
Optimal Auctions through Deep Learning

Optimal Auctions through Deep Learning

Appendix

A. Omitted Proofs
A.1. Proof of Lemma 1 and Proof of Lemma 2

Proof of Lemma 1. First, given the property of Softmax function and the min operation, 'DS

(s, s0) ensures that the row
sums and column sums for the resulting allocation matrix do not exceed 1. In fact, for any doubly stochastic allocation
z, there exists scores s and s0, for which the min of normalized scores recovers z (e.g. s

ij

= s0
ij

= log(z
ij

) + c for any
c 2 R).

Proof of Lemma 2. Similar to Lemma 1, 'CF

(s, s(1), . . . , s(m)

) trivially satisfies the combinatorial feasibility (constraints
(3)–(4)). For any allocation z that satisfies the combinatorial feasibility, the following scores

8j = 1, · · · ,m, s
i,S

= s(j)
i,S

= log(z
i,S

) + c,

makes 'CF

(s, s(1), . . . , s(m)

) recover z.

A.2. Proof of Theorem 1

We present the proof for auctions with general, randomized allocation rules. A randomized allocation rule g
i

: V ! [0, 1]2
M

maps valuation profiles to a vector of allocation probabilities for bidder i. Here g
i,S

(v) 2 [0, 1] denote the probability
that the allocation rule assigns subset of items S ✓ M to bidder i, and

P

S✓M

g
i,S

(v)  1. Note that this encompasses
the allocation rules we consider for additive and unit-demand valuations, which only output allocation probabilities for
individual items. The payment function p : V ! Rn maps valuation profiles to a payment for each bidder p

i

(v) 2 R. For
ease of exposition, we omit the superscripts “w”. As before, M is a class of auctions (g, p).

We will assume that the allocation and payment rules in M are continuous and that the set of valuation profiles V is a
compact set.

Notation. For any vectors a, b 2 Rd, the inner product is denoted as ha, bi =

P

d

i=1

a
i

b
i

. For any matrix A 2 Rk⇥`, the
L
1

norm is given by kAk
1

= max

1j`

P

k

i=1

A
ij

.

Let U
i

be the class of utility functions for bidder i defined on auctions in M, i.e.:

U
i

=

�

u
i

: V
i

⇥ V ! R
�

�u
i

(v
i

, b) = v
i

(g(b)) � p
i

(b) for some (g, p) 2 M

.

and let U be the class of profile of utility functions defined on M, i.e. the class of tuples (u
1

, . . . , u
n

) where each
u
i

: V
i

⇥ V ! R and u
i

(v
i

, b) = v
i

(g(b)) � p
i

(b), 8i 2 N for some (g, p) 2 M. We will sometimes find it useful
to represent the utility function as an inner product, i.e. treating v

i

as a real-valued vector of length 2

M , we may write
u
i

(v
i

, b) = hv
i

, g
i

(b)i � p
i

(b).

Let rgt � U
i

be the class of all regret functions for bidder i defined on utility functions in U
i

:

rgt � U
i

=

n

f
i

: V ! R
�

�

�

f
i

(v) = max

v

0
i

u
i

(v
i

, (v0
i

, v�i

)) � u
i

(v
i

, v) for some u
i

2 U
i

o

and as before, let rgt � U be defined as the class of profiles of regret functions.

Define the `1,1

distance between two utility functions u and u0 as max

v,v

0
P

i

|u
i

(v
i

, (v0
i

, v�i

)) � u
i

(v
i

, (v0
i

, v�i

))| and
N1(U , ✏) is the minimum number of balls of radius ✏ to cover U under this distance. Similarly, define the distance between
u
i

and u0
i

as max

v,v

0
i
|u

i

(v
i

, (v0
i

, v�i

))�u0
i

(v
i

, (v0
i

, v�i

))|, and let N1(U
i

, ✏) denote the minimum number of balls of radius
✏ to coverU

i

under this distance. Similarly, we define covering numbers N1(rgt �U
i

, ✏) and N1(rgt �U , ✏) for the function
classes rgt � U

i

and rgt � U respectively.

Moreover, we denote the class of allocation functions as G and for each bidder i, G
i

= {g
i

: V ! 2

M | g 2 G}. Similarly,
we denote the class of payment functions by P and P

i

= {p
i

: V ! R | p 2 P}. We denote the covering number of P as
N1(P, ✏) under the `1,1

distance and the covering number for P
i

using N1(P
i

, ✏) under the `1 distance.

Optimal Auctions through Deep Learning

We first state the following lemma from (Shalev-Shwartz & Ben-David, 2014). Let F be a class of functions f : Z ! [�c, c]
for some input space Z and c > 0. Given a sample S = {z

1

, . . . , z
L

} of points from Z, define the empirical Rademacher
complexity of F as:

ˆR
L

(F) :=

1

L
E

�

"

sup

f2F

X

zi2S

�
i

f(z
i

)

#

,

where � 2 {�1, 1}L and each �
i

is drawn i.i.d from a uniform distribution on {�1, 1}.

Lemma 3 (Generalization bound in terms of Rademacher complexity). Let S = {z
1

, . . . , z
L

} be a sample drawn i.i.d.
from some distribution D over Z. Then with probability of at least 1� � over draw of S from D, for all f 2 F ,

E
z2D

[f(z)]  1

L

L

X

i=1

f(z
i

) + 2

ˆR
L

(F) + 4c

r

2 log(4/�)

L
.

We are now ready to prove Theorem 1. We begin with the first part, namely a generalization bound for revenue.

Proof of Theorem 1 (Part 1). The proof involves a direct application of Lemma 3 to the class of revenue functions defined
on M:

rev �M =

�

f : V ! R
�

� f(v) =

P

n

i=1

p
i

(v), for some (g, p) 2 M

,

and bounds the Rademacher complexity term for this class in terms of the covering number for the payment class P , which
in turn is bounded by the covering number for the auction class for M.

Since we assume that the auctions in M satisfy individual rationality and the valuation functions are bounded in [0, 1], we
have for any v, p

i

(v)  1. By definition of the covering number N1(P, ✏) for the payment class, for any p 2 P , there exists
a f

p

2 ˆP where | ˆP|  N1(P, ✏), such that max

v

P

i

|p
i

(v)� f
p

i

(v)|  ✏. First we bound the Rademacher complexity,
for a given ✏ 2 (0, 1),

ˆR
L

(rev �M) =

1

L
E

�

"

sup

p

L

X

`=1

�
`

·
X

i

p
i

(v(`))

#

=

1

L
E

�

"

sup

p

L

X

`=1

�
`

·
X

i

f
p

i

(v(`))

#

+

1

L
E

�

"

sup

p

L

X

`=1

�
`

·
X

i

p
i

(v(`))� f
p

i

(v(`))

#

 1

L
E

�

"

sup

p̂2 ˆP

L

X

`=1

�
`

·
X

i

p̂
i

(v(`))

#

+

1

L
E

�

k�k
1

✏


s

X

`

(

X

i

p̂
i

(v`))2

r

2 log(N1(P, ✏))

L
+ ✏ (By Massart’s Lemma)

 2n

r

2 log(N1(P, ✏))

L
+ ✏.

The last inequality is because
v

u

u

t

X

`

X

i

p̂
i

(v`)

!

2



v

u

u

t

X

`

X

i

p
i

(v`) + n✏

!

2

 2n
p
L.

Next we show N1(P, ✏)  N1(M, ✏), for any (g, p) 2 M, take (ĝ, p̂) s.t. for all v
X

i,j

|g
ij

(v)� ĝ
ij

(v)|+
X

i

|p
i

(v)� p̂
i

(v)|  ✏.

Optimal Auctions through Deep Learning

Thus for any p 2 P , for all v,
P

i

|p
i

(v) � p̂
i

(v)|  ✏, which implies N1(P, ✏)  N1(M, ✏). Applying Lemma 3 and
P

i

p
i

(v)  n for any v, with probability of at least 1� �,

E
v⇠F

h

�
X

i2N

p
i

(v)
i

 � 1

L

L

X

`=1

n

X

i=1

p
i

(v(`)) + 2 · inf
✏>0

n

✏+ 2n

r

2 log(N1(M, ✏))

L

o

+ Cn

r

log(1/�)

L
.

This completes the proof for the first part.

We move to the second part, namely a generalization bound for regret, which is the more challenging part of the proof.

Proof of Theorem 1 (Part 2). We first define the class of sum regret functions:

rgt � U =

(

f : V ! R
�

�

�

�

f(v) =

n

X

i=1

r
i

(v) for some (r
1

, . . . , r
n

) 2 rgt � U
)

.

The proof then proceeds in three steps:

(1) bounding the covering number for each regret class rgt � U
i

in terms of the covering number for individual utility classes
U
i

,

(2) bounding the covering number for the combined utility class U in terms of the covering number for M, and

(3) bounding the covering number for the sum regret class rgt � U in terms of the covering number for the (combined) utility
class M.

An application of Lemma 3 then completes the proof. We prove each of the above steps below.

Step 1. N1(rgt � U
i

, ✏)  N1(U
i

, ✏/2).

By definition of covering number N1(U
i

, ✏), there exists ˆU
i

with size at most N1(U
i

, ✏/2) such that for any u
i

2 U
i

, there
exists a û

i

2 ˆU
i

with
sup

v,v

0
i

|u
i

(v
i

, (v0
i

, v�i

))� û
i

(v
i

, (v0
i

, v�i

))|  ✏/2.

For any u
i

2 U
i

, taking û
i

2 ˆU
i

satisfying the above condition, then for any v,
�

�

�

�

max

v

0
i2V

�

u
i

(v
i

, (v0
i

, v�i

))� u
i

(v
i

, (v
i

, v�i

))

�

�max

v̄i2V

�

û
i

(v
i

, (v̄
i

, v�i

))� û
i

(v
i

, (v
i

, v�i

))

�

�

�

�

�


�

�

�

�

max

v

0
i

u
i

(v
i

, (v0
i

, v�i

))�max

v̄i

û
i

(v
i

, (v̄
i

, v�i

)) + û
i

(v
i

, (v
i

, v�i

))� u
i

(v
i

, (v
i

, v�i

))

�

�

�

�


�

�

�

�

max

v

0
i

u
i

(v
i

, (v0
i

, v�i

))�max

v̄i

û
i

(v
i

, (v̄
i

, v�i

))

�

�

�

�

+ |û
i

(v
i

, (v
i

, v�i

))� u
i

(v
i

, (v
i

, v�i

))|


�

�

�

�

max

v

0
i

u
i

(v
i

, (v0
i

, v�i

))�max

v̄i

û
i

(v
i

, (v̄
i

, v�i

))

�

�

�

�

+ ✏/2.

Let v⇤
i

2 argmax

v

0
i
u
i

(v
i

, (v0
i

, v�i

)) and v̂⇤
i

2 argmax

v̄i ûi

(v
i

, (v̄
i

, v�i

)), then

max

v

0
i

u
i

(v
i

, (v0
i

, v�i

)) = u
i

(v⇤
i

, v�i

)  û
i

(v⇤
i

, v�i

) + ✏/2  û
i

(v̂⇤
i

, v�i

) + ✏/2 = max

v̄i

û
i

(v
i

, (v̄
i

, v�i

)) + ✏/2, and

max

v̄i

û
i

(v
i

, (v̄
i

, v�i

)) = û
i

(v̂⇤
i

, v�i

)  u
i

(v̂⇤
i

, v�i

) + ✏/2  u
i

(v⇤
i

, v�i

) + ✏/2 = max

v

0
i

u
i

(v
i

, (v0
i

, v�i

)) + ✏/2.
(6)

Thus, for all u
i

2 U
i

, there exists û
i

2 ˆU
i

such that for any valuation profile v,
�

�

�

�

max

v

0
i

�

u
i

(v
i

, (v0
i

, v�i

))� u
i

(v
i

, (v
i

, v�i

))

�

�max

v̄i

�

û
i

(v
i

, (v̄
i

, v�i

))� û
i

(v
i

, (v
i

, v�i

))

�

�

�

�

�

 ✏,

which implies N1(rgt � U
i

, ✏)  N1(U
i

, ✏/2).

This completes the proof for Step 1.

Optimal Auctions through Deep Learning

Step 2. N1(U , ✏)  N1(M, ✏), for all i 2 N .

Recall the utility function of bidder i is u
i

(v
i

, (v0
i

, v�i

)) = hv
i

, g
i

(v0
i

, v�i

)i � p
i

(v0
i

, v�i

). There exists a set ˆM with
| ˆM|  N1(M, ✏) such that there exists (ĝ, p̂) 2 ˆM with

sup

v2V

X

i,j

|g
ij

(v)� ĝ
ij

(v)|+ kp(v)� p̂(v)k
1

 ✏.

We denote û
i

(v
i

, (v0
i

, v�i

)) = hv
i

, ĝ
i

(v0
i

, v�i

)i � p̂
i

(v0
i

, v�i

), where we treat v
i

as a real-valued vector of length 2

M .

For all v 2 V, v0
i

2 V
i

,

|u
i

(v
i

, (v0
i

, v�i

))� û
i

(v
i

, (v0
i

, v�i

))|
 |hv

i

, g
i

(v0
i

, v�i

)i � hv
i

, ĝ
i

(v0
i

, v�i

)i|+ |p
i

(v0
i

, v�i

)� p̂
i

(v0
i

, v�i

)|
 kv

i

k1 · kg
i

(v0
i

, v�i

)� ĝ
i

(v0
i

, v�i

)k
1

+ |p
i

(v0
i

, v�i

)� p̂
i

(v0
i

, v�i

)|


X

j

|g
ij

(v0
i

, v�i

)� ĝ
ij

(v0
i

, v�i

)|+ |p
i

(v0
i

, v�i

)� p̂
i

(v0
i

, v�i

)| .

Therefore, for any u 2 U , take û = (ĝ, p̂) 2 ˆM, for all v, v0,
X

i

|u
i

(v
i

,(v0
i

, v�i

))� û
i

(v
i

, (v0
i

, v�i

))|


X

ij

|g
ij

(v0
i

, v�i

)� ĝ
ij

(v0
i

, v�i

)|+
X

i

|p
i

(v0
i

, v�i

)� p̂
i

(v0
i

, v�i

)|  ✏.

This completes the proof for Step 2.

Step 3. N1(rgt � U , ✏)  N1(M, ✏/2)

By definition of N1(U , ✏), there exists ˆU with size at most N1(U , ✏), such that, for any u 2 U , there exists û s.t.
for all v, v0 2 V ,

P

i

|u
i

(v
i

, (v0
i

, v�i

)) � û
i

(v
i

, (v0
i

, v�i

))|  ✏. Therefore for all v 2 V , |
P

i

u
i

(v
i

, (v0
i

, v�i

)) �
P

i

û
i

(v
i

, (v0
i

, v�i

))|  ✏, from which it follows that N1(rgt � U , ✏)  N1(rgt � U , ✏). Following Step 1, it is easy
to show N1(rgt � U , ✏)  N1(U , ✏/2). This further with Step 2 completes the proof of Step 3.

Based on the same arguments as in the proof of Theorem 1 (Part 1) the empirical Rademacher complexity is bounded as:

ˆR
L

(rgt � U)  inf

✏>0

✏+ 2n

r

2 logN1(rgt � U , ✏)
L

!

 inf

✏>0

✏+ 2n

r

2 logN1(M, ✏/2)

L

!

.

Applying Lemma 3, completes the proof for generalization bound for regret.

A.3. Proof of Theorem 2

We first bound the covering number for a general feed-forward neural network and specialize it to the three architectures we
present in Section 3.

Lemma 4. Let F
k

be a class of feed-forward neural networks that maps an input vector x 2 Rd0 to an output vector
y 2 Rdk , with each layer ` containing T

`

nodes and computing z 7! �
`

(w`z), where each w` 2 RT`⇥T`�1 and �
`

: RT` !
[�B,+B]

T` . Further let, for each network in F
k

, let the parameter matrices kw`k
1

 W and k�
`

(s) � �
`

(s0)k
1


�ks� s0k

1

for any s, s0 2 RT`�1 .

N1(F
k

, ✏) 
⇠

2Bd2W (2�W)

k

✏

⇡

d

,

where T = max

`2[k]

T
`

and d is the total number of parameters in a network.

Optimal Auctions through Deep Learning

Proof. We shall construct an `
1,1 cover for F

k

by discretizing each of the d parameters along [�W,+W] at scale ✏
0

/d,
where we will choose ✏

0

> 0 at the end of the proof. We will use ˆF
k

to denote the subset of neural networks in F
k

whose
parameters are in the range {�(dWd/✏

0

e � 1) ✏
0

/d, . . . ,�✏
0

/d, 0, ✏
0

/d, . . . , dWd/✏
0

e✏
0

/d}. Note that size of ˆF
k

is at
most d2dW/✏

0

ed. We shall now show that ˆF
k

is an ✏-cover for F
k

.

We use mathematical induction on the number of layers k. We wish to show that for any f 2 F
k

there exists a ˆf 2 ˆF
k

such
that:

kf(x)� ˆf(x)k
1

 Bd✏
0

(2�W)

k.

Note that for k = 0, the statement holds trivially. Assume that the statement is true for F
k

. We now show that the statement
holds for F

k+1

.

A function f 2 F
k+1

can be written as f(z) = �
k+1

(w
k+1

H(z)) for some H 2 F
k

. Similarly, a function ˆf 2 ˆF
k+1

can be written as ˆf(z) = �
k+1

(ŵ
k+1

ˆH(z)) for some ˆH 2 ˆF
k

and ŵ
k+1

is a matrix of entries in {�(dWd/✏
0

e �
1) ✏

0

/d, . . . ,�✏
0

/d, 0, ✏
0

/d, . . . , dWd/✏
0

e✏
0

/d}. Also note that for any parameter matrix w` 2 RT`⇥T`�1 , there is a matrix
ŵ` with discrete entries s.t.

kw
`

� ŵ
`

k
1

= max

1jT`�1

T

X̀

i=1

|w`

`,i,j

� ŵ
`,i,j

|  T
`

✏
0

/d  ✏
0

. (7)

We then have:

kf(x)� ˆf(x)k
1

= k�
k+1

(w
k+1

H(x))� �
k+1

(ŵ
k+1

ˆH(x))k
1

 �kw
k+1

H(x)� ŵ
k+1

ˆH(x)k
1

 �kw
k+1

H(x)� w
k+1

ˆH(x)k
1

+ �kw
k+1

ˆH(x)� ŵ
k+1

ˆH(x)k
1

 �kw
k+1

k
1

· kH(x)� ˆH(x)k
1

+ �kw
k+1

� ŵ
k+1

k
1

· k ˆH(x)k
1

 �WkH(x)� ˆH(x)k
1

+ �Bkw
k+1

� ŵ
k+1

k
1

 Bd✏
0

�W (2�W)

k

+ �Bd✏
0

 Bd✏
0

(2�W)

k+1,

where the second line follows from our assumption on �
k+1

, and the sixth line follows from our inductive hypothesis and
from (7). By choosing ✏

0

=

✏

B(2�W)

k , we complete the proof.

We next bound the covering number of the mechanism class in terms of the covering number for the class of allocation
networks and for the class of payment networks. Recall that the payment networks computes a fraction ↵ : Rm(n+1) !
[0, 1]n and computes a payment p

i

(b) = ↵
i

(b) · hv
i

, g
i

(b)i for each bidder i. Let G be the class of allocation networks
and A be the class of fractional payment functions used to construct auctions in M. Let N1(G, ✏) and N1(A, ✏) be the
corresponding covering numbers w.r.t. the `1 norm. Then:

Lemma 5. N1(M, ✏)  N1(G, ✏/3) · N1(A, ✏/3).

Proof. Let ˆG ✓ G, ˆA ✓ A be `1 covers for G and A, i.e. for any g 2 G and ↵ 2 A, there exists ĝ 2 ˆG and ↵̂ 2 ˆA with

sup

b

X

i,j

|g
ij

(b)� ĝ
ij

(b)|  ✏/3, and (8)

sup

b

X

i

|↵
i

(b)� ↵̂
i

(b)|  ✏/3. (9)

We now show that the class of mechanism ˆM = {(ĝ, ↵̂) | ĝ 2 ˆG, and p̂(b) = ↵̂
i

(b) · hv
i

, ĝ
i

(b)i} is an ✏-cover for M under
the `

1,1 distance. For any mechanism in (g, p) 2 M, let (ĝ, p̂) 2 ˆM be a mechanism in ˆM that satisfies (9). We have:
X

i,j

|g
ij

(b)� ĝ
ij

(b)|+
X

i

|p
i

(b)� p̂
i

(b)|

Optimal Auctions through Deep Learning

 ✏/3 +
X

i

|↵
i

(b) · hb
i

, g
i,·(b)i � ↵̂

i

(b) · hb
i

, ĝ
i

(b)i|

 ✏/3 +
X

i

|(↵
i

(b)� ↵̂
i

(b)) · hb
i

, g
i

(b)i|+ |↵̂
i

(b) · (hb
i

, g
i

(b)i � hb
i

, ĝ
i,·(b))i|

 ✏/3 +
X

i

|↵
i

(b)� ↵̂
i

(b)|+
X

i

kb
i

k1 · kg
i

(b)� ĝ
i

(b)k
1

 2✏/3 +
X

i,j

|g
ij

(b)� ĝ
ij

(b)|  ✏,

where in the third inequality we use hb
i

, g
i

(b)i  1. The size of the cover ˆM is | ˆG|| ˆA|, which completes the proof.

We are now ready to prove covering number bounds for the three architectures in Section 3.

Proof of Theorem 2. All three architectures use the same feed-forward architecture for computing fractional payments,
consisting of K hidden layers with tanh activation functions. We also have by our assumption that the L

1

norm of the vector
of all model parameters is at most W , for each ` = 1, . . . , R + 1, kw

`

k
1

 W . Using that fact that the tanh activation
functions are 1-Lipschitz and bounded in [�1, 1], and there are at most max{K,n} number of nodes in any layer of the
payment network, we have by an application of Lemma 4 the following bound on the covering number of the fractional
payment networks A used in each case:

N1(A, ✏) 
⇠

max(K,n)2(2W)

R+1

✏

⇡

dp

,

where d
p

is the number of parameters in payment networks.

For the covering number of allocation networks G, we consider each architecture separately. In each case, we bound the
Lipschitz constant for the activation functions used in the layers of the allocation network and followed by an application of
Lemma 4. For ease of exposition, we omit the dummy scores used in the final layer of neural network architectures.

Additive bidders. The output layer computes n allocation probabilities for each item j using a softmax function.
The activation function �

R+1

: Rn ! Rn for the final layer for input s 2 Rn⇥m can be described as: �
R+1

(s) =

[softmax(s
1,1

, . . . , s
n,1

), . . . , softmax(s
1,m

, . . . , s
n,m

)], where softmax : Rn ! [0, 1]n is defined for any u 2 Rn as
softmax

i

(u) = exp(u
i

)/
P

n

k=1

exp(u
k

).

We then have for any s, s0 2 Rn⇥m,

k�
R+1

(s)� �
R+1

(s0)k
1

=

X

j

�

�

softmax(s
1,j

, . . . , s
n,j

)� softmax(s0
1,j

, . . . , s0
n,j

)

�

�

1


p
n
X

j

�

�

softmax(s
1,j

, . . . , s
n,j

)� softmax(s0
1,j

, . . . , s0
n,j

)

�

�

2


p
n

p
n� 1

n

X

j

s

X

i

ks
ij

� s0
ij

k2


X

j

X

i

|s
ij

� s0
ij

|, (10)

where the third step follows by bounding the Frobenius norm of the Jacobian of the softmax function.

The hidden layers ` = 1, . . . , R are standard feed-forward layers with tanh activations. Since the tanh activation function is
1-Lipschitz, k�

`

(s)� �
`

(s0)k
1

 ks� s0k
1

. We also have by our assumption that the L
1

norm of the vector of all model
parameters is at most W , for each ` = 1, . . . , R + 1, kw

`

k
1

 W . Moreover, the output of each hidden layer node is in
[�1, 1], the output layer nodes is in [0, 1], and the maximum number of nodes in any layer (including the output layer) is at
most max{K,mn}.

By an application of Lemma 4 with � = 1, B = 1 and d = maxK,mn, we have

N1(G, ✏) 
⇠

max{K,mn}2(2W)

R+1

✏

⇡

da

,

Optimal Auctions through Deep Learning

where d
a

is the number of parameters in allocation networks.

Unit-demand bidders. The output layer n allocation probabilities for each item j as an element-wise minimum of two
softmax functions. The activation function �

R+1

: R2n ! Rn for the final layer for two sets of scores s, s̄ 2 Rn⇥m can be
described as:

�
R+1,i,j

(s, s0) = min{softmax
j

(s
i,1

, . . . , s
i,m

), softmax
i

(s0
1,j

, . . . , s0
n,j

)}.

We then have for any s, s̃, s0, s̃0 2 Rn⇥m,

k�
R+1

(s, s̃)� �
R+1

(s0, s̃0)k
1

=

X

i,j

�

�

�

min{softmax
j

(s
i,1

, . . . , s
i,m

), softmax
i

(s̃
1,j

, . . . , s̃
n,j

)}

� min{softmax
j

(s0
i,1

, . . . , s0
i,m

), softmax
i

(s̃0
1,j

, . . . , s̃0
n,j

)}
�

�

�


X

i,j

�

�

�

max{softmax
j

(s
i,1

, . . . , s
i,m

) � softmax
j

(s0
i,1

, . . . , s0
i,m

),

softmax
i

(s̃
1,j

, . . . , s̃
n,j

) � softmax
i

(s̃0
1,j

, . . . , s̃0
n,j

)}
�

�

�


X

i

�

�softmax(s
i,1

, . . . , s
i,m

) � softmax(s0
i,1

, . . . , s0
i,m

)

�

�

1

+

X

j

�

�softmax(s̃
1,j

, . . . , s̃
n,j

) � softmax(s̃0
1,j

, . . . , s̃0
n,j

)}
�

�

1


X

i,j

|s
ij

� s0
ij

| +
X

i,j

|s̃
ij

� s̃0
ij

|,

where the last step can be derived in the same way as (10).

As with additive bidders, using additionally hidden layers ` = 1, . . . , R are standard feed-forward layers with tanh
activations, we have from Lemma 4 with � = 1, B = 1 and d = max{K,mn},

N1(G, ✏) 
⇠

max{K,mn}2(2W)

R+1

✏

⇡

da

.

Combinatorial bidders. The output layer outputs an allocation probability for each bidder i and bundle of items S ✓ M .
The activation function �

R+1

: R(m+1)n2

m ! Rn2

m

for this layer for m+ 1 sets of scores s, s(1), . . . , s(m) 2 Rn⇥2

m

is
given by:

�
R+1,i,S

(s, s(1), . . . , s(m)

)

= min

n

softmax
S

(s
i,S

0
: S0 ✓ M), softmax

S

(s(1)
i,S

0 : S0 ✓ M), . . . , softmax
S

(s(m)

i,S

0 : S0 ✓ M)

o

,

where softmax
S

(a
S

0
: S0 ✓ M) = exp(a

S

)/
P

S

0✓M

exp(a
S

0
).

We then have for any s, s(1), . . . , s(m), s0, s0(1), . . . , s0(m) 2 Rn⇥2

m

,

k�
R+1

(s, s(1), . . . , s(m)

)� �
R+1

(s0, s0(1), . . . , s0(m)

)k
1

=

X

i,S

�

�

�

min

n

softmax
S

(s
i,S

0
: S0 ✓ M), softmax

S

(s(1)
i,S

0 : S0 ✓ M), . . . , softmax
S

(s(m)

i,S

0 : S0 ✓ M)

o

� min

n

softmax
S

(s0
i,S

0 : S0 ✓ M), softmax
S

(s0(1)
i,S

0 : S0 ✓ M), . . . , softmax
S

(s0(m)

i,S

0 : S0 ✓ M)

o

�

�

�


X

i,S

max

n

�

�softmax
S

(s
i,S

0
: S0 ✓ M) � softmax

S

(s0
i,S

0 : S0 ✓ M)

�

�,
�

�softmax
S

(s(1)
i,S

0 : S0 ✓ M) � softmax
S

(s0(1)
i,S

0 : S0 ✓ M)

�

�, . . .
�

�softmax
S

(s(m)

i,S

0 : S0 ✓ M) � softmax
S

(s0(m)

i,S

0 : S0 ✓ M)

�

�

o


X

i

�

�softmax(s
i,S

0
: S0 ✓ M) � softmax(s0

i,S

0 : S0 ✓ M)

�

�

1

+

X

i,j

�

�softmax(s(j)
i,S

0 : S0 ✓ M) � softmax(s0(j)
i,S

0 : S0 ✓ M)

�

�

1

Optimal Auctions through Deep Learning

Distretization Number of decision variables Number of constriants
5 bins/value 1.25⇥ 10

5

3.91⇥ 10

6

6 bins/value 3.73⇥ 10

5

2.02⇥ 10

7

7 bins/value 9.41⇥ 10

5

8.07⇥ 10

7

Table 2: Number of decision variables and constraints of LP with different discretizations for a 2 bidder, 3 items setting with uniform
valuations.


X

i,S

|s
i,S

� s0
i,S

| +
X

i,j,S

|s(j)
i,S

� s0(j)
i,S

|,

where the last step can be derived in the same way as (10).

As with additive bidders, using additionally hidden layers ` = 1, . . . , R are standard feed-forward layers with tanh
activations, we have from Lemma 4 with � = 1, B = 1 and d = max{K,n · 2m}

N1(G, ✏) 
⇠

max{K,n · 2m}2(2W)

R+1

✏

⇡

da

,

where d
a

is the number of parameters in allocation networks.

We now bound �

L

for the three architectures using the covering number bounds we derived above. In particular, we upper
bound the the ‘inf’ over ✏ > 0 by substituting a specific value of ✏:

(a) For additive bidders, choosing ✏ = 1p
L

, we get �
L

 O

✓

q

R(d
p

+ d
a

)

log(W max{K,mn}L)

L

◆

.

(b) For unit-demand bidders, choosing ✏ = 1p
L

, we get �
L

 O

✓

q

R(d
p

+ d
a

)

log((W max{K,mn}L)

L

◆

.

(c) For combinatorial bidders, choosing ✏ = 1p
L

, we get �
L

 O

✓

q

R(d
p

+ d
a

)

log(W max{K,n·2m}L)

L

◆

.

B. Omitted Details in Experiments
In this section, we show more details of the experiments in this paper.

Discussion on size of LP. First, we provide more evidence about the efficiency of our RegretNet compared with LP. As
mentioned in (Conitzer & Sandholm, 2002), the number of decision variables and constraints are exponential in the number
of bidders and items. We consider the setting with n additive bidders and m items and the value is divided into D bins
per item. There are Dmn valuation profiles in total, each involving (n + nm) variables (n payments and nm allocation
probabilities). For the constraints, there are n IR constraints (for n bidders) and n ·

�

Dm � 1

�

IC constraints (for each
bidder, there are

�

Dm � 1

�

constraints) for each valuation profile. In addition, there are n bidder-wise and m item-wise
allocation constraints. In Table 2, we show the explosion of decision variables and constraints with finer discretization of the
valuations for 2 bidders, 3 items setting. As we can see, the decision variables and constraints blow up extremely fast, even
for a small setting with a coarse discretization over value.

Additional discussion of experiments. For small settings (I)–(V), we get similar performance as in Figure 3 with smaller
training samples (around 5000). ReLU activations yield comparable results for smaller settings (I)–(V), but tanh works
better for larger settings (VI)–(VII). Our RegretNet is scalable for auctions with more bidders and items. A single iteration
of augmented Lagrangian took on an average 1–17 seconds across experiments. Even for the larger settings (VI)–(VII),
the running time of our algorithm was less than 13 hours. For the settings (VI)–(VII) for which the optimal auction is not
known, we also compare with a Myerson auction to sell the entire bundle of items as one unit, which is optimal in the limit
of number of items (Palfrey, 1983).

Optimal Auctions through Deep Learning

Distribution Opt RegretNet
rev rev rgt

Setting (a): v1 ⇠ [4, 16], v2 ⇠ U [4, 7] 9.781 9.734 < 0.001
Setting (b): v1, v2 drawn uniformly from a unit triangle 0.388 0.392 < 0.001
Setting (c): v1, v2 ⇠ U [0, 1] 0.384 0.384 < 0.001

Table 3: Revenue of auctions for single additive bidder, two items obtained with RegretNet.

(a) (b)

Figure 6: Allocation rule learned by RegretNet for (a) the single additive bidder, two items setting with values v1 ⇠ U [4, 16] and
v2 ⇠ U [4, 7], and for (b) the single additive bidder, two items setting with values v1, v2 drawn jointly, uniformly from a triangle with
vertices (0, 0), (0, 1) and (1, 0), The optimal mechanisms due to (Daskalakis et al., 2017) for (a) and (Haghpanah & Hartline, 2015) for
(b) are described by the regions separated by the dashed orange lines. The numbers in orange are the probability the item is allocated in a
region.

(b) (b)

Figure 7: Allocation rule learned by RegretNet for (a) the single unit-demand bidder, two items setting with values v1, v2 ⇠ U [0, 1]
(optimal mechanism due to (Pavlov, 2011)), and for (b) the single additive bidder, two items setting with values v1 ⇠ U [0, 4], v2 ⇠ U [0, 3].
The subset of valuations (v1, v2) where the bidder receives neither item looks like a pentagonal shape.

Distribution Item-wise Myerson Bundled Myerson RegretNet
rev rev rev rgt

Setting (d): vi ⇠ U [0, 1] 2.495 3.457 3.461 < 0.003
Setting (e): v1 ⇠ U [0, 4], v2 ⇠ U [0, 3] 1.877 1.749 1.911 < 0.001

Table 4: Revenue of auctions for single additive bidder, 10 items obtained with RegretNet and single additive bidder, 2 items with
v1 ⇠ U [0, 4], v2 ⇠ U [0, 3].

Distribution Ascending auction RegretNet
rev rev rgt

Setting (f): v1, v2 ⇠ U [0, 1] 0.179 0.706 < 0.001

Table 5: Revenue of auctions for 2 unit-demand bidders, 2 items obtained with RegretNet. For the ascending auction, the price were
raised in units of 0.3 (which was empirically tuned using a grid search.)

Optimal Auctions through Deep Learning

C. Additional Experiments
In this section, we show the additional experiments for both the single bidder case and the mulitple bidders case. We
consider the following settings:

(a) Single additive bidder with preferences over two non-identically distributed items, where v
1

⇠ U [4, 16] and v
2

⇠
U [4, 7].

(b) Single additive bidder with preferences over two items, where (v
1

, v
2

) are drawn jointly and uniformly from a unit
triangle with vertices (0, 0), (0, 1) and (1, 0).

(c) Single unit-demand bidder with preferences over two items, where the item values v
1

, v
2

⇠ U [0, 1],

(d) Single additive bidder with preferences over ten items, where each v
i

⇠ U [0, 1].

(e) Single additive bidder with preferences over two items, where the item values v
1

⇠ U [0, 4], v
2

⇠ U [0, 3],

(f) Two unit-demand bidders and two items, where the bidders draw their value for each item from identical uniform
distributions over [0, 1].

For setting (a), we show our RegretNet almost exactly recovers the optimal mechanism of (Daskalakis et al., 2017). For
setting (b), we show that the approach almost exactly recovers the optimal mechanism of (Haghpanah & Hartline, 2015).
For setting (c), we show that the approach almost exactly recovers the optimal mechanisms of (Pavlov, 2011). For settings
(a), (b), (c), we show our results in Table 3, and we show the allocation plots for the three settings above in Figure 6 and
Figure 7. To our knowledge, an analytical solution for the optimal mechanism for setting (d) is not available (Daskalakis,
2015). Here our approach finds a new mechanism that has higher revenue than both a Myerson auction on each item and a
Myerson on the entire bundle, we show it in Table 4. For setting (e), we plot the allocation figures in Figure 7 and test the
performance of our RegretNet compared with Myerson auction on each item and Myerson auction on the entire bundle in
Table 4. For setting (f), the optimal auction is again not known; we show in Table 5 that the learned auctions beat reasonable
baseline mechanisms.

D. Decomposition of Combinatorial Feasible Allocations
In Section 3, we defined a combinatorial feasible allocation. In this section, we show that the definition need not imply the
existence of an integer decomposition and provide a stronger definition for the case of two items, a modified neural network
architecture, and updated experimental results for settings (IV) and (V). The effect is a very slight reduction in the expected
revenue from the optimized auction designs.
Definition 1. A fractional combinatorial allocation z has an integer decomposition if and only if z can be represented as a
convex combination of feasible, deterministic allocations.

Example 1 shows that a combinatorial feasible allocation may not have an integer deccomposition, even for the case of two
bidders and two items.
Example 1. Consider a setting with two bidders and two items, and the following fractional, combinatorial feasible
allocation:

z =



z
1,{1} z

1,{2} z
1,{1,2}

z
2,{1} z

2,{2} z
2,{1,2}

�

=



3/8 3/8 1/4
1/8 1/8 1/4

�

Any integer decomposition of this allocation z would need to have the following structure:

z = a



0 0 1

0 0 0

�

+b



0 0 0

0 0 1

�

+c



1 0 0

0 1 0

�

+d



1 0 0

0 0 0

�

+e



0 0 0

0 1 0

�

+f



0 1 0

1 0 0

�

+g



0 1 0

0 0 0

�

+h



0 0 0

1 0 0

�

where the coefficients sum to at most 1. Firstly, it is straightforward to see that a = b = 1/4. Given the construction, we
must have c+ d = 3/8, e � 0 and f + g = 3/8, h � 0. Thus, a+ b+ c+ d+ e+ f + g + h � 1/2 + 3/4 = 5/4 for any
decomposition. Hence, z is not implementable.

Optimal Auctions through Deep Learning

Dist. rev rgt VVCA AMAbsym
(IV) 2.860 < 0.001 2.741 2.765
(V) 4.269 < 0.001 4.209 3.748

Figure 8: Modified test revenue and regret for the two bidder, two item combinatorial auction settings.

To ensure that a combinatorial feasible allocation has an integer decomposition we need to introduce additional constraints.
For the two items case, we introduce the following constraint:

8i, z
i,{1} + z

i,{2}  1�
n

X

i

0
=1

z
i

0
,{1,2}. (11)

Theorem 3. For m = 2, any combinatorial feasible allocation z with additional constraints (11) can be represented as a
convex combination of matrices B1, . . . , Bk where each B` is a feasible, 0-1 allocation.

Proof. Firstly, we observe in any deterministic allocation B`, if there exists an i, s.t. B`

i,{1,2} = 1, then 8j 6= i, S : B`

j,S

= 0.
Therefore, we first decompose z into the following components,

z =

n

X

i=1

z
i,{1,2} ·Bi

+ C,

and
Bi

j,S

=

⇢

1 if j = i, S = {1, 2}, and
0 otherwise.

Then we want to argue that C can be represented as
P

k

`=i+1

p
`

·B`, where
P

k

`=i+1

p
`

 1�
P

n

i=1

z
i,{1,2} and each B`

is a feasible 0-1 allocation. Matrix C has all zeros in the last (items {1, 2}) column,
P

i

C
i,{1}  1�

P

n

i=1

z
i,{1,2}, and

P

i

C
i,{2}  1�

P

n

i=1

z
i,{1,2}.

In addition, based on constraint (11), for each bidder i,

C
i,{1} + C

i,{2} = z
i,{1} + z

i,{2}  1�
n

X

i

0
=1

z
i

0
,{1,2}.

Thus C is a doubly stochastic matrix with scaling factor 1�
P

n

i

0
=1

z
i

0
,{1,2}. Therefore, we can always decompose C into a

linear combination
P

k

`=i+1

p
`

·B`, where
P

k

`=i+1

p
`

 1�
P

n

i

0
=1

z
i

0
,{1,2} and each B` is a feasible 0-1 allocation.

We leave to future work to characterize the additional constraints needed for the multi-item (m > 2) case.

D.1. Neural Network Architecture and Experimental Results

To accommodate the additional constraint (11) for the two items case we add an additional softmax layer for each bidder. In
addition to the original (unnormalized) bidder-wise scores s

i,S

, 8i 2 N,S ✓ M and item-wise scores s(j)
i,S

, 8i 2 N,S ✓
M, j 2 M and their normalized counterparts s̄

i,S

, 8i 2 N,S ✓ M and s̄(j)
i,S

, 8i 2 N,S ✓ M, j 2 M , the allocation
network computes an additional set of scores for each bidder i, s0(i)

i,{1}, s
0(i)
i,{2}, s

0(i)
1,{1,2}, · · · , s

0(i)
n,{1,2}. These additional

scores are then normalized using a softmax function as follows,

8i, k 2 N,S ✓ M, ¯s0
(i)

k,S

=

exp

⇣
s

0(i)
k,S

⌘

exp

⇣
s

0(i)
i,{1}

⌘
+exp

⇣
s

0(i)
i,{2}

⌘
+

P
k exp

⇣
s

0(i)
k,{1,2}

⌘ .

To satisfy constraint (11) for each bidder i, we compute the normalized score ¯s0
i,S

for each i, S as,

¯s0
i,S

=

(

¯s0
(i)

i,S

if S = {1} or {2}, and
min

n

¯s0
(k)

i,S

: k 2 N
o

if S = {1, 2}.

Optimal Auctions through Deep Learning

Then the final allocation for each bidder i is:

z
i,S

= min

n

s̄
i,S

, ¯s0
i,S

, s̄(j)
i,S

: j 2 S
o

.

We repeat the experiments on the combinatorial auction settings (IV) and (V) with this modified architecture. We summarize
the results of imposing this additional structure in Table 8. Compared with Figure 3(b) we see only a very small change in
the expected revenue.

