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a b s t r a c t

We exploit recent advances in climate science to develop a physically consistent, yet sur-

prisingly simple, model of climate policy. It seems that key economic models have greatly

overestimated the delay between carbon emissions and warming, and ignored the saturation

of carbon sinks that takes place when the atmospheric concentration of carbon dioxide rises.

This has important implications for climate policy. If carbon emissions are abated, damages

are avoided almost immediately. Therefore it is optimal to reduce emissions significantly in

the near term and bring about a slow transition to optimal peak warming, even if optimal

steady-state/peak warming is high. The optimal carbon price should start relatively high and

grow relatively fast.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the last decade, climate science has delivered two important and related insights. First, global warming appears to be

approximately linearly proportional to cumulative emissions of carbon dioxide. Second, the temperature response to an emission

of CO2 appears to be approximately instantaneous and then constant as a function of time. As Ricke and Caldeira (2014) write,

“it is a widely held misconception that the main effects of a CO2 emission will not be felt for several decades” (p1).

In this paper, we build a climate-economy model based on these insights and assess the implications for optimal global

climate policy, in search of general principles. At the heart of the model is a simple, linear function relating warming with

cumulative CO2 emissions, with at most a very short delay. We combine this with reduced-form representations of climate
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damages and the costs of CO2 emissions abatement, each of which is capable of capturing stylised facts. Our model belongs to

the class of ‘analytical Integrated Assessment Models’ (Golosov et al., 2014; Traeger, 2015; Rezai and van der Ploeg, 2016; van

den Bijgaart et al., 2016; Lemoine and Rudik, 2017; Gerlagh and Liski, 2018),1 developed to provide more transparent results

than numerical IAMs (e.g. the DICE, FUND and PAGE models) and energy models (see Clarke et al., 2014).2

Our approach, based on cumulative carbon emissions, is particularly useful for evaluating optimal peak warming of the

planet, and the circumstances in which the 1.5–2
◦
C target range of peak warming in the Paris Agreement can be given

support in a globally aggregated, welfarist framework. We show (Proposition 1 and Corollary 1) that optimal peak warm-

ing depends sensitively on several parameters that are highly uncertain, implying that optimal peak warming itself is highly

uncertain. We suggest that if each parameter is calibrated on the breadth of relevant evidence and opinion – i.e. this does

not necessarily reflect our own opinions – optimal peak warming is 3.4
◦
C. However, we are also able to identify a wide

range of circumstances in which peak warming of 2
◦
C or less is optimal. We further show that the relatively short adjust-

ment timescale of temperature to cumulative emissions can be ignored in calculating optimal peak warming and all that fol-

lows.

Our model is also simple enough to enable the characterisation of the optimal transition path to peak warming in closed

form. A key insight of this exercise is that the optimal transition is slow: it is optimal to put in significant effort early

on, in order to slow the rate of increase of cumulative CO2 emissions. Consequently the uncertainty about optimal tran-

sient warming in 2100 is much lower than the uncertainty about optimal peak warming. We show that this is fundamen-

tally due to the stock-flow nature of CO2-induced warming, in the context of the structural assumptions made in our model

about damages and abatement costs. Climate scientists have argued for some years that transient warming is a more policy-

relevant variable than equilibrium warming (e.g. Allen et al., 2009) and our results give this view an economic ground-

ing.

We obtain a closed-form solution for the optimal carbon price (Proposition 2). It shows that the optimal carbon price

does not just increase at the growth rate of the economy, a key result of Golosov et al. (2014), rather it increases faster. The

fundamental reason why is the saturation of carbon sinks (Corollary 2), a positive climate feedback whereby more of a CO2

emission remains in the atmosphere, the higher is the background atmospheric CO2 concentration. This is ignored, or given

insufficient treatment, by economic models. Due to the saturation of carbon sinks, the marginal effect of cumulative emis-

sions on warming is constant (barring the very short initial delay). Assuming damages are a convex function of warming, this

implies the optimal carbon price increases faster than aggregate output. Quantitatively, this effect adds around 0.5 percent-

age points to the initial growth rate of the optimal carbon price under central parameter values, falling to about zero in 100

years.

Having characterised what we might call the unconstrained optimal path, we consider the effect of a policy constraint to

reflect the temperature limits set out in the Paris Agreement, namely “Holding the increase in the global average temper-

ature to well below 2
◦
C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5

◦
C above

pre-industrial levels”. In our model this can be represented by an inequality constraint – an upper limit – on cumulative CO2

emissions. Proposition 3 shows that the optimal carbon price under a binding temperature constraint comprises the social cost

of carbon, plus a Hotelling premium to ensure inter-temporally efficient use of the cumulative emissions budget implied by the

1.5–2
◦
C limit. Many studies have sought to derive optimal emissions and carbon prices under such a temperature constraint

(see Lemoine and Rudik, 2017; Clarke et al., 2014, review numerical energy models). What distinguishes our approach is that

the planner does not just minimise discounted abatement costs, rather the planner still values damages by minimising the

discounted sum of abatement and damage costs.

We finish up by showing what difference this makes, by running the temperature-constrained model ignoring damages. The

optimal price path to minimise abatement costs just follows the simple Hotelling rule (Proposition 4). This contrasts with the

common conception that the cost-minimising carbon price follows an augmented Hotelling rule, increasing at the rate of interest

plus the depreciation rate of atmospheric CO2. But it also contrasts with the recent findings of Lemoine and Rudik (2017). In their

paper, the cost-minimising carbon price starts low and grows very slowly for more than half a century, because a long assumed

delay between CO2 emissions and warming buys time. Our result again comes from taking into account the saturation of carbon

sinks, as well as from not over-estimating the delay between emissions and warming. When we compare the cost-effective

price path with the price path that maximises net benefits, we show that ignoring damages leads the planner to delay emissions

cuts (Proposition 5). This effect is large: initial emissions are 31% lower when damages are included in its determination, under

central parameter values.

The rest of the paper is structured as follows. Section 2 lays out the building blocks of the model and provides a detailed

justification of them, starting with the science alluded to above. Section 3 studies optimal emissions in the model, focusing on

peak warming, the speed of transition to peak warming, and carbon prices. Section 4 introduces the constraint on warming

made salient by the Paris Agreement. Section 5 concludes.

1 This term can be attributed to Traeger (2015).
2 Analytical IAMs are close in spirit to the theory of optimal stock pollution (see Xepapadeas, 2005). What distinguishes them is a more – but not too –

detailed representation of the physics and economics of climate change. Generally, the balancing act of retaining physical and economic detail, while still

obtaining (useful) closed-form analytical solutions, is hard to get right.
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Fig. 1. Temperature response of 16 × 16 climate model combinations to an instantaneous 100 GtC emission of CO2 on a background atmospheric CO2 concentration of

389 ppm, following the same method as Ricke and Caldeira (2014). The equilibrium climate sensitivity is fixed at 3.2
◦
C. The solid black line is the response of DICE-2013R.

2. Elements of the model

2.1. A linear model of warming

Our climate model is based on two important results from Earth system modelling. First, as mentioned above, the tempera-

ture response to an emission of CO2 is approximately constant as a function of time, except for a short initial adjustment period

of ten years or so (Matthews and Caldeira, 2008; Shine et al., 2005; Solomon et al., 2009; Eby et al., 2009; Held et al., 2010;

Joos et al., 2013; Ricke and Caldeira, 2014). Fig. 1 demonstrates this result for a representative set of 16 carbon-cycle mod-

els and 16 atmosphere-ocean general circulation models, closely following the approach of Ricke and Caldeira (2014). Second,

the warming effect of a CO2 emission does not depend on the background concentration of CO2 in the atmosphere (Matthews

et al., 2009; Gillett et al., 2013). As we now show, insofar as the temperature response to CO2 emissions is both time- and

concentration-independent, warming is linearly proportional to cumulative CO2 emissions.

The two stages of (i) CO2 emissions raising the atmospheric CO2 concentration and (ii) elevated atmospheric CO2 causing

global temperatures to rise can be collapsed into a single parametric relationship between cumulative emissions and warming.

This has been defined by IPCC as the Transient Climate Response to Cumulative Carbon Emissions (TCRE: Collins et al., 2013).

Formally, the TCRE 𝜁 is (Matthews et al., 2009)

𝜁 ≡ ΔT

ΔS
= ΔT

ΔM
· ΔM

ΔS
. (1)

The TCRE is the product of temperature change per unit increase of atmospheric carbon,ΔT∕ΔM, and the increase in atmospheric

carbon per unit of cumulative emissions,ΔM∕ΔS. ΔT∕ΔM is a concave increasing function of time, because of thermal inertia, i.e.

it takes time before an energy imbalance will lead to a new equilibrium temperature given the large heat capacity of the oceans.

Conversely ΔM∕ΔS is a convex decreasing function of time, because carbon is gradually absorbed by the biosphere and oceans.

Warming from a CO2 emission is constant over time in Earth system models, because the rate of increase of ΔT∕ΔM is cancelled

out by the rate of decrease of ΔM∕ΔS, except for the first five to ten years. The physical explanation for why these processes

mirror each other is that the sequestration of heat and carbon by the oceans are both governed by the same mixing of surface

and deep ocean waters (Matthews et al., 2009; Solomon et al., 2009; Goodwin et al., 2015; MacDougall and Friedlingstein, 2015).

Models also find the TCRE is independent of the background atmospheric CO2 concentration, M. As M increases, it is well

known that ΔT∕ΔM decreases, due to CO2 becoming less effective at absorbing outgoing long-wave radiation. The relationship

is approximately logarithmic. However, again this is cancelled out in Earth system models by an increase in ΔM∕ΔS, due to

the saturation of the ocean carbon sink (Matthews et al., 2009; MacDougall and Friedlingstein, 2015).3 In contrast to the time-

independence of the TCRE, however, there is no obvious physical explanation for why these two processes more-or-less exactly

offset each other.

3 Ocean absorption of CO2 is driven by the chemical reaction CO2air
⇌CO2aq

+ H2O⇌HCO−
3
+ H+. The dissolution of the CO2 gas into water follows Henry’s

law, [CO2aq
] = KH[CO2air

]. The conversion to bicarbonate follows the dynamics
d[CO2aq

]

dt
= −k+[CO2aq

] + k−[H+][HCO−
3
] (Schulz et al., 2006), where the first term

governs the absorption of CO2 and the second term the reverse reaction, leading to an equilibrium condition

[
HCO−

3

][
H+

][
CO2aq

] = k+
k−

= 4.47 ∗ 10−7mol/l. As more

carbon is absorbed by the oceans, [H+] is higher (ocean acidification) and therefore carbon dissolution slower.
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Fig. 2. Transient warming as a function of cumulative global CO2 emissions (source: Figure SPM.10 in IPCC, 2013). The coloured lines represent the mean of multiple

physical models run under each of the IPCC’s four Representative Concentration Pathways. The area shaded in colour represents 90 per cent of the spread between models.

(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Insofar as the TCRE is independent of time and CO2 concentration, we can interpret it as a time-invariant parameter 𝜁 and

global warming is approximately linearly proportional to cumulative CO2 emissions (Matthews et al., 2009; Zickfeld et al.,

2009, 2013; Gillett et al., 2013; Collins et al., 2013). Fig. 2 reproduces an important chart from the Fifth Assessment Report of the

Intergovernmental Panel on Climate Change (IPCC), which illustrates this. The linear relationship is produced by almost all Earth

system models. The observational record is more noisy, but does not imply a non-linear relationship.4

The resulting quasi-linearity between cumulative emissions and warming allows us to obtain an extremely simple climate

model. The global mean temperature at a point in time responds to cumulative emissions up until that point in time:

Ṫ = 𝜀 (𝜁S − T) , (2)

where T is warming since pre-industrial times and 𝜀 parameterises the ‘initial pulse-adjustment timescale’ of the climate system

(Allen, 2016). According to the climate models in Fig. 1, this is about ten years and so 𝜀 ≈ 0.5. In the limit as 𝜀 → ∞(0), the

planet warms instantly (never warms) in response to emissions. S is cumulative emissions of CO2, so

Ṡ = E, (3)

where E is the instantaneous flow of emissions.

The climate science set out here has significant implications for how IAMs and analytical IAMs are parameterised. Some IAMs

like William Nordhaus’ DICE assume a substantial delay between emissions and warming. Fig. 1 shows that in DICE it takes 55

years for the temperature response to an emission of 100 GtC to peak, not ten.5 Therefore analytical IAMs calibrated on the DICE

climate will also warm up too slowly in response to emissions (e.g. Lemoine and Rudik, 2017). In addition, IAMs and analytical

IAMs typically do not include the feedback created by saturating carbon sinks, i.e. they do not model the removal of atmospheric

CO2 as a function of the background CO2 concentration.6 Millar et al. (2017) have shown that, without such saturation of carbon

sinks, simple climate models underestimate observed atmospheric CO2 decay in the past, overestimate decay in 2100 compared

4 In general, most models are linear for small deviations, but the implication of these results is that the warming response to cumulative emissions is linear

for very large deviations (but not without limit; see below).
5 By minimising the residual sum of squares, we calculate the value of 𝜀 that best fits the DICE temperature path up to the peak is only 0.06, almost 90%

smaller than our central value.

6 As the ocean absorbs CO2, it evolves towards a new equilibrium

[
HCO−

3

][
H+

][
CO2aq

] = 4.47 ∗ 10−7mol/l, as mentioned above. DICE has a feedback capturing the

increase in
[
HCO−

3

]
, but it does not take into account the increase in

[
H+], i.e. acidification, a feedback that is of much greater importance. Therefore DICE has

a lower TCRE under a high background CO2 concentration, because the decreasing effectiveness of CO2 in absorbing outgoing longwave radiation is modelled,

while the saturation of carbon sinks is not.
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with the projections of Earth system models, and are unable to reproduce the linear response of warming to cumulative CO2

emissions set out in Fig. 2.

Before moving on, there are a number of limitations of a linear model of warming, which we should point out. First, the

relationship is an approximation. As S increases beyond a threshold of c. 7,700 gigatonnes of CO2, almost all models find that

𝜁 begins to slightly decrease (MacDougall, 2016). Similarly some models find the TCRE varies slightly with the rate of CO2

emissions (e.g. Krasting et al., 2014), i.e. it is not fully path-independent. Second, the relationship only holds for CO2 and does not

represent warming from other greenhouse gases. Ideally one would model the behaviour of other greenhouse gases separately,

but this adds significant complexity. Instead, other forcing agents can be accommodated in the linear model by assuming total

anthropogenic warming is a fixed fraction of warming induced by CO2 alone, e.g. 10% higher (Allen, 2016). Fig. 2 indicates this is

a good characterisation of the past 150 years or so, while there is no clear case for assuming the ratio of CO2-induced warming

to total anthropogenic warming will be higher or lower in the future; it could go either way. Accordingly, in our numerical

modelling we multiply 𝜁 by a factor of 1.1 to account for non-CO2 greenhouse gases. Third, the theory of linear warming comes

from Earth system models; it cannot be directly tested using observations of the climate system, although related observations

do not refute it. Lastly, we implicitly assume that the so-called Zero Emissions Commitment, i.e. the temperature change that

occurs after emissions have ceased, is negligible. While many models find this is true, some models find non-trivial warming or

cooling after emissions have ceased (Frölicher and Paynter, 2015).

2.2. Economic model

A social planner chooses consumption per capita c and emissions E in order to maximise a discounted classical/total utilitar-

ian social welfare functional:

max
c,E

W = ∫
∞

0

e(n−𝜌)tu (c) dt, (4)

where W is social welfare, n is the population growth rate (the initial population is normalised to unity) and 𝜌 is the utility

discount rate. Appendix A confirms this is equivalent to a decentralised competitive market equilibrium with a Pigouvian tax on

CO2 emissions. Instantaneous utility is

u(c) = c1−𝜂

1 − 𝜂
, (5)

where 𝜂 is the negative of the elasticity of marginal utility.

We assume production is homogeneous of degree one in capital and labour and technological change is labour-augmenting.

Aggregate output is given by

Q = L̂f (̂k) exp
(
− 𝛾

2
T2 + 𝜙E − 𝜑

2
E2
)
, (6)

where L̂ = e(n+g)t is effective labour, g is productivity growth and k̂ = K∕̂L is capital per unit of effective labour. We assume

positive and diminishing returns to capital and labour, and that the Inada conditions hold with respect to both. We keep the

functional form of f(k) general, but assume that initial k is close to its steady state (we return to the role of this assumption in a

moment).

We work with an exponential-quadratic damage function mapping warming to a loss of welfare-equivalent output:

D(T) = exp
(
− 𝛾

2
T2
)
, (7)

where D(T) is a damage multiplier on output. It is important to recognise the appropriate form of the damage function is notori-

ously uncertain. There is little empirical evidence that is directly relevant (Pindyck, 2013) and it has been argued that costs have

been systematically underestimated in the economic literature, at least at high levels of warming (Weitzman, 2009, 2012), if not

indeed at any level (Stern, 2013). With this caveat front and centre, (7) is a good fit of the data in the meta-analysis by Nordhaus

and Moffat (2017).

We capture the relationship between production and emissions by thinking of E as an input (Brock, 1973). This simply

captures the idea that, in order to produce a given amount with fewer emissions, more capital and labour are required. By

entering the production function through the multiplier exp
(
𝜙E − 𝜑

2
E2
)

, the marginal productivity of emissions is assumed to

be linear decreasing in emissions, when expressed as a proportion of GDP:

QE

Q
= 𝜙 − 𝜑E. (8)

This also serves as the marginal abatement cost (MAC) function in our model, since abatement A can be defined as baseline or

business-as-usual emissions 𝜙∕𝜑 minus emissions, A ≡ 𝜙∕𝜑 − E. Doing so allows us to rewrite (8) as

−QA = 𝜑AQ. (9)

This MAC function has two key properties. First, the MAC is proportional to output. The main driver of this proportionality is

energy demand. Economic growth drives up energy demand, which in turn drives up the MAC, because most low-carbon energy



113S. Dietz and F. Venmans / Journal of Environmental Economics and Management 96 (2019) 108–129

Fig. 3. Global marginal abatement costs as a proportion of GDP under abatement scenario groups in the IPCC Fifth Assessment Report with peak atmospheric greenhouse

gas concentrations of 430–480, 480–530, 530–580 and 580–630 ppm CO2e. Median emissions for each scenario group are taken from Working Group III figure 6.7, median

abatement costs are from Working Group III figure 6.21, and median growth rates are taken from figure 13 of the Synthesis Report. The MAC curves corresponding to the

central, high and low parameter values in Section 3.1 are plotted in grey.

Table 1

Parameter values for numerical analysis.

Parameter Min. Central value Max. Sources

𝜌 − n 0.006–0.005 0.011–0.005 0.034–0.003 Drupp et al. (2018); United Nations (2017)

𝜂 1.01 1.35 3 Drupp et al. (2018)

g 0.01 0.02 0.03 By assumption

𝜙 0.00079 0.00126 0.00205 Clarke et al. (2014)

𝜑 0.00002 0.00003 0.00005

𝜁 0.000240 0.000480 0.000749 Collins et al. (2013); Matthews et al. (2009) a

𝜀 0.5 Ricke and Caldeira (2014)

𝛾 0.005 0.01 0.02 Nordhaus and Moffat (2017); Weitzman (2012) b

a Multiplied by 1.1 to adjust for non-CO2 greenhouse gases (see Section 2.1).
b At 2

◦
C, damages according to the central value of 𝛾 are 2% of output, whereas for instance in DICE (2013R and 2016) they are 1%.

At 4
◦
C, damages according to our specification are 8%, whereas in DICE they are 4%.

technologies have decreasing marginal productivity (e.g. wind energy at less windy and/or more expensive locations). Second,

the MAC, as a proportion of output, increases linearly as a function of abatement. This is an unrealistic assumption for a large

instantaneous increase in abatement (where the MAC function is likely to be convex increasing), but a more realistic assumption

for small increases in abatement over time, because technological progress provides a countervailing effect to any convexity of

the MAC that results from moving along the instantaneous MAC curve (Bramoullé and Olson, 2005; Neij, 2008). Fig. 3 looks at

evidence from the IPCC Fifth Assessment Report on the shape of the MAC function, when expressed as a proportion of GDP, and

when abatement is a function of time. These are results derived from a variety of different energy models. It can be seen that a

linear increasing function is a relatively good fit of the data.

Capital accumulation equals production less consumption and depreciation 𝛿. Expressed per unit of effective labour,

̇̂
k = q̂ − ĉ − (𝛿 + n + g)̂k. (10)

Table 1 presents central values of the model’s parameters, as well as ranges from the literature.7

In order to solve the model in closed form, we assume the economy is approximately on a balanced growth path throughout,

with constant growth of output per capita net of climate damages and abatement costs g̃ ≡ ̇̂q∕q̂, and a constant savings rate.

7 We combine 𝜌 and n in view of their diametrically opposing effects in the model (on the utility discount rate). The parameters𝜙 and𝜑 are jointly determined,

so their respective minima, central values and maxima must be taken together.
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Table 2

Decomposition of the growth rate in a numerically optimised model with our central parameters (more details of

the optimisation procedure in Appendix D).

Time (years) exp( 𝛾
2

T2 + 𝜙E − 𝜑
2

E2) g̃ g −𝛾TṪ (𝜙 − 𝜑E)Ė

0 1.017 1.984% 2% 0.010% 0.006%

50 1.018 1.986% 2% 0.012% 0.006%

100 1.000 1.983% 2% 0.012% 0.005%

150 0.992 1.985% 2% 0.011% 0.004%

200 0.984 1.987% 2% 0.010% 0.003%

Strictly speaking the economy will only converge to a balanced growth path when emissions approach zero,8 but we assume

the economy starts sufficiently close to this path, for two reasons. First, we can assume the global economy has been on a

balanced growth path in the past, because growth of global output per capita has been broadly trendless since the late 19th

century (Maddison, 2010; World Bank, 2018). This implies productivity growth g is constant and k is at its pre-climate-change

steady state. Second, on the optimal path, temperature and emissions from now on should have a small effect on production

relative to labour-augmenting technological progress, if this technological progress continues at the same rate as recent decades.

To see this formally, we can manipulate (6) into an expression for g̃ ∶

g̃ = g + f̂
k

̇̂
k − 𝛾TṪ + (𝜙 − 𝜑E) Ė. (11)

The factor f̂
k

̇̂
k is negligible, assuming k̂ is already close to its steady state at the start. What about 𝛾TṪ? T starts at about 1

◦
C

and increases gradually, but because temperature increases slowly on the optimal path (Ṫ is small) and representative values of

the damage function coefficient 𝛾 are small, 𝛾TṪ is much smaller than g. Similarly, even though E and Ė are significantly larger

than g until the long run, the calibrated values of 𝜙 and 𝜑 are again very small relative to g, so that (𝜙 −𝜑E) Ė will amount

to a small subtraction, overall. See Table 2. These arguments may appear novel, but they are not. The effects of temperature

and emissions abatement typically found in the literature are very small when expressed as a reduction in the growth rate (e.g.

Clarke et al., 2014). This does not mean climate change is a small problem, indeed we will derive low optimal emissions paths

and high optimal carbon prices below. Temperature effects on growth rates may not be small on non-optimal, high emissions

paths.

3. The optimal path

The (unconstrained) optimal path is obtained when the planner solves (4), subject to (2), (3), (10) and initial S, T and K. The

current value Hamiltonian, expressed per unit of effective labour, is

 = 1

1 − 𝜂
ĉ1−𝜂 − 𝜆SE − 𝜆T𝜀 (𝜁S − T) + 𝜆k̂

[
q̂(̂k, E, T) − ĉ − (𝛿 + n + g)̂k

]
,

where 𝜆S is the shadow price of cumulative emissions, 𝜆T is the shadow price of temperature and 𝜆k̂ is the shadow price of

capital per unit of effective labour. The Hamiltonian is defined such that all shadow prices are positive. Substituting for 𝜆k̂, the

necessary conditions for a maximum include

𝜆S = ĉ−𝜂 q̂(𝜙 − 𝜑E), (12)

𝜆̇S = (𝜌 − n + g(𝜂 − 1))𝜆S − 𝜀𝜁𝜆T , (13)

𝜆̇T = (𝜌 − n + g(𝜂 − 1) + 𝜀)𝜆T − ĉ−𝜂 q̂𝛾T, (14)

q̂
k̂
− 𝛿 = 𝜂

(
̇̂c
ĉ
+ g

)
+ 𝜌. (15)

8 A balanced growth path exists for this model. Without the factor exp
(
− 𝛾

2
T2 + 𝜙E − 𝜑

2
E2
)

, we have a standard Ramsey-Cass-Koopmans model with labour-

augmenting technological progress, which is known to have a balanced growth path. Our climate model implies that, in the long run, non-zero emissions would

lead to infinite warming (due to the linear warming response), which in turn would lead to zero consumption. For a wide range of parameter estimates, the

model instead converges on a constant temperature in the steady state (see below). Therefore the factor exp
(
− 𝛾

2
T2 + 𝜙E − 𝜑

2
E2
)

is constant in the long run

and the model converges to a standard Ramsey-Cass-Koopmans model. On a balanced growth path, ̇̂q∕q̂ is constant. Strictly speaking we need only assume

𝜂
̇̂c
ĉ
−

̇̂q
q̂

is constant, which is a weaker condition, because both deviations from the balanced growth path, ̇̂c and ̇̂q, have the same sign (in the phase diagram of

the Ramsey model, the stable arms are in the regions where ċ and k̇ have the same sign), and because 𝜂 is relatively close to 1. For a log utility function (𝜂 = 1),
balanced growth is not required, rather a constant savings rate is sufficient, as in Golosov et al. (2014).
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Eq. (15) is the Ramsey rule and governs optimal capital accumulation. Eq. (12) expresses the well-known optimality condition

that the social cost of carbon 𝜆S must always equate to the MAC.

Integrating (14) gives an expression for the shadow price of temperature:

𝜆T = ∫
∞

0

e−(𝜌−n+g(𝜂−1)+𝜀)t ĉ−𝜂 q̂𝛾Tdt = ∫
∞

0

e−(𝜌−n+𝜀)tc−𝜂q𝛾Tdt. (16)

Bearing in mind that 𝜆S is the social cost of carbon, 𝜆T just represents the welfare cost of an initial increase in temperature, for

given cumulative emissions. Since the climate system is linearly proportional to cumulative emissions except for the short initial

adjustment period of c. ten years, this means the effect of the initial temperature perturbation disappears after ten years too.

That is why 𝜆T is found by discounting the flow of marginal disutility from the temperature perturbation by a delay-adjusted

rate 𝜌 − n + 𝜀, where the central value of 𝜀 is 0.5, so the delay-adjusted discount rate is more than 50%.

Over this short period, we can also safely assume that the marginal disutility of warming is constant: while marginal utility

c−𝜂 decreases over the space of a few years in a growing economy, marginal damage q𝛾T is increasing in a warming world, and

neither will change much. This allows us to make the following approximation of (16):

Assumption 1. Because the climate system adjusts quickly to CO 2 emissions, c−ηqγT is constant over short periods and therefore

𝜆T ≈ c−𝜂q𝛾T

𝜌 − n + 𝜀
. (17)

This assumption allows us to rewrite (13) as

𝜆̇S = (𝜌 − n + g(𝜂 − 1))𝜆S − 𝜀𝜁
𝜌 − n + 𝜀

ĉ−𝜂 q̂𝛾T. (18)

Taking the time derivative of the first-order condition in (12) and substituting this into (13), we obtain

−𝜑Ė =

(
𝜌 − n + g(𝜂 − 1) + 𝜂

̇̂c
ĉ
−

̇̂q
q̂

)
(𝜙 − 𝜑E) − 𝜀𝜁𝛾T

𝜌 − n + 𝜀
. (19)

Then applying the assumption of balanced growth gives us an expression for the evolution of emissions:

Ė =
[
𝜌 − n + (𝜂 − 1) g̃

]
(E − 𝜙∕𝜑) + 𝜀𝜁𝛾T

𝜌 − n + 𝜀
. (20)

Integrating (2) gives

Tt = ∫
t

−∞
e−𝜀(t−𝜏)𝜀𝜁Std𝜏. (21)

As was the case with (16), the fact that 𝜀 = 0.5 means the value of the integral (21) is dominated by just a few years, in this case

the most recent few years. In other words, to determine warming at time t it is nearly sufficient to know cumulative emissions at

the same time, and the history of emissions has little effect. Over such a short period, we can treat the growth rate of cumulative

emissions as a constant, 𝜗 ≡ Ṡ∕S. Then:

Assumption 2. Because the climate system adjusts quickly to CO2 emissions, 𝜗 is constant over short periods and

T ≈ 𝜀
𝜀 + 𝜗

𝜁S. (22)

We can then substitute (22) into (20) to obtain

Ė =
[
𝜌 − n + (𝜂 − 1) g̃

]
(E − 𝜙∕𝜑) + 𝜀2𝜁2𝛾S

(𝜌 − n + 𝜀) (𝜀 + 𝜗)𝜑
. (23)

Rearranging (23) and substituting Ṡ for E, we arrive at a linear differential equation for cumulative emissions:

S̈ =
[
𝜌 − n + (𝜂 − 1) g̃

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

a

Ṡ + 𝜀2𝜁2𝛾
(𝜌 − n + 𝜀) (𝜀 + 𝜗)𝜑
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

b

S −
[
𝜌 − n + (𝜂 − 1) g̃

] 𝜙
𝜑

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
c

. (24)
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Clearly the linearity of (24), combined with constant coefficients and a constant term, is key to obtaining a closed-form solution

for the optimal path.9

It is worth taking a moment to interpret the constants a, b and c, as they will often appear in the remainder of the analysis.

The constant a is the standard ‘Ramsey’ discount rate minus the growth rate g̃. As such it is the discount rate that is applied to

the future flow of marginal damages from a tonne of CO2 emitted at time t, when those damages are expressed as a proportion of

output. This can be shown by integrating (18) with respect to time, dividing both sides by c
−𝜂
t

qt = c
−𝜂
𝜏 q𝜏eg̃(𝜂−1)(𝜏−t) and defining

MAC% ≡ QE

Q
= − 𝜖

𝜌 − n + 𝜖 ∫
∞

t

e−(𝜌−n+(𝜂−1)̃g)(𝜏−t)𝜁
QT𝜏

Q𝜏
d𝜏 ≡ SCC%, (25)

where SCC% is the social cost of carbon as a proportion of GDP.

The reason that marginal damages as a proportion of output are discounted at the reduced rate 𝜌 − n + (𝜂 − 1) g̃ is that output

growth has two countervailing effects on the social cost of carbon at any instant. On the one hand it reduces the present value

of future damages, because it reduces marginal utility in the future. This is the conventional effect of consumption growth on

discounting. On the other hand it increases the undiscounted value of future damages, because they are proportional to output

in the model. This is an important feature of models where damages are multiplicative.

The constant b can be unpacked into

b = 𝜀2

(𝜀 + 𝜗) (𝜌 − n + 𝜀)
· 𝜁

2𝛾
𝜑

.

The first element is the delay factor, which can be further broken down into the physical effect of delay on marginal damages,

𝜀∕ (𝜀 + 𝜗), and the discounting effect of delay, 𝜀∕ (𝜌 − n + 𝜀). If temperature would adjust instantaneously to CO2 emissions,

then the delay factor would be equal to one and b = 𝜁2𝛾∕𝜑. This second element of b can also be written as
(

QS∕ − QA

)
(A∕S).

This can be interpreted as the ratio of the slope of the marginal damage function with respect to S and the slope of the MAC

function with respect to E, when both marginal damages and abatement costs are expressed as a proportion of output.10 This

ratio turns out to be central to interpreting our results for the optimal transition path. Lastly, the constant c = a𝜙∕𝜑, where

𝜙∕𝜑 is baseline/business-as-usual emissions.

Returning to the task of solving the optimal path, the solution to the differential Eq. (24) is:

St = k1 exp
1

2
t
(

a −
√

a2 + 4b
)
+ k2 exp

1

2
t
(

a +
√

a2 + 4b
)
+ c

b
. (26)

The particular integral c∕b is the inter-temporal equilibrium value of S. At the inter-temporal equilibrium, the growth rate of

cumulative emissions 𝜗 = 0 and from (11) it is clear that g̃ = g, so

S∗ = (𝜌 − n + 𝜀)
𝜀

· [𝜌 − n + (𝜂 − 1) g]𝜙
𝜁2𝛾

. (27)

Appendix B demonstrates that S
∗

is dynamically stable.

3.1. Peak warming

At S
∗
, the linear climate model dictates that the maximum increase in the global mean temperature relative to the pre-

industrial level is simply T
∗ = 𝜁S

∗
, so:

Proposition 1. [Optimal peak warming] In the climate-economy system characterised by (2)–(6), optimal peak warming is given by

T∗ = 𝜁
c

b
= (𝜌 − n + 𝜀)

𝜀
⏟⏞⏞⏞⏟⏞⏞⏞⏟

delay factor

· [𝜌 − n + (𝜂 − 1) g]𝜙
𝜁𝛾

. (28)

Proposition 1 tells us the maximum warming of the planet that is optimal from an economic point of view. The first element

is the delay factor, but, not for the first time, the fact that 𝜀 is much larger than 𝜌 − n is significant. It means the delay factor will

invariably be close to one. Take the central values of these three parameters as set out in Table 1; 𝜀 = 0.5 and 𝜌 − n = 0.006.

9 An extension to our model would be to have marginal damages and MACs that are not linearly proportional to production, i.e. qT = − q𝜉𝛾T and qE =
qΦ (𝜙 − 𝜑E), where 𝜉 and Φ are the elasticities. This leads to an alternative differential equation.

S̈ =
[
𝜌 − n + (𝜂 −Φ) g̃

]
Ṡ + bSQ

𝜉−Φ
0

e(𝜉−Φ)g̃t −
[
𝜌 − n + (𝜂 −Φ) g̃

] 𝜙
𝜑
,

which is linear if 𝜉 = Φ, although there is no obvious reason why this equality should hold.

10 In a version of the model without delay, D(S) = exp
[
−𝛾(𝜁S)2

]
and so QS = − 2𝛾𝜁2SQ. See Appendix C.



117S. Dietz and F. Venmans / Journal of Environmental Economics and Management 96 (2019) 108–129

Table 3

Response of peak warming to changes in parameters.

Parameter Point elasticity of T
∗

with respect to parameter Sign

𝜌 E𝜌 = 𝜌
𝜌−n+(𝜂−1)g

= 𝜌
a

+
n En = − n

[𝜌−n+(𝜂−1)g]
= − n

a
–

𝜂 E𝜂 = 𝜂g

𝜌−n+(𝜂−1)g
= 𝜂g

a
+

g Eg = (𝜂−1)g
𝜌−n+(𝜂−1)g

= (𝜂−1)g
a

+
𝜙 E𝜙 = 1 +
𝜁 E𝜁 = − 1 –

𝛾 E𝛾 = − 1 –

Then the delay factor is equal to 1.012. Even if we set 𝜌 − n = 0.03, which we can take as about the maximum value that is

plausible, the delay factor is equal to a still modest 1.06.11

Corollary 1. [The delay factor is insignificant to optimal peak warming] Because the climate system adjusts quickly to CO 2 emissions,

optimal peak warming can be approximated by

T∗ ≈ [𝜌 − n + (𝜂 − 1) g]𝜙
𝜁𝛾

. (29)

This is also naturally the exact solution of the model when warming is simply assumed to be an instantaneous function of

cumulative emissions, as shown in Appendix C. Appendix D shows using numerical techniques that the versions of the model

with and without a temperature delay give very similar optimal warming and are both very close approximations of the numer-

ical solution to the maximisation problem, which takes into account the short delay, the feedback from temperature and emis-

sions to the growth rate, and does not depend on Assumptions 1 or 2. Comforted by this, we henceforth work with the model

without a temperature delay.

In Table 3 we compute the point elasticities of T
∗

with respect to the parameters that feature in (29). We find that optimal

peak warming is an increasing function of the pure rate of time preference 𝜌, a new version of an old result. Since there is

no delay between CO2 emissions and warming from those emissions, this is fundamentally due to the long residence time of

CO2 in the atmosphere. Close inspection of the point elasticity of T
∗

with respect to 𝜌 reveals that it is equal to the ratio of

𝜌 to a, the discount rate on SCC% . Population growth n has the opposite effect on peak warming to 𝜌, because it reduces the

population-adjusted discount rate.12

Increases in both 𝜂 and the productivity growth rate g result in an increase in T
∗
, provided that 𝜂 ≥ 1. Moreover, comparing

the two elasticities, it is clear that the elasticity of T
∗

with respect to 𝜂 is larger by exactly g, which reflects the fact that, whereas

𝜂 only has an effect on the discount rate, g affects both the discount rate and the undiscounted value of marginal damages, as

explained above.

Three of the model parameters have an especially simple relationship with optimal peak warming. There is a negative unit

elasticity of T
∗

with respect to 𝜁 , the TCRE parameter, and 𝛾 , the coefficient of the damage function. A one per cent increase in

either of these parameters reduces T
∗

by one per cent. Conversely there is a unit elasticity of T
∗

with respect to 𝜙, the marginal

cost of zero emissions. Notice that peak warming is independent of the parameter𝜑 that governs the slope of the MAC function.

Fundamentally this is because T
∗

is determined by comparing the social cost of carbon at T
∗

with the abatement cost of zero

emissions 𝜙 (see Eq. (25)), which does not depend on 𝜑.

If we plug the parameters’ central values from Table 1 into Eq. (29), we obtain optimal peak warming of 3.4
◦
C, corresponding

to stationary cumulative emissions of 7,014 GtCO2 since the beginning of the industrial revolution. With central values of 𝜌, n,

𝜂 and g, the consumption discount rate is about 3.1%, while the central value of 𝛾 implies that 2
◦
C warming causes a loss of

output of 2% and 4
◦
C warming causes a loss of output of 8%. Therefore damages in the central case are relatively modest and

they are discounted at a medium rate, which explains why T
∗

is well above 2
◦
C.

Considering the ranges of parameter values in Table 1, it is clear that T
∗

is highly sensitive to most of the model parameters.

Take for instance the TCRE parameter 𝜁 . A central estimate from climate science might be 0.00048
◦
C/GtCO2. But the range

of uncertainty about 𝜁 spans approximately ±50%. Given that T
∗

has a unit elasticity with respect to 𝜁 , T
∗

varies by ±50%

accordingly. Much the same is true of the other two parameters with a unit elasticity: the range of uncertainty either side of

the central value of 𝛾 is −50% to +100%, while for 𝜙 it is −40% to +120%. The elasticities of T
∗

with respect to the other four

parameters are non-constant, however in most cases they can also be expected to be large. Holding the other parameters to

their central values, E𝜌 will be close to one over the range of 𝜌, which according to Drupp et al. (2018) is −45% to +209%. E𝜂 is

particularly high, ranging from 1.3 for maximum 𝜂 to 3.2 for minimum 𝜂, with E𝜂 = 2.1 for the central value (again holding

the other parameters to their central values). This makes clear the limitations of models that assume log utility when thinking

about uncertainty governing optimal warming.

11 By contrast, if we were to set 𝜀 = 0.06 in order to match DICE’s climate dynamics, the delay factor would be equal to 1.1.
12 Notice that in the limit as 𝜂 → 1 (i.e. log utility), the elasticity of T

∗
with respect to 𝜌 − n is one: a doubling of 𝜌 − n leads to a doubling of optimal peak

warming. Higher 𝜂 tempers this, but given the magnitudes involved it does so only slightly.
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Fig. 4. Sensitivity of T
∗

to uncertain parameters.

Fig. 4 plots optimal peak warming as a function of variation in the model parameters. For this we impose a constraint that

cumulative emissions may not exceed ‘burnable carbon’ embodied in the Earth’s fossil fuel resources.13 The constraint binds

only with respect to 𝜂. When looking at sensitivity with respect to 𝜁 , bear in mind that, not only does lower (higher) 𝜁 result in

higher (lower) optimal cumulative emissions, it also results in lower warming as a result of those emissions. Observe that when

𝜌 − n is set to its minimum value of 0.1%, T
∗ = 2.0

◦
C. When 𝜂 is set to its minimum value of roughly one, T

∗ = 1.6
◦
C. When

𝛾 is set to its maximum value, such that 2
◦
C warming causes a loss of output of 4% and 4

◦
C warming causes a loss of output of

16%, T
∗ = 1.7

◦
C. Many combinations of parameter values support optimal peak warming of 2

◦
C or below.

3.2. The slow transition to equilibrium

While an analysis of optimal peak warming reveals useful information, it does not reveal how long it takes for warming to

peak along the optimal path and therefore it is unlikely to reveal the key features of optimal emissions in the near future.

Appendix B demonstrates that the transition to S
∗

is governed by

St =
(

S0 −
c

b

)
exp

1

2
t
(

a −
√

a2 + 4b
)
+ c

b
. (30)

Since b > 0, the exponent is negative and cumulative emissions approach their stationary value c∕b asymptotically. Put another

way, optimal emissions are strictly decreasing, at a decreasing rate. There is an intuitive explanation for this: the social cost of

carbon as a proportion of output is an increasing function of S.14 Since E = Ṡ > 0, SCC% increases all along the path. Since the

MAC function is linear increasing as a proportion of output, the necessary condition for an optimum that SCC% = MAC% means

that emissions must decrease all along the path. It is not optimal for emissions to peak at t > 0, for instance.

But how fast do emissions approach zero? In other words, how long does it take for warming to approach its peak? It turns

out that the answer is slowly, very slowly indeed. Fig. 5 plots optimal paths of T over the next 250 years that correspond with

our central parameter values, as well as with scenarios of high and low damages, which we choose as being illustrative of the

transition path when optimal peak warming is low and high respectively. These optimal paths are obtained by plugging Eq.

(30) into (2).

13 These are estimated to be in the region of 22,000 GtCO2, including fossil fuels burned since the beginning of the industrial revolution (Nordhaus, 2008).

When some parameters take extreme values, optimal cumulative emissions may exceed this. This constraint gives peak warming of 10.6◦C for the central value

of 𝜁 .
14 SCC% = ∫ ∞

t
e−(𝜌−n+(𝜂+1)g̃)(𝜏−t)𝜁2𝛾S𝜏d𝜏.
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Fig. 5. The optimal transition path of T for central parameter values, and low and high damages (𝛾).

Although optimal peak warming corresponding with our central parameter values is 3.4
◦
C, optimal (transient) warming

a century from now is just 1.7
◦
C; 250 years from now it is 2.5

◦
C. When damages are high, optimal peak warming is 1.7

◦
C,

but optimal warming a century from now is just 1.3
◦
C. When damages are low, optimal peak warming is 6.7

◦
C, but optimal

warming in a century’s time is only 2.2
◦
C. So, while peak warming is highly sensitive to the parameters that determine it,

warming over the next couple of centuries is much less so.

Why is the transition so long? The rate of change of emissions is

Ė

E
= 1

2
(a −

√
a2 + 4b). (31)

A slow transition to peak warming implies ||Ė∕E|| is small. The reason for this is that b is very small. Recall that b is the ratio of

the slope of the marginal damage function with respect to S and the slope of the MAC function with respect to E, both expressed

as a proportion of output:

b = 𝜁2𝛾
𝜑

= QS∕S

QE∕
(

EBAU − E
) = QS

−QA

A

S
.

Eq. (25) shows that QA is much larger than QS, because the latter is a perpetual stream of damages from a non-decaying stock

of CO2. The second factor of b, A∕S, is also small, because abatement A is a flow and S is a non-decaying stock. Therefore this

result bears the imprint of the flow-stock nature of CO2-induced warming. It is this flow-stock property that leads to the result

illustrated by Fig. 5, where optimal emissions in the near term are much less sensitive to parameter variations that lead to large

differences in optimal peak warming. The short delay between emissions and warming is a driving force behind this result. Since

damages occur almost immediately, it is worth avoiding them from the start. The flow-stock dynamic also stems from the fact

that warming does not decay in our climate model.

However, a weakness of the model in characterising the transition to peak warming is that it ignores ‘locked-in’ emissions

from the capital stock existing at t = 0, which will in reality constrain near-term emissions reductions, presumably leading to a

transition path where emissions are higher in the near term and lower in the long term, and where warming thereby approaches

its peak faster. A simple way to account for this and therefore to test the robustness of our stylised finding of a slow transition is

to increase initial S by the cumulative emissions embodied in the global capital stock today, assuming it is operated to the end

of its economic lifetime. Davis and Socolow (2014) have estimated that future cumulative CO2 emissions embodied in global

power plants in 2012 were 307 GtCO2.15 Adding this to initial S, the transition to peak warming is faster, but only marginally so.

For central parameter values, optimal warming a century from now rises from 1.7
◦
C to 1.9

◦
C. When damages are high, it rises

from 1.3
◦
C to 1.4

◦
C.

15 This is presumably an underestimate of so-called ‘committed emissions’, because it only covers the power sector.
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3.3. Carbon prices

As well as peak warming, we can characterise the optimal carbon price by differentiating (30) with respect to time, substi-

tuting the resulting expression into (8) and rearranging:

Proposition 2. [The optimal carbon price] In the climate-economy system characterised by T = 𝜁S, (3)–(6), the optimal carbon

price is

p∗ = MAC = Q0e(g̃+n)t
⏟⏞⏟⏞⏟

growth effect

· (𝜙 − 𝜑E
⏟⏟⏟

)

emissions effect

, (32)

where E =
(

S0 −
c

b

)
1

2

(
a −

√
a2 + 4b

)
exp

[
1

2
t
(

a −
√

a2 + 4b
)]

.

Proposition 2 shows that the evolution of the carbon price depends on two factors. On the one hand, the carbon price is

proportional to output, so as output grows at the rate g̃ + n the carbon price does likewise, all else being equal. We call this the

growth effect. On the other hand, the carbon price depends on emissions, which means that the evolution of the carbon price is

also subject to the emissions dynamics set out above. In particular, what we call the emissions effect increases, but it does so at

a decreasing rate, since emissions converge to zero in the long run. The overall effect is that p∗ grows at a rate that is initially

faster than aggregate output, but converges to g̃ + n asymptotically, with the transition governed via E by a and b:

ln p∗ = ln Q0 + (g̃ + n)t + ln (𝜙 − 𝜑E) ,

ṗ∗

p∗
= g̃ + n + Ȧ

A
.

Alternatively, integrating (13) gives:

ṗ∗

p∗
= 𝜌 + 𝜂g̃ − 𝛾T

𝜙 −𝜑E
.

In the steady state, the optimal carbon price expressed as a percentage of GDP is 𝜙.

As a corollary to Proposition 2, we can show that in our model the optimal carbon price grows at the same rate as aggregate

output if damages are an exponential-linear rather than exponential-quadratic function of warming. If damages are exponential-

linear in warming, then marginal damage is constant in cumulative emissions.

Corollary 2. [The optimal carbon price under exponential-linear damages] In a climate-economy system where D(T) = exp (−𝛾T),
the optimal carbon price grows at the rate g̃ + n.

Proof. If D(T) = exp (−𝛾T) = exp(−𝛾𝜁S), marginal damage as a function of cumulative emissions is QS = 𝜁𝛾Q, assuming away the

temperature delay. Instead of (25) we have

QEt

Qt

= −∫
∞

t

e−(𝜌−n+(𝜂−1)̃g)(𝜏−t)𝜁𝛾d𝜏 = 𝜁𝛾
𝜌 − n + (𝜂 − 1)g̃

.

Hence the carbon price is a fixed proportion of aggregate output,

QE = Q
𝜁𝛾

𝜌 − n + (𝜂 − 1)g̃
,

and increases at g̃ + n.

Golosov et al. (2014) also found that the optimal carbon price grows at the same rate as the economy, although they assumed

damages are an exponential-linear function of atmospheric CO2, not of temperature, i.e. Q = Q0 exp (−𝛾M). The relationship

between the two approaches can be better understood if we decompose marginal damage as a function of cumulative emissions,

d ln Q

dS
= d ln Q

dT

dT

dM

dM

dS
.

Relating this back to Eq. (1), the right-hand side is marginal damage as a function of warming, multiplied by the TCRE in the

limit as Δ → 0. In Golosov et al. (2014), dlnQ∕dS is constant, because increasing marginal damages with respect to temperature(
d2 ln Q∕dT2 > 0

)
are assumed to be exactly offset by decreasing marginal climate sensitivity

(
d2T∕dM2 < 0

)
(not to be con-

fused with equilibrium climate sensitivity), and marginal carbon sensitivity is constant
(

d2M∕dS2 = 0
)

. By contrast, in our model

dlnQ∕dS is constant if and only if marginal damages are constant with respect to temperature, because decreasing marginal cli-

mate sensitivity is assumed to be exactly compensated by increasing marginal carbon sensitivity. That is, the TCRE is constant.

So the optimal carbon price grows faster than the economy in our standard model (Proposition 2), because marginal damages

are an increasing function of cumulative emissions, and the saturation of carbon sinks means that marginal carbon sensitivity is

increasing.

Fig. 6 plots optimal carbon prices under our central parameter values, and in scenarios of low and high damages. The optimal

carbon price corresponding with our central parameter values starts at $44/tCO2 today and increases to $59 in 10 years’ time,
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Fig. 6. Optimal carbon prices for central parameter values and low and high damages (𝛾).

$185 at t = 50 and $729 at t = 100. The rate of increase of the optimal price falls from 3.0% (real) initially to 2.7% after 100

years, which is close to the growth rate of aggregate output, assumed to be just under 2.5% (roughly 2% productivity growth, plus

0.5% population growth). The optimal price in the low damages scenario starts at $26/tCO2 and increases to $36 after 10 years,

$118 at t = 50 and $488 at t = 100. This reinforces the message of the previous passage that, even if optimal peak warming

is high, optimal transient warming over the coming centuries is low. Achieving this requires a significant and significantly

increasing carbon price. Again the rate of increase of the optimal price in this scenario falls over time, but at 3.2% it is initially

higher than the central case, falling to 2.8% after 100 years. The optimal price in the high damages scenario starts at $68/tCO2

and rises to $966 after a century. The price grows in this scenario at a rate of 2.8% initially, falling to 2.6% after a century.

4. The optimal path under a temperature constraint

Important as it is to examine the unconstrained optimum of the model, so far 185 countries have ratified the Paris Agreement,

the central aim of which is “Holding the increase in the global average temperature to well below 2
◦
C above pre-industrial levels

and pursuing efforts to limit the temperature increase to 1.5
◦
C above pre-industrial levels”. This indicates that, as a description

of the real world, the maximisation problem in Section 3 could be under-specified. Rather, we might say that the Paris Agreement

leaves us with the objective of maximising (4), subject to the usual constraints, plus the inequality constraint that S ≤ S, where

S = 𝜁T and T is 2
◦
C (or even 1.5

◦
C).16

4.1. Maximising welfare subject to the temperature constraint

Technical details are relegated to Appendix E. Solving the constrained maximisation problem, we find:

Proposition 3. [The optimal carbon price under a binding temperature constraint] When cumulative CO2 emissions are constrained

such that S ≤ S, where S = 𝜁T, the optimal carbon price is

MAC = SCC +
(
𝜙 − 𝛾𝜁2S

𝜌 − n + (𝜂 − 1)g

)
Qte−(𝜌−n+𝜂g̃)(t−t), (33)

where t is the time when the cumulative emissions constraint binds. Therefore the optimal carbon price under a temperature

constraint equals the social cost of carbon, plus a premium, which is a function of the cumulative emissions constraint and

16 If the constraint binds, then it is obviously at variance with the planner’s optimal policy, based on the parameter values that the planner believes in: more

than 1.5–2◦C peak warming would result from these. Some might then regard the existence of a constraint on the planner’s problem as a logical inconsistency.

However, in our view there is no logical inconsistency, once one recognises that the Paris Agreement is a political constraint, which is partly motivated by

non-welfarist principles.
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Fig. 7. Optimal carbon prices under a temperature constraint of 2
◦
C for central parameter values and low 𝛾

which increases at the discount rate.17 The premium therefore follows Hotelling’s rule, ensuring that the cumulative emissions

budget implied by S < S∗ is allocated in an inter-temporally efficient manner

If the temperature constraint binds, we have

S < S∗ ⇔ S < (𝜌 − n + (𝜂 − 1)g)𝜙
𝜁2𝛾

⇔ 𝜙 − 𝛾𝜁2S

𝜌 − n + (𝜂 − 1) g
> 0.

Therefore the premium is strictly positive, which further implies that emissions will be lower everywhere on the constrained

path compared with the unconstrained path.

The Hotelling price premium required to stay within the temperature constraint is significant, even in the relatively near

term. Fig. 7 shows that the Hotelling premium begins at $4/tCO2 today, rising to $5 in 10 years, $23 in 50 years and $150 in 100

years, under central parameter values. This is on top of a social cost of carbon of $41/tCO2 today, $55 in 10 years, $170 in 50

years and $641 in 100 years. Notice that the social cost of carbon is lower than in the corresponding unconstrained optimisation

(Fig. 6), because cumulative emissions and therefore warming are lower. When the Hotelling premium is added on, however,

the overall carbon price is higher than its equivalent in the unconstrained optimisation. Fig. 7 also shows that when 𝛾 = 0.005

the Hotelling premium is a larger share of the carbon price, both because the social cost of carbon is lower and because, with

higher optimal unconstrained warming, the constraint binds earlier.

4.2. Minimising abatement costs to meet the temperature constraint

Most studies on the costs of emissions abatement solve a different problem to the preceding section. In particular, they ignore

climate damages and determine the emissions path that meets the constraint S at minimum total discounted abatement cost

(Clarke et al., 2014). This is often referred to as cost-effectiveness analysis, as opposed to cost-benefit analysis. In our set-up, the

cost-effective policy is the solution to maximising (4), subject to S ≤ S, but where the marginal disutility of warming is zero. The

optimal carbon price path follows straightforwardly from integrating Eq. (36):

Proposition 4. [The cost-effective carbon price] When cumulative CO 2 emissions are constrained such that S ≤ S, where S = 𝜁T,

and damages are ignored, the optimal carbon price is

QE = Q0

(
𝜙 − 𝜑E0

)
e(𝜌−n+𝜂g̃)t. (34)

That is, inter-temporal efficiency is ensured by letting the carbon price follow the simple Hotelling rule. This is different to

the standard assumption that the cost-effective carbon price increases at the ‘augmented’ Hotelling rate, i.e. at the consumption

discount rate plus the decay rate of CO2 in the atmosphere. This assumption rests on atmospheric decay creating a reason to

17 van der Ploeg’s (2018) model is also based on a linear relationship between warming and cumulative CO2 emissions, assuming no delay between emissions

and warming. This gives an optimal carbon price under a binding temperature constraint that is also the sum of the SCC and the scarcity cost of using up the

carbon budget, although van der Ploeg calculates both components somewhat differently. Relative to our paper, van der Ploeg explicitly models (epistemic)

uncertainty about the TCRE and introduces the idea of risk tolerance towards it.
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Fig. 8. Optimal emissions under a temperature constraint of 2
◦
C when the discounted sum of total abatement and damage costs are minimised, compared with when only

abatement costs are minimised, and when temperature is unconstrained but optimal peak warming is 2
◦
C (high 𝛾).

postpone abatement, since CO2 emitted earlier has the chance to decay more. Decay also enlarges the carbon budget for given

T. However, while this is true in and of itself, the saturation of carbon sinks, which our model implicitly accounts for, has the

opposite effect; additional emissions today saturate the carbon sinks earlier. Saturation of carbon sinks reduces the carbon

budget for given T. Lemoine and Rudik (2017) have argued for a different kind of augmented Hotelling rule, in case there is a

substantial delay between emissions and warming, as suggested by the DICE model. This enlarges the carbon budget for given

T. But in our climate model there is only a short delay between emissions and warming. This, together with saturation of carbon

sinks, more-or-less exactly offset the effect of decay of atmospheric CO2. Section 2 showed that DICE is too slow to respond to

CO2 emissions. Consequently the simple Hotelling rule is in fact appropriate.

Appendix E shows that the rate of emissions reduction must be faster on the cost-effective path than on the cost-benefit

path. Because both paths must result in the same cumulative emissions, the cost-effective path must therefore begin with

higher emissions, but eventually cross the constrained cost-benefit path and reach zero emissions faster.

Proposition 5. [Cost-effective emissions abatement is lower initially, but higher eventually] Compared with the emissions path

that maximises net benefits, subject to the emissions constraint, the cost-effective emissions path has higher emissions initially, but

emissions fall to zero earlier.

Fig. 8 shows the difference in the cost-benefit and cost-effective emissions paths, for central parameter values. We also

include for illustration an unconstrained, welfare-maximising emissions path, where 𝛾 is solved backwards so that optimal

peak warming is 2
◦
C. Initial emissions on the cost-effective path are about 44% higher than on the constrained cost-benefit

path, but the rate of emissions reduction is always higher and the two paths cross after about 50 years. Finally, observe how low

and flat the emissions path is when optimal peak warming is 2
◦
C; initial emissions are about 31% lower than on the constrained

cost-benefit path.

5. Conclusions

In this paper we have built a model of optimal CO2 emissions by exploiting recent advances in climate science, which have

identified a near-instantaneous and quasi-linear warming response to cumulative CO2 emissions, and combining them with

reduced-form representations of climate damages and the costs of CO2 emissions abatement, which are capable of capturing

the stylised facts of the large applied literature on each topic.

The model is surprisingly simple and yields closed-form solutions for optimal peak warming, optimal emissions along the

transition to peak warming and optimal carbon prices, including under a temperature constraint that is consistent with the Paris

Agreement. We draw five conclusions:

1. Optimal peak warming depends on: the utility discount rate; the elasticity of marginal utility; population growth; productiv-

ity growth; the marginal cost of abatement at zero emissions; the transient climate response to cumulative carbon emissions;

and the damage function coefficient. Moreover optimal peak warming has a unit elasticity with respect to the last three of

these parameters, and an elasticity of around one or more with respect to most of the others. Large uncertainty about some

of these parameters therefore means there is large uncertainty about optimal peak warming.
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Table 4

Overview of the effect of different climate features on carbon prices.

Model/pricing rule CO2 decays

over time

Logarithmic CO2

forcing

Delay btwn.

emissions

and warming

Saturating

carbon sinks

Growth rate

of optimal

carbon price

Cumulative

CO2 budget

(#1 is smallest)

Cost-benefit models

Golosov et al. x x g̃ + n 2

Rezai and van der Ploeg

van den Bijgaart et al.

x x x g̃ + n with unit

elasticity of marginal

damages wrt. incomea

3

Our model x x x x 𝛿 + 𝜂g̃ − 𝛾T

𝜙−𝜑E
,

converging to g̃ + n

1

Cost-effectiveness models

Augmented Hotelling x 𝛿 + 𝜂g̃ + 𝛿 2

Lemoine and Rudik x x x 𝛿 + 𝜂g̃ + 𝛿

− 𝜆T

uc

𝜀z

Mpre+M

3

Our model x x x x 𝛿 + 𝜂g̃ 1

a The growth rate of the carbon price is 𝜉(g + n), if the elasticity of marginal damage with respect to output𝜉 ≠ 1. This is a feature that could be applied

to any model here in the cost-benefit class.

2. Even if optimal peak warming is high, optimal transient warming over the coming centuries is not. The transition is slow,

because of the stock-flow nature of CO2-induced warming. If optimal peak warming is 3.4
◦
C, optimal transient warming one

century from now is only 1.7
◦
C.

3. The optimal carbon price initially grows faster than output per capita, converging to the same rate in the long run. The

underlying reason is that damages are a convex function of cumulative emissions, which is amplified by the saturation of

carbon sinks. For central parameter values, we calculate that the optimal carbon price grows 0.5 percentage points faster

than the economy initially.

4. The optimal carbon price under a binding temperature constraint comprises the social cost of carbon, plus a Hotelling pre-

mium. If we take account of damages, then we should abate emissions more quickly than if we simply meet the temperature

constraint at the lowest discounted abatement cost. This effect is quantitatively large.

5. When the objective is to minimise abatement costs alone, the optimal carbon price follows the simple Hotelling rule, not

various kinds of augmented Hotelling rule, as in previous work. This is because the small delay between CO2 emissions and

warming, together with the saturation of carbon sinks, more-or-less exactly offset the effect of decay of atmospheric CO2.

Finally, our paper has generated many points of comparison with the literature, particularly other analytical IAMs. We syn-

thesise these points of comparison in Table 4, with a focus on rules for optimal carbon price growth and the cumulative emissions

budget. The rate of decay of atmospheric CO2 is denoted 𝛿. The results are independent of the shape of the MAC curve, and the

damage functions in the cost-benefit models are all virtually equivalent (assuming a unit elasticity of marginal damages with

respect to income), so the differences between the pricing rules and cumulative emissions budgets come down to features of the

climate system. The table highlights the crucial role of feedback from the saturation of carbon sinks to the decay of atmospheric

CO2, which is not present in other models and is a key driver of warming being linearly proportional to cumulative emissions.

A. Equilibrium in a decentralised economy

Competitive firms maximise profit

Π = L̂f (K∕̂L)e𝜙E−𝜑
2

E2− 𝛾
2

T2

− wL − 𝜏E − iK − 𝛿K,

taking T and wage payments wL as given. 𝜏E are emissions tax payments, iK are interest payments on household savings18 and

𝛿K is depreciation of capital. L̂ = L0e(n+g)t represents effective labour. The representative household maximises

∫
∞

0

e−𝜌tu(c)dt,

subject to an aggregate budget constraint

K̇ = iK + wL + 𝜏E + Π − cL = Q − cL − 𝛿K.

With L = L0ent and k̂ = K

L0e(n+g)t , the household’s budget constraint is the same as equation of motion for capital in the social

18 iK can be thought of as both ‘normal’ interest and dividend payments, while Π represents extra-ordinary profits, such as resource rents or oligopoly rents,

unrelated to the marginal productivity of capital.
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planner’s problem:

̇̂
k = q̂ − ĉ − (𝛿 + n + g)̂k.

The government hands back the income from an emissions tax as a lump-sum transfer. Household utility maximisation yields

the Ramsey rule QK − 𝛿 = 𝜌 − n + 𝜂ċ∕c. Profit maximisation ensures that net marginal productivity equals the yield paid on

capital QK − 𝛿 = i. Firms choose emissions that maximise profits:

𝜕Π
𝜕E

= 0 ⇔ QE = 𝜏.

If the government sets a Pigouvian emissions tax at 𝜏 = 𝜆Se(n+g)t ĉ𝜂 , with 𝜆S satisfying (12)–(14), the decentralised economy will

follow the same emissions path as the social planner’s solution.

B. The transition to stationary cumulative emissions

Convergence to S
∗

is dictated by the complementary function

yc ≡ k1 exp
1

2
t
(

a −
√

a2 + 4b
)
+ k2 exp

1

2
t
(

a +
√

a2 + 4b
)
.

We may assume b > 0 and hence the characteristic roots are real.

In order to satisfy the transversality condition on cumulative emissions,

lim
t→∞

e(n−𝜌)t𝜆S = 0,

𝜆S may not increase at a rate larger than 𝜌 − n:

lim
t→∞

e(n−𝜌)t𝜆S = 0 ⟺ lim
t→∞

− (𝜌 − n) t + ln𝜆S

t
< 0.

Applying l’Hôpital’s rule gives

lim
t→∞

− (𝜌 − n) + 𝜆̇S∕𝜆S < 0.

Substituting this with the state Eq. (13) yields

lim
t→∞

[
−𝜖𝜁𝜆T∕

(
Q (𝜙 −𝜑E) c−𝜂

)]
< 0.

Since 𝜆T is always positive, the transversality condition requires the denominator to be positive. Hence the transversality condi-

tion is violated if E > 𝜙
𝜑

. If k2 > 0, cumulative emissions would be on an explosive increasing path, leading to negative marginal

productivity of emissions and violating the transversality condition. Consequently k2 = 0. The initial condition on cumulative

emissions S0 implies k1 = S0 −
c

b
, so the transition to S∗ is described by

St =
(

S0 −
c

b

)
exp

1

2
t
(

a −
√

a2 + 4b
)
+ c

b
.

C. The optimal path in a model without delay

The model without delay has Eqs. (8)–(6) in common, but the climate model and its relationship with damages are now

different. Because warming is an instantaneous function of cumulative emissions, it is simply the case that

T = 𝜁S.

Hence we can write damages as a direct function of cumulative emissions,

D(S) = exp
[
− 𝛾

2
(𝜁S)2

]
,

and dispense with a state variable in the Hamiltonian, which is now just

 = 1

1 − 𝜂
ĉ1−𝜂 − 𝜆SE + 𝜆k̂

[
q̂(̂k, E, S) − ĉ − (𝛿 + n + g)̂k

]
.

The necessary conditions for a maximum include

𝜆S = ĉ−𝜂 q̂(𝜙 − 𝜑E), (35)

𝜆̇S = (𝜌 − n + g(𝜂 − 1))𝜆S − ĉ−𝜂 q̂𝛾𝜁2S, (36)
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q̂
k̂
− 𝛿 = 𝜂

(
̇̂c
ĉ
+ g

)
+ 𝜌. (37)

Taking the derivative with respect to time of (35) and substituting it into (36) gives:

−𝜑Ė =

(
𝜌 − n + g(𝜂 − 1) + 𝜂

̇̂c
ĉ
−

̇̂q
q̂

)
(𝜙 −𝜑E) − 𝛾𝜁2S.

Then applying the assumption of balanced growth gives us an expression for the evolution of emissions:

Ė =
[
𝜌 − n + (𝜂 − 1) g̃

]
(E − 𝜙∕𝜑) + 𝛾𝜁2S,

which, after following the same steps as in Section 3, eventually delivers

T∗ = [𝜌 − n + (𝜂 − 1) g]𝜙
𝜁𝛾

.

D. Model comparison

In this paper we have shown that exact solutions can be obtained for the optimal path of CO2 emissions and warming in

a quite general framework, albeit we have to take one of two shortcuts. Either we take into account the short delay between

cumulative emissions and associated warming of the atmosphere, which on the other hand requires making Assumptions 1 and

2, or we ignore the short delay.

Here we compare the performance of these two simplified analytical models with the numerical solution of the ‘full’ model.

The full model comprises discrete-time equivalents of Eqs. (2)–(4))-(6), a five-year time step in the interests of rapid computa-

tion, and a finite model horizon, where the terminal period is chosen to be far enough in the future (1000 years) that it does not

exert a discernible effect on the optimal path on a decision-relevant timescale (which we take to be 250 years). Optimisation

proceeds by choosing
{

Et

}1000

t=0
so as to maximise W =

∑∞
0

e−(𝜌−n)tu(ct), assuming a constant savings rate, constant productivity

growth g = 2%, but allowing climate damages and abatement to feed back on growth. As Fig. 9 shows, the solutions of the three

models are very close. After 50 years, the difference between the solutions is at most 0.01
◦
C (or 1%), while in 100 years’ time it

is 0.02
◦
C (or 1.6%).

Figure 9 The optimal path of T in the simplified model with an analytical solution and in the full model with a numerical solution.

E. Maximising welfare subject to the temperature constraint

We add the inequality constraint that S ≤ S, where S = 𝜁T, to the model that has an instantaneous temperature response to

emissions. The current value Lagrangian is

 = 1

1 − 𝜂
ĉ1−𝜂 − 𝜆SE + 𝜆K

[
q̂
(

k̂, S, E
)
− ĉ − (𝛿 + n + g) K

]
− 𝜃E. (38)

The necessary conditions for a maximum include

ĉ−𝜂 q̂ (𝜙 − 𝜑E) = 𝜆S + 𝜃, (39)
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Ṡ = E, (40)

𝜆̇S = (𝜌 − n + (𝜂 − 1)g)𝜆S − 𝛾𝜁2Sq̂̂c−𝜂, (41)

E ≥ 0;𝜃 ≥ 0;𝜃E = 0, (42)

S ≤ S;𝜃(S − S) = 0, (43)

𝜃̇ ≤ 0 (= 0 when S < S). (44)

The constrained problem results in a modified differential equation for cumulative emissions:

S̈ = aṠ + bS − c + 𝜌 − n + (𝜂 − 1) g

𝜑q̂̂c−𝜂
𝜃 − 1

𝜑q̂̂c−𝜂
𝜃̇. (45)

The constraint binds if S < c∕b. We define t as the time when the constraint binds so that

t = [0, t) ⟺ S < S& 𝜃 = 0,

t = [t,∞] ⟺ S = S; E = 0;𝜃 > 0; 𝜃̇ ≤ 0.

Note that E = 0 at t, because the costate variable 𝜃 is required to be continuous. This prevents a discontinuous fall in emissions

from taking place at t = t. Until t = t, 𝜃 = 0 and the state equation of the Lagrangian (41) results in the same general solu-

tion as the unconstrained problem, i.e. 𝜙 − 𝜑Et
⏟⏟⏟

MAC%

= k exp (𝜌 − n + (𝜂 − 1)g) t + ∫
∞

t

e−(𝜌−n+(𝜂−1)g)(𝜏−t)𝜁2𝛾Sd𝜏

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
SCC%

, but with the added

boundary condition that Et = 0, resulting in 𝜙 = k exp (𝜌 − n + (𝜂 − 1)g) t + 𝛾𝜁S

𝜌−n+(𝜂−1)g . Substituting k leads to Proposition 3.

The optimal path of cumulative emissions again derives from the general solution (26) to the differential Eq. (24). To find k1,

k2 and t we have a system of three boundary conditions. The system has an analytical solution using the following approxima-

tion:

St = (S0 −
c

b
− k2) exp

1

2
t
(

a −
√

a2 + 4b
)
+ k2 exp

1

2
t
(

a +
√

a2 + 4b
)
+ c

b

≅ (S0 −
c

b
) exp

1

2
t
(

a −
√

a2 + 4b
)
+ k2 exp

1

2
t
(

a +
√

a2 + 4b
)
+ c

b

at t = t. The approximation is based on the insight that, at t = t, the exponent of the first term is much smaller than unity, while

the exponent of the second term is much larger than unity:

St = S ⇔ k2 =
S − c

b
+
(

c

b
− S0

)
exp

[
1

2
t
(

a −
√

a2 + 4b
)]

exp
[

1

2
t
(

a +
√

a2 + 4b
)] ,

Et = 0 ⇔ k2 =

(
c

b
− S0

)(
a −

√
a2 + 4b

)
exp

[
1

2
t
(

a −
√

a2 + 4b
)]

(
a +

√
a2 + 4b

)
exp

[
1

2
t
(

a +
√

a2 + 4b
)] ,

S(0) = S0 ⇔ S0 = k1 + k2 +
c

b
.

Solving this system of equations gives:

t = 2

a −
√

a2 + 4b
ln

c

b
− S(

c

b
− S0

)(
1 − a−

√
a2+4b

a+
√

a2+4b

) , (46)

k2 =
(

c

b
− S0

)(
a −

√
a2 + 4b

a +
√

a2 + 4b

)⎛⎜⎜⎜⎜⎝
c

b
− S(

c

b
− S0

)(
1 − a−

√
a2+4b

a+
√

a2+4b

)
⎞⎟⎟⎟⎟⎠

− 2
√

a2+4b

a−
√

a2−4b

(47)
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When damages are ignored and the problem is to meet the constraint S at minimum total discounted abatement cost, Eq. (45)

becomes

S̈ =
(
𝜌 − n + (𝜂 − 1)g̃

)(
E − 𝜙

𝜑

)
= aE − c, (48)

integration of which allows us to obtain a general solution for cost-effective emissions:

E = 𝜙
𝜑

−
(
𝜙
𝜑

− E0

)
e(𝜌−n+(𝜂−1)̂g)t = c

a
−
(

c

a
− E0

)
eat. (49)

On the cost-effective emissions path ̇Ece = aE − c, whereas on the constrained cost-benefit path ̇Ecb = aE + bS − c. Since bS is

positive, the rate of emissions reduction is faster on the cost-effective path. Because both paths must result in the same cumu-

lative emissions, the cost-effective emissions path must begin with higher emissions, but eventually cross the constrained cost-

benefit path and reach zero emissions faster (Proposition 5). Note that for a general damage function, the differential equation

is ̇Ecb = aE +
(

QS∕Q
)
∕𝜑 − c. Therefore Proposition 5 holds for any damage function that has positive damages over the whole

path.
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