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Abstract

We build novel welfare-based price indices for major household appliances that leverage
changes in same-model prices and how consumers substitute between exiting, continuing and
new models. We then evaluate how minimum energy efficiency requirements and changing
criteria for Energy Star labels affected these indices in the U.S. between 2001 and 2011, a period
of time when some appliances experienced standard changes while others did not. We find
that prices declined while quality and consumer welfare increased, especially when standards
become more stringent. We also find that much of the price index decline can be attributed
to standards-induced innovation, or cannibalism, not to inter-manufacturer competition. Our
results also add to a growing body of evidence that the Consumer Price Index exaggerates
inflation due to inadequate account of quality and substitution to new goods.
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1 Introduction

How do energy efficiency standards influence consumer welfare? From a regulatory perspective,

consumer welfare implications of standards are important, particularly when these are obscured

in engineering-based estimates of costs and benefits. Moreover, the volume of regulated goods as

well as the number of countries implementing energy efficiency standards has increased in recent

decades, raising the need to better understand benefits and costs, including consumer welfare. Much

of the existing literature considers how efficiency standards affect energy savings and pollution

externalities, as well as information and behavioral challenges that may interfere with efficient

investment in energy saving durable goods purchases (Gillingham et al., 2009; Jaffe et al., 2004).

Less research estimates the direct consequences of standards themselves, like how costly they are

to consumers and to what extent standards actually reduce energy consumption.

In this paper, we use model-specific data on appliance sales together with methods devel-

oped in the trade and price-index literatures (Feenstra, 1994; Broda and Weinstein, 2006, 2010)

to evaluate how more stringent energy efficiency standards affected the price and quality of major

appliances. We pay particular attention to relatively frequent changes in the minimum energy

efficiency standard for clothes washers that occur in our data. We also consider changes the En-

ergy Star R© thresholds for refrigerators, as well as price indices of room air conditioners (ACs)

and clothes dryers, since these appliances did not experience standard changes during the sample

period, and thereby serve as controls. Our estimation strategy assesses quality by examining how

customers substitute between existing, exiting and new products, similar to Broda and Weinstein

(2010), and then examines how different welfare-based price indices respond to differential timing

of policy changes across these appliances.

We find no evidence to suggest that more stringent energy efficiency standards hurt consumers

by increasing price or lowering quality. Rather, we find evidence that price declines and substitution

toward new products accelerates with stricter standards. Assuming CES utility and plausible sub-

stitution elasticities, the data imply marked improvement in consumer welfare, excluding external

pollution-related benefits. Although these results may be surprising to some, a number of theories

can explain them. Ronnen (1991) shows how standards can make heterogeneous products more ho-

mogeneous, and thereby increase competition, lower prices and improve welfare. Another possibility

is that standards facilitate innovation of new products (Jaffe and Palmer, 1997), and improve wel-

fare both through lower prices and increased product diversity, akin to Broda and Weinstein (2010).

These ideas recognize that market failures besides pollution externalities and imperfect information

may act upon energy efficiency investments, namely imperfect competition and positive externali-

ties of innovation. To investigate these mechanisms, we show evidence that policy-induced changes

in price, quality and welfare are associated with entry and exit of models. Specifically, price de-

2



clines connect more closely to own-manufacturer product introductions (cannibalism) than they do

to entry and exit of models by competing manufacturers, a finding that suggests a standard-induced

innovation channel rather than a competition channel for price and quality improvements.

A literature on consumers’ apparent underinvestment in energy efficient technologies, which

may be a key justification of energy efficiency standards, dates back to early hedonic modelling

(Hausman, 1979) and consumer choice studies that relate purchase decisions to product prices, en-

ergy efficiency, and other product attributes (Train, 1985).1 Economists typically explain this phe-

nomenon by pointing to market failures, consumer behavioral anomalies and methodological issues.2

Most studies, however, do not consider the supply side of the market. Some, however, have investi-

gated the impact of more stringent standards in the context of markets with quality-differentiated

goods (see for example, Ronnen, 1991; Crampes and Hollander, 1995; Valletti, 2000). A number

of empirical studies looking at this issue can be found in the automobile market (Goldberg, 1998;

Jacobsen, 2013; Sallee, 2013). For household appliances, some studies provide empirical evidence

showing the correlation between imposing energy efficiency standards and, like our study, declining

prices of durable goods (see for example, Greening et al., 1997; Chen et al., 2013; Spurlock, 2013;

Spurlock et al., 2013; Van Buskirk et al., 2014; Houde and Spurlock, 2015). Our study, though

qualitatively consistent with some of the later studies referenced above, contributes to the litera-

ture by: (1) adding additional and, we believe, clearer and more compelling evidence that quality-

adjusted prices are unaffected or decline as a result of standard changes; (2) developing novel,

appliance-specific, welfare-based price indices that account for same-product prices changes, exit of

old (or banned) products, and entry of new products; (3) identifying mechanisms through which

energy efficiency standards influence prices, quality, and consumer welfare; and finally (4) provid-

ing additional evidence that conventional price indices may exaggerate inflation due to inadequate

account of quality and substitution to new goods.

Evidence of causality from standard changes to price and welfare changes is developed using

difference-in-difference estimates that exploit asynchronous timing of standard changes for different

appliances. The price indices we develop offer a simple and relatively transparent way of calculating

consumer welfare, and does not require additional data on consumer characteristics or character-

istics of the products they purchase. The approach employs recent developments in price index

theory that assumes constant elasticity of substitution (CES) utility together with model-specific

data that allow tracking of same-quality products, and accounts for entry and exit based on changes

in expenditure shares (Feenstra, 1994; Broda and Weinstein, 2006, 2010; Redding and Weinstein,

2018). It generates results that are similar to those of Houde and Spurlock (2015) who used the

1The phenomenon has been called the energy paradox (Jaffe and Stavins, 1994b) or the energy efficiency gap
(Jaffe and Stavins, 1994a). Gerarden et al. (2015) distinguish the two by defining the former as a situation where
privately optimal energy efficiency investments are not being undertaken while the latter relates to social optimality.

2See (Gerarden et al., 2015) for a review on these issues.
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same dataset but estimated a more explicit individual choice model to examine the effect of stan-

dards on quality of major appliances sold in the U.S.. To the best of our knowledge, we are the

first to explicitly illustrate that most of the changes in product prices in regulated appliances are

associated with increased entry and exit of models that occur within the same manufacturer, and

not due to increased inter-manufacturer competition.

We briefly review the price index literature, and then show how we develop welfare-based

index measures using the expenditure-weighted averages of same-model price changes, both exclud-

ing and including new and exiting models. This technique has many applications. For example,

economists have long noted that the Consumer Price Index (CPI) may exaggerate inflation be-

cause the Bureau of Labor Statistics employs methods that cannot fully account for changes in

quality (Moulton, 1996; Hausman, 2003). The controversial issue on mismeasurement in the U.S.

CPI has a long history. In 1996, the “Boskin Commission Report” estimated that the CPI was

overestimated by 1.1 percent per year. The report found that half of the bias resulted from new

products and quality changes that were imperfectly accounted for by standard hedonic methods

(Boskin et al., 1998). Later, a series of studies emerged providing estimates for the bias that range

from insignificant (Greenlees and McClelland, 2011) to two-thirds of price increases (Bils, 2009).

More recently Broda and Weinstein (2010), using a database that covers 40-percent of all the ex-

penditure on goods in CPI, find that inflation was between 6 and 9 percentage points lower than

indicated by the CPI between 1994-2003. Analysis by Redding and Weinstein (2018) indicates

larger bias. The indices we develop provide a simple way to accurately measure price changes by

considering only continuing appliance models that were sold across multiple periods, thus hold-

ing quality constant during the period. This index is then adjusted for entry and exit of models

based on expenditure shares and assumed or estimated elasticities of substitution. Consistent with

Broda and Weinstein (2010) and Redding and Weinstein (2018), we find that prices for laundry

equipment (clothes washers and dryers) for the period 2002-2011 fell about 3 percentage points

more than the CPI for laundry equipment.

The rest of the paper is organized as follows. Section 2 provides a overview of energy ef-

ficiency standards covered in this study. Section 3 reviews the price index literature, recent de-

velopments, and how we adapt this literature for our own analysis of energy-consuming durable

goods. Section 4 describes the data and section 5 describes methods and estimates of the elastic-

ity of substitution. Section 6 presents estimates of impacts from standards using differences and

differences-in-differences. Section 7 presents further evidence on the degree to which price reduc-

tions of older continuing models are induced by introductions of new products by both same and

competing brands and manufacturers. Section 8 discusses a range of implications of the empirical

results and concludes.
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2 Energy Efficiency Standards

The appliances we study—clothes washers and dryers, refrigerators and room air conditioners—are

among those subject to either federal minimum energy (ME) and Energy Star R© (ES) standards. ME

standards began with the passage of the National Appliance Energy Conservation Act (NAECA)

in 1987. The law established an initial minimum energy efficiency standard for a set of appliances

sold in the U.S. and directed the Department of Energy (DOE) to periodically update them.

Subsequent legislation, such as the Energy Policy Act of 1992, the Energy Policy Act of 2005,

and the Energy Independence and Security Act of 2007, included additional products. The DOE

reports that approximately 60 categories of appliances and equipment representing about 90 percent

of household energy use are covered under ME standards.

To ensure implementation of standards the DOE publishes certification, compliance and

enforcement regulation. These regulations prescribe test procedures to establish certified energy

efficiency ratings and require manufacturers to submit certification reports to DOE. An appliance

must comply with standards in place on its manufacturing date or the date the appliance was

imported for sale in the U.S. Thus, appliances manufactured or imported before the effective date

of a new ME standard can still be sold in the U.S. market.

Although DOE has authority to impose regulations governing energy efficiency for many

categories of appliances and equipment used in homes, businesses and other applications, each pro-

posed rule must undergo a roughly three-year process of review, including consideration of impacts

to consumers and businesses (http://energy.gov/eere/buildings/process-rule). Evaluation

of benefits and costs typically involve engineering-based estimates, which consider the cost of specific

energy-saving technologies that can be used to satisfy proposed standards as well as the discounted

value of energy-related savings. A common complaint from the Office of Management and Budget

is that these explicit costs and benefits do not account for intangible benefits and costs connected

to the way consumers perceive and value altered product characteristics. More energy efficient

appliances may have less desirable performance characteristics as compared to the less efficient ap-

pliances that they replace. By their nature, some such benefits and costs are difficult to ascertain

and likely impossible to evaluate before proposed standards have been implemented. In this paper,

we therefore develop methods to evaluate the ex-post net benefits of intangible consumer-related

welfare impacts.

Aside from DOE’s ME standards, the U.S. government sets thresholds for ES qualification.

ES is a voluntary program that identifies and promotes energy efficiency by labelling products

that meet higher efficiency requirements set forth by the Environmental Protection Agency (EPA).

DOE periodically revises the federal minimum energy efficiency thresholds based on judgment about

available technologies. EPA typically revises the ES threshold when ES comprises 50 percent or

5

http://energy.gov/eere/buildings/process-rule


higher share of sales. Thus, the timing of ES changes may not coincide with changes in the minimum

energy efficiency standards, although minimum standards also factor into decisions to revise ES

qualification.

To investigate impacts of standard changes, we leverage differential timing of ME and ES

standard changes across major appliances. Clothes washers underwent major changes in both ME

and ES standards in 2001, 2004, and 2011 (Table 1). The ME standard for refrigerators was revised

in 2001, and ES thresholds were revised in 2001, 2004 and 2008. No ME or ES standards changed

for clothes dryers and room air conditioners between 2001 and 2011.

Table 1: U.S. Energy Efficiency Standards for Residential
Clothes Washers and Refrigerators, 2001-2011.

Appliance Year Effective Federal Minimum Standard Energy Star Standard

Clothes Washers 2001 - MEF ≥ 1.26

2004 MEF ≥ 1.04 MEF≥ 1.42

2007 MEF ≥ 1.26 MEF ≥1.72; WF ≤ 8.0

2009 - MEF ≥ 1.8; WF ≤ 7.5

2011 MEF≥1.26; WF ≤ 9.5 MEF ≥ 2.0; WF ≤ 6.0

Refrigerators 2001
30% more efficient than the 1993

standard (51% better than the 1990
standard)

10% more efficient than the 2001
standard (56% better than the 1990

standard)

2004
15% more efficient than the 2001

standard (58% better than the 1990
standard)

2008
20% more efficient than the 2001

standard (61% better than the 1990
standard)

Standards for washers are set based on the Modified Energy Factor (MEF), the Energy Factor (EF) and the Water
Factor (WF). The Department of Energy defines (i) MEF as the ratio of the capacity of the washer to the energy
used in one cycle; (ii) EF as the MEF excluding the energy for drying clothes; and (iii) WF as the quantity of water
used in one cycle per unit capacity of the washer. The table does not include standards adopted and implemented
for non-residential and compact types of clothes washers and refrigerators.

Source: Department of Energy

3 Price, Quality and Welfare Measures

To examine how appliance prices and qualities change over time, we draw on recent innovations

in the price index literature, normally used to track changes in the general cost of living, like the

consumer price index (CPI). More recently, price indices have taken advantage of universal product

code (UPC) data to track prices of exact products over time, data that can be used to better
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account for quality changes and changing varieties, which can be inferred by observing substitution

from exiting and continuing products to new products (Feenstra, 1994; Broda and Weinstein, 2006,

2010). We take a similar approach in this paper, except we focus on appliances for which product

entry and exit have been influenced by changing energy efficiency standards. By observing how both

prices and purchase shares of new versus continuing models change, we infer changes in consumer

welfare.

3.A Price Indices

Development of standard price indices draws on the expenditure function e(p, u0), which gives the

minimum cost of attaining a fixed level of utility (u0) for a given vector or prices p. If prices change

from p0 to p1, an ideal price index is P = e(p1,u0)
e(p0,u0) , for it gives the proportional change in income

needed to maintain the same standard of living. The expenditure function subsumes preferences and

choices that adjust as relative prices change and new products are introduced. Without making

assumptions about the shape of the utility function, we can bound the price index by holding

quantities fixed instead of utility. Fixing quantities at the initial period (the Laspeyres index)

overestimates the change in the cost of living, for it assumes zero substitution; fixing quantities

in the second period (the Paasch index) underestimates the change. Splitting the difference and

weighting prices by average quantity of the two periods seems like a sensible compromise, which

gives the Marshall-Edgeworth index; similarly, the Fisher index is the geometric average of the

Laspeyres and Paasche indices (Diewert, 1988).

A utility function is needed to calculate an index that reflects a precise change in welfare.

An elegant solution comes from assuming constant elasticity of substitution (CES). Regardless of

the product share and elasticity parameters, Sato (1976) and Vartia (1976) show that CES utility

implies an exact price index that equals the weighted geometric mean of individual product price

ratios:3

Pt =
∏
i

(
pi,t
pi,t−1

)wi,t
(1)

where the weights wi,t are calculated using expenditure shares as follows,

3Also see Feenstra (1994).
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si,t ≡
pi,txi,t∑
i pi,txi,t

(2)

wi,t ≡
si,t−si,t−1

ln si,t−ln si,t−1∑
i

(
si,t−si,t−1

ln si,t−ln si,t−1

)
.

(3)

CES utility may or may not be a reasonable approximation of preferences, as it assumes the

same degree of substitutability between all goods. And while CES utility can represent aggregate

demand of a heterogeneous constituent population of individuals (Anderson et al., 1992), it is

nonetheless restrictive.

Another key issue concerns the definitions and measures of individual goods that enter the

index. Product quality of individual goods can change over time, new goods can be introduced, and

some old goods exit. Traditionally, hedonic methods have been used to adjust prices of individual

goods for changes in characteristics, and thereby account for quality. With the growth of large

digitized data sets, quantities and prices of unique individual products can be tracked. When

quantities and prices are measured by UPC or product-specific model number (like we do here),

quality is arguably fixed, and broader quality changes can be discerned by how consumers substitute

between continuing goods and new goods. Feenstra (1994) extends the CES-based index to account

for new goods, and Broda and Weinstein (2006) and Redding and Weinstein (2018) apply this

method to product-specific UPC data, methods that we now adopt in this paper.4

To simplify notation, we follow Broda and Weinstein and define common goods as continuing

goods, i.e., those appearing in both periods t and t− 1. A chained index is developed by defining

a new set of common goods for every time difference, such that the base year is reset to period

t − 1 for each period t. Define the CES price index for common goods only as P ∗
t . This index

is calculated like equation 4 except it excludes goods that exit between periods t and t − 1 and

goods that enter in period t. Feenstra (1994) shows that the CES-based index inclusive of new and

exiting goods is

4In an earlier version of this paper, we developed a price index that was similar in concept, but not tied to an
explicit utility function. Instead of inferring welfare improvement by the expenditure share of new goods verses
exiting goods, we inferred welfare improvement non-parametrically by substitution from a constant-quality index of
continuing goods and all goods, as reflected by average price. The results are very similar.
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P σt = P ∗
t

(
λt
λt−1

) 1
σ−1

(4)

where σ is the elasticity of substitution, λt is the common goods share of total sales in period t, and

λt−1 is the common goods share of sales in t−1.5 Holding the common goods price index constant,

if this ratio of shares is less than one, it implies that as goods exited, consumers spent more on

new goods than they did on exiting goods, implying a welfare improvement. Conversely, if the

ratio is greater than one, then consumers substituted more toward common goods than new goods,

resulting in a welfare decline. With entry and exit of goods, the exact price index now depends on

σ, which must be estimated, an issue we address below. The larger the elasticity of substitution,

the closer P σ will be to P ∗.

3.B Price Indices for Appliances

Using model-specific prices and quantities, we develop indices akin to those described above. The

only difference is that these indices are calculated for specific products (e.g., washing machines)

rather than a broad basket of consumer goods. Specifically, we develop four price indices: a

Marshall-Edwards index with equal weighting of sequential periods (PME), a Fisher index that

equals the geometric average of Laspeyres and Paache (PF ) indices, a CES-based exact index

based on common goods only (P ∗), and a full CES-based index inclusive of model entry and exit,

which we denote with (P σ), where σ is the elasticity of substitution.6 Note that in all cases we

develop chained indices that recalculate the set of common goods and base year every two periods,

and all indices except the full CES index (P σ) exclude new and exiting models.

It is worth noting that the assumption of CES utility for products within a product group

may be more realistic than assuming CES across all products. CES assumes all goods are gross

substitutes, independence of irrelevant alternatives, and the same elasticity of substitution between

all products. These assumptions seem more plausible for consumers deciding between a Whirlpool,

GE or Samsung refrigerator, but less plausible when considering allocation of a budget between

appliances, food, and recreation activities; or worse, durable goods and energy, which may be

complements. We might also expect the elasticity of substitution to be larger than an elasticity

5Note that λt−1 is not simply the lag of λt, since the definition of common goods changes for each pair of sequential
time periods.

6In an earlier version of this paper we developed an index using price changes measured as a percent of average
price in two sequential periods, weighted by the average quantity sold in the two periods. This index is similar in
concept to Marshall-Edwards and Fisher, is nearly indistinguishable from these indices, and happens to lie between
them. We dropped the index for simplicity and continuity with the previous literature.
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used for all goods or for broad categories of goods, since different washing machines with different

features, brands or sizes are surely more substitutable than appliances and coffee (for example).

Still, the full CES index P with entry and exit requires an elasticity of substitution. One

option is to simply assume an elasticity, conservatively estimated as being similar to those estimated

for broader classes of goods. A second option is to estimate elasticities using the identification

strategy suggested by Feenstra (1994). We do both. In the next section we describe the data used

to construct the price indices. In the subsequent section we describe the identification strategy for

estimating σ and report estimates, which turn out to be considerably larger than 10, which is the

benchmark elasticity that we assume.

One problem with product-specific indices is that each one comprises a small share of con-

sumption expenditures. Because consumers can substitute between these appliances and other

products, product-specific indices underestimate welfare gains. In effect, the estimates assume per-

fectly inelastic demand for the product group, only accounting for substitution between individual

appliance models, not substitution between appliances and other goods. Thus, conditional on an

assumed elasticity of demand for the whole product group relative to other goods, one can also

approximate the size of additional welfare gains. Otherwise, we underestimate the welfare gains in

the event that the price index declines, and exaggerate the welfare loss if the price index increases.

4 Data and Appliance Price Indices

Point-of-sale data for clothes washers, clothes dryers, room air conditioners, and refrigerators were

obtained from the NPD Group, purchased by Lawrence Berkeley National Laboratory. The data

were collected from a set of U.S. retailers (both online and in-store) and are aggregated at the

national level.7 On average, the data represents about 32% of the total shipments of clothes washers

sold in the United States from 2002-2011, while dryers, refrigerators and room air conditioners

account for 32%, 35% and 25%, respectively. In terms of revenue the data represents about 37%

of the industry total for washers and dryers, and 36% for refrigerators and room air conditioners.

A list of participating retailers and the share of appliances in our sample to total U.S. market and

total shipments are provided in Appendix A and Appendix B, respectively.

The data include monthly total revenue and total quantity sold by individual model number

from January 2001 to December 2011. Each model number uniquely characterizes each prod-

uct, including its specific color. We therefore believe it reasonable to treat these identifica-

tion numbers in the same way Broda and Weinstein (2006), Broda and Weinstein (2010), and

Redding and Weinstein (2018) treat UPC codes: as fixed products with unchanging quality over

7NPD group was unable to provide subnational aggregations.
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time. We calculate the unit price of each model by dividing total revenue by total units sold in each

month. This price includes in-store discounts for individual models of appliances, but not mail-in

rebates. To check how this price variable represents actual sales price, we randomly selected 30

models of clothes washers. We verified the manufacturer’s suggested retail price (MSRP) of these

models online and find that our price variable is 20 percent less on average, which seems reasonable

given the time since NPD collected the data and the inclusion of in-store discounts.

We drop observations with prices falling below $100 for clothes washers and refrigerators, and

$50 for room air conditioners, as these observations are outliers and appear unrealistic. Remaining

models comprise more than 99 percent of total revenue. About 35 percent of the observations for

sampled clothes washers have masked model numbers to preserve the anonymity of NPD Group’s

partner retailers. For example, Kenmore is a brand of appliance that is sold exclusively by Sears,

such that unmasked models would indicate sales of the particular retailer. Refrigerators and room

air conditioners have 40 and 70 percent observations with masked model numbers, respectively.

NPD assigned these models alternative codes, but it is possible that the models may in fact be the

same as others in the data set. Because these masked model numbers may not be new when each

is first observed in the data, we compute separate statistics with and without masked models to

check the robustness of our findings (reported in Appendix F.)8 Summary statistics are reported

in Table 2.

In Figures 1 and 2, we plot average prices of each appliance and each of the price indices,

respectively. While average prices are generally flat, all of the price indices, which hold quality

constant or account for new products, show falling prices and improving welfare (Figure 2). For

all appliances, the proportional change in expenditure share on common goods ( λt
λt−1

) is typically

less than one, indicating an improvement in welfare from introductions of new models, and this

falls quite sharply with major introductions of new appliances (Figure 3). As a result, indices that

account for entry and exit of models sit below the CES common goods index, and the lower the

elasticity, the more the indices fall and the greater the implied welfare improvement.

The largest single change in minimum energy efficiency standards was for washing machines

in 2004. This event coincides with a large change in the expenditure share of common goods,

and a decline in the price index. The common goods index P ∗ declined slightly over this time

frame, while the proportional change in expenditure share on common goods was less than one.

The welfare improvement is modest under the estimated elasticity, however, because it is so large.

8A substantial share of masked models may come from Sears-specific models, a notable retailer whose share of
the appliance market declined considerably during our sample period and since. The decline of Sears may influence
competition and product variety with a detrimental influence on consumers. The merger between Whirlpool and
Maytag may have had similar influence (Ashenfelter et al., 2013). The robustness of our results to including or
excluding masked models suggests this is not an significant issue in our sample. A compensating differential may be
entry and growth of new manufacturers, particularly Samsung and LG.
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Table 2: Summary Statistics

Washer Refrigerator Room Air Conditioner

Baseline No Masked Baseline No Masked Baseline No Masked

(1) (2) (1) (2) (1) (2)

Price ($) 650.55 700.09 1,378.75 1,464.47 332.53 337.18

(355.92) (348.89) (1,383.51) (1,355.75) (240.27) (215.76)

Sales (units) 744.00 872.30 199.61 203.68 590.72 757.67

(1,908.47) (2,007.55) (736.51) (617.18) (3,264.15) (3,025.81)

Revenue (’000$) 382.40 481.45 143.15 167.16 119.11 147.71

(966.37) (111.02) (451.36) (468.18) (581.32) (420.69)

No. of models 2,733 1,245 15,188 6,137 3,134 878

Observations 38,504 24,838 181,513 103,501 33,290 10,477

The table shows monthly average price, sales and revenues generated between 2001 and 2011 for each of the following:
(1) Baseline treats all model numbers (including masked) as unique models, and (2) No Masked drops the masked
models. Standard deviations are in parentheses. Observations with prices falling below $100 for washers, dryers,
and refrigerators, and $50 for room AC were dropped as these observations are outliers and appear to be unrealistic.
Prices are in December 2011 U.S.$.
Source: The NPD Group

If the elasticity of substitution is smaller, the welfare gain is considerably greater. There is no

indication that the change in standards hurt consumers.

One interesting anomaly is the rise in price indices around 2005. We see this anomaly in all

three appliances and it is especially large for air conditioners, which did not have any changes in

efficiency standards or Energy Star thresholds. It therefore seems unlikely that this is a delayed or

anticipatory response to a policy change. We speculate that this anomaly may have something to

do with the housing bubble; it is around the time that housing starts peaked.

5 Estimating an Elasticity of Substitution

To estimate an elasticity of substitution for each appliance group, we employ the method developed

by Feenstra (1994), which draws on insights by Leamer (1981). Leamer shows that, while supply

and demand elasticities cannot be identified with price and quantity data alone (i.e., without

instruments), one can put bounds on supply and demand elasticities, which must lie on a hyperbola

defined by the regression coefficient of quantity on price (and vice versa), and the error variances.

With many products and a single elasticity summarizing substitution between products, as in CES,

and further assuming that all appliance models have the same supply elasticity, we can identify both

parameters by making assumptions about the correlation of supply and demand shocks associated

with individual appliances. Specifically, we must assume that after double differencing (subtracting

mean price and expenditure shares from individual product shares, and then differencing over time),
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Figure 1: Average Price, Clothes Washers, Refrigerators,
Room ACs and Clothes Dryers, 2002,2011

Notes: The figure shows sales-weighted average prices and 95 percent confidence bands
for each appliance across time. The solid vertical lines represent the effective date of
simultaneous policy changes in the federal minimum energy efficiency standard and Energy
Star certification threshold, while the dashed line is for the Energy Star threshold change
that took effect in July 2009, all for clothes washers. Refrigerators had changes in Energy
Star certification thresholds in January 2004 and in May 2008 (represented by the dashed
dotted vertical line). All prices are in December 2011 U.S. dollars.

Source: Monthly sales and revenues of clothes washers sold in the U.S. between 2001-2011
(The NPD Group) and authors’ calculations.

supply shocks (unobserved changes in costs) are not correlated with demand shocks (unobserved

changes in preferences). Identification also requires the error variances of the supply and demand

shocks for the different individual products to differ, thereby identifying many hyperbolas, the

intersection of which identifies the elasticities.

These assumptions allow us to identify supply and demand elasticities using weighted least

squares. These methods were extended by Broda and Weinstein (2006), Broda and Weinstein

(2010), and Redding and Weinstein (2018). Following Feenstra (1994), we spell out the mechanics

of estimation; readers are directed to the above references for a formal derivation.

Define yi,t and x1i,t as the variance of prices and shares, respectively, given by the following:

yi,t = (∆ ln pi,t − ∆ ln pk,t)
2 (5)
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Figure 2: Price Indices, Clothes Washers, Refrigerators, Room
ACs and Clothes Dryers, 2002-2011

(a) Clothes Washers (b) Refrigerators

(c) Clothes Dryers (d) Room ACs

Notes: Panels (a)-(d) show the calculated price indices for clothes washers, refrigerators, and room ACs, respectively.
PME and PF are the Marshall-Edgeworth and Fisher price indices, respectively; P ∗ is the CES-based index for
common goods; P σ̂ is the CES-based index with new and exiting models and the estimated elasticity of substitution
(101 for washers; 44 for refrigerators, and 66 for room air conditioners); and P 10 is the CES-based index with a
substitution elasticity of 10. The solid vertical lines represent the effective date of simultaneous policy changes in
the federal minimum energy efficiency standard and Energy Star certification threshold, while the dashed line is for
the Energy Star threshold change that took effect in July 2009, all for clothes washers. Refrigerators had changes
in Energy Star certification thresholds in January 2004 and in May 2008 (represented by the dashed dotted vertical
line). All prices are in December 2011 U.S. dollars.

Source: Monthly sales and revenues of clothes washers sold in the U.S. between 2001-2011 (The NPD Group) and
authors’ calculations.

x1i,t = (∆ ln si,t − ∆ ln sk,t)
2 (6)

where ∆pi,t is the change in price of continuing model i from period t− 1 to period t, ∆pk,t is the

geometric average price change of common goods in period t, ∆ ln si,t is the change in expenditure
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Figure 3: Ratio of continuing models between t and t− 1.

Notes: The figure shows the expenditure share on continuing models between periods t and t− 1, ( λt
λt−1

). The solid

vertical lines represent the effective date of simultaneous policy changes in the federal minimum energy efficiency
standard and Energy Star certification threshold, while the dashed line is for the Energy Star threshold change that
took effect in July 2009, all for clothes washers. Refrigerators had changes in Energy Star certification thresholds in
January 2004 and in May 2008 (represented by the dashed dotted vertical line).

Source: Monthly sales and revenues of clothes washers sold in the U.S. between 2001-2011 (The NPD Group) and
authors’ calculations.

share of continuing good i in period t, and ∆ ln sk,t is the geometric average expenditure share of

continuing goods.

We also define x2i,t as their covariance given by

x2i,t = (∆ ln si,t − ∆ ln sk,t) (∆ ln pi,t − ∆ ln pk,t) (7)

Further define ȳi, x̄1i, x̄2i as the sample means over non-missing time periods for each model

15



i.9. The estimating equation is:

ȳi = θ1x̄1i + θ2x̄2i + ui, (8)

which we estimate using weighted least squares, the weights equal to the sum of units sold of model

i. Equation 8 is Feenstra (1994)’s estimator, which minimizes the distance between the hyperbolas

across different models in the sample. According to Feenstra (1994), this estimation method is

equivalent to 2SLS procedure which begins with the mapping of each model’s hyperbola to a single

observation defined by its variance of prices (ȳi) and shares (x̄1i) along with its price and share

covariance (x̄2i), and then followed by fitting a line through these points by regressing ȳi on x̄1i

and x̄2i (Soderbery, 2015).

The estimated elasticities are implied by θ̂1 and θ̂2 (see Proposition 2 in Feenstra (1994)). If

we define ρ̂ as the estimate of the common supply elasticity and σ̂ as the elasticity of substitution,

these are given by

if θ̂2 > 0 then

ρ̂ =
1

2
+

1

4
− 1

4 +
(
θ̂2

2
/θ̂1

)
1/2

(9)

if θ̂2 < 0 then

ρ̂ =
1

2
−

1

4
− 1

4 +
(
θ̂2

2
/θ̂1

)
1/2

(10)

and in either case:

σ̂ = 1 −
(

2ρ̂− 1

1 − ρ̂

)
1

θ̂2

(11)

Note that σ must be greater than 1, and if θ̂1 is negative, the above formulas do not provide

valid estimates of ρ and σ.

One concern with using this method is that estimation makes use of common goods that

appear in each time difference, excluding new and exiting goods. If the elasticity of substitution

9Averaging over time periods helps to resolve a fundamental endogeneity and makes the estimator consistent for
large T . The data possess considerably more models than time periods per model, so there is likely some degree of
bias in our estimates, which is another reason we consider implications of a smaller elasticity.
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between new models and all other models differs considerably from the others (for example, some

consumers possess a strong preference for new models), the elasticity of substitution may be biased

upward.10 This is another reason we consider the implications of a smaller elasticity (i.e., σ = 10).

Results of estimating equation 8 and the implied demand and supply elasticity estimates

(equations 9 - 11) are presented in Table 3. The estimated elasticities appear high for all appliances,

ranging from about 28 to 102. On the one hand, high elasticities make sense, given they account

for substitution between very similar products. On the other hand, these estimates may be biased

too high, for the reasons described above. Recall that as σ approaches infinity, P σ approaches

P ∗. The implication is that the estimated elasiticities give an upper bound on the price level and

underestimate implied consumer welfare improvement.

Table 3: Estimates of Substitution Elasticities

Parameter Estimates Clothes Washers Clothes Dryers Refrigerators Room ACs

θ1 0.002 0.011** 0.005 0.003

(0.002) (0.004) (0.004) (0.003)

θ2 0.212*** 0.254*** 0.187** 0.176**

(0.050) (0.035) (0.090) (0.049)

R-sq. 0.285 0.352 0.558 0.315

Observations 1,837 2,928 9,187 2,098

ρ̂ 0.96 0.25 0.90 0.93

σ̂ 101.7 27.7 43.9 65.9

This table reports estimates of equation 8 and the implied demand and supply elasticity estimates
(equations 9 - 11). Robust standard errors are in parentheses. *, **, *** denote statistical
significance at 10, 5 and 1 percent, respectively.

6 Effects of Standard Changes on Prices Indices and Welfare

In this section we examine whether the price indices, both adjusted and unadjusted for entry

and exit of models, have been affected by changes in minimum energy efficiency and Energy Star

standards. We estimate effects of standard changes using differences (pre/post) and difference-in-

differences comparisons.

The differences analysis considers each appliance separately, and we simply report mean price

index changes in each window before, during and after a policy change. Because policy changes were

10When applied to U.S. import data from 1993 to 2007, Soderbery (2015) has shown that median demand and
supply estimates derived from Feenstra (1994)’s method were overestimated by over 35%, thus reducing consumer
gains from product variety by a factor of 6.
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announced well in advance of implementation, and may affect product introduction and pricing well

before and after the change (because standards ban the manufacture, not the sale, of appliances

below the efficiency threshold), we define a policy change window that includes 6 months before

and after the policy change. For example, for the January 2004 policy change we assign all months

from July 2003 up to June 2004 to the policy treatment. To the extent feasible, we compare the

changes within the policy change period to those in one year prior and one year after the policy

change period. For example, the 2004 policy change refers to the period July 2003-June 2004, and

we compare changes during this period with those in July 2002-June 2003 and July 2004-June 2005.

Effectively, we compare price changes on a year-on-year basis. Using a shorter, say 3-month policy

window, might capture price changes that are associated with seasonal variations in demand and

supply, and results can be stronger. If we make the window much larger, controls begin to vanish.

Table 4 gives the results.

The results show accelerated price declines around policy changes relative to previous and

succeeding periods. For example, the average monthly drop in P ∗ for clothes washers around the

2004 ME and ES policy change was about 1.11 percentage points per period, compared to 0.65 and

0.36 percentage point before and after the policy period, respectively. During this change, which

was arguably the most substantial policy change in our data, the ratio (λt/λt−1), which gives the

share of expenditures on common goods in the current period relative to the previous period, is

by far the lowest observed, 0.916. A ratio less than one implies substitution to the new models

introduced during this period, and a larger welfare improvement than implied by the decline in

P ∗. This improvement carries little weight in the index when using the large estimated elasticity of

substitution. But with an elasticity of 10 or smaller, the price index decline is much greater, over

2.7 percentage points during this policy window. Other policy changes also tend to be associated

with slightly faster declines in the prices indices.

The estimating equation for the difference-in-differences specification uses the fact that min-

imum efficiency regulations and Energy Star changes occurred for different appliances at different

times, such that appliances not experiencing a change serve as controls for those that do. For these

estimates we pool price indices for all appliances and run the following estimating equation:

∆ lnPjt, = β0 + β1MEj,t + β2ESj,t + αj + γtt+ µi,m + εit, (12)

where ∆ lnPj,t is the log difference of the price index for product j, where j spans the four appliances

considered (washing machines, dryers, refrigerators, air conditioners), αj and γt are fixed effects for

each appliance and each time period time period, respectively, and the policy variables MEj,t and

ESjt are plus/minus six-month indicator variables, specified for applicable policy changes for each

appliance j. For some specifications we consider appliance-by-month-of-year fixed effects (µi,m)
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to account for seasonality, which is more noticeable in some appliances than others (like room air

conditioners).

The difference-in-differences estimates, like the difference estimates, are less than an ideal

natural experiment, both due to the anticipated nature of the policy changes and because there

may be joint dependency in new appliance introductions. For example, if a new energy efficiency

standard causes introduction of a new washing machine model, then it may be economic for the

manufacturer to introduce other appliances at the same time. To the extent that there is joint

dependency in manufacture or sale of different appliances, using these complementary goods as

controls should generally underestimate the size of the welfare impacts. Because different appli-

ances may be better or worse controls than others, we consider specifications with different sets of

appliances.

While some of the large introductions of new appliances appear to be associated with timing

of minimum efficiency (ME) or Energy Star (ES) threshold, there are a few cases where timing is off

by a considerable margin, our identification strategy misses, and thus likely underestimates induced

welfare gains. The clearest example is a large introduction of new refrigerators in January 2007 (see

figure 2 and 3). While this large introduction of refrigerators is beneficial for consumers, only stan-

dards for washing machine changed at this time; the Energy Star changes for refrigerators happened

later. Thus, if this large introduction was caused, in part, by anticipated future changes in the

Energy Star threshold, our identification strategies (both differences and difference-in-differences)

do not capture it; we implicitly assigning these ”treatment” observations to the ”control,” thereby

underestimating the consumer benefits of increasing the ES threshold.

Difference-in-differences estimates are reported in Table 5. The first two columns consider

specifications with only washing machines and refrigerators, with the first column excluding seasonal

controls and the second column including them. The next two columns add room air conditioners to

the specification as a control, again without and with seasonal controls. The last two columns add

dryers to the specification. Different sets of results are reported for the three welfare-based price

indices, P ∗, P σ̂, and P 10. All specifications indicate more rapid price declines during the policy

periods, and most indicate an accelerated decline (i.e., welfare improvement) of between roughly

0.3 to 0.6 percentage points per period. Many of the specifications show statistical significance

for the ES policies, but most ME policy windows are not statistically significant, even though the

estimated impacts are similar in magnitude. Nevertheless, the results strongly suggest no harm, and

probably consumer welfare improvement due to price declines and product introductions induced

by changes in standards, all excluding benefits from reduced pollution externalities.
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7 Competition and Innovation

In this section we take a closer look at the mechanisms that underlie price index declines and how

changes in standards could affect them. The mechanism appears to be related to new product intro-

ductions, which are often induced by changes in standards. We pay particular attention to the way

new product introductions cause reductions in prices of own-manufacturer products versus reduc-

tions in prices by competing manufactures. Similar to the findings from Broda and Weinstein (2006)

and others, we find that new product introductions cause a greater influence on own-manufacturer

prices than competing-manufacturer prices.

7.A Product Entry and Average Vintage

We present evidence above that consumers substitute toward new models during times when energy

efficiency standards change, especially around the 2004 minimum efficiency change for washing

machines. This standard caused a marked shift from top-loading to front-loading washing machines,

which use less water and are more energy efficient. Another way to show substitution toward newer

models is to plot the sales-weighted average vintage of appliances sold, where vintage is measured

as the number of months since a model was first introduced in the market. We plot average vintage

of clothes washers sold in figure 4. The figure shows sharp declines in average vintage, especially

around the 2004 change in minimum efficiency. For later policy changes, we find similar, though

smaller, declines that sometimes precede the policy change. In the online appendix we show graphs

of average vintage for all appliances.

One explanation for the pattern of price declines observed earlier is that policy-driven entry

of new models enhances competition, forcing manufactures to lower prices of older vintages. For

any given model of an appliance, regardless of vintage, the lower average vintage, the more new

and presumably higher-quality models are in the market with which it must compete. By forcing

exit and entry, standards may significantly alter the distribution of vintages and thereby affect

innovation, competition and price.

A possible concern with interpreting the data in figure 4 is that a decline in average vintage

may not be solely due to the standard changes. For example, average vintage also declines during

early months of 2002, 2006 and 2008, when no policy changes occurred. These drops in average

vintage may result from a large firm’s strategy to introduce models in order to glean revenue share

from competitors. In order to provide evidence that the large drop in average vintage was due to

the 2004 policy change, we calculated the sales-weighted average energy consumption (kWh) and

operating costs of clothes washer during the period. Energy consumption of individual models are

obtained from the Federal Trade Commission and matched with the NPD data. The present value

20



Figure 4: Average Vintage of Clothes Washers, 2001-2011

Vintage indicates the number of months since a product was introduced. Each point repre-
sents the sales-weighted average vintage at a particular time period. The solid red vertical line
represents the effective date of simultaneous policy changes in the federal minimum energy
efficiency standard and Energy Star certification threshold, while the orange vertical line is
for the Energy Star threshold update that took effect in July 2009. Observations with prices
falling below $100 were dropped as these observations are outliers and appear to be unrealistic.

Source: The NPD Group.

operating cost of model −j at time t, denoted as PV OCjt, is calculated using the equation:

PV OCjt =
Y∑
y=0

ECj · PEt · (1 + rt)
−(y+0.5) (13)

where EC denotes annual electricity consumption (in kWh) of product j, PE is the seasonally ad-

justed national average electricity price, r is the discount rate proxied by the 10-year U.S. Treasury

bill rate, and y is the number of years the appliance is used up to its lifetime Y .

Figure 5 summarizes the calculated sales-weighted average energy consumption and operating

costs for clothes washers sold during the study period. The orange vertical lines represent the

simultaneous ME and ES policy changes and the green vertical line represents the ES policy change.

We observe an especially large improvement in both energy efficiency measures around the policy

change in 2004. This coincides with the large drop in average vintage in figure 4, which provides

a clear indication that energy efficiency standard changes had a role in product entry and exit, at
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least in 2004.

Figure 5: Average Energy Consumption and Operating Costs of
Clothes Washers, 2001-2011

Average energy consumption is calculated by combining the NPD data with the Federal Trade
Commission (FTC). Annual energy consumption is measured using the DOE’s methodology.
The operating costs represent the discounted lifetime operating cost of a particular model
Source of Basic data: The NPD Group; FTC.

7.B Average Vintage and Competition

To examine the link between average vintage (a measure of competitive pressure) on price declines,

we estimate the following reduced-form regression model:

pit =αi + β0 vintage−i,t + f(vintageit)

+ g(vintageit) vintage−i,t +monthk + εit (14)

where pit denotes the price of model i at time t, vintage−i,t is the average vintage (weighted by

current sales) of all models excluding i at time t, and f(vintage) and g(vintage) are restricted

cubic splines of model-specific vintage, representing number of months since first introduction.

The second spline is interacted with average vintage to account for the possibility that prices of

different vintages are more or less affected by average vintage. The spline functions allow price to

change smoothly and flexibly over the life span of the product. The variable month denotes month
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dummies to account for possible seasonality in the price trend and αi denotes the model fixed effect

to account for unobserved time-invariant heterogeneity, like size and other model specifications, as

well as unobserved quality attributes. εit is the usual error term.

We cannot use time period fixed effects because vintage−i,t is highly correlated across ob-

servations within a time period, given each excluded model is a tiny share of the market. Thus,

average vintage is very nearly linearly dependent with time period fixed effects. Within models, a

linear time trend is also perfectly collinear with model-specific vintage, so an overall trend is not

identified either.

We use the estimates from equation 14 to predict the price trend of a typical clothes washer

holding average vintage constant at different quantiles. Figure 6 plots this predicted price across

the first two years of a clothes washer in the market, holding average vintage equivalent to about

10 months (20th percentile), 13 months (40th percentile), 14 months (60th percentile), and 15

months (80th percentile). The difference between the trend line at 10 months and at 15 months

is statistically significant. Figure 6 shows how average vintage of clothes washers relates to the

level and slope of the predicted price trend of a representative clothes washer. All else the same,

increasing average vintage from 10 to 15 months is associated with a 10 percent price increase (see

Table 7). Significance tests are summarized in Table 6.

We now examine how firms adjust prices of their own continuing models when the firms

themselves introduce new models, as well as how they adjust prices when competing firms introduce

new models. In other words, we disentangle the influence of average vintage into cannibalization

and external competition. To accomplish this, we decompose average vintage into own-firm average

vintage and other-firm average vintage. Denote vintage−i,c,t as the average vintage (weighted by

current sales) of other products within the same firm at time t but excluding the current model

i, and vintage−c,t as the average vintage (weighted by current sales) of models manufactured by

other firms at time t. Like the model above, we consider interactions between own-model vintage

and average vintage measures.

pi,c,t = αi + β1 vintage−i,c,t + β2 vintage−c,t + fc(vintagei,t) +

+fc(vintagei,t) vintage−i,c,t + fc(vintagei,t) vintage−c,t +monthk + εit (15)

Using the estimates from equation 15 we predict the price trend of a typical clothes washer

holding average vintage of models within brands constant. Panel (a) in Figure 7 plots this predicted

price across the first two years of a clothes washer in the market, holding within-brand average

vintage equivalent to about 8 months (20th percentile), 11 months (40th percentile), 13 months
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Figure 6: Life-Cycle Pricing of Clothes Washers
Under Different Average Vintage

Each solid line represents a predicted price trend, given an average vintage of clothes washer,
using equation 14 during its first two years. We estimate equation 14 using a spline function
of vintage with 5 knots. Each solid line represents a predicted price trend, given an average
vintage of clothes washer. The 20th, 40th, 60th and 80th percentile correspond to 9.58, 12.63,
13.64, 14.80, respectively. The distribution of average vintage is weighted by current sales.

Source: Authors’ calculation.
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(60th percentile) and 17 months (80th percentile). We make this prediction assuming other-brand

average vintage is equivalent to about 10 months (20th percentile).11 We find no statistically

significant difference between trend lines in different months. Panel (b) plots the predicted price

trend of a typical clothes washer holding average vintage between brands constant at 20th, 40th,

60th and 80th percentile. The difference between the trend line at 10 months and at 15 months is

statistically significant (Figure 7). Reducing the average vintage from 15 months to 10 months is

associated with a 3 percent price decrease, all else the same (see Table 7).

Because the clothes washer market is dominated by large integrated manufacturers with

several subsidiary brands, we examine whether the same pattern holds at the manufacturer level.

We predict the price trend of a typical washer at different average vintage of models within the

same manufacturer and between manufacturers. Panel (c) in Figure 7 shows the predicted price of

a typical clothes washer, holding average vintage of models within the same manufacturer constant

at about 9 months (20th percentile), 11 months (40th percentile), 13 months (60th percentile) and

16 months (80 percentile).12 All else the same, reducing within-manufacturer average vintage from

16 months to 9 months is associated with a 5 percent faster price decline, a statistically significant

difference. We make the same prediction for different average vintage between manufacturers. We

find no statistically significant difference between price trends at any given average vintage between

manufacturers (Panel d).

To see if cannibalism is unique to appliances that had more stringent energy efficiency stan-

dards over the sample period, we also consider refrigerators, room air conditioners and clothes

dryers. No minimum efficiency standards were implemented for these appliances during the sample

period, although refrigerators experienced changes in Energy Star certification in 2004 and 2008.

We use the estimation strategy presented in equation 15 for these appliances. Table 7 presents the

regression results using equation 14 for clothes dryers and table 8 reports refrigerators and room

air conditioners.

Interestingly, we find the same pattern in for clothes dryer prices as we do for washing

machines, with cannibalism at both the brand and manufacturer levels (Table 7). We do not

observe cannibalism at the manufacturer level for room air conditioners or refrigerators (Table

8), although cannibalism tends to drive down unit price at the brand level for refrigerators. It

seems plausible that pricing for dryers is influenced by washing machines, since consumers often

purchase washers and dryers simultaneously. Findings for refrigerator prices may be due to stronger

seasonality, as price discounts tend to occur during the first and last quarter of the year when the

refrigerator market generally has more price declines and more new models. The evidence suggests

11In online appendix (Appendix H) we show plots that hold other-brand average vintage at 13 months (40th
percentile), 14 months (60th percentile) and 15 months (80 percentile).

12We repeat this prediction for different other-manufacturer average vintage percentiles in the online appendix (Ap-
pendix H).
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Figure 7: Life Cycle Pricing of Clothes Washers

(a) Different Within-Brand Average Vintage (b) Different Between-Brands Average Vintage

(c) Different Within-Manufacturer Average Vintage (d) Different Between-Manufacturers Average Vintage

Each solid line shows a predicted price trend using equation 15 during its first two years, holding average vintage
within- and between-brands (for panels a & b) or manufacturers (for panels c & d) constant. We estimate
equation 15 using a spline function of vintage with 5 knots. Each solid line represents a predicted price trend, given
a within-brand average vintage of clothes washer. The 20th, 40th, 60th and 80th percentile of within-brand average
vintage correspond to 7.71, 10.67. 13.32 and 16.58, respectively. For the between-brand average vintage, the 20th,
40th, 60th and 80th percentile correspond to 9.62, 12.54, 13.67, and 14.90, respectively. For within-manufacturer
average vintage, the 20th, 40th, 60th and 80th percentile correspond to 8.86, 11.14, 13.18, and 15.68, respectively;
and 9.47, 12.53, 13.85, and 16.12, respectively, for between-manufacturers average vintage.

Source: Authors’ calculation.
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an association between standards and increased cannibalism, a pattern that has been observed

more generally (Broda and Weinstein, 2006).

8 Discussion and Conclusion

Contrary to some views that more stringent energy efficiency standards are costly to consumers,

primarily due to higher upfront costs associated with more energy efficient appliances, we find no

evidence indicating that stricter energy efficiency policies increase prices or reduce consumer welfare

in markets of regulated appliances. At best, we see evidence of faster price declines while consumers

substitute to new appliances as they are introduced, both indicating welfare improvement. Over-

all, consumers gain, although depending on assumptions about substitutability between new and

continuing appliances, some gains may not be statistically significant.

What might explain this counterintuitive effect of standards on consumer welfare? One theory

is that standards make heterogeneous products more homogeneous, and thereby increase compe-

tition as proposed by Ronnen (1991). Another possibility is that standards facilitate innovation

(Jaffe and Palmer, 1997). We find little evidence of competition as a mechanism, since entry of

other-manufacturer products has little influence on own-manufacturer prices. In contrast, we find

evidence supporting policy-induced innovation, wherein firms lower prices of older models as they

are forced to introduce new models meeting new, stricter efficiency standards. Firms may reduce

prices as a form of intertemporal price discrimination in order to extract rents from consumers with

different demands for the latest technology (Stokey, 1979). Firms may also lower prices as costs

decline over time, potentially due to economies of scale or learning-by-doing. If, however, firms’

pricing were solely due to declining production costs then introduction of new products should not

influence the price, all else the same.

Presumably imperfectly competitive firms would strategically time product entry, staggering

introduction of new products so as to maximize potential novelty. Although we do not attempt to

model it formally, we expect that, in the absence of policy or other interventions, equilibrium prod-

uct introductions would be spread out over time, akin to spatial models of product diversification

in monopolistic competition. Figures 4 and 5 show how the distribution of product vintages shifts

periodically, with average vintage and energy efficiency measures dropping sharply right around the

time of standard changes. This pattern in product vintages implies that standards may force more

rapid entry and exit of models, thereby altering the distribution of vintages and affecting innova-

tion and competition. For example, the simultaneous change in ME and ES for clothes washers

may have induced most manufacturers to introduce new models at the same time in January 2004,

which makes the effect of product introductions on price more significant than in other periods. Of

course, events besides standard changes could bring about synchronized timing of product entry.
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We also find evidence to suggest that most and perhaps all the price declines associated

with average vintage stem from increased entry and exit of models that occur within the same

manufacturer. This pattern is uniquely strong for clothes washers that had undergone simultaneous

and relatively more frequent changes in ME and ES standards in our sample. One interpretation

of these observations is policy-induced creative destruction. The imposition of more stringent

regulation forces all firms in the clothes washer market to introduce newer models at the expense

of the older ones. The clothes washer market is dominated by large integrated manufacturers

(e.g Whirlpool, General Electric and Electrolux) producing several brands of clothes washers and

a number of relatively small independent manufacturers (e.g. Samsung and Fisher & Paykel).

Firms, forced to introduce new products that satisfy new standards, may find it more profitable to

bundle other innovations that complement energy efficiency. Due to brand loyalty, and perhaps a

general narrowing of product heterogeneity, older vintages from the same manufacturer face greater

competition, inciting them to lower the price of an existing product (Padmanabhan and Bass, 1993).

Although policy changes appear to benefit consumers, there are important caveats. First, the

welfare analysis is based on a representative consumer. In reality, however, different consumers care

to varying degrees about various product characteristics, an aspect of demand that the modelling

assumptions may not fully capture. The CES utility model that underlies our index calculations

can embody heterogeneous underlying preferences of individual discrete choice models, but the

assumptions may be restrictive. It is plausible and perhaps likely that some customers lose as old

models preferred by some are forced to exit as a result of standards, even while most customers

gain. Future work may develop a better account of heterogeneous preferences and the distribution

of benefits across different kinds of customers. For example, Houde and Spurlock (2015), using the

same data that we have, employed revealed preference approach that allowed them to calculate

a price-adjusted quality index and welfare implications of standards. Their methods appear to

generate similar results to ours.

A second caveat is that it’s not clear how much of the overall decline in prices and improvement

in quality would have occurred in the absence of the standard changes. To consider the effects of

policy, a control is needed. This makes the establishment of counterfactuals extremely difficult

due to the positive correlation of entry and exit of models among major appliances, which might

be a result of large manufacturers’ attempt to reduce overhead and logistical costs associated

with introducing new appliances at different time periods. This caveat, however, likely makes our

estimates more conservative; benefits to consumers could be greater than our estimates imply.

A third caveat is that we do not observe individuals who purchased used appliances, or

otherwise accounted for a no-purchase option. While this is a limitation of the analysis, it is one

that also understates the benefits of regulation. These benefits would be reflected in the overall

demand for new appliances, not just substitution between them. This demand would presumably
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be downward sloping, such that purchases of new appliances and total consumer surplus would

increase, ceteris paribus, as the price index falls. We implicitly omit this consumer surplus from

the associated price decline, which would depend on the elasticity of substitution between each

appliance and all other goods.

A fourth caveat is that this study does not consider firms’ profits. It is quite possible that

firms that manufacture appliances experience profit losses from stricter efficiency standards, as

they re-optimize their menu of products and processes (Whitefoot et al., 2013). If, however, the

appliance industry is sufficiently competitive, even if monopolistically so, equilibrium economic

profits are presumably small relative to consumer benefits, regardless of standards.

Stepping back from the details of our analysis, it is useful to contemplate what the data might

have shown if minimum efficiency standards were truly costly. Because the minimum standard

affected the manufacture of washers but not their sale, there is no a priori reason to expect a sharp

discontinuity in average vintage at the time of the policy change, a change that we nevertheless

do observe. If the banned washers were both generally preferred and lower cost than the new

washers, we might have seen a large build-up and carryover of old inventory into the newly regulated

environment, and slow subsequent adoption of the new washers. Moreover, banned washers would

have become a scarce, non-renewable commodity that should have seen increasing prices. Instead,

we see the opposite: a fall in prices of continuing models and, despite that price decline, a dramatic

shift in purchases from old models to new models. These facts are very hard to reconcile with

anything but generally improving consumer welfare, irrespective of reduced pollution externalities

associated with lower energy use.

More generally, these findings clarify that the evaluation of energy efficiency standards re-

quires consideration of more than pollution externalities and the existence, size, and causes of the

energy efficiency gap. Markets for energy-consuming durable goods markets contain additional

market failures, like imperfect competition and public-good aspects of innovation, as well as con-

sumer behavioral anomalies. While stricter standards may help to improve matters in some cases,

it is also generally understood that efficient policy requires as many instruments as market failures.

Finally, and somewhat askew from the main thrust of the paper, we present evidence, akin

to Broda and Weinstein (2006), Broda and Weinstein (2010), and Redding and Weinstein (2018),

that conventional cost of living indices, like the CPI, may not adequately account for quality changes

and introductions of new products. Our price indices, built on model-specific data and accounts of

product entry and exit, show more rapid declines than related components in the CPI (Figure G.5).

The difference results mainly from building indices from same-product price changes and partly

from our account of substitution to new products.
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Table 4: Average Change in Price Indices and the ratio of
shares of continuing models in two consecutive periods,

Washers vs. Refrigerators vs. Room AC vs Dryers, 2002-2011.

Period PME PF P ∗ P σ̂ P 10 λt
λt−1

Clothes Washers
Pre-2004 -0.648 -0.651 -0.467 -0.477 -0.578 0.991
2004 ME & ES Policy -1.107 -1.107 -0.834 -1.026 -2.766 0.916
Post-2004 Policy -0.359 -0.359 -0.136 -0.140 -0.181 0.996
Pre-2007 Policy -1.271 -1.270 -0.911 -0.920 -1.010 0.991
2007 ME & ES Policy -1.501 -1.492 -1.250 -1.271 -1.474 0.980
2008 ES Policy -1.206 -1.812 -0.742 -0.747 -0.799 0.995
2009 ES Policy -2.299 -2.239 -2.128 -2.133 -2.183 0.994
2011 ME & ES Policy -2.065 -2.000 -1.596 -1.613 -1.783 0.983

Refrigerators
Pre-2004 -1.216 -1.218 -1.031 -1.055 -1.146 0.990
2004 ME & ES Policy -1.242 -1.242 -0.967 -1.015 -1.195 0.980
Post-2004 Policy -0.778 -0.782 -0.560 -0.587 -0.688 0.989
Pre-2007 Policy -0.962 -0.960 -0.605 -0.619 -0.670 0.994
2007 ME & ES Policy -1.475 -1.462 -1.210 -1.410 -2.126 0.942
2008 ES Policy -1.317 -1.311 -1.183 -1.214 -1.333 0.984
2009 ES Policy -1.168 -1.156 -0.900 -0.928 -1.031 0.988
2011 ME & ES Policy -1.510 -1.483 -1.072 -1.071 -1.069 1.000

Room Airconditioners
Pre-2004 -2.698 -2.380 -2.186 -2.295 -2.964 0.937
2004 ME & ES Policy -2.491 -2.327 -2.065 -2.064 -2.060 1.003
Post-2004 Policy 1.799 1.402 1.604 1.473 0.688 0.874
Pre-2007 Policy -1.210 -1.085 -0.733 -0.742 -0.798 0.995
2007 ME & ES Policy -1.136 -1.121 -0.941 -0.954 -1.030 0.993
2008 ES Policy 0.108 0.019 -0.011 -0.184 -1.225 0.950
2009 ES Policy -0.346 -0.410 -0.222 -0.213 -0.161 1.005
2011 ME & ES Policy -3.111 -3.056 -2.808 -2.809 -2.813 1.000

Clothes Dryers
Pre-2004 -0.640 -0.642 -0.455 -0.496 -0.576 0.990
2004 ME & ES Policy -0.706 -0.716 -0.431 -0.439 -0.453 0.998
Post-2004 Policy -0.298 -0.298 -0.228 0.241 -0.267 0.910
Pre-2007 Policy -0.936 -0.934 -0.579 -0.613 -0.680 0.991
2007 ME & ES Policy -1.059 -1.052 0.808 -0.880 -1.023 0.981
2008 ES Policy -0.975 -0.936 -0.719 -0.760 -0.842 0.989
2009 ES Policy -1.514 -1.471 -1.257 -1.271 -1.299 0.966
2011 ME & ES Policy -1.635 -1.587 -1.218 -1.241 -1.285 0.944

The table reports the percent change in each price index during the referenced policy change. Periods in
boldface font indicate a policy change for the given appliance. Each policy period pertains to a 6-month
window before and after the date of the policy change. For example, the 2004 policy change refers to
the period July 2003-June 2004. Only refrigerators experienced Energy Star (ES) policy changes within
the sample period. PME is the Marshall-Edgeworth price index; PF is the Fisher price index; P ∗ is
the CES-based index for common goods; P σ̂ is the CES-based index with new and exiting models and
the estimated elasticity of substitution (101 for clothes washers; 44 for refrigerators, 66 for room air
conditioners, and 28 for clothes dryers); P 10 is the CES-based index with a substitution elasticity of 10.
The ratio (λt/λt−1) gives the average share of expenditures on common goods (continuing models) in the
current period relative to the previous period, where a value less than one implies substitution toward
new goods and a welfare improvement, all else the same.
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Table 5: Results from Estimating the Average Effect of the Policy
Change (Difference-in-Differences Approach)

Models/Variables (1) (2) (3) (4) (5) (6)

∆P ∗

ME and ES -0.005 -0.005 -0.003 -0.003 -0.003 -0.003

(0.004) (0.004) (0.004) (0.004) (0.003) (0.003)

ES Only -0.006* -0.006** -0.005* -0.005** -0.005*** -0.005***
(0.003) (0.003) (0.003) (0.002) (0.002) (0.002)

Constant -0.076*** -0.073*** -0.004*** -0.008*** -0.066** -0.064***

(0.001) (0.003) (0.002) (0.001) (0.026) (0.024)
Adj. R-squared 0.549 0.640 0.320 0.418 0.518 0.510

Observations 219 219 325 325 436 436

λt
λt−1

ME and ES -0.012 -0.012 -0.017 -0.017 -0.027 -0.027

0.026 (0.027) (0.023) (0.024) (0.024) (0.024)
ES Only 0.019 0.019 0.015 0.015 0.004 0.004

(0.020) (0.020) (0.016) (0.016) (0.013) (0.013)

Constant 0.999*** 0.997*** 0.990*** 0.994*** 0.987*** 0.987***
(0.001) (0.006) (0.009) (0.010) (0.006) (0.008)

Adj. R-squared 0.270 0.192 0.277 0.357 0.146 0.115

Observations 221 221 328 325 436 436

∆P σ̂

ME and ES -0.005 -0.005 -0.003 -0.003 -0.004 -0.004

(0.005) (0.004) (0.004) (0.004) (0.003) (0.003)
ES Only -0.006* -0.005* -0.004 -0.004* -0.006*** -0.005***

(0.003) (0.003) (0.003) (0.002) (0.002) (0.002)

Constant -0.076*** -0.073*** -0.004*** -0.008*** -0.066** -0.064***
(0.001) (0.003) (0.002) (0.001) (0.026) (0.024)

Adj. R-squared 0.527 0.612 0.325 0.417 0.441 0.432

Observations 219 219 325 325 436 436

∆P 10

ME and ES -0.008 -0.008 -0.007 -0.007 -0.010 -0.010

(0.009) (0.009) (0.007) (0.008) (0.008) (0.008)
ES Only -0.000 -0.000 -0.000 -0.000 -0.004 -0.004

(0.007) (0.006) (0.005) (0.005) (0.004) (0.004)

Constant -0.077*** -0.075*** -0.004** -0.008*** -0.067*** -0.065***
(0.001) (0.004) (0.002) (0.002) (0.026) (0.024)

Adj. R-squared 0.259 0.236 0.261 0.285 0.190 0.165

Observations 219 219 325 325 436 436

Appliance FE Yes Yes Yes Yes Yes Yes
Year-month FE Yes Yes Yes Yes Yes Yes

Month x Ref No Yes Yes Yes Yes Yes
Month x AC No No No Yes Yes Yes

Month X Dryer No No No No No Yes

The table reports difference-in-difference estimates of the effects of minimum energy efficiency (ME) and Energy Star (ES)
policy changes on each welfare-based price index: P ∗ is the CES-based index for common goods; P σ̂ is the CES-based index
with new and exiting models and the estimated elasticity of substitution (101 for washers, 44 for refrigerators, and 66 for room
air conditioners); and P 10 is the CES-based index with a substitution elasticity of 10. The ratio (λt/λt−1) gives the average
share of expenditures on common goods (continuing models) in the current period relative to the previous period, where a value
less than one implies substitution toward new goods and a welfare improvement, all else the same. Columns labelled (1)-(2)
include clothes washers and refrigerators; columns (3)-(4) also include room air conditioners in the sample; and columns (5)-(6)
also include clothes dryers in the sample. Month x REF, Month x RAC, and Month x Dryer are intersections of month and
appliance dummies for refrigerators, room ACs, and clothes dryers, respectively, to account for seasonality. Robust standard
errors are in parentheses. ***, **, and * indicate statistical significance at the 1, 5 and 10 percent level, respectively.

Source: Monthly sales and revenues of appliances sold in the U.S. between 2002-2011 (The NPD Group); price indices and ratio
of the share of continuing models between t and t− 1 (authors’ calculation).
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Table 6: Analysis of Variance for (real) price

Variables d.f. F -statistic p-value

Average Vintage 1 41.77 <0.000

Spline Functions 4 40.73 <0.000

Interaction Terms 4 10.09 <0.000

All Variables 20 54.57 <0.000

R-sq. (within) 0.293

The table reports F -tests for the joint significance of key explanatory
variables and their interactions with the vintage (number of months
since introduction) of the clothes washer in the market. The model
uses restricted cubic splines with 5 knots, which results in four factors
in the regression equation. Key variables include the average vintage
(1 degree of freedom [d.f.]) and the interactions with the four vintage
factors (4 d.f.). We used STATA command mkspline2 in estimating
the spline functions.

Table 7: Regression Results: Dependent Variable - Unit Price,
Clothes Washers and Dryers

Clothes Washers Clothes Dryers

(1) (2) (3) (4)

β1, average vintage within brand 2.017*** 2.535***

(0.379) (0.262)

β2, average vintage between brands 3.145*** 3.580***

(0.630) (0.501)

β1, average vintage within manufacturer 3.905*** 4.657***

(0.427) (0.262)

β2, average vintage between manufacturers 0.744 1.736***

(0.462) (0.381)

Constant 719.932*** 722.204*** 617.112*** 612.562***

(6.322) (6.005) (4.950) (4.823)

Own Vintage Spline yes yes yes yes

Month-Fixed Effect yes yes yes yes

Model-Fixed Effect yes yes yes yes

Adj. R2 (within group) 0.298 0.300 0.317 0.326

Observations 38,282 38,477 64,794 64,859

The table reports the results from estimating equation 15 without the interaction effects. Columns (1)
estimates the effects of within- and between-brands average vintage, and (2) estimates the effects of within-
and between-manufacturer average vintage on price. Clustered standard errors are in parentheses. We
use restricted cubic splines with 5 knots in estimating the spline function of vintage. ***, **, * indicate
significance at the 1, 5, and 10 percent, respectively.
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Table 8: Regression Results: Dependent Variable - Unit Price,
Room Air Conditioners and Refrigerators

Room AC Refrigerator

(1) (2) (3) (4)

β1, average vintage within brand 0.158 4.264***

(0.130) (0.411)

β2, average vintage between brands 0.999*** 4.429***

(0.202) (0.739)

β1, average vintage within manufacturer 0.002 0.137

(0.003) (0.084)

β2, average vintage between manufacturers 1.109*** 6.829***

(0.175) (0.706)

Constant 403.189*** 403.503*** 1450.485*** 1465.583***

(3.986) (4.021) (8.646) (8.253)

Own Vintage Spline yes yes yes yes

Month-Fixed Effect yes yes yes yes

Model-Fixed Effect yes yes yes yes

Adj. R-Squared (within group) 0.115 0.115 0.101 0.098

Observations 45,324 45,305 181,277 181,449

The table reports the results from estimating equation 15 without the interaction effects for room ACs and
refrigerators. Columns (1) and (3) estimate the effects of within- and between-brands average vintage,
while (2) and (4) estimate the effects of within- and between-manufacturer average vintage on price.
Clustered standard errors are in parentheses. We use restricted cubic splines with 5 knots in estimating
the spline function of vintage. ***, **, * indicate significance at the 1, 5, and 10 percent level, respectively.
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Appendix A The NPD Appliance Dataset: Retailers, Manufac-

turers and Brands.

Table A.1: Participating Retailers in the NPD Dataset.

Actuals Included for: Projected* Sales Included for:

Abt. TV & Appliance Kmart ABC Warehouse
Amazon.com Kohls BrandsMart
American TV Linens n Things (Data thru 12/08) Conns Appliance
Bernies Lowes Cowboy Maloneys
Best Buy Macys Frys
BJ’s Wholesale Club Meijer Home Depot
Bloomingdale Nebraska Furniture Mart Menards
Boscov’s PC Richard & Sons Navy Exchange
Circuit Data (Data thru 2/09) Pamida Queen City Appliance
Dillard’s RC Willey REX Stores
Fortunoff (Data thru5/09) Sears Vanns
Fred Meyer Shopko
Gottschalks (Data thur 3/09) Target
HH Gregg Ultimate Electronics
JC Penney

Note: Projected refers to the fact that NPD included estimates of sales for this subset of retailers in their data.
They claim that the share of overall market sales was no greater that 5 percent for all projected retailers combined
for a given time period.
Source: Spurlock (2013).
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Table A.2: List of Manufacturers and their Respective Brand

Manufacturer Brands

Whirlpool Amana Magic Chef

Estate Maytag

Inglis Roper

KitchenAid Whirlpool

General Electric Ariston

GE

GE Profile

Hotpoint

Electrolux Electrolux

Frigidaire

Westinghouse

White Westinghouse

LG LG

Others Asko Fagor

Avanti Pro Fisher & Paykel

Bosch Haier

Danby Miele

Electro Brand Samsung

Equator Appliances Speed Queen

Eurotec Summit

The table lists the four major clothes washer manufacturers in the U.S. (based on their market
share) and their respective brands and subsidiaries. Three of the major manufacturers sell
clothes washers under four or more brands.
Source: Spurlock (2013).
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Appendix B Market Share of Appliances Sold in the Point-of-Sale

(POS) Data

This section presents the market share of the sampled major appliances sold in the U.S. between

2002 and 2011. Estimated total revenue and total units sold for the entire U.S. market is from

the NPD Group. Total shipment for each appliance was collected from the Association of Home

Appliance Manufactures (AHAM). Tables B.3 and B.4 show market share estimates for clothes

washers and dryers, respectively. Tables B.5 and B.6 show market share estimates for refrigerators

and room ACs, respectively.

Table B.3: Market Share of Sampled Clothes Washers,
2002-2010.

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Ave.

U.S. Market (Total)

Total revenues 3,186 3,068 3,270 4,146 4,251 4,425 3,980 3,786 4,231 3,638

Total sales 7,074 6,566 7,113 8,554 8,047 7,964 7,494 7,074 7,994.68 7,010
Total shipments 7,700 8,100 8,800 9,200 9,500 8,825 8,292 7,865 8,005 7,586

With Masked Models

Revenues 786 875 1,009 1,216 1,334 2,163 1,984 2,261 1,190 1,184

Sales 1,974 2,115 2,269 2,495 2,616 3,913 3,415 3,818 2,152 2,177
Share to total revenues 0.25 0.29 0.31 0.29 0.31 0.49 0.50 0.60 0.28 0.33 0.36

Share to total sales 0.28 0.32 0.32 0.29 0.33 0.49 0.46 0.54 0.27 0.31 0.36

Share to total shipments 0.26 0.26 0.26 0.27 0.28 0.44 0.41 0.49 0.27 0.29 0.32
No Masked Models

Revenues 595 681 671 804 907 1,621 1,577 2,010 1,188 1,183

Sales 1,461 1,612 1,346 1,431 1,603 2,551 2,396 3,238 2,149 2,175
Share to total revenues 0.19 0.22 0.21 0.19 0.21 0.37 0.40 0.53 0.28 0.33 0.29

Share to total sales 0.21 0.25 0.19 0.17 0.20 0.32 0.32 0.46 0.27 0.31 0.27

Share to total shipments 0.19 0.20 0.15 0.16 0.17 0.29 0.29 0.41 0.27 0.29 0.24

Revenues are in million U.S.$ while sales and shipments are in thousand. Share to total shipments refers to sales/total
shipments. Data Sources: Total revenue and total units sold in the U.S. Market (NPD Group); total shipment (Association of
Home Appliance Manufacturers).
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Table B.4: Market Share of Sampled Clothes Dryers, 2002-2010.

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Ave.

U.S. Market

Total revenues 2,202 2,188 2,480 3,046 3,050 3,306 2,951 2,852 3,008 2,763
Total sales 6,012 5,701 6,571 7,516 6,895 6,639 6,089 5,574 6,084 5,576

Total shipments 6,892 7,334 7,922 8,158 7,974 7,554 6,973 6,484 6,551.00 6,147

With Masked Models

Revenues 561 642 684 851 936 1,047 1,327 1,409 1,525 1,459

Sales 1,742 1,918 1,884 2,155 2,227 2,265 2,468 2,452 2,813 2,700
Share to total revenues 0.25 0.29 0.28 0.28 0.31 0.32 0.45 0.49 0.51 0.53 0.37

Share to total sales 0.29 0.34 0.29 0.29 0.32 0.37 0.44 0.40 0.50 0.48 0.37

Share to total shipments 0.25 0.26 0.24 0.26 0.28 0.30 0.35 0.38 0.43 0.44 0.32

No Masked Models

Revenues 412 463 436 574 633 771 1,058 1,254 1,389 1,337
Sales 1,215 1,329 1,073 1,287 1,372 1,508 1,768 2,090 2,461 2,437

Share to total revenues 0.19 0.21 0.18 0.19 0.21 0.23 0.36 0.44 0.46 0.48 0.29
Share to total sales 0.20 0.23 0.16 0.17 0.20 0.25 0.32 0.34 0.44 0.44 0.28

Share to total shipments 0.18 0.18 0.14 0.16 0.17 0.20 0.25 0.32 0.38 0.40 0.24

Revenues are in million U.S.$ while sales and shipments are in thousand. Share to total shipments refers to sales/total
shipments. Data Sources: Total revenue and total units sold in the U.S. Market (NPD Group); total shipment (Association of
Home Appliance Manufacturers).

Table B.5: Market Share of Sampled Refrigerators, 2002-2010.

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Ave.

U.S. Market

Total revenue 6,264 6,451 7,067 8,459 6,861 7,125 6,371 5,757 7,061 6,732

Total sales 9,442 9,539 10,845 13,654 10,308 9,999 9,211 8,257 9,569 9,257
Total shipments 9,744 10,021 10,913 11,135 11,077 10,399 9,328 8,397 9,369 8,981

With Masked Models
Revenues 1,468 1,606 1,775 2,127 2,236 3,464 2,723 2,824 3,340 2,984

Sales 2,501 2,787 3,121 3,413 3,333 4,453 3,433 3,498 4,075 3,569
Share to total revenues 0.23 0.25 0.25 0.25 0.33 0.49 0.43 0.49 0.47 0.44 0.36

Share to total sales 0.26 0.29 0.29 0.25 0.32 0.45 0.37 0.42 0.43 0.39 0.35

Share to total shipments 0.26 0.28 0.29 0.31 0.30 0.43 0.37 0.42 0.43 0.40 0.35

No Masked Models

Revenues 1,169 1,185 1,045 1,157 1,274 2,097 1,763 1,917 2,259 1,999
Sales 1,732 1,831 1,617 1,589 1,679 2,242 1,8542 2,086 2,370 2,032

Share to total revenues 0.19 0.18 0.15 0.14 0.19 0.29 0.28 0.33 0.32 0.30 0.24

Share to total sales 0.18 0.19 0.15 0.12 0.16 0.22 0.20 0.25 0.25 0.22 0.19
Share to total shipments 0.18 0.18 0.15 0.14 0.15 0.22 0.20 0.25 0.25 0.23 0.19

Revenues are in million U.S.$ while sales and shipments are in thousand. Share to total shipments refers to sales/total
shipments. Data Sources: Total revenue and total units sold in the U.S. Market (NPD Group); total shipment (Association of
Home Appliance Manufacturers).
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Table B.6: Market Share of Sampled Room Airconditioners,
2002-2010.

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Ave

U.S. Market

Total revenue 6,265 6,451 7,067 8,458 6,861 7,125 6,371 5,757 7,061 6,732

Total sales 9,442 9,539 10,845 13,654 10,308 9,999 9,211 8,257 9,569 9,257
Total shipments 9,744 10,021 10,913 11,135 11,077 10,399 9,328 8,397 9,369 8,981

With Masked Models
Revenues 1,468 1,606 1,775 2,127 2,236 3,464 2,723 2,824 3,340 2,984

Sales 2,501 2,787 3,121 3,413 3,333 4,453 3,433 3,498 4,075 3,569
Share to total revenues 0.23 0.25 0.25 0.25 0.33 0.49 0.43 0.49 0.47 0.44 0.36

Share to total sales 0.26 0.29 0.29 0.25 0.32 0.45 0.37 0.42 0.43 0.39 0.35

Share to total shipments 0.26 0.28 0.29 0.31 0.30 0.43 0.37 0.42 0.43 0.40 0.35

No Masked Models

Revenues 1,169 1,185 1,045 1,157 1,274 2,097 1,763 1,917 2,259 1,997
Sales 1,732 1,831 1,617 1,589 1,679 2,242 1,854 2,086 2,370 2,031

Share to total revenues 0.19 0.18 0.15 0.14 0.19 0.29 0.28 0.33 0.32 0.30 0.24

Share to total sales 0.18 0.19 0.15 0.12 0.16 0.22 0.20 0.25 0.25 0.22 0.19
Share to total shipments 0.18 0.18 0.15 0.14 0.15 0.22 0.20 0.25 0.25 0.23 0.19

Revenues are in million U.S.$ while sales and shipments are in thousand. Share to total shipments refers to sales/total
shipments. Data Sources: Total revenue and total units sold in the U.S. Market (NPD Group); total shipment (Association of
Home Appliance Manufacturers).
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Appendix C Examination of Residuals from the

Difference-in-Differences Approach
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Figure C.1: Difference in Mean Residuals, ME Omitted,
Treatment vs Control

Notes: The figures above illustrate the difference in average residuals between treatment and control groups in each
referenced price index. Residuals are calculated after estimating equation 12 but omitting the minimum energy
efficiency standards variable, ME. Green lines and shadings correspond to mean parameter and 90% confidence
interval in periods wherein an appliance is subject to a minimum energy efficiency standard. Each policy period
pertains to a 6-month window before and after the date of the policy change. For example, the 2004 policy change
refers to the period July 2003-June 2004. P ∗ is the CES-based index for common goods; P σ̂ is the CES-based index
with new and exiting models and the estimated elasticity of substitution (101 for clothes washers; 44 for refrigerators,
a66 for room air conditioners, and 28 for clothes dryers); P 10 is the CES-based index with a substitution elasticity
of 10. The ratio (λt/λt−1) gives the average share of expenditures on common goods (continuing models) in the
current period relative to the previous period, where a value less than one implies substitution toward new goods
and a welfare improvement, all else the same. Outliers (timelines and values shown below) are omitted for better
visualization.

Source of raw data: The NPD Group.

Outliers omitted in the figure.

P 10 (λt/λt−1)

Year.month Values Year.month Values
2004.1 -0.233 2004.1 -0.841

2005.1 0.109
2007.1 0.282
2010.1 0.482
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Figure C.2: Difference in Mean Residuals, ES Omitted,
Treatment vs Control

Notes: The figures above illustrate the difference in average residuals between treatment and control groups in
each referenced price index. Residuals are calculated after estimating equation 12 but omitting the Energy Star
variable, ES. Green lines and shadings correspond to mean estimated parameters and 90 percent confidence interval
in periods wherein an appliance is subject to a Energy Star (ES) policy change. Each policy period pertains to a
6-month window before and after the date of the policy change. For example, the 2004 policy change refers to the
period July 2003-June 2004. P ∗ is the CES-based index for common goods; P σ̂ is the CES-based index with new and
exiting models and the estimated elasticity of substitution (101 for clothes washers; 44 for refrigerators, a66 for room
air conditioners, and 28 for clothes dryers); P 10 is the CES-based index with a substitution elasticity of 10. The
ratio (λt/λt−1) gives the average share of expenditures on common goods (continuing models) in the current period
relative to the previous period, where a value less than one implies substitution toward new goods and a welfare
improvement, all else the same. Outliers (timelines and values shown below) are omitted for better visualization.

Source of raw data: The NPD Group.

Outliers omitted in the figure.

P 10 (λt/λt−1)

Year.month Values Year.month Values

2004.1 -0.141 2004.1 -0.600
2007.1 0.119 2005.1 0.300

2007.1 0.387
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Appendix D Average Vintage of All Four Appliances

Figure D.3: Average Vintage of Clothes Washers,
Refrigerators, Room ACs and Clothes Dryers, 2002-2011.

Average Vintage Effects

Notes: The figure shows sales-weighted average vintage for each appliance across time. The
solid vertical lines represent the effective date of simultaneous policy changes in the federal
minimum energy efficiency standard and Energy Star certification threshold, while the dashed
line is for the Energy Star threshold change that took effect in July 2009, all for clothes
washers. Refrigerators had changes in Energy Star certification thresholds in January 2004
and in May 2008 (represented by the dashed dotted vertical line). All prices are in December
2011 U.S. dollars.

Source: Monthly sales and revenues of clothes washers sold in the U.S. between 2001-2011
(The NPD Group) and authors’ calculations.

Appendix E Correlation in the Introduction of New Models

Between Clothes Washers and Refrigerators at the

brand level

We observe that unit price (holding quality constant), quality and consumer welfare gains for

clothes washers and refrigerators follow similar trends and fluctuations, including the significant

drop around 2007 policy change. In order to get a sense of the potential factor that might influence
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the correlated effect, we look at the correlation in the share of new models to the total stock of

units in a particular time period between clothes washers and refrigerators at the brand level. We

find the same significant correlation particularly for major brands of washers and refrigerators like

GE, LG, Maytag, and Whirlpool (Figure E.4).

Figure E.4: Correlation in the share of new models to total
stock units between washers and refrigerators, brand level,

monthly, 2001-2011

Source: The NPD Group
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Appendix F Results from Including Masked Models

in the Sample

To address the potential bias introduced by including the 35 percent masked models in the data,

we run the regressions of price against the average vintage within and between firms, both at the

brand and manufacturer levels (equation 14). The results from estimating equation 14 without

masked models are presented in Table F.7. We find that the qualitative results remain the same.

Table F.7: Regression Results: Dependent Variable – Unit
Price,

Clothes Washers (Unmasked Models only)

(1) (2)

β1, average vintage within brand 2.007***

(0.456)

β2, average vintage between brands 4.011***

(0.775)

β1, average vintage within manufacturer 3.817***

(0.468)

β2, average vintage between manufacturers 1.083*

(0.561)

Constant 700.737*** 664.264

(142.630) (140.270)

Own Vintage Spline yes yes

Month-Fixed Effect yes yes

Model-Fixed Effect yes yes

Adj. R2 (within group) 0.373 0.372

Observations 22,445 22,755

The table reports the results from estimating equation 15 without the interaction
effects using unmasked models only. Column (1) estimates the effects of within- and
between-brands average vintage, and column (2) estimates the effects of within-
and between-manufacturer average vintage on price. Clustered standard errors
are in parentheses. We use restricted cubic splines with 5 knots in estimating the
spline function of vintage.
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Appendix G Comparison between the Consumer Price Index

and the Price Indices for Laundry Equipment
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Figure G.5: Adjusted CPI and Price Indices for Laundry
Equipment, 2002-2011

(a) Clothes Washers

(b) Clothes Dryers

Notes: Panels (a)-(b) show the CPI for laundry equipment and the calculated price indices
for clothes washers and dryers, respectively. PME and PF are the Marshall-Edgeworth and
Fisher price indices, respectively; P ∗ is the CES-based index for common goods; P σ̂ is the
CES-based index with new and exiting models and the estimated elasticity of substitution (101
for washers; 44 for refrigerators, and 66 for room air conditioners); and P 10 is the CES-based
index with a substitution elasticity of 10. The solid vertical lines represent the effective date
of simultaneous policy changes in the federal minimum energy efficiency standard and Energy
Star certification threshold, while the dashed line is for the Energy Star threshold change that
took effect in July 2009, all for clothes washers. Refrigerators had changes in Energy Star
certification thresholds in January 2004 and in May 2008 (represented by the dashed dotted
vertical line). All prices are in December 2011 U.S. dollars.
Source of raw data: Bureau of Labor Statistics; The NPD Group.
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Appendix H Within and Between Brands Competition and Price

Trends for Clothes Washers

We use the estimates from equation 15 to predict the price trend of typical clothes washer holding

average vintage of models within brands constant. Figure H.6 plots this predicted price across the

first two years of a clothes washer in the market, holding within-brand average vintage equivalent

to about 8 months (20th percentile), 11 months (40th percentile), 13 months (60th percentile) and

17 months (80th percentile), while Figure H.7 plots the predicted price holding average vintage of

models between brands constant at about 10 months (20th percentile), 12 months (40th percentile),

14 months (60th percentile), and 15 months (80th percentile).

We also predict the price trend of a typical washer at different average vintage within the

same manufacturer and between manufacturers. Figure H.8 shows the predicted price of a typical

clothes washer, holding average vintage of models within the same manufacturer constant at about 9

months (20th percentile), 11 months (40th percentile), 13 months (60th percentile) and 16 months

(80 percentile). Figure H.9 plots the predicted price at between-manufacturers average vintage

equivalent to 9 months (20th percentile), 13 months (40th percentile), 16 months (60th percentile)

and 19 months (80 percentile).
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Figure H.6: Life Cycle Pricing of Clothes Washers
Under Different Within-Brand Average Vintage

(a) Between Brands Average Vintage = 20th percentile (b)Between Brands Average Vintage = 40th percentile

(c) Between Brands Average Vintage = 60th percentile (d) Between Brands Average Vintage = 80th percentile

The figure shows that trend in the predicted price of a representative clothes washer using equation 15 during
its first two years. We estimate equation 15 using a spline function of vintage with 5 knots. Each solid line
represents a predicted price trend, given a within-brand average vintage of clothes washer. The 20th, 40th, 60th
and 80th percentile of within-brand average vintage correspond to 7.71, 10.67. 13.32 and 16.58, respectively. For
the between-brands average vintage, the 20th, 40th, 60th and 80th percentile correspond to 9.62, 12.54, 13.67, and
14.90, respectively.

Source: Authors’ calculations.
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Figure H.7: Life Cycle Pricing of Clothes Washers
Under Different Between-Brands Average Vintage

(a) Within Brand Average Vintage = 20th percentile (b)Within Brand Average Vintage = 40th percentile

(c) Within Brand Average Vintage = 60th percentile (d) Within Brand Average Vintage = 80th percentile

The figure shows that trend in the predicted price of a representative clothes washer using equation 15 during its
first two years. We estimate equation 15 using a spline function of vintage with 5 knots. Each solid line represents
a predicted price trend, given a between-brands average vintage of clothes washer. The 20th, 40th, 60th and
80th percentile of within-brand average vintage correspond to 9.62, 12.54, 13.67, and 14.90, respectively. For the
between-brands average vintage, the 20th, 40th, 60th and 80th percentile correspond to 7.71, 10.67. 13.32 and 16.58,
respectively.

Source: Authors’ calculations.

53



Figure H.8: Life Cycle Pricing of Clothes Washers
Under Different Within-Manufacturer Average Vintage

(a) Between Manufacturers Average Vintage = 20th

percentile
(b)Between Manufacturers Average Vintage = 40th

percentile

(c) Between Manufacturers Average Vintage = 60th

percentile

(d) Between Manufacturers Average Vintage = 80th

percentile

The figure shows that trend in the predicted price of a representative clothes washer using equation 15 during its
first two years. We estimate equation 15 using a spline function of vintage with 5 knots. Each solid line represents a
predicted price trend, given a within-manufacturer average vintage of clothes washer. The 20th, 40th, 60th and 80th
percentile of within-manufacturer average vintage correspond to 8.86, 11.14, 13.18, and 15.68, respectively. For the
between-manufacturers average vintage, the 20th, 40th, 60th and 80th percentile correspond to 9.47, 12.53, 13.85,
and 16.12, respectively.

Source: Authors’ calculations.
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Figure H.9: Life Cycle Pricing of Clothes Washers
Under Different Between-Manufacturers Average Vintage

(a) Within Manufacturer Average Vintage = 20th

percentile

(b) Within Manufacturer Average Vintage = 40th

percentile

(c) Within Manufacturer Average Vintage = 60th

percentile
(d) Within Manufacturer Average Vintage = 80th

percentile

The figure shows that trend in the predicted price of a representative clothes washer using equation 15 during its
first two years. We estimate equation 15 using a spline function of vintage with 5 knots. Each solid line represents
a predicted price trend, given a between-manufacturer average vintage of clothes washer. The 20th, 40th, 60th and
80th percentile of between-manufacturer average vintage correspond to 9.47, 12.53, 13.85, and 16.12, respectively.
For the within-manufacturer average vintage, the 20th, 40th, 60th and 80th percentile correspond to 8.86, 11.14,
13.18, and 15.68, respectively.

Source: Authors’ calculations.
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Appendix I Within and Between Brands Competition and Price

Trends for Clothes Dryers, Room Airconditioner and

Refrigerators

To see if cannibalism is unique to the appliance that had more stringent energy efficiency standards

over the sample period (i.e. clothes washer), we use refrigerator, room AC and clothes dryer as

counterfactuals. None of these appliances had adopted or implemented a simultaneous ME and ES

certification change during the study period, although refrigerators had 2004 and 2007 ES policy

changes. This section plots predicted price using estimates from equation 15 for these appliances.

I.A Clothes Dryers

We use the estimates from equation 15 to predict the price trend of typical clothes dryer holding

average vintage of models within brands constant. Figure I.10 plots this predicted price across the

first two years of a clothes dryer in the market, holding within-brand average vintage equivalent

to about 8 months (20th percentile), 11 months (40th percentile), 14 months (60th percentile) and

17 months (80th percentile), while Figure I.11 plots the predicted price holding average vintage of

models between brands constant at about 10 months (20th percentile), 12 months (40th percentile),

14 months (60th percentile), and 16 months (80th percentile).

We also predict the price trend of a typical dryer at different average vintage within the

same manufacturer and between manufacturers. Figure I.12 shows the predicted price of a typical

clothes dryer, holding average vintage of models within the same manufacturer constant at about 10

months (20th percentile), 13 months (40th percentile), 15 months (60th percentile) and 17 months

(80 percentile). Figure I.13 plots the predicted price at between-manufacturers average vintage

equivalent to 9 months (20th percentile), 12 months (40th percentile), 14 months (60th percentile)

and 17 months (80 percentile).
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Figure I.10: Life Cycle Pricing of Clothes Dryers Under
Different Within-Brand Average Vintage

(a) Between Brands Average Vintage = 20th percentile
(b)Between Brands Average Vintage = 40th percentile

(c) Between Brands Average Vintage = 60th percentile
(d) Between Brands Average Vintage = 80th percentile

The figure shows the trend in the predicted price of a representative clothes dryer using equation 15 during its first
two years. We estimate equation 15 using a spline function of vintage with 5 knots. Each solid line represents a
predicted price trend, given a within-brand average vintage of clothes dryer. The 20th, 40th, 60th and 80th percentile
of within-brand average vintage correspond to 8.17, 11.38, 14.04 and 17.52, respectively. For the between-brands
average vintage, the 20th, 40th, 60th and 80th percentile correspond to 10.12, 12.40, 14.54, and 16.67, respectively.

Source: Authors’ calculations.
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Figure I.11: Life Cycle Pricing of Clothes Dryers Under
Different Between-Brands Average Vintage

(a) Within Brand Average Vintage = 20th percentile b)Within Brand Average Vintage = 40th percentile

(c) Within Brand Average Vintage = 60th percentile (d) Within Brand Average Vintage = 80th percentile

The figure shows the trend in the predicted price of a representative clothes dryer using equation 15 during its first
two years. We estimate equation 15 using a spline function of vintage with 5 knots. Each solid line represents
a predicted price trend, given a between-brands average vintage of clothes dryer. The 20th, 40th, 60th and
80th percentile of within-brand average vintage correspond to 8.17, 11.38, 14.04 and 17.52, respectively. For the
between-brands average vintage, the 20th, 40th, 60th and 80th percentile correspond to 10.12, 12.40, 14.54, and
16.67, respectively.

Source: Authors’ calculations.
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Figure I.12: Life Cycle Pricing of Clothes Dryers Under
Different Within-Manufacturer Average Vintage

(a) Between Manufacturers Average Vintage = 20th

percentile
(b)Between Manufacturers Average Vintage = 40th

percentile

(c) Between Manufacturers Average Vintage = 60th

percentile

(d) Between Manufacturers Average Vintage = 80th

percentile

The figure shows the trend in the predicted price of a representative clothes dryer using equation 15 during its first
two years. We estimate equation 15 using a spline function of vintage with 5 knots. Each solid line represents a
predicted price trend, given a within-manufacturer average vintage of clothes dryer. The 20th, 40th, 60th and 80th
percentile of within-manufacturer average vintage correspond to 8.97, 11.55, 14.25, and 17.35, respectively. For the
between-manufacturers average vintage, the 20th, 40th, 60th and 80th percentile correspond to 10.11, 12.91, 14.79,
and 17.74, respectively.

Source: Authors’ calculations.
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Figure I.13: Life Cycle Pricing of Clothes Dryers Under
Different Between-Manufacturers Average Vintage

(a) Within Manufacturer Average Vintage = 20th

percentile
(b) Within Manufacturer Average Vintage = 40th

percentile

(c) Within Manufacturer Average Vintage = 60th

percentile

(d) Within Manufacturer Average Vintage = 80th

percentile

The figure shows the trend in the predicted price of a representative clothes dryer using equation 15 during its first
two years. We estimate equation 15 using a spline function of vintage with 5 knots. Each solid line represents a
predicted price trend, given a between-manufacturers average vintage of clothes dryer. The 20th, 40th, 60th and
80th percentile of between-manufacturers average vintage correspond to 10.11, 12.91, 14.79, and 17.74, respectively.
For the within-manufacturer average vintage, the 20th, 40th, 60th and 80th percentile correspond to 8.97, 11.55,
14.25, and 17.35, respectively.

Source: Authors’ calculations.
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I.B Room Airconditioners

We use the estimates from equation 15 to predict the price trend of typical room AC holding

average vintage of models within a brand constant. Figure I.14 plots this predicted price across

the first two years of a room AC in the market, holding within-brand average vintage equivalent

to about 6 months (20th percentile), 9 months (40th percentile), 12 months (60th percentile) and

18 months (80th percentile), while Figure I.15 plots the predicted price holding average vintage of

models between brands constant at about 7 months (20th percentile), 9 months (40th percentile),

11 months (60th percentile), and 15 months (80th percentile).

We also predict the price trend of a typical room AC at different average vintage within the

same manufacturer and between manufacturers. Figure I.16 shows the predicted price of a typical

room AC, holding average vintage of models within the same manufacturer constant at about 5

months (20th percentile), 9 months (40th percentile), 13 months (60th percentile) and 19 months

(80 percentile). Figure I.17 plots the predicted price at between-manufacturers average vintage

equivalent to 7 months (20th percentile), 9 months (40th percentile), 11 months (60th percentile)

and 15 months (80 percentile).
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Figure I.14: Life Cycle Pricing of Room ACs Under Different
Within-Brand Average Vintage

(a) Between Brands Average Vintage = 20th percentile
(b)Between Brands Average Vintage = 40th percentile

(c) Between Brands Average Vintage = 60th percentile (d) Between Brands Average Vintage = 80th percentile

The figure shows the trend in the predicted price of a representative room AC using equation 15 during its first
two years. We estimate equation 15 using a spline function of vintage with 5 knots. Each solid line represents a
predicted price trend, given a within-brand average vintage of room AC. The 20th, 40th, 60th and 80th percentile
of within-brand average vintage correspond to 5.88, 8.98, 12.50, and 18.38 respectively. For the between-brands
average vintage, the 20th, 40th, 60th and 80th percentile correspond to 7.22, 9.08, 11.38, and 14.92 respectively.

Source: Authors’ calculations.
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Figure I.15: Life Cycle Pricing of Room ACs Under Different
Between-Brands Average Vintage

(a) Within Brand Average Vintage = 20th percentile (b)Within Brand Average Vintage = 40th percentile

(c) Within Brand Average Vintage = 60th percentile (d) Within Brand Average Vintage = 80th percentile

The figure shows the trend in the predicted price of a representative room AC using equation 15 during its first
two years. We estimate equation 15 using a spline function of vintage with 5 knots. Each solid line represents a
predicted price trend, given a between-brand average vintage of room AC. The 20th, 40th, 60th and 80th percentile
of within-brand average vintage correspond to 5.88, 8.98, 12.50, and 18.38 respectively. For the between-brands
average vintage, the 20th, 40th, 60th and 80th percentile correspond to 7.22, 9.08, 11.38, and 14.92 respectively.

Source: Authors’ calculations.
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Figure I.16: Life Cycle Pricing of Room ACs Under Different
Within-Manufacturer Average Vintage

(a) Between Manufacturers Average Vintage = 20th

percentile

(b)Between Manufacturers Average Vintage = 40th

percentile

(c) Between Manufacturers Average Vintage = 60th

percentile
(d) Between Manufacturers Average Vintage = 80th

percentile

The figure shows the trend in the predicted price of a representative room AC using equation 15 during its first
two years. We estimate equation 15 using a spline function of vintage with 5 knots. Each solid line represents a
predicted price trend, given a within-manufacturer average vintage of room AC. The 20th, 40th, 60th and 80th
percentile of within-manufacturer average vintage correspond to 5.19, 8.85, 13.23, and 19.45 respectively. For the
between-manufacturers average vintage, the 20th, 40th, 60th and 80th percentile correspond to 7.41, 9.08, 11.38,
and 14.89, respectively.

Source: Authors’ calculations.
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Figure I.17: Life Cycle Pricing of Room ACs Under Different
Between-Manufacturers Average Vintage

(a) Within Manufacturer Average Vintage = 20th

percentile
(b) Within Manufacturer Average Vintage = 40th

percentile

(c) Within Manufacturer Average Vintage = 60th

percentile
(d) Within Manufacturer Average Vintage = 80th

percentile

The figure shows the trend in the predicted price of a representative room AC using equation 15 during its first
two years. We estimate equation 15 using a spline function of vintage with 5 knots. Each solid line represents a
predicted price trend, given a between-manufacturers average vintage of room AC. The 20th, 40th, 60th and 80th
percentile of within-manufacturer average vintage correspond to 5.19, 8.85, 13.23, and 19.45 respectively. For the
between-manufacturers average vintage, the 20th, 40th, 60th and 80th percentile correspond to 7.41, 9.08, 11.38,
and 14.89, respectively.

Source: Authors’ calculations.
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I.C Refrigerators

We use the estimates from equation 15 to predict the price trend of typical refrigerator holding

average vintage of models within brands constant. Figure I.18 plots this predicted price across the

first two years of a refrigerator in the market, holding within-brand average vintage equivalent to

about 8 months (20th percentile), 12 months (40th percentile), 16 months (60th percentile) and

20 months (80th percentile), while Figure I.19 plots the predicted price holding average vintage of

models between brands constant at about 10 months (20th percentile), 13 months (40th percentile),

15 months (60th percentile), and 19 months (80th percentile).

We also predict the price trend of a typical refrigerator at different average vintage within

the same manufacturer and between manufacturers. Figure I.20 shows the predicted price of a

typical refrigerator, holding average vintage of models within the same manufacturer constant at

about 8 months (20th percentile), 12 months (40th percentile), 16 months (60th percentile) and 20

months (80 percentile). Figure I.21 plots the predicted price at average vintage equivalent to 9

months (20th percentile), 13 months (40th percentile), 16 months (60th percentile) and 19 months

(80 percentile).
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Figure I.18: Life Cycle Pricing of Refrigerators Under
Different Within-Brands Average Vintage

(a) Between Brands Average Vintage = 20th percentile (b)Between Brands Average Vintage = 40th percentile

(c) Between Brands Average Vintage = 60th percentile (d) Between Brands Average Vintage = 80th percentile

The figure shows the trend in the predicted price of a representative refrigerator using equation 15 during its first
two years. We estimate equation 15 using a spline function of vintage with 5 knots. Each solid line represents a
predicted price trend, given a within-brand average vintage of refrigerators. The 20th, 40th, 60th and 80th percentile
of within-brand average vintage correspond to 8.23, 11.67, 15.86, and 19.98 respectively. For the between-brands
average vintage, the 20th, 40th, 60th and 80th percentile correspond to 9.52, 12.93, 15.34, and 18.67, respectively.

Source: Authors’ calculations.
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Figure I.19: Life Cycle Pricing of Refrigerators Under
Different Between-Brands Average Vintage

(a) Within Brand Average Vintage = 20th percentile (b)Within Brand Average Vintage = 40th percentile

(c) Within Brand Average Vintage = 60th percentile (d) Within Brand Average Vintage = 80th percentile

The figure shows the trend in the predicted price of a representative refrigerator using equation 15 during its first two
years. We estimate equation 15 using a spline function of vintage with 5 knots. Each solid line represents a predicted
price trend, given a between-brands average vintage of refrigerators. The 20th, 40th, 60th and 80th percentile of
within-brand average vintage correspond to 8.23, 11.67, 15.86, and 19.98 respectively. For the between-brand average
vintage, the 20th, 40th, 60th and 80th percentile correspond to 9.52, 12.93, 15.34, and 18.67, respectively.

Source: Authors’ calculations.
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Figure I.20: Life Cycle Pricing of Refrigerators Under
Different Within-Manufacturer Average Vintage

(a) Between Manufacturers Average Vintage = 20th

percentile

(b)Between Manufacturers Average Vintage = 40th

percentile

(c) Between Manufacturers Average Vintage = 60th

percentile
(d) Between Manufacturers Average Vintage = 80th

percentile

The figure shows the trend in the predicted price of a representative refrigerator using equation 15 during its first
two years. We estimate equation 15 using a spline function of vintage with 5 knots. Each solid line represents a
predicted price trend, given a within-manufacturer average vintage of refrigerators. The 20th, 40th, 60th and 80th
percentile of within-manufacturer average vintage correspond to 7.91, 11.56, 15.67, and 19.95, respectively. For the
between-manufacturers average vintage, the 20th, 40th, 60th and 80th percentile correspond to 9.43, 13.13, 15.68,
and 18.56, respectively.

Source: Authors’ calculations.
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Figure I.21: Life Cycle Pricing of Refrigerators Under
Different Between-Manufacturers Average Vintage

(a) Within Manufacturer Average Vintage = 20th

percentile

(b) Within Manufacturer Average Vintage = 40th

percentile

(c) Within Manufacturer Average Vintage = 60th

percentile
(d) Within Manufacturer Average Vintage = 80th

percentile

The figure shows the trend in the predicted price of a representative refrigerator using equation 15 during its first
two years. We estimate equation 15 using a spline function of vintage with 5 knots. Each solid line represents a
predicted price trend, given a between-manufacturers average vintage of refrigerators. The 20th, 40th, 60th and 80th
percentile of within-manufacturer average vintage correspond to 7.91, 11.56, 15.67, and 19.95, respectively. For the
between-manufacturers average vintage, the 20th, 40th, 60th and 80th percentile correspond to 9.43, 13.13, 15.68,
and 18.56, respectively.

Source: Authors’ calculations.
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