Using Ts = yλ/v from (A.3.23) together with (A.11.3), (A.11.4), and (A.11.5), this equation can be written
as follows:

Φ(λ) =
1 + ℵδℵλ−1yx

λ− 1
− ℵ =

1 + ℵδe(logℵyx)(λ−1)
λ− 1

− ℵ = 0, [A.11.6]
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where the coefficients ℵ, ℵδ, and ℵyx can be derived from the calibration targets:

ℵ =

(1−κc+ d
r )Ts

ω( 1
r
+Ts)

c+

(
1−κc+ d

r

ω( 1
r
+Ts)

− f
)∑q

i=1
θi

r+ai

, ℵδ =

∑q
i=1

θiaiδ
λ
i

r+ai(1−δλi )∑q
i=1

θ
r+ai

, and ℵyx = 1 +

c∑q
i=1

θi
r+ai

1−κc+ d
r

ω( 1
r
+Ts)

− f
. [A.11.7]

Observe that the function Φ(λ) becomes an arbitrarily large positive number as λ tends to 1, and since
ℵyx > 1, it is also the case that Φ(λ) eventually becomes arbitrarily large as λ increases. Note that the
derivative of Φ(λ) is:

Φ′(λ) =

(
(λ− 1)2 − 1

)
ℵδe(logℵyx)(λ−1) − 1

(λ− 1)2
.

The denominator of this expression is always positive given that λ > 1. The sign of the numerator depends
only on ℵδ((λ− 1)2 − 1)− e−(logℵyx)(λ−1), which is strictly increasing in λ for all λ > 1. Since Φ′(1) < 0, it
follows that the function Φ(λ) is initially decreasing in λ and subsequently increasing in λ after passing a
threshold value of λ. For any λ > 1, it must be the case that e(logℵyx)(λ−1) > 1 + (logℵyx)(λ− 1) because
logℵyx > 0. This inequality implies the function Φ(λ) from (A.11.6) has the following lower bound:

Φ(λ) >
1 + ℵδ
λ− 1

− (ℵ − ℵδ logℵyx). [A.11.8]

As a solution for λ requires Φ(λ) = 0, a necessary condition for a solution to exist is ℵ > ℵδ logℵyx. When
this condition is satisfied, the inequality above implies a lower bound λ for a solution (if one exists):

λ > λ, where λ = 1 +
1 + ℵδ

ℵ − ℵδ logℵyx
,

which follows because the bound (A.11.8) on Φ(λ) is decreasing in λ. The parameter λ must also satisfy
an upper bound. It is required that δiy < x for all i = 1, . . . , q. This is equivalent to (y/x)λδλi < 1 for all
i, and hence ℵλyx max δλi < 1 since y/x = ℵyx. By taking logarithms of both sides, this implies an upper
bound for λ:

λ < λ, where λ =
− log max δλi

logℵyx
, [A.11.9]

with ℵyx > 1 taken from (A.11.7). Given the properties of the Φ(λ) function established above, the
necessary and sufficient conditions for the existence of a unique solution λ > 1 to the equation Φ(λ) = 0
with 1 < λ < λ are that λ > 1 and Φ(λ) < 0. When these conditions are met, the solution for λ can be
found by searching the interval (λ, λ) because Φ(λ) > 0 and Φ(λ) < 0.

With the solution of (A.11.6) for λ, the transaction threshold y can be obtained from viewings per sale
Vs:

y = V
1
λ
s , [A.11.10]

and the moving threshold x can be derived from the above along with equation (A.11.5):

x =
V

1
λ
s

1 +

c∑q
i=1

θi
r+ai

1−κc+ dr
ω( 1

r+Ts)
−f

. [A.11.11]

With λ, x, and y, the hazard function h(T ) can be computed using the formula in (5.1) given the values
of {θi}, {ai}, and {δλi }. This allows the weighted sum of squared deviations (A.11.1) to be computed, and
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hence the calibration procedure can be implemented as described above.
Once θi, ai, and δλi have been chosen to minimize (A.11.1), the parameters {δi} can be obtained from

{δλi } using the value of λ that solves (A.11.6) and δi = (δλi )1/λ. The remaining parameters v, C, F , and D
can be obtained as follows. Using (A.3.22) and (A.3.23), the ratio of viewings per sale Vs and time to sell
Ts determines the meeting rate v:

v =
Vs
Ts
. [A.11.12]

Combining equations (A.11.4) and (A.11.10) leads to the following expression for P :

P =
V

1
λ
s

1−κc+ d
r

ω( 1
r
+Ts)

+ c∑q
i=1

θi
r+ai

− f
, [A.11.13]

and this can be used to obtain the parameters C, F , and D using C = cP , F = fP , and D = dP .

A.12 Calibration of the basic model without heterogeneity

This section shows how the 10 parameters a, δ, λ, v, C, F , D, κ, ω, and r can be determined in the basic
version of the model (with no heterogeneity in idiosyncratic shock distributions, that is, q = 1). When
q = 1, the general expressions for the elasticity of the moving rate η and time-to-move Tn from (5.3) and
(5.4) reduce to:

η = λ
δλ

1− δλ
(y
x

)λ
; [A.12.1]

Tn =
1 + δλ

1−δλ
( y
x

)λ
a

; . [A.12.2]

Three of the parameters (κ, ω, and r) are set directly. The other seven are obtained indirectly from five
calibration targets: time-to-sell Ts, viewings per sale Vs, the transaction cost to price ratio c, the flow search
cost to price ratio f , and the flow maintenance cost to price ratio d, together with the two targets derived
from information contained in the hazard function, namely the steady-state elasticity η of the moving rate
with respect to the moving threshold and time-to-move Tn.

The price equation (A.4.3) is identical to (A.8.16) in the model with heterogeneity, so the expressions
in (A.11.2a)–(A.11.2c) for the ratios of costs (search, transactions, and maintenance) to the average price
are also valid here. The model contains one other parameter ξ, but as in appendix A.11, in all equations
determining observables, ξ enters only as a ratio to other parameters, hence it can be normalized to ξ = 1.

The calibration method begins by setting κ, ω, and r directly. Next, consider a guess for Tδ, the
expected time until an idiosyncratic shock occurs. This conjecture determines the parameter a using:

a =
1

Tδ
. [A.12.3]

The admissible range for Tδ is 0 < Tδ < Tn.
Using equation (A.12.2) for time-to-move Tn and the expressions for η and Tδ from equations (A.12.1)

and (A.12.3):

Tn =
(

1 +
η

λ

)
Tδ. [A.12.4]

Rearranging equation (A.12.4) and using the calibration targets Tn and η and the conjecture for Tδ:

λ =
ηTδ

Tn − Tδ
. [A.12.5]
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This yields the value of the parameter λ.
Since the equation for the average price is the same as the model with heterogeneity, the same steps

used to derive the expression for x/P in (A.11.3) are valid here. Now take the linear equation (A.3.7)
involving the thresholds x and y and divide both sides by P , recalling that ξ = 1:

y

P
=
x

P
+ (r + a)c =

1− κc+ d
r

ω
(
1
r + Ts

) + (r + a)c− f, [A.12.6]

which uses the formula for x/P from (A.11.3). Dividing both sides by x/P and using (A.11.3) again:

y

x
=
y/P

x/P
= 1 +

(r + a)c
1−κc+ d

r

ω( 1
r
+Ts)

− f
. [A.12.7]

This gives the ratio y/x implied by the calibration targets. Equation (A.12.1) for η can be rearranged to
obtain an expression for δλ:

δλ =
η

η + λ
( y
x

)λ ,
and hence the value of the parameter δ is:

δ =

(
η

η + λ
( y
x

)λ
) 1

λ

. [A.12.8]

Given λ, the transaction threshold y must satisfy equation (A.11.10) in terms of viewings per sale Vs
as (A.3.22) holds for the model with and without heterogeneity. An expression for the moving threshold x
can be derived using (A.11.10) and (A.12.7):

x =
V

1
λ
s

1 + (r+a)c
1−κc+ dr
ω( 1

r+Ts)
−f

. [A.12.9]

The parameter v must satisfy (A.11.12) in terms of viewings per sale Vs and time to sell Ts given that
equations (A.3.22) and (A.3.23) are the same with and without heterogeneity. Combining equations (A.12.6)
and (A.11.10) leads to the following expression for P :

P =
V

1
λ
s

1−κc+ d
r

ω( 1
r
+Ts)

+ (r + a)c− f
,

and this can be used to obtain the parameters C, F , and D using C = cP , F = fP , and D = dP . Finally,
equation (A.3.16) must also hold, which requires:

x+
F

ξ
=

v

(λ− 1)(r + a)

(
y1−λ +

aδλ

r + a(1− δλ)
x1−λ

)
,

and this is used to verify the initial conjecture for Tδ.

A.13 Productivity and interest rates

Suppose that a family’s flow utility is C1−υt Hυt , where Ct denotes consumption and Ht denotes housing, and
where υ indicates the importance of housing in the utility function (0 < υ < 1). This adds non-housing
goods to the model and replaces the flow utility ξε assumed earlier. The form of the flow utility function
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assumes complementarity between consumption and housing services. The housing variable Ht that enters
the utility function is equal to the match quality ε of a family with its house, and the evolution of this
variable in response to idiosyncratic shocks and moving and transaction decisions is the same as before.
The discount rate for future utility flows is the rate of pure time preference %. The lifetime utility function
from time T onwards is therefore:

UT =

∫ ∞
t=T

e−%(t−T )C1−υt Hυt dt. [A.13.1]

Suppose there are complete financial markets for securities with consumption payoffs contingent on any
state of the world, and suppose all families receive the same real income (with no aggregate risk) and
initially all have equal financial wealth. Note that only state-contingent consumption, not housing services,
can be traded in these markets. With complete financial markets there is full consumption insurance
of idiosyncratic risk coming from shocks to match quality and the uncertainties in the search process,
implying that the marginal utility of consumption must be equalized across all families. The marginal
utility of consumption is X−υt , where Xt = Ct/Ht is the ratio of consumption to housing match quality. If
r is the real interest rate (in terms of consumption goods) then maximization of utility (A.13.1) subject to
the lifetime budget constraint requires that the following consumption Euler equation holds:

υ
Ẋt

Xt
= r − %. [A.13.2]

In equilibrium, the sum of consumption Ct across all families must be equal to aggregate real income
Yt, which is assumed to be an exogenous endowment growing at rate g over time. Given equalization of
Xt = Ct/Ht across all families at a point in time and given a stationary distribution of match quality Ht = ε
across all families, it follows that all families have a value of Xt proportional to aggregate real income Yt
at all times:

Xt = κYt, where κ =
1

(1− u)Q
. [A.13.3]

The constant κ is the reciprocal of total match quality (1 − u)Q in steady state (noting that unsatisfied
owners receive no housing utility flows). Substituting this into the consumption Euler equation (A.13.2)
implies that the equilibrium real interest rate is:

r = %+ υg. [A.13.4]

Since (A.13.3) implies Ct = κYtHt, it follows that lifetime utility (A.13.1) can be expressed as follows:

UT = κ1−υ
∫ ∞
t=T

e−%(t−T )Y 1−υ
t Htdt.

With Yt growing at rate g, income at time t can be written as Yt = eg(t−T )YT . By substituting this into
the lifetime utility function and using the expression for the real interest rate r in (A.13.4):

UT = κ1−υY 1−υ
T

∫ ∞
t=T

e−(r−g)(t−T )Htdt. [A.13.5]

Lifetime utility is therefore a discounted sum of match quality Ht = ε. The coefficient of match quality
(this is the parameter ξ in the main text) is increasing in the current level of real income, and the discount
rate (denoted r in the main text) is the difference between the market interest rate and the growth rate of
real income. This provides a justification for interpreting a rise in real incomes as an increase in ξ and a
fall in the market interest rate as a lower discount rate.
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A.14 The effects of credit availability

Table 8 reports the results for a one-quarter reduction in buyers’ transaction costs Cb. The effects are
shown in isolation and in combination with the other factors.

Table 8: Improvement in credit conditions

Transactions Listings Sales Moving Houses Prices
Factor rate rate for sale

Cb 15% 15% 12% 15% 3% −2%
Cb, productivity, & search 28% 28% 19% 28% 9% 32%
All factors 32% 32% 9% 33% 24% 69%

Data (1995–2003) 27% 34% 14% 34% 13% 31%

To study the role of credit availability during the boom-and-bust cycle considered in section 5.5, Table 9
also has buyers’ transaction costs Cb go down by one quarter during the boom and up by one quarter during
the bust in addition to the factors considered in Table 7.

Table 9: Boom and bust predictions with credit availability

Boom (1995–2006) Bust (2007-2009)
Model Data Model Data

Transactions 29% 30% −13% −13%
Price 38% 47% −6% −17%

A.15 Sensitivity analysis

Table 10 below conducts a sensitivity analysis in respect of some of the calibration targets to check the
robustness of the results and to identify the key mechanisms at work in the model.

The first exercise is to explore the relative importance of the two search frictions discussed in section 3.2
that are found in the model. The first friction relates to the time taken to find suitable houses to view. The
second friction relates to houses having a range of possible match qualities with different buyers that only
become known to a buyer once a house is viewed. The sensitivity analysis considers separately a reduction
in the first friction and a reduction in the second friction.

Lowering the first friction is equivalent to increasing the viewing rate v, while lowering the second
friction is equivalent to increasing the shape parameter λ of the Pareto distribution of match quality. To
increase v while keeping λ constant requires holding the time-to-sell Ts constant. This can only be done by
increasing viewings per sale Vs since v = Ts/Vs. To increase λ while keeping v constant essentially means
decreasing average viewing per sale Vs and lowering time-to-sell Ts in proportion to the reduction in Vs.
The effects of reducing the two frictions by half are reported in the ‘low first friction’ and ‘low second
friction’ rows. The second row clearly demonstrates the importance of the housing mismatch and the need
to inspect houses before purchasing.

The next exercise is to vary the size of transaction costs C. This has a large effect on the results,
with stronger effects of endogenous moving found when transaction costs are high relative to house prices.
To understand this, note that in the special case of zero transactions costs, the model has the surprising
feature that its steady-state equilibrium is isomorphic to an exogenous moving model with the parameter
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a redefined as a(1 − δλ). The logic behind this is that equation (4.4) implies y = x when C = 0. From
(4.10), this means that n = a(1 − δλ), so the moving rate is independent of the equilibrium moving and
transaction thresholds. Hence, only those parameters directly related to the shocks received by homeowners
affect the moving rate. The equilibrium value of y is determined by replacing x with y in equation (4.7)
and simplifying to:

vy1−λ

(r + a(1− δλ))(λ− 1)
= y +

F

ξ
.

This has the same form as (4.7) when δ = 0, that is, when moving is exogenous, so all steady-state
predictions of the two models would be the same if C = 0.

As can be seen in Table 10, the size of the flow cost of search F has a much smaller impact on the results
than transaction costs C. Finally, the extent of the seller’s bargaining power ω does make a difference to
the results, with higher seller’s bargaining power increasing the strength of the results. At first glance, this
is surprising because in the model, bargaining power should affect only prices, not quantities. However,
changes in bargaining power require changes in the other parameters to continue to match the calibration
targets. As can be seen from equation (4.12), an increase in ω raises average transaction prices, which
requires an increase in transaction costs C to match the calibration target for c = C/P . Following the
discussion above, it is the required increase in C after raising ω that has a large impact on the results for
quantities.

Table 10: Sensitivity analysis

Transactions Listings Sales Moving Houses Prices
Target to vary rate rate for sale

Frictions in the search process
Low 1st fric.: Ts = 6.5/12, Vs = 20 17% 17% 11% 18% 6% 33%
Low 2nd fric.: Ts = 6.5/24, Vs = 5 2% 2% 2% 2% 0% 33%

Transaction costs
Low: c = 0.05 11% 11% 6% 11% 5% 33%
High: c = 0.15 23% 23% 15% 24% 8% 34%

Flow costs of search
Low: f = 0.0125 17% 17% 12% 17% 5% 35%
High: f = 0.05 18% 18% 9% 18% 9% 30%

Bargaining power of the seller
Low: ω = 0.25 11% 11% 8% 11% 3% 34%
High: ω = 0.75 23% 23% 14% 24% 9% 32%

Baseline 17% 17% 11% 18% 6% 33%

Data (1995–2003) 27% 34% 14% 34% 13% 31%

Notes: The table shows the long-run steady-state effects of the changes to productivity and internet search in
the basic version of the model.
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