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Abstract 
Bodenhorn et al. (2017) have sparked considerable controversy by arguing that the fall 

in adult stature observed in military samples in the United States and Britain during 
industrialisation was a figment of unobserved selection into the samples. While subsequent 
papers have questioned the extent of the bias (Komlos and A’Hearn 2016; Zimran 2017), there 
is renewed concern about selection bias in historical anthropometric datasets. Therefore, this 
paper extends Bodenhorn et al.’s discussion of selection bias on unobservables to sources of 
children’s growth, specifically focussing on biases that could distort the age pattern of growth. 
Understanding how the growth pattern of children has changed is important since these changes 
underpinned the secular increase in adult stature and are related to child stunting observed in 
developing countries today. However, there are significant sources of unobserved selection in 
historical datasets containing children and adolescents’ height and weight. This paper 
highlights, among others, three common sources of bias: 1) positive selection of children into 
secondary school in the late nineteenth and early twentieth centuries; 2) distorted height by age 
profiles created by age thresholds for enlistment in the military; and 3) changing institutional 
ecology which determines to which institutions children are sent. Accounting for these biases 
adjusts the literature in two ways: evidence of a strong pubertal growth spurt in the nineteenth 
century is weaker than formerly acknowledged and some long run analyses of changes in 
children’s growth are too biased to be informative, especially for Japan. 
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From its birth forty years ago, anthropometric history, the study of human welfare 

through the analysis of body measurements, has grown and developed into a strong subfield 

within economic history (Komlos and Baten 2004; Steckel 1995; 2009). It took the tireless 

effort of many scholars to convince the wider discipline that heights proxied people’s welfare. 

This was especially true when the trends in heights departed from trends in other measures of 

living standards such as real wages and GDP per capita for instance during industrialisation in 

the United States and Britain (Floud et al. 1990; Komlos 1993, 1998; Margo and Steckel 1983). 

This divergence in welfare measures has been explained by the negative health effects of 

urbanisation and by the cost and availability of food. However, Bodenhorn et al. (2017) have 

recently called these trends into question. They argue that because the height trends come from 

data based on military recruits rather than conscripts, unobserved factors leading certain types 

of people to join the military bias the trends. When opportunities were difficult in the civilian 

labour market, the military was attractive to a wider range of men. However, when economic 

conditions improved in the civilian labour market, higher quality, taller individuals would join 

the military at lower rates. This mechanism could explain a decline in heights when economic 

conditions were improving. Importantly, Bodenhorn et al. (2017) argue that this selection 

mechanism is unobservable, i.e. not correlated with or captured by the typical controls included 

in height regressions. 

Bodenhorn et al. (2017) sparked tremendous debate among anthropometric historians 

about selection bias and what had and could be done to address their concerns. However, these 

discussions of selection bias have not been as readily translated to sources of children’s growth. 

There has been extensive discussion about selection bias in the slave manifests used to study 

the growth pattern of slave children in the US South (Pritchett and Freudenberger 1992, 2016; 

Steckel and Ziebarth 2016). However, selection bias in other sources of children’s growth has 

been relatively understudied. As in all cases, the importance of different forms of selection bias 

is fundamentally related to the question an author is asking of the data. Thus, if one were 
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examining how children’s heights changed over time by analysing the children at one age over 

a long period of time, it would be important to consider the types of forces that Bodenhorn et 

al. discuss. This application would be relatively straightforward, so rather than discussing that 

in detail, this paper will assess how unobservable selection could lead to biased inferences 

about the growth pattern of children.  

The growth pattern is the age pattern in height and velocity of height across the growing 

years. It is defined by four key characteristics (see Figure 1): the final adult height, the age at 

peak velocity during the pubertal growth spurt, the growth velocity during the pubertal growth 

spurt and the age when growth stops occurring. In general, auxologists and anthropometric 

historians have found that the growth pattern has changed in four key ways over the past 

century: adult height has increased (Hatton and Bray 2010; NCD Risk Factor Collaboration 

2016); the pubertal growth spurt has occurred at earlier ages; the velocity of growth during 

puberty has increased; and the growing years have shortened with people reaching their final 

adult heights at earlier ages (Steckel 1987; Schneider 2017: 23; Tanner 1962:143-55). This 

pattern seems fairly universal although there are exceptions and the timing and causes of the 

shift in the growth pattern are not clear (Gao and Schneider 2019). 

Figure 1 here 

The historical research that traced these changes in the growth pattern has generally 

relied upon sources that provide the heights of children at different ages measured at the same 

time. Thus, the vast majority of research on children’s growth in the past is not based on 

longitudinal height measures of the same children across their growing years but on the change 

in height between different groups of children at adjacent ages (though c.f. Schneider and 

Ogasawara 2018; Gao and Schneider 2019; Komlos et al. 1992; Schneider 2016). These are 

known as cross-sectional or period growth curves because they measure an average growth 

curve across individuals at one particular point in time (McMurray 1996). Because the height 
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profile is then strongly influenced by the children who are measured at each age, most of the 

potential selection bias is a result of selection on unobservables that changes at different ages. 

The paper will proceed as follows. First, I will discuss three sources that have been or 

could be used to analyse the growth pattern of children and highlight some of the potential 

forms of selection on unobservables that could influence these types of data. This discussion 

will be largely hypothetical though there will be some specific examples along the way. In the 

second part of the paper, I examine how to detect and manage selection bias on unobservables 

and other sources of bias and measurement error in actual datasets. I first discuss the selection 

bias diagnostics suggested by Bodenhorn et al. (2017) and show that these are not appropriate 

for use in sources of children’s height. Then I present various strategies for detecting selection 

on unobservables in sources of children’s growth from Japan, Tasmania, Boston, 

Massachusetts and Britain. I also discuss other sources of bias and measurement error that 

would influence the growth pattern and make it more difficult to determine whether selection 

on unobservables was present in the data. 

On the whole this paper shows that selection bias can be a problem in sources of 

children’s heights and needs to be considered when analysing an earlier literature that did not 

account for this as carefully as might be desired. However, selection bias on unobservable 

characteristics does not render all of these sources unusable. With careful attention to selection 

processes and analysis of the data, it is possible to determine which datasets are most 

problematic and in some cases determine ways to use parts of the data while excluding data 

subject to bias. 

 

1. Historical Sources of Children’s Growth and Potential Selection Bias 

Before discussing how to detect selection bias on unobservables with specific data, it 

is perhaps helpful to discuss important sources of potential selection bias in the typical sources 
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used to reconstruct the growth pattern of children: school records, prison registers and military 

enlistment or conscription records. 

The most prominent set of sources used to reconstruct the historical growth pattern of 

children are school records. School records have been used to study growth since 1870s when 

Roberts in the UK and Bowditch in Boston collaborated with schools to collect cross-sectional 

data on children’s heights (Bowditch 1877; 1879; Roberts 1874). These types of studies were 

replicated across Europe and North America at the end of the nineteenth and in the early 

twentieth centuries (Burk 1898; Tanner 1981). In addition, state and local bureaucracies also 

began collecting school children’s height information in a number of countries including the 

UK and Japan in the early twentieth century (Floud et al. 1990: 175-82; Harris 1994; Saito 

2003). These early efforts at data collection have served as important sources for long run 

studies on changes in children’s growth (Cameron 1979; Steckel 1987; Tanner 1981). 

Unfortunately, the individual-level data underpinning these records are almost entirely 

lost (though cf. Roberts and Warren 2016), so most of the time the only data available is the 

average heights and weights of boys and girls at one-year age intervals. At times, the 

nineteenth-century auxologists also broke down their data according to some characteristics of 

the children such as their ethnic background and their fathers’ occupational status. This is 

especially important considering that working class children were far less likely to continue in 

school at later ages than their more privileged counterparts. We can see this in the Bowditch 

data in the 1870s, which was collected largely from public schools in Boston. In his data, the 

percentage of children whose father had an unskilled occupation fell from 50 per cent at age 

five to less than 5 per cent at age eighteen (Figure 2A) (Bowditch 1879: 38-43). Because the 

average heights are given for each subgroup, it is possible to generate a growth profile and 

velocity curve that reweights the series for compositional change across observed categories 

(Figure 2B). As we can see, the composition-adjusted velocity curve is not substantially 
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different from the original curve. However, the bias from compositional change may be small 

relative to selection on unobserved characteristics.  

Figure 2 here 

The more troubling question is whether the unskilled working-class children remaining 

in the sample at age eighteen were still representative of the unskilled working class more 

generally. If the working-class children remaining in school tended to be of higher status or if 

they were healthier than others in their class, then they would be taller than their average 

counterpart at the same age. This would lead to upward bias in the growth profile and would 

tend to overestimate the height interval between adjacent ages as the sample became more 

positively selected. On the other hand, Bleakley et al. (2013) argue that in the nineteenth-

century United States there was not a strong positive relationship between height and human 

capital. There was no relationship because the opportunity cost of schooling was high since 

physical labour was important in the economy and men were paid a premium for their brawn. 

This would suggest that taller and stronger working-class children would be less likely to stay 

in school, especially as other job opportunities opened up for them and they were no longer 

legally required to be in school. If this were true, then the children remaining in school at later 

ages would be negatively selected and the velocity (height intervals at adjacent ages) would be 

underestimated as the children aged. Thus, the effect of children dropping out of school on the 

growth pattern is ambiguous and needs to be analysed empirically. The next section will do 

this using the Bowditch data along with data from Japan. 

The second set of records that could be used to analyse children’s growth would be 

prison or criminal records. Somewhat surprisingly to our modern sensibility, nineteenth-

century prisons housed numerous children; for instance, in the Wandsworth House of 

Correction in London in 1860s-1880s, the youngest prisoner was a 7-year-old English boy, and 

10 per cent of female and 26 per cent of male prisoners were aged 18 or under (Horrell et al. 

2009: 99). In Carson’s (2009) penitentiary sample for the United States covering 14 states, 13.5 
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and 19.1 per cent of white and black male prisoners respectively were in their teens with the 

youngest being 12 years old. There were also substantial numbers of adolescent convicts in 

Europe and in Commonwealth countries (Depauw 2012; Inwood and Maxwell-Stewart 2017). 

Thus, one could reconstruct the growth pattern of children from this data, and historians have 

started to do this. 

However, there are a number of sources of selection that could be problematic for this 

kind of exercise. Obviously the first would be whether there were changes in the selection into 

committing crime from childhood through to adolescence. This could be tested on observable 

characteristics, but we could never entirely rule out all selection processes, though that does 

not mean that these would lead to significant bias. Another problematic source of selection 

relates to the variety of institutions available to which children could be sent. In a nineteenth-

century British context children were sometimes sent to adult prisons after committing crimes 

though they were kept separate from the general adult population under the 1823 Gaol Act. 

However, there were a host of other institutions that juvenile offenders might find themselves 

sent to depending on the severity of their offence including workhouses, poor law schools, 

industrial and reformatory schools, and juvenile detention centres (Godfrey et al. 2017: 24-36). 

Understanding this ecosystem of institutions is particularly important when analysing 

individual-level information from one institution because the researcher cannot capture the 

individuals who were sent to other institutions. Changes in the de jure or de facto rules 

regulating where children were sent could lead to selection bias that might not be clear by 

looking at observable characteristics. Thus, it is crucial for historians to learn the finer details 

of the wider institutional setting and also be wary of signs of changing institutional structures.  

Finally, historians studying criminal records have to be cautious about changes in the 

treatment of children by courts at specific age cut-off points. In the UK the judicial process for 

children changed substantially across the nineteenth century. In the early nineteenth century 

children under the age of 14 were tried in the same manner as adults with full jury trials for 



 6 

indictable (serious) offenses. However, after the 1847 Juvenile Offenders Act and the 1879 

Summary Jurisdiction Act, children under 12 were tried in a summary court without a jury for 

all offenses except murder and manslaughter and children under 16 could opt for the summary 

option as well. These changes in the age cut off and method of trial may have influenced the 

types of children that ended up in a particular prison and therefore could be an important source 

of unobserved selection at different ages (Godfrey et al. 2017: 27). 

The final set of sources that could be analysed to understand the growth pattern of 

children are army records. While most enlistment or conscription records would not include 

many adolescents under the age of 16 or 17, these records could be used to understand the 

growth pattern after the pubertal growth spurt and notably when individuals stopped growing. 

A’Hearn et al. (2009) use Italian military registration records to trace changes in the growth 

pattern from age 17 onward for birth cohorts from 1855-1910. In addition, many studies have 

noted that military recruits appeared to be growing into their early to mid-twenties suggesting 

a much longer growing period than is typical of modern, healthy populations (Beekink and 

Kok 2017; Cinnirella 2008; Floud et al. 1990: 153-54). The literature on military recruits has 

always been concerned about selection into their samples with particular focus on minimum 

height requirements (truncation), the rejection of medically unfit individuals and the selection 

of recruits into different units and military services (Cinnirella 2008; Floud et al. 1990, 30-83, 

118-27). However, there are a few ways in which selection by age might influence the 

reconstruction of the growth pattern. First, as we will see below, any restrictions placed at 

specific ages create incentives for men to lie about their age. For instance, if there were a 

minimum age requirement for enlistment during a period when patriotism was strong, then 

there would be incentives for men to misrepresent their age in order to enlist at earlier ages. 

In addition, as Bodenhorn et al. (2017: 191-93) point out, there could be bias in the age 

pattern of growth in military samples since recruits at earlier ages are removed from the 

population at risk of enlistment at subsequent ages. If taller troops are more likely to be 
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removed in the first rounds of recruitment either because of a binding minimum height 

requirement or another selection mechanism that draws healthier men, then the population at 

risk of being recruited at later ages would be of lower quality. This effect is very difficult to 

test with actual data, but a simulation exercise below shows that the bias could be significant. 

 

2. Existing Approaches for Detecting Selection Bias on Unobservables 

Having described the hypothetical potential for selection bias on unobservables in 

sources of children’s growth, we can now turn to trying to detect selection bias. Bodenhorn et 

al. (2017: 190-200) propose a series of tests to determine whether selection on unobservables 

has biased the inferences from a dataset. These stem from the intuition that in the typical height 

regression birth year, age and year of measurement are perfectly collinear. In the absence of 

any selection on unobservables, the predicted height of a single birth cohort should be the same 

at each age between 23 and 50, the period when adult height is stable, controlling for all other 

observed characteristics. If the predicted heights in that age range were significantly different 

from one another, then that would suggest that there was unobserved selection that could bias 

the results. Likewise, the predicted final adult height (aged 23-50) of a single birth cohort 

should not vary based on the year in which the cohort was measured (year of recruitment, 

imprisonment, etc.) controlling for all other observable characteristics. If the predicted height 

of the cohort changed over measurement years, this would suggest that short run conditions 

such as the demands of the army, the business cycle or other unobserved factors influenced 

individuals’ probability of being observed within a cohort. Bodenhorn et al. (2017) propose a 

weak and strong test of this selection. The weak test simply introduces one-year age or 

measured year dummies and tests their joint significance. The stronger test interacts these one-

year age or measured year dummies with all birth cohort dummies, testing whether the 

relationship between age or measured year and height differs significantly across birth cohorts. 
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Bodenhorn et al. (2017) find that many of the standard datasets used to analyse trends in adult 

heights in the US and UK fail these tests of selection on unobservables. 

These diagnostic tests are interesting and useful, but they are also limited in a few 

respects. First, although they can provide evidence that selection on unobservables may be 

present in a sample, this does not necessarily mean that the selection would reverse established 

trends in the data. Zimran (2017) analysed one potential selection mechanism into the Union 

Army and found that while selection on unobservables was present in the data, it did not explain 

away the industrial puzzle or regional pattern in heights in the United States. Komlos and 

A’Hearn (2016) also analyse the Union Army records and show that the Bodenhorn et al. 

selection mechanism was not at play in the data. Thus, although some datasets may be subject 

to selection on unobservables, that does not mean that all inferences from the data are wrong, 

especially when trends and patterns are corroborated in other sources that have different 

selection mechanisms. 

Second, these tests will be less helpful when there is age heaping or other measurement 

error in ages in the data.1 Measurement error from age heaping could have two potentially 

contradictory effects. The measurement error in age could lead to attenuation bias in both the 

birth cohort and age dummy coefficients in the height regressions. This would therefore 

increase the probability of making type II errors, i.e. ruling out selection bias on unobservables 

when it was actually important. On the other hand, if people within a birth cohort with heaped 

ages were systematically of lower human capital and health ‘quality’ than those who 

remembered their accurate ages, this could create the illusion of selection on unobservables 

since people with rounded ages would be shorter than their non-rounded counterparts even 

within the same cohort. Thus, the effect of age heaping on the Bodenhorn et al. selection bias 

tests is ambiguous. In the end, it is possible that many sources of adult height would fail the 

                                                
1 Age heaping occurs when individuals round their age to the nearest number ending in 0 or 5 rather than reporting 
their true age. A substantial fraction of individuals in the past heaped their ages, and the extent of age heaping has 
been used as a proxy for the numeracy and level of human capital of populations in the past (A’Hearn et al. 2009). 
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strict selection bias tests that Bodenhorn et al. (2017) propose. However, historians do not have 

the luxury of returning to the past to collect random samples. Thus, we need to develop ways 

of working with data that may have some potential bias rather than simply scrapping datasets 

that fail the Bodenhorn et al. tests and rejecting all findings based on these datasets. 

The Bodenhorn et al. (2017) selection bias diagnostics are also unfortunately unable to 

assess selection on unobservables in sources of children’s growth. This is because we must 

always include age dummies in the regressions to capture height differences across ages. 

Finding a changing age pattern of growth across birth cohorts could reflect selection on 

unobservables similar to what Bodenhorn et al. (2017) suggest, but it could also simply be the 

result of the well-known change in the growth pattern mentioned above. Converting the 

children’s heights to height-for-age Z-scores of modern WHO standards would seem to be an 

easy way to eliminate the need to include age dummies in the height regression. However, the 

pubertal growth spurt occurred at later ages in historical populations than in modern, healthy 

populations. Thus, one tends to observe a decline in height-for-age around age 12 for boys and 

age 10 for girls as the modern children enter their pubertal growth spurt with recovery as the 

historical children enter their own growth spurt and the modern children grow at lower 

velocities. This difference in the growth pattern means that the WHO reference produces a 

distorted height-for-age profile for historical populations and would require age dummies 

anyway to account for this (Schneider 2016). Thus, we cannot rely on the diagnostic tests 

developed for adult height datasets to determine whether samples of children’s heights may be 

problematic. 

 

3. Discovering Selection Bias on Unobservables 

Because more precise statistical tests of selection on unobservables do not work with 

sources of children’s heights, we are left with fewer options in attempting to understand 

selection on unobservables in these samples. Fundamental for understanding selection bias is 
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to take the time and effort to study the selection mechanisms into a sample very carefully. This 

section walks through a series of datasets attempting to understand whether and to what extent 

there is selection bias in each case. Each dataset presents a different method for assessing 

whether selection bias on unobservables distorts the age pattern of growth. Unfortunately, this 

does not make for a simple checklist of steps to conduct in order rule out bias. However, I hope 

that the examples provided will raise potential issues so that researchers are more aware of 

these in the future. I will first discuss examples of potential selection bias in school sources 

(which to an extent would also apply to prison samples) before moving on to military sources. 

3.1 School Sources 

As mentioned above, the most important source of selection bias in school sources is 

likely to be the selection into secondary school. Typically it is very difficult to assess the extent 

of selection bias present from this positive selection because we do not have population 

parameters with which to compare. However, in the case of Japan, the population parameters 

exist to make the comparison. In the early twentieth century, the Japanese government began 

recording the heights and weights of schoolchildren in all schools in the country and reporting 

national averages of heights and weights for boys and girls at one-year age intervals. These 

national-level period growth curves were reported annually from 1900 to the present and 

therefore serve as an incredibly detailed set of information on changes in the growth pattern 

over time (Ali et al. 2000; Mosk 1996). However, because the survey simply measured children 

in school over time, there is potential for the selection bias described above because the 

enrolment rate varied across ages. For children ages 6 to 11 in primary school, enrolment was 

universal capturing around 95 per cent of the population. However, enrolment fell dramatically 

after age 12 and was never above 10 per cent for secondary schools in the early twentieth 

century. The increase in secondary school enrolment from 10 per cent to near universal 

coverage across the twentieth century, then, could substantially distort the observed changes in 

the pattern of growth. 
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There is some straightforward evidence that positive selection occurred since the 20-

year-old male heights in the school data are substantially higher than the average heights of 20-

year-old men conscripted into the military from the same birth cohort: the gap was 1.9 cm for 

soldiers and students measured in 1936 (see Figure 3). These military heights again covered 

approximately 95 per cent of the population. However, we can see this process more clearly by 

looking at children in primary and secondary schools separately. It is not possible to view 

children in the different schools in the national data, but from 1929 to 1939, the average heights 

and weights of boys and girls at each age are listed for primary and secondary schools 

separately at the prefecture level. Thus, it is possible to aggregate up the prefecture level results 

to the national level using population size as a weight. Figure 3 presents the results for boys 

measured at various ages in 1936. Clearly, children in secondary school were positively 

selected since they are taller at all observable ages than children in primary school. At the two 

ages where the largest number of children are in both schools (12 and 13) the gap in the mean 

heights is 3.55 cm or 0.48 standard deviations relative to the WHO reference. The growth 

profile of children in each school is also influenced by selection at different ages. The first very 

small group of boys to enter secondary school at age 11 were tall for their age even relative to 

boys who entered secondary school later. We also see that the children remaining in primary 

school at ages 14 and 15 became more and more negatively selected as the percentage of 

children in primary schools declined. 

Although there is strong evidence of selection bias in the Japanese data, the data 

highlights the fact that some signs of selection bias do not necessarily require that an entire 

dataset be discarded. The information on children’s heights in primary school before the age 

of 14 is of reasonably high quality and could be used to analyse children’s heights. However, 

adjusting the secondary school data is much more difficult. The fact that the height gap is much 

larger at ages 12 and 13 than at age 20 suggests that the secondary children were not just taller 

children growing on the same growth curve as the average child. Instead, the elite secondary 



 12 

school group had an earlier pubertal growth spurt and likely grew at higher velocities across 

the growing years than the average group. This means that shifting the level of the secondary 

curve downward to match the heights of the general population at ages 12 or 13 or age 20 

would not account for differences in the tempo and velocity of growth between the two groups. 

Thus, until better methods are developed or other corroboratory data is found, it may not be 

possible to accurately adjust the secondary school growth profile. 

Figure 3 here 

Another important source of selection on unobservables for school and prison data is 

the institutional ecosystem in which a particular system exists. This may influence which 

children enter the sample overall, but it also may lead to changing bias over time as the 

institutional ecosystem changes. One example where the institutional ecosystem influenced the 

growth profile constructed for children comes from the Marcella Street Home, which was a 

residential school in late-nineteenth-century Boston. Generally, the Marcella Street Home 

served pauper children and children whose parents had neglected them and had been sent to 

the home by the courts. However, Schneider (2016: 292) found that between October 1895 and 

June 1896 a large number of boys and a smaller number of girls entered the home to serve 

sentences for truancy. These children appear to have been sent to the Marcella Street Home 

because the city of Boston was attempting to move the location of the truant school. Until 1895, 

the Boston Truant School was co-located on Deer Island with the House of Industry, a jail for 

people convicted of minor crimes, and the House of Reformation, which was a juvenile jail. 

However, the city decided that the truant children should be located elsewhere to reduce the 

negative spillovers from the other institutions, and so they funded the building of a new school 

called the Parental School, which opened in late 1895 (Public Institutions Department 1895: 9-

19; Public Institutions Department 1897: 14, 18). However, the transfer was drawn out because 

of construction problems, and the Parental School was overcrowded from the moment it was 

founded (Public Institutions Department 1895: 16; Institutions Commissioner 1898: 18). Thus, 
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it seems likely that the truant children sent to the Marcella Street Home were sent there because 

there was not space for them elsewhere in the system of public institutions. The truant children 

were substantially older than the typical child in the Marcella Street Home and also taller for 

their age (Schneider 2016: 337). Fortunately, there was an indication that these children were 

different in the records and the analysis controlled for the truants as a group. Otherwise this 

influx of a separate population of children could have substantially biased the analysis. 

The institutional ecosystem is also important for understanding the reliability of the 

Bowditch data collected in Boston public schools introduced above. One way to assess whether 

the children were more positively selected at later ages is to look at how the total enrolment in 

public schools changed across the school ages and compare this to Bowditch’s sample, which 

was largely drawn from public schools (Bowditch 1877: 7). Figure 4 shows the number of 

Boston children at each age in public primary, grammar and high schools in 1875. The number 

of children in public school peaked at age eight and declined sharply between ages 15 and 16 

when most children left grammar schools and far fewer entered high schools. In fact, there are 

more children in the Bowditch sample at ages 16, 17 and 18 than were in all public high schools 

in Boston, highlighting the fact that Bowditch relied quite heavily on private high schools at 

these later ages. The sharp drop in enrolment between ages 15 and 16 is doubly suspicious 

because this is the exact point at which the male velocity curve increases dramatically (Figure 

2B above). Thus, the positive selection may mislead researchers about the timing of the 

pubertal growth spurt. 

Staying with the Bowditch data, it is often possible to discover signs of selection on 

unobservables by looking carefully at the age pattern of growth across the observable 

categories. For instance, boys whose parents were born in America of the professional and 

mercantile classes were consistently taller than boys of the skilled and unskilled working 

classes before the age of 14 (Figure 5A). However, from age 16 onward, the unskilled working-

class children were either taller than or equal in height-for-age Z-scores to the mercantile and 
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professional classes. This same pattern is present though less clear for girls whose parents were 

born in America (Figure 5B). While this is not incontrovertible proof of selection on 

unobservables, it is highly suspicious given the nature of the selection process discussed above. 

This potential for unobserved selection bias also makes it difficult to determine whether there 

is catch-up growth between mid-childhood and adulthood. For both boys and girls the average 

height-for-age Z-score is higher in adulthood than in childhood before the pubertal growth 

spurt (age 10 and lower). This could reflect catch-up growth as children in the past had a longer 

growing period than children in modern populations. However, it could also merely reflect the 

selection bias on unobservables in the sample where the population of children remaining in 

school at high ages was positively selected on health. This example suggests that cliometricians 

should look at the age pattern of growth across observable categories either as raw averages or 

by introducing interactions into regression models to check for any suspicious patterns that 

might not be readily visible in the data. 

Figure 4 here 

Overall, the evidence presented here for Japan and Boston suggests that there was 

positive selection on unobservables into secondary school and even into remaining in primary 

school rather than the opposite effect as might be predicted by Bleakley et al. (2013). Thus, 

cliometricians and human biologists need to be very careful in using the findings of the 

nineteenth-century anthropometricians based on school datasets to make claims about the 

growth pattern of children. The positive selection into secondary school gives the appearance 

of a more accentuated pubertal growth spurt in these datasets and may distort the age at peak 

growth velocity during puberty. 

Figure 5 here 

3.2 Military Sources 

When looking at military sources, other sources of selection on unobservables may be 

more important. As described in general terms above, minimum age requirements may lead 



 15 

individuals to systematically misreport their age in order to enlist at earlier ages than allowed. 

This type of selection was present in the Australian Imperial Force (AIF) during World War I. 

Beginning in June 1915, the AIF had strict age restrictions for enlistment. They did not allow 

soldiers under the age of 18 to enlist and soldiers enlisting under the age of 21 needed 

permission from their parents. Thus, there were incentives for those under the age of 18 to 

pretend to be older. These men would likely be taller than the average 17-year-old so that they 

could pass as 18 more easily but shorter than the average 18-year old. The same may be true 

of those under 21. This selection bias, combined with systematic measurement error created by 

misreporting of ages, would lead to an underestimate of the average height of 18-year-olds, 

accentuating the growth still occurring after that age. 

Inwood and Maxwell-Stewart addressed this by linking the AIF enlistees for Tasmania 

to their birth records where precise birth date information was available.2 Thus, it is possible 

to see which soldiers were lying about their age and what the overall impact of their deception 

would be on the age pattern of height for the soldiers. Across all ages, the reported age and true 

age were identical for 75.0 per cent of enlistees. There was also considerable random noise in 

the reporting of age with 17.8 per cent of recruits having a random error, i.e. a difference in 

reported and true age that was not consistent with the soldier lying about his age to avoid the 

age requirements. 7.2 per cent of the sample did systematically misrepresent their age so that 

they could join the force before reaching the required age. This 7.2 per cent may seem too low 

to influence the results, but the percentage of people systematically lying about their age at 

certain critical ages was much higher: 35.7 per cent of 18-year-olds and 18.8 per cent of 21-

year-olds. Thus, the results could be altered dramatically at those two ages with important 

effects on inferences for the growth pattern. 

                                                
2 Many thanks to Hamish Maxwell-Stewart for providing the data and the idea to look at this particular selection 
mechanism. 
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In order to test the effect of this selection bias/measurement error, I conduct two sets of 

truncated maximum likelihood regressions with the dependent variable (height) truncated at 

the minimum height requirement, which was 64 inches for the AIF between June 1915 and 

April 1917 (Whitwell et al. 1997: 415). The regressions include dummy variables controlling 

for the soldier’s father’s occupation in twelve HISCLASS categories, the soldier’s birth place 

within Tasmania and the unique month that the soldier enlisted allowing for unobserved 

changes in recruitment patterns. The variables of interest, however, are the dummies related to 

age. The first regression specification includes dummies for reported age whereas the second 

reports dummies for the soldiers’ true age. The reference categories for the dummy variables 

were held constant so that the age pattern of height would be consistent across the two 

estimations. Finally, because there was considerable random error in the reporting of ages (17.8 

per cent of the sample), I did not want this random error to cloud the influence of the systematic 

selection and error created by people trying to cheat the system. Therefore, in the regressions 

I only included the 75.0 per cent of soldiers whose age was accurately reported along with the 

7.2 per cent who systematically lied about their age. Thus, the differences in height between 

the reported and true ages reflect solely the influence of the systematic error. 

Figure 6 presents the results graphically with the predicted height of soldiers from the 

regressions shown by reported age and true age. Clearly, once the 16- and 17-year-olds 

pretending to be 18 are given the correct age in the sample, the predicted height of 18-year-

olds increases dramatically by 0.69 cm. 16- and 17-year-olds are much shorter than their 18-

year-old counterparts, but their predicted heights were still far above the minimum height 

requirement of 162.56 cm, so it is plausible that they could pass as 18. The effect of men 

pretending to be 21 in order to enlist without the permission of their parents is ambiguous. This 

may be because the majority of these men were 20 years old, and there were relatively small 

differences in height between 20- and 21-year-olds. However, overall the selection bias from 

people pretending to be 18 drastically changes the way one would interpret the growth pattern. 
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Based on the reported data, one would argue that there was still substantial growth of greater 

than one centimetre (1.22 cm to be precise) between ages 18 and 19. After the correction, we 

see that this growth after age 18 is much smaller (0.55 cm) than we might have otherwise 

thought. In addition, the height of 18-year-olds is no longer statistically different than the height 

of 21-year-olds. This suggests that growth was slowing at earlier ages with final adult height 

reached between ages 18 and 19. The estimates for height at ages 16 and 17 may also be 

overestimates since presumably taller and more developed 16- and 17-year-olds could more 

easily pass for being 18. Thus, this case highlights that whenever there are age thresholds that 

could encourage individuals to misrepresent their age, it is possible to get biased estimates of 

the growth pattern.3 

Figure 6 here 

Another potential source of selection on unobservables in military data highlighted by 

Bodenhorn et al. (2017: 191-93) stems from the fact that recruits say at age 18 are removed 

from the population at risk of recruitment for a given cohort at age 19 or later ages since soldiers 

could only enlist once. The removal of ‘high quality’ recruits at younger ages could produce 

real bias in the age pattern of growth. It is extremely difficult to show this pattern with real 

data, so I will present simulation evidence to show how this effect works. For the sake of 

argument, assume that men become eligible to enlist in the army at age 17 and there is one 

standard and binding minimum height requirement across all ages. The minimum height 

requirement is at the 65th percentile of height of 17-year-olds in the population and drops 10 

percentiles for each year the cohort ages as it grows so that the minimum height requirement 

is at the 25th percentile of height for 21-year-olds in the population. We assume that the 

experiment is taking place during a major war where 7.5 per cent of men in a given cohort 

enlist at each age from 17 to 21. Thus, 37.5 per cent of the total cohort population enlists, which 

                                                
3 Horrell and Oxley (2016: Appendix A-C) include an extensive discussion of age thresholds and their influence 
on the growth pattern of factory children in the 1830s. They do not believe that the Horner (1837) data is biased. 



 18 

is somewhat less than the 46 per cent of males age 15-49 who enlisted in the army during the 

first world war in England and Wales (Bailey et al. 2016: 43). Enlistment is determined 

randomly from men with heights above the minimum height requirement. Once the men have 

enlisted, they are no longer at risk for enlisting at subsequent ages and are removed from the 

population distribution at risk for enlistment at the next age. With this information, we can run 

a simple simulation to see the influence of men enlisting at earlier ages on the growth pattern. 

Figures 7A-7E show the standardised height distribution of the population with a mean 

of zero and standard deviation of one at each age, the dashed grey curve. The vertical grey line 

is the minimum height requirement. The black distribution is the height distribution of the men 

enlisting at each age. Figure 7A shows that when the first members of the cohort enlist at age 

17, the height distribution of recruits looks very similar to a truncated version of the population 

distribution. However, as more and more men are removed from the population at risk as the 

cohort ages, the distribution of recruits shifts to the left of the population distribution and no 

longer matches the right tail of the population distribution. Although the population mean 

height is zero across all ages, Figure 7F plots the mean standardised height for the population 

above the minimum height requirement at each age (dashed grey line). This mean could be 

corrected to the population mean using truncated maximum likelihood regressions. The mean 

standardised heights of recruits are given as the black line. Both lines fall across ages as the 

cohort grows and the minimum height requirement becomes less binding. The two means are 

the same at age 17 when the first draw occurs, but by age 21, they are 0.24 standard deviations 

apart which is a substantial difference. Thus, the fact that army recruits are removed from the 

population at risk at later ages could lead to downward bias in the heights of recruits as the 

cohort ages, underestimating the growth occurring at later ages. 

Figure 7 here 

This simulation shows the potential for bias, but it is extremely difficult to adjust for 

this in real data for a number of reasons. First, the percentage of a cohort that enlisted would 
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not be uniform across ages and would often be lower than 7.5 per cent at each age. If this cohort 

enlistment rate were very low, then the biases would be much smaller. However, if say 20 per 

cent of the cohort was recruited at age 18, this would mean the bias would be even more 

pronounced at ages 19 and onward. Second, minimum height requirements were very rarely as 

binding as the simulation assumes with many people below the minimum height being allowed 

into the military. Minimum height requirements were also substantially relaxed during the first 

world war, which had the high enlistment rates that could produce bias (Bailey et al. 2016: 41; 

Whitwell et al. 1997: 415). Third, in some cases a large number of men were rejected for 

service, so there was selection out of the cohort for rejected service as well which would push 

the mean standardised height upward closer to those for the population. The biggest problem 

of testing this with real data, though, is that we do not have the population height distribution, 

so it is extremely difficult to truly understand whether the minimum height requirements were 

binding enough to produce the stark results from the simulation. Even if the minimum height 

requirements were not binding, this same bias could exist if selection into enlisting favoured 

those in the upper part of the height distribution. Thus, this source of selection bias is one that 

researchers working with military data should consider seriously. 

 

4. Other Biases and Measurement Error 

In addition to the issues related to selection bias above, it is also worth noting a few 

sources of measurement error that can both hide unobserved selection bias and create bias in 

the growth pattern in their own right. This section discusses bias introduced by period versus 

cohort growth curves, truncated samples of children’s growth and measurement error in ages. 

The first measurement related issue relates to the bias associated with mixing many 

birth cohorts in the typical period (cross-sectional) growth curve used to study children’s 

growth in the past. To illustrate this point, it is easiest to use a real-world example, so here I 

use the national records of children’s growth in Japan mentioned above for the period before 
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World War II. The records report the average heights of boys and girls at ages 6 to 20 in every 

year from 1900 to 1939. This data can be represented in a lexis diagram to better capture its 

period-cohort nature. The grey box in Figure 8 shows the age and date range of data that is 

available. The accented black lines represent different growth curves that could be taken from 

the data. The vertical lines represent the typical period or cross-sectional growth curves 

available for historical periods. They reflect children at different ages measured in the same 

year, in this case 1922 or 1936. The diagonal lines reflect a birth cohort moving through the 

various ages. The black accented diagonal line marks the 1916 cohort growth curve, which is 

different than the period growth curve because it follows the same children, those born in 1916, 

across their childhood and adolescence.  

Figure 8 here 

The lexis diagram should immediately highlight one of the main problems with period 

growth curves: they include children from a very large number of cohorts who may have faced 

very different conditions in early life. The oldest children in the 1922 period growth curve were 

born in 1902 whereas the youngest were born in 1916. In a period where heights were 

increasing over time, this also leads to distortion in period growth curve. It will tend to flatten 

the height profile since the oldest children are relatively shorter for their age than the youngest 

children. Figure 9A shows the male period growth curves for 1922 and 1936 and the 

corresponding male cohort growth curve for 1916 as shown in the lexis diagram above (Figure 

8). The same figure could be produced for girls, but the patterns are very similar and it is easier 

to gauge the magnitude of the selection bias for boys since boys can be compared with male 

conscripts in the army. The period profiles are clearly flatter relative to the cohort profile. All 

of the growth curves have heights at age 20 above the level for army conscripts measured in 

1936 from the 1916 birth cohort, showing the positive selection of children remaining in school 

as described above.  
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The period distortion becomes clearer when looking at Figure 9B. Here the heights have 

been expressed as Z-scores of the WHO modern growth reference including the heights of 

conscripts at age 20 in 1936. Looking at the two period growth curves, there is some evidence 

of positive selection of students into secondary school because the height-for-age Z-scores of 

children are lower in primary school than at the end of secondary school. However, the full 

extent of the selection effect is attenuated by the mixing of birth cohorts since heights were 

increasing during this period. Looking at the 1916 cohort growth curve, we can see that the 

height-for-age Z-scores of children in primary school (up to age 13) are very similar to the 

height-for-age Z-score of military conscripts at age 20 for the same birth cohort. However, 

beginning around the time that most children left primary school, the height-for-age Z-scores 

of the 1916 cohort increase dramatically. The effect of children leaving school at these ages 

also accentuates the pubertal growth spurt more fully than would be the case in the absence of 

the selection bias. In the end, the actual level of selection bias is far greater in the cohort growth 

curve (0.5 standard deviations of the WHO reference) than in either of the period growth 

curves. This is especially problematic for historical research because historians often rely on 

period growth curves, which may hide the kind of selection bias observed in the Japanese and 

Boston data in this paper. 

Figure 9 here 

Another frequent issue with data on children’s growth is that some institutions that 

captured children’s heights also had minimum height requirements like those discussed for the 

AIF above. Minimum height requirements were common for training programs for the navy 

and merchant marine. For instance, in their study of the Marine Society from the mid-

eighteenth to mid-nineteenth centuries, Floud et al. (1990: 164-5) found that the society 

changed its minimum height requirement 13 times. The Marine Society set a minimum height 

requirement irrespective to age, but the opposite was the case for the training ship Exmouth, 

which varied its minimum height requirements by the age of the children entering. It even 
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produced minimum height requirements by half age from ages 13 to 16 (Thirty-Fifth Annual 

Report 1911: 5). However, in both the Marine Society and the training ship Exmouth, the 

minimum height requirements were not strictly enforced. 

To deal with these minimum height requirements, Floud et al. (1990: 164-5) used the 

quantile bend estimator (QBE) developed by Wachter and Trussell (1982) to adjust for the left-

tail truncation. The QBE assumes that the data should be normally distributed and compares 

the shape of the sample distribution with a normal distribution in a quantile-quantile plot, 

finding the point at which the sample diverges from the normal distribution and the sample 

becomes incomplete. The QBE method works better than the truncated maximum likelihood 

estimator when the truncation point is undefined or not strictly enforced, but it does not easily 

allow for multivariate analysis, which might be necessary if controlling for observables were 

important (A’Hearn et al. 2009: 2). Another crucial problem with the QBE estimator is that we 

would not actually expect heights to be normally distributed at each age across adolescence 

because of individual-level variation in developmental tempo. At ages 13 and 14, children 

developing more quickly would experience the pubertal growth spurt and fill out the right tail 

of the distribution. At the mid-point of the pubertal growth spurt, the distribution should look 

more or less normal again. Then, toward the end of the pubertal growth spurt, the distribution 

should look left skewed as the late developers now stretch the left tail of the distribution. This 

natural pattern of changing skewness is still present among healthy modern children but was 

exaggerated in the past because of the greater dispersion in the age at peak velocity during the 

pubertal growth spurt (A’Hearn et al. 2009: 2; Gao and Schneider 2019).The fact that we would 

not expect the distributions to be normal also affects the truncated maximum likelihood 

estimation technique which relies on a normal distribution even though it does a much better 

job of producing smooth trends and plausible height levels in the Marine Society data (Komlos 

2004: 168). 
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We can see an example of how problematic the normality assumption is by examining 

data from the training ship Exmouth. The data include all boys enrolled on the training ship 

between 1903 and 1915 when the minimum height requirements described in detail in 1910 

were in place (Twenty-Ninth Annual Report 1905: 5; Thirty-Fifth Annual Report 1911: 5). 

Birthdates and admission dates were available for all boys so we can be reasonably certain that 

their ages are precisely measured. Figure 10 presents the standardized height distributions with 

the mean height at zero and a one standard deviation change in the distribution being equal to 

a one unit increase of the horizontal axis (Z-scores). These are compared with gray dashed 

normal distributions, and the minimum height requirements are marked by the black dashed 

vertical lines. Clearly, the minimum height requirements were not binding since at some ages 

the mean height was actually below the minimum height requirement. We can see some 

evidence of truncation at ages 11 and 12 before the pubertal growth spurt has begun, but at 

ages 13 to 14, how is it possible to distinguish between the truncation effect and the expected 

right skew as the earliest developers experience their growth spurt? Some left skew is 

noticeable by age 15.5 despite the truncation. Clearly, any estimation strategy that imposes 

normality on these distributions, such as the QBE or the truncated maximum likelihood 

estimator, will have difficulty in matching the untruncated distribution. A’Hearn et al. (2009) 

develop a semiparametric approach that does not require the distributions to be normal, which 

might be of greater use when dealing with truncated distributions of children’s heights, if it 

could be adapted to account for the truncation points and expected shifting skewness of the 

distribution. 

Figure 10 here 

A final source of bias is the misreporting of ages. We have seen above that age 

thresholds can produce substantial bias in the height profile, but any misreporting of ages could 

affect the height profile if it were prevalent enough. Even random error in ages can significantly 

affect the growth profile of children. Thus, historical data must be consistently accurate in 
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reporting ages for the data to be of value when looking at long run changes in the growth 

pattern. 

Measurement error in reported age is important because the link between height and 

age has long been known. In fact, some of the first systematic and large samples of height data 

collected for British children were collected in an effort to enforce age restrictions on child 

labour introduced by the Factory Act of 1833. Factory inspectors tasked with enforcing the law 

needed a way of verifying the ages of children so that factory and mill owners could be held 

accountable for their labour practices. Therefore, several surgeons began measuring height and 

tooth eruption as a way of predicting a child’s age (Horrell and Oxley 2016: 52-3; Kirby 2013: 

99-110). Horrell and Oxley (2016: Appendixes A-C) discuss how the legislation may have 

created age thresholds in their data but generally find that these were not too problematic. 

However, height and age continued to be powerfully linked in the minds of doctors and medical 

officers of the period and could introduce bias into growth profiles measured in nineteenth-

century data. 

The training ship Exmouth, again, provides useful evidence to test these problems with 

real data. For the first few years after the Exmouth opened (1877-1881), the officers recorded 

up to two ages for each boy. They always included the age reported by the boy, but for a 

subsample of boys, the officers also provided their own estimation of the boy’s age which they 

called the ‘supposed age’. The officers provided estimated ages for 26.7 per cent of boys 

entering the Exmouth during those years almost always giving the boys a lower estimated age 

than their reported age.4 Thus, the officers clearly thought that some children were far too short 

to be the age that they reported. However, what is interesting is that the officers did not base 

their estimations on a simple height threshold. Figure 11A shows the distribution of height-for-

age Z-scores of boys whose age was accepted by the medical officer as reliable versus those 

                                                
4 The officers gave a higher estimated age than reported age in only 0.6 per cent of cases where an estimated age 
was given. 
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who were given an estimated age. While the boys who were given an estimated age were 

shorter than their counterparts whose age was accepted, the distribution of height-for-age for 

boys given an estimated age was quite wide extending beyond the mean height-for-age Z-score 

of boys whose age was accepted. Thus, it is not clear how the officers decided who was 

misreporting (or misinformed about) their age. 

The pattern of estimated ages also does not suggest that children were lying in order to 

enrol on the ship at earlier ages. Although the admission criteria on the Exmouth are far from 

clear in these early days, the ship’s administrators took children with reported ages under 12 

and the percentage who were given an estimated age increased with the age reported (Figure 

11B). Thus, it does not seem that children were misrepresenting their ages to enrol on the ship 

at earlier ages than regulations allowed. There were no minimum height requirements in place 

during this period, so that could not have influenced decisions about age reporting. The only 

criteria might be related to the time spent on the ship before being sent to the navy or merchant 

marine. Boys entering the ship at later ages spent substantially fewer months on the Exmouth, 

and so would be able to join a merchant ship or the navy more quickly than children entering 

at younger ages. However, when we compare the time children with reliable ages spent on the 

ship with those where an estimated age was given (Figure 11C), we see that the ship required 

the children with estimated ages to remain on the ship for much longer. Thus, there were few 

benefits for the children from misreporting their ages. 

However, this does raise real issues about what a researcher should do with this data. 

Should the reported ages or the estimated ages be used when comparing these children over 

time or to other children? Figure 11D shows two growth curves: one based on the reported ages 

given to all children and another that corrects the reported age to the estimated age for children 

with an estimated age. Clearly, the average heights of the children increased substantially when 

conducting this age correction. The average height-for-age Z-score increases from -3.14 to -

2.89. So which age measure is correct? On what basis would a researcher make that decision? 
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This issue also raises questions about how the institution’s record keeping practice 

changed over time. The captain-superintendent of the Exmouth first recommended that the ship 

introduce minimum height requirements in the annual report of 1880 in part because of the 

supposed error in the reported ages on the ship (Fifth Annual Report 1881: 24-25). If we look 

at the height distribution of boys reported at age 12 during the period where estimated ages 

were listed (1877-81) and the period shortly thereafter (1882-86), the height distribution in the 

later period shifts substantially to the right (Figure 11E). This could have been driven in part 

by the introduction of minimum height requirements, which would have encouraged all 

involved to report ages correctly. However, these minimum height requirements were not 

remotely followed during the later period. Figure 11E shows that the minimum height 

requirement (vertical line) was substantially above the mean and median of the height 

distribution (1882-86). Thus, it is unclear whether the reported ages became more accurate 

after 1881 or the person measuring the children’s height simply started listing their estimated 

age as their reported age in the records. This problem becomes less of an issue when birth dates 

are recorded for the Exmouth later in the nineteenth century, but it does raise serious questions 

about how to interpret changes in mean height and the height distribution between the two 

periods. 

Figure 11 here 

Although this case was specific to the Exmouth, this example of potentially misreported 

ages suggests how important it is to take the time to understand historical height datasets very 

carefully. It is often possible to detect how the records are subtly changing over time, but this 

is not possible if all datasets are transcribed by research assistants with little input from the 

principal investigator. Measurement error in ages may not be detectable at all in some cases, 

highlighting the importance of triangulating key results with multiple datasets. 

In sum, there are a number of potential sources of bias and measurement error not 

directly related to selection on unobservables that could still influence the growth pattern and 
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diminish a researcher’s ability to detect selection bias. Researchers need to consider the 

potential biases introduced by using period growth curves, truncated samples and samples with 

measurement error in ages and weigh the strengths of the dataset relative to the potential biases. 

Unfortunately, this will mean that some datasets are very difficult to work with and may need 

to be abandoned. 

 

5. Conclusion 

This paper has shown how sample-selection bias and other sources of measurement 

error and bias could substantially distort inferences about the growth pattern of children. The 

most important sources of bias raised here are the positive selection of children at later ages 

into remaining in secondary school, individuals lying about their age around age thresholds, 

the institutional ecosystem that determines the institutions children end up in and soldiers 

enlisting at younger ages falling out of the population at risk for enlistment at subsequent ages. 

Measurement error can also bias the growth pattern, so researchers need to understand the 

biases that arise from period versus cohort growth curves, truncation created by minimum 

height requirements and systematic measurement error in ages. 

 However, the selection biases discussed in this paper do not require substantial changes 

to the current state of the field for two reasons. First, the changing growth pattern of children 

is relatively understudied compared with trends in adult stature, so there are fewer studies that 

could have run afoul. Second, anthropometric historians tend to be fairly careful in their 

research, so many of the potential issues with existing datasets have already been discussed at 

length (Horrell and Oxley 2016; Schneider 2016). Instead, I hope that this paper can serve as a 

guide for those approaching the topic in the future, which should help prevent larger critiques 

from accumulating as in the industrialisation puzzle. 

Having said this, there are three ways in which this paper should lead to revisions or at 

least inquisitive scepticism toward the existing literature. First, the data that Roberts (1874) 
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and Bowditch (1877, 1879) along with the other anthropometricians at the end of the nineteenth 

century used to establish a strong pubertal growth spurt are often flawed. Because they drew 

mostly from public schools, it is very difficult to rule out the positive selection discussed at 

length in this paper. This does not mean that the pubertal growth spurt did not exist in this 

earlier period, but we must be incredibly cautious about how we interpret their data. Thus, 

further analysis using longitudinal microdata is necessary to truly understand the growth 

pattern of children in the nineteenth century (Gao and Schneider 2019). 

In addition, studies of the change in the growth pattern of Japanese children using the 

height data collected by the Ministry of Education over the twentieth century suffer from 

serious bias as discussed above (Ali et al. 2000; Mosk 1996). Because the percentage of the 

population attending secondary school rose from less than 10 per cent to near universal rates, 

the amount of positive selection into secondary school has changed dramatically over time. 

Most studies using this data have not taken this into account, though those looking at the post-

war period or using the National Nutritional Surveys (Cole and Mori, 2017) may not suffer to 

the same extent. Finally, papers that have used truncated maximum likelihood or quantile bend 

estimation to deal with minimum height requirements for boys during the adolescent years are 

very likely to produce biased results since we would not expect boys’ heights to be normally 

distributed at these ages (Floud et al. 1990: 164-5; Komlos 2004: 168). Thus, it seems at the 

moment that anthropometric historians are ill-equipped to deal with truncated samples of 

adolescent heights. We will need new statistical techniques to overcome these challenges. 
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Figure 1: Characteristics of the Growth Pattern of Boys 

 
Notes: The growth pattern of girls is different than for boys with girls experiencing an earlier and less pronounced 
pubertal growth spurt, lower velocity and adult height and earlier age when growth stops. 

Sources: de Onis et al. (2007); data drawn from http://www.who.int/growthref/en/. 

 



Figure 2: Occupational Structure and the Growth Pattern of Boys in Bowditch’s 1870s Boston 
Data 

 
Notes: The constant occupational structure line in panel B was calculated by weighting the occupational group 
growth profiles with the occupational structure at age 8 at all ages. This approach assumes that the occupational 
structure for 8-year-olds matched the true population occupational structure, which seems plausible since 
enrolment rates in Boston were highest at age 8 at nearly 80%. 

Sources: Bowditch (1879: 38-43). 

 



Figure 3: Evidence of positive selection of children into secondary school in Japan, 1936 

 
Notes: My thanks to Kota Ogasawara for his help in extracting this data from Japanese archival sources. 
Prefecture-level data were aggregated using prefecture population as a weight. 

Sources: see Schneider and Ogasawara (2018: Appendix B). 
 

 



Figure 4: Number of children in public schools in Boston and in the Bowditch sample, 1875 

 
Notes: The sum of primary and grammar school enrolment at age 9 listed in the 1875 Annual Report of the School 
Committee was larger than the number of nine-year-olds reported in the 1875 census. Thus, the committee seems 
to have double counted nine-year-olds in both primary and grammar schools. To adjust for this, the enrolment 
rate at age 8 was used to predict the total number of children enrolled at age 9, and the children were assigned to 
primary or grammar school proportionately to the figures reported by the committee. This obviously introduces 
some error, but does not affect the overall trends discussed. 

Sources: School Committee (1876: 112-20, 123, 131, 139); The Census of Massachusetts 1875 (1876: 223); 
Bowditch (1877: 41, 45). 

 



Figure 5: Mean height-for-age Z-scores of children from four occupational groups in the 
Bowditch data from Boston, 1875 

 
Notes: The WHO 2007 growth reference was used to calculate height-for-age Z-scores. 

Sources: Bowditch (1879: 38-43).  

 



Figure 6: Predicted heights of soldiers enlisting in the Australian Imperial Force (AIF) by 
reported age and true age along with the number of men misreporting their age above the given 
threshold at each age. 

 
Notes: The predicted heights in the regression are predicted from truncated maximum likelihood regressions 
controlling for father’s HISCLASS, birth location and enlistment month. The omitted category for the regression 
which applies to the height profile drawn relates to soldiers whose fathers were unskilled labourers, who were 
born in Hobart and who enlisted in August 1915. ** denotes a point estimate that is statistically significant from 
age 21 at the 1 per cent level. See text for more detail. 

Sources: Hamish Maxwell-Stewart, personal communication. 

 



Figure 7: Influence of recruits being removed from the population at risk of being recruited at 
subsequent ages 

 
Notes: Vertical grey lines show the minimum height requirement. 

Sources: author’s calculations; see text for details. 
 



Figure 8: Lexis diagram showing the difference between period and cohort growth curves 

 
 



Figure 9: Differences between cohort and period growth curves 

 
Notes: My thanks to Kota Ogasawara for his help in extracting this data from Japanese archival sources. The 
WHO 2007 growth reference was used to calculate height-for-age Z-scores. 

Sources: see Schneider and Ogasawara (2018: Appendix B). 
 



Figure 10: Standardised height distributions of boys on the training ship Exmouth compared 

with a normal distribution and the minimum height requirement. 

 

Notes: The y-axis shows the kernel density and the x-axis shows the standardised height. The dashed vertical line 

is the minimum height requirement. Data relate to boys admitted to the ship between 1903 and 1915 when the 

minimum height requirements were clear and consistent. 

Sources: Boys’ Record Books, (1876-1915) Training Ship Exmouth, MS MAB/2512, London Metropolitan 

Archives (LMA), London. Minimum height requirements from Thirty-Fifth Annual Report of the training ship 

Exmouth 1910 (1911) MAB/2554, LMA, London: 5. 

 



Figure 11: Figures highlighting the effects of misreported ages on the training ship Exmouth, 1877-81 

 
Notes: All data is for 1877-81 unless otherwise noted. In panels A and C, reliable age refers to children whose reported age was 
considered reliable by Exmouth officers. Estimated age given refers to children whose age was not considered reliable and were 
given an estimated age. Panel D shows the height profile for Exmouth boys by their reported age and by their corrected age which 
assumes that all of the estimated ages given by the Exmouth officers were correct. Panel E compares the height distribution of 12-
year-olds in the early period when estimated ages were given (1877-81) with the heights of 12-year-olds just after that period (1882-
86). The vertical line marks the minimum height requirement suggested by the captain-superintendent in 1880, which apparently 
was not enforced. 

Sources: Boys’ Record Books, (1876-1915) Training Ship Exmouth, MS MAB/2512, LMA, London.; Fifth Annual Report of the 
training ship Exmouth 1880 (1981) MAB/2524, LMA, London: 24-25. 

 


