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Abstract Low socio-economic status has been widely recognized as a significant factor in 

enhancing a person’s vulnerability to climate change including vulnerability to changes in 

temperature. Yet, little is known about exposure to heat within cities in developing countries, 

and even less about exposure within informal neighbourhoods in those countries. This paper 

presents an assessment of exposure to outdoor heat in the South Asian cities Delhi, Dhaka, 

and Faisalabad. The temporal evolution of exposure to heat is evaluated, as well as intra-urban 

differences, using meteorological measurements from mobile and stationary devices (April-

September 2016). Exposure to heat is compared between low-income and other 

neighbourhoods in these cities. Results are expressed in terms of air temperature and in terms 

of the thermal indices Heat Index (HI), Wet Bulb Globe Temperature (WBGT) and Universal 

Thermal Climate Index (UTCI) at walking level. Conditions classified as dangerous to very 

dangerous, and likely to impede productivity, are observed almost every day of the 

measurement period during daytime, even when air temperature drops after the onset of the 

monsoon. It is recommended to cast heat warnings in terms of thermal indices instead of just 

temperature. Our results nuance the idea that people living in informal neighbourhoods are 

consistently more exposed to heat than people living in more prosperous neighbourhoods. 

During night-time, exposure does tend to be enhanced in densely-built informal 

neighbourhoods, but not if the low-income neighbourhoods are more open, or if they are 

embedded in green/blue areas. 

 

Keywords: heat exposure, HI, WBGT, UTCI, urban heat island, South Asia  
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Graphical abstract 

     Graphical abstract 

Highlights 

 exposure to heat is examined in Delhi, Dhaka, and Faisalabad 

 extremely hot conditions were found to persist for prolonged periods of time 

 spatial patterns of exposure are distinctly different between day and night 

 informal neighbourhoods are diverse, but tend to remain warmer during the night 

 heat action plans should be based on thermal indices  
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1. Introduction 

Climate change is expected to exacerbate the frequency, intensity, and duration of heatwaves 

(Collins et al., 2013). Exposure to extreme heat can lead to increased mortality and morbidity 

(Hajat et al., 2010a), even in regions where people are used to being exposed to hot conditions 

and therefore are expected to be adapted (Azhar et al., 2014; Singh et al., 2018). It has been 

postulated that there is a physical adaptability limit to heat, which may be reached in some 

regions of the world, depending on the temperature increases because of climate change 

(Sherwood and Huber, 2010). An analysis of documented extreme heat events with increased 

mortality showed that large parts of the world already experience lethal heat conditions and 

that climate change will lead to many more lethal heat events, notably in tropical and sub-

tropical regions (Mora et al., 2017).  

Low socio-economic status has been widely recognized as a factor that enhances a person’s 

vulnerability to climate change including vulnerability to increasing temperature (Leichenko and 

Silva, 2014). In developing countries, a significant fraction of people with low socio-economic 

status inhabit so-called informal urban areas or slums. Despite attempts to avoid their 

formation or growth, the existence of such neighbourhoods is linked to rapid urbanization in 

many parts of the world (Ooi and Phua, 2007). These neighbourhoods are characterized by 

overcrowding, poor housing, high building fraction that may hamper natural ventilation by wind, 

meagre hygienic and sanitation conditions, and lack of infrastructure, including limited access 

to health care systems (Revi et al., 2014; Sverdlik, 2011). According to a recent study, they 

are also found at locations with comparatively rapid changes of temperature variability 

(Bathiany et al., 2018). This enhances the vulnerability of their inhabitants. 

It is well-known that urban areas are warmer than rural areas on average. This phenomenon 

is known as the urban heat island (UHI) effect and is often particularly pronounced during the 

night (Oke, 1982). Urban characteristics at neighbourhood scale such as vegetation cover and 

building density and height, which are closely related to sky view, are important determinants 

of the average UHI strength (Stewart and Oke, 2012). High building density and lack of 
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vegetation in informal or slum areas may imply enhanced exposure to heat, in particular during 

the night. Unfortunately, research on heat patterns within cities in low- to middle-income 

countries with dense urban areas is comparatively rare (Hondula et al., 2017) and little is 

known about heat exposure in such neighbourhoods. 

Whereas some papers characterize the UHI of (South-) Asian cities (Santamouris, 2015; 

Tzavali et al., 2015; Kotharkar et al., 2018), many of those investigations are based on 

observations of surface temperature instead of ambient air temperature and reports of traverse 

measurements are comparatively rare (Kotharkar et al., 2018). Such studies on heat exposure 

were often carried out in isolation and mostly apply to limited periods of time, typically one to 

a couple of days, although two seasons were covered in the study by Yadav and Sharma 

(2018). At the time of writing we are unaware of studies specifically focusing on informal 

neighbourhoods or slum areas in South Asia. 

Whether people feel comfortable with the microclimate they are exposed to, depends on a 

complex interaction between physical, physiological, behavioural, and psychological factors. 

Many thermal indices are available to describe the link between environmental conditions and 

thermal perception or comfort (Blazejczyk et al., 2012; de Freitas and Grigorieva, 2017). 

Environmental conditions affecting thermal comfort include air temperature, humidity, wind 

speed and radiation (shortwave and longwave). For example, trees as well as buildings provide 

shading, leading to improved thermal comfort in hot conditions, despite minimal differences in 

air temperature (Armson et al., 2012; Klemm et al., 2015). These environmental parameters, 

and therewith thermal comfort, are all strongly modified in the urban environment (van Hove 

et al., 2015). Unfortunately, South Asian studies on outdoor thermal comfort are quite rare 

(Kotharkar et al., 2018). 

The main aim of the present paper is to assess possibly enhanced exposure to outdoor heat 

in informal urban neighbourhoods. We will characterize intra-urban differences in exposure to 

heat in three major cities in the South Asian region: Delhi (India), Dhaka (Bangladesh) and 

Faisalabad (Pakistan). This region is considered to be a climate change hotspot, defined as 
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an area “where a strong climate change signal is combined with a large concentration of 

vulnerable, poor, or marginalized people” (De Souza et al., 2015). 

The analysis presented in this paper utilizes traverse observations carried out weekly to bi-

weekly, using the same type of instrumentation and the same measurement protocol in all 

three cities. We consider the day-time as well as the night-time situation throughout these 

months covering the pre-monsoon until the post-monsoon period and combine results from the 

traverse measurements with measurements at fixed stations. Furthermore, we assess 

exposure to heat in outdoor microclimatic conditions in terms of thermal indices instead of just 

UHI or air temperature. Because of these characteristics, our observations allow a rather 

unique direct comparison between three different cities and analysis of spatiotemporal patterns 

of outdoor exposure to heat, during a considerable part of the year.  

 

2. Methods 

2.1 General 

Our assessment builds upon three sets of complementary observations. Traverse 

observations of air temperature and humidity, wind speed and solar radiation were performed 

using a collection of instruments placed on top of a car (Section 2.3 and 2.4). The traverse 

measurements were complemented with observations at automatic weather stations (AWS) 

placed in the urban environment (Section 2.5). These measurements were used to determine 

temporal patterns and to correct the traverse observations for temporal trends. Finally, we 

collected data from official stations reporting to the World Meteorological Organization (WMO) 

in these three cities. The combination of micrometeorological measurements applied here 

allows evaluating spatial patterns of the most frequently used thermal indices (Section 2.6).  

2.2 Study areas 

The observations were carried out in Delhi (India), Dhaka (Bangladesh) and Faisalabad 

(Pakistan), three large cities in the Indo-Gangetic plain, one of the most densely populated 
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areas in the world. Strong growth in population is expected, estimated at 40% (Delhi), 56% 

(Dhaka) and 52% (Faisalabad) until the year 2030 (compared to 2015), with strong 

urbanization (United Nations, 2014). Much of this growth in urban population will be 

accommodated, at least initially, through informal or low-income neighbourhoods which can 

be found in all three cities.  

Delhi is India’s capital and biggest city with nearly 25 million inhabitants (United Nations, 2014). 

Urban parts of Delhi cover about 700 km2, out of nearly 1500 km2 for the total Delhi area (India 

Census, 2015). Its climate can be classified as an overlap between humid subtropical and 

semi-arid and is highly influenced by the monsoon in July-September. The summer months 

are hot and increasingly humid towards the onset of the monsoon. In the hottest months, April-

June, daily maximum temperatures can rise to between 40°C and 45°C, with minima remaining 

over 25°C (Sati and Mohan, 2017). While daytime maxima decrease somewhat during the 

monsoon period, night-time minima on average remain over 25°C until August, with average 

morning relative humidity being over 60% (Weatherbase, 2018a). 

Dhaka is the capital of Bangladesh. It covers about 306 km2 (Bangladesh Bureau of Statistics, 

2014) and hosts about 19 million inhabitants (United Nations, 2014). Dhaka’s climate can be 

classified as a tropical savanna climate, with a distinct monsoonal season. The highest daily 

maximum temperatures are reached in March-May, the average being about 33°C. However, 

maxima may rise to nearly 40°C on individual days. Furthermore, the highest average 

minimum temperature of over 26°C is observed in the monsoon months June-August. These 

months are also extremely humid, with an average evening relative humidity of about 75% and 

an average morning relative humidity of about 93% (Weatherbase, 2018b). 

Faisalabad is home to about 3.2 million people and is the third largest city of Pakistan (Pakistan 

Bureau of Statistics, 2018). The surface area of the municipality of Faisalabad is about 210 km2 

(Minallah et al., 2012). Faisalabad has a dry, semi-arid climate, classified as mid-latitude 

steppe and desert climate and characterized by high temperature variability (Weatherbase, 

2018c) and an increasing number of hot days, warm nights and heatwaves (Abbas, 2013; 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

8 

Saeed et al. 2016). The hottest months are May-July with maxima sometimes going up to 

around 50°C in June and minima remaining around 27°C from June-August, but sometimes 

exceeding 30°C (Abbas, 2013).  

2.3 Traverse measurements 

Traverse measurements were performed to determine intra-urban spatial differences in air 

temperature, humidity, solar radiation, wind speed, and derived heat indices. Temperature was 

measured using a 0.25mm fast response thermocouple (5TC-TT-TI-30-1M, Omega, USA; g in 

Fig. 1) and a HMP60 temperature and humidity probe (Vaisala, Finland; h). From the latter 

device we also obtained the humidity. Wind speed was measured using a 2-D ultrasonic 

anemometer (Windsonic, Gill Instruments, UK; f) and solar radiation with an upward facing 

pyranometer (SP-110, Apogee Instruments, USA; d). 

The instruments were attached to a small polycarbonate cabinet (CAB PC 302018G, Fibox, 

the Netherlands), which housed the data logger (CR850, Campbell Scientific, UK; b), a flash 

memory drive (SC115, Campbell Scientific, UK; b) and a battery (YPC2A12, Yuasa, USA; b). 

Furthermore, the box was equipped with a GPS device for position logging (GPS 16X-HVS, 

Garmin, USA; c). The fast response temperature sensor was mounted inside a ventilated 

plastic tube to prevent radiation errors. A fan (D341T-012GK-2, Micronel, Switzerland; a) 

ensured an air flow through the tube at a speed of 4.6ms-1. The inlet of the tube was wrapped 

in aluminium tape and located above the front windscreen. The box was attached on top of a 

car using a set of four strong magnets (E834, Eclipse Magnetics, UK), see Fig. 1. The height 

of the measurements was about 2m, depending a bit on the height of the car used. 

Accuracy of the fast response thermocouple was between 0.5 and 1.0°C, its time constant was 

0.5s. Radiation accuracy was ±5%, wind speed accuracy was ±2% at 12ms-1, temperature 

accuracy of the temperature-humidity probe was 0.6°C and relative humidity (RH) accuracy 

was ±3% (0-90% RH) or ±5% (90-100% RH). GPS position accuracy was <15m. 
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The typical driving speed with the instrumented cars was 5-10ms-1 (18-36kmh-1), depending 

on traffic. Data were logged at a 2-second interval. This implies a spatial resolution of our 

measurements of 10-20m. Measured wind speed was corrected for driving speed (using the 

GPS data) with a routine made available by Smith and Bourassa (1996). 

     Figure 1 

The traverse measurements were carried out weekly from April to June and biweekly from July 

to September, in 2016, along fixed, predetermined transects (see Section 2.4). On a 

measurement day two runs were generally performed, one daytime and one night-time run. 

The daytime observations were carried out just after noon, around the time when the maximum 

temperature is usually reached, with the sun near its maximum elevation and solar radiation 

potentially highest. It was decided to start the night-time run shortly after sunset, encompassing 

the part of the day when the UHI often is most intense according to UHI development theory 

(Oke, 1982) as well as observations in Asian cities (Santamouris, 2015; Tzavali et al., 2015). 

Changes in background meteorological conditions due to diurnal variations are also expected 

to be relatively small during the periods chosen here, which avoids the need of large temporal 

trend corrections. In total 96 runs could be completed, of which 94 could be further analysed, 

35 in Delhi, 35 in Dhaka and 24 in Faisalabad. 

One run typically took 1.5-2 hours, depending on traffic. Temporal trends can occur during 

such a period which may hide or exaggerate spatial differences between neighbourhoods. 

Therefore, using data from the AWS (see below), simple linear detrending was applied to the 

spatial temperature data (cf. Heusinkveld et al., 2014). As expected, night-time trends were 

usually negative while daytime trends were found to be negative or positive, which may be 

expected because observations were carried out around the time when maximum temperature 

was reached, so in practice sometimes before and sometimes after the temperature peak. 

Absolute values of computed trends usually remained well below 1K per hour, but during 9 

runs larger trends were found, up to a maximum of 1.45K per hour.  
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Figure 2 

2.4 Transects 

In each city, fixed transect routes were selected to allow sampling of various differing target 

neighbourhood types, including informal neighbourhoods with a high density of buildings and 

little green as well as neighbourhoods with low building density and large green cover or water 

elements. The neighbourhoods were selected by visual inspection of Google Earth® images in 

combination with local knowledge. Average values of air and thermal comfort indices (see 

Section 2.6) were determined for the transect parts running through each target neighbourhood 

(Fig. 2). 

The cities were also mapped in terms of so-called Local Climate Zones (LCZs) (Stewart and 

Oke, 2012). LCZs accommodate a clustering of urban characteristics (related to, for example, 

building density, height of roughness elements and urban metabolism) representing 

approximate ability to influence the local microclimate. They provide an objective classification 

for the purpose of studying physical aspects of urban climate studies. For further interpretation 

of the differences between neighbourhoods the dominant LCZ was determined in each of the 

target neighbourhoods, as indicated in Table 1. To classify the neighbourhoods in terms of 

LCZ the methodology proposed by Bechtel et al. (2015) was used. Briefly, Google Earth® 

images are used to designate training areas, which are areas with a known LCZ classification. 

The training areas are then linked to remotely sensed surface characteristics, notably Landsat 

satellite data, and subsequently extrapolated to the area of interest using the data from the 

training area. The results can then be verified against local knowledge and, if necessary, be 

adjusted by including new training data. The procedure can be repeated several times until the 

result matches the situation. A comparison of the abundance of the various LCZ in the three 

cities can be found in Table SI.I1. The resolution of the LCZ map is 100m x 100m. 

Finally, the socio-economic status of the neighbourhoods was assessed, based on local 

knowledge. A distinction was made between high-income, middle-income, and low-income 

neighbourhoods. Sometimes, an intermediate classification was chosen. Some 
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neighbourhoods are barely populated and were therefore classified in terms of their main land 

use (rural, green, road, industrial). 

 

2.5 Stationary measurements 

An AWS was installed in each of the three cities to determine the temporal evolution of the 

weather in the cities. The station (Wireless Vantage Pro2 Plus, Davis Instruments, USA) 

included solar radiation sensors and a daytime fan-aspirated radiation shield for the 

temperature and humidity devices. Furthermore, wind speed and wind direction were 

measured using a cup anemometer and wind vane, respectively. The station was also 

equipped with a rain gauge and a barometer. All sensors were measured at an interval of 

one minute and the readings were subsequently averaged or summed to obtain hourly values. 

These hourly values were stored and uploaded to a server. Accuracies were: wind speed 

0.5ms-1, air temperature 0.5°C, relative humidity 2%, pressure 1hPa, rainfall 4% for rates up 

to 100mm hr-1, solar radiation 5%. 

Data from the AWS were used to determine temporal trends of weather variables during a 

transect run and to correct the spatial observations for this temporal trend. Therefore, locations 

of AWS were selected to represent an urban setting. Practical considerations such as the risk 

of vandalism further determined the selection of the location. The locations are indicated in 

Fig. 2. Daily results like maxima and averages were used if at least two-thirds of the hourly 

values were available for a specific day. 

Although we focus on thermal comfort instead of on UHI, we also assessed UHI strength for 

completeness. Given the urban location of the AWS, their data could not be used to determine 

the UHI as defined by Oke (1982). Therefore, our UHI assessments were based on data from 

nearby weather stations in Delhi, Dhaka, and Faisalabad, run by the national weather services 

and which should conform to guidelines issued by the World Meteorological Organization 

(WMO). Henceforth, these stations will be called “WMO stations.” Mean UHI intensity was 
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determined by subtracting the temperatures observed at the WMO stations from the average 

detrended transect temperature in the corresponding time slots. The maximum UHI strength 

observed along the transects was also computed, using the neighbourhood mean 

temperatures. 

Table 1 

2.6 Thermal Indices 

Apart from air temperature as influenced by the UHI we consider three thermal indices to 

acknowledge that human thermal comfort and heat stress depend on other weather variables 

too. Like explained below, the indices differ in their response to weather variables. The first 

index is the Heat Index (HI [°C]), a well-known index belonging to the category of indices 

allowing assessment of the thermal environment from standard weather variables. HI has been 

widely used in, for example, the United States to forecast and communicate heat conditions to 

the general public. An apparent temperature is constructed using a fit of the actual air 

temperature and the relative humidity on Steadman’s (Steadman, 1979a; Steadman, 1979b) 

apparent temperature (Blazejczyk et al., 2012): 

HI = -8.784695 + 1.61139411·T + 2.338549·RH - 0.14611605·T·RH – 

1.2308094·T 2 -1.6424828·10-2·RH 2 + 2.211732·10-3·T 2·RH + 

 7.2546·10-4·T·RH 2 – 3.582·T 2·RH 2  (1) 

where T [°C] is the air temperature and RH [%] is the relative humidity. Although the data 

underlying the fit include effects of wind speed and radiation, HI will only respond to 

temperature and humidity. For communication purposes such a simpler approach may be an 

advantage. 

The second index we will use is the Wet Bulb Globe Temperature (WBGT) (Budd, 2015): 

WBGT = 0.7Twn + 0.2TG + 0.1T (2) 
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where Twn is the naturally ventilated wet bulb temperature, and TG is the so-called globe 

temperature. The WBGT has a strong history in industrial health protection. It responds to 

radiation exchange by means of the temperature of the black globe, designed to mimic human 

radiation exchange with the environment. Normally, TG is measured inside a sealed, thin-

walled black globe with a diameter of 15cm. However, here we follow Liljegren et al. (2008), 

who proposed a model that appears to be able to reliably estimate WBGT using measured 

incoming solar radiation, air temperature, wind speed and humidity, with a good estimate of TG 

as an intermediate product. 

We then use the computed TG to estimate the mean radiant temperature, Tmrt [°C] (Thorsson 

et al., 2007), which in turn is used to compute our third index, the Universal Thermal Climate 

Index (UTCI [°C]). This index is based on a dynamic model describing thermoregulation of the 

human body, considering the governing principles of the human body’s energy balance. To 

that end, it considers the relevant meteorological parameters as well as thermo-physiological 

and clothing parameters (Fiala et al., 2012; Havenith et al., 2012; Jendritzky et al., 2012). To 

compute UTCI we used the polynomial fit made available at www.utci.org (Brode et al., 2012), 

which requires T, Tmrt, RH (or vapour pressure) and wind speed (u [ms-1]) as input: 

UTCI = f(T, Tmrt, u, RH) (3) 

UTCI then refers to “the air temperature of the reference condition causing the same model 

response as the actual condition”, with the reference condition defined as a person with a 

walking speed of 4kmh-1 and a metabolic heat production of 135Wm-2 in an environment where 

u at a height of 10m is 0.5ms-1, Tmrt = T and RH=50% up to a vapour pressure of 20hPa. Used 

in this way, UTCI allows objective quantification and comparison of the thermal environment 

people are exposed to; it is not intended to evaluate thermal perception, heat stress or heat 

strain of specific individuals at a specific location. Wind speed u from our measurements was 

recomputed to a value representing the wind speed at a height of 10m, according to the 

guidelines for UTCI computation (Brode et al., 2012). The method assumes a logarithmic wind 

profile, which probably does not occur within cities (Oke et al., 2017). Nevertheless, the 
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assumption is not a critical one if the main goal is standardisation for the purpose of 

comparison of spatiotemporal patterns. Given the uncertainty regarding urban wind profiles, 

we decided to adopt the standard approach. If u after extrapolation to a height of 10m was out 

of the validity range for the fit (3), that is, less than 0.5ms-1, we computed UTCI using u = 

0.5ms-1. 

 

2.7 Evaluation of spatial differences 

After the measurements of a run were completed, all data were downloaded from the data 

logger and processed with the statistical software R (R Core Team, 2013). Averages of all 

variables, x, were computed per neighbourhood transect, being the part of the city transect 

running through predefined polygons (see Section 2.4 and Fig. 2). These polygons delineated 

distinct neighbourhoods that were based on Google Earth® satellite images, from which 

physical neighbourhood characteristics were estimated (building density, amount of green), 

combined with local knowledge on socio-economic status and were fine-tuned based on local 

inspection before the start of the measurement campaigns. 

Here, spatial anomalies determined per run are used to examine spatial differences. For 

variable x the spatial anomalies are defined as the difference between the overall mean for all 

neighbourhoods considered and its mean for a specific neighbourhood: 

 𝑥𝑛
′ = 𝑥𝑛 − �̅�           (4) 

Here 𝑥𝑛 denotes the mean of the variable considered (temperature or one of the heat indices) 

for a specific neighbourhood n (1-10 in Delhi or Dhaka and 1-11 in Faisalabad), �̅� denotes the 

average over all transect parts considered and 𝑥𝑛
′  symbolizes the anomaly computed for 

neighbourhood n. Since the anomalies are determined per run, all runtime spatial averages of 

𝑥𝑛
′  are zero by definition. 
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Between-neighbourhood means were compared using a robust variant of the one-way ANOVA 

test by applying the Welch’s t-test adjustment, after hypothesis testing of equal variances 

across groups was conducted (Field et al., 2012). As a post hoc test for the pairwise 

comparisons between each neighbourhood the Bonferroni correction was applied. 

 

3. Results 

3.1 Weather conditions 

Fig. 3 provides a general impression of the weather conditions during the summer period of 

2016 in the three cities, using our measurements at the AWS. The time series confirm the 

expectations from the climatic situations in the city. 

In Delhi, maximum temperature rose to over 40°C on some days in the hottest period and 

minimum temperatures generally varied between 25°C and 30°C. Notably in April and May, 

the maximum dew point temperature was far below the air temperatures, showing that the 

humidity was quite low. In this period, the weather was generally fair, with daily solar radiation 

totals between 1.5 and 2.0kJcm-2 and hardly any precipitation. Upon the onset of the monsoon 

the air temperatures dropped somewhat, but the humidity rose dramatically, with maximum 

dew point temperatures approximately equal to the minimum temperature. Precipitation 

occurred regularly and the variation in incoming solar radiation illustrates the difference in 

cloudiness among the days in that period.  

The course of weather conditions in Faisalabad is similar to that in Delhi, although the radiation 

intensity is much less variable so that its gradual seasonal decrease becomes clearly visible. 

By contrast, Dhaka shows limited variation in heat and moisture conditions. Maximum 

temperature varies between 30°C and 35°C, minimum temperature is around 25°C. The 

humidity is high during the entire period, with maximum dew point temperatures approaching 

the minimum temperatures. This is also caused by the frequent precipitation, which often falls 
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in large amounts. The daily radiation load is quite variable throughout the season, which is 

indicative of variable cloud cover. 

More details on the weather conditions on the days of traverse measurements are provided in 

the supplementary information (SI.II). Here, we depict in Fig. 3 the average air temperature 

along the transects after detrending. The daytime temperatures from the transects 

approximately follow the maximum temperature of the AWS. Like expected, the evening 

transect temperatures are usually well above the minimum temperature, and below the 

maximum temperature. 

     Figure 3 

 

3.2 Seasonal trend of the heat indices  

The seasonal development of the heat indices in the three cities studied is shown in Fig. 4. 

The figure depicts the daily maximum value of indices along with the maximum air temperature, 

using hourly averages from the AWS. 

 Figure 4  

HI, WBGT and UTCI only follow T to a limited extent, in Delhi and Faisalabad in particular. In 

these cities, maximum T varies strongly around 40°C in the hottest, pre-monsoon period and 

then declines somewhat to values around 32-35°C in June-July. However, HI and WBGT 

continue to increase and UTCI hardly changes in those months. This behaviour can be 

explained by the strong increase in atmospheric humidity (see Fig. 3). Only as of August the 

indices follow T again and trends become similar. In Dhaka, there is hardly any trend in any of 

the indices during the period shown here. Comparatively large day-to-day variations in WBGT 

and UTCI can be explained by the large variability in solar radiation (see Fig. 3). A notable 

feature is that in periods when T in Dhaka is clearly lower than in the other cities, between 30 

and 35 °C versus around 40 to 45 °C in Delhi and Faisalabad, the values of WBGT and UTCI 

in Dhaka are still at levels similar to the ones in Delhi and Faisalabad, around 35°C for WBGT 
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and 45° for UTCI. Also, HI is only slightly lower in Dhaka, around 45°C versus 45°-50° in the 

other cities. Only HI in Faisalabad in July stands out with values up to 55°C. 

In terms of heat stress risk, focussing on the daily maxima of the indices, potentially dangerous 

levels of thermal stress could occur on most days of the observational period, and in all three 

cities (Table 2). To evaluate heat stress conditions, we use the set of threshold values quoted 

in Blazejczyk et al. (2012) for HI and WBGT and the UTCI assessment scale available from 

www.utci.org. It appears that in Dhaka the WBGT surpasses the 28°C threshold (“very hot to 

sweltering”) each day for which observations are available (n=115), of which on 110 days 

(95%) the >30°C level is reached (“sweltering”). Working in such conditions would become too 

dangerous for normally trained people. Similarly, the 28°C level for WBGT is reached on 184 

out of 190 days (97%) in Delhi and on 183 out of 186 days in Faisalabad. According to UTCI 

very strong to extreme heat stress (UTCI > 38°C) could occur on 79% of the observation days 

in Delhi, on 82% in Dhaka and on 88% in Faisalabad, with extreme heat stress conditions 

(UTCI > 46°C) occurring on 6% of the days in Delhi and Dhaka and on nearly 10% of the days 

in Faisalabad. The maximum in the radiation driven indices will be reached in sunny conditions. 

HI is basically insensitive to such conditions and indicates somewhat less severe heat stress 

conditions: HI exceeds the 41°C threshold (“very hot to sweltering”) on 48% of the days in 

Delhi, 76% in Dhaka and 68% in Faisalabad. 

 Table 2 

 

3.3 Spatial differences 

For completeness, we first describe some observed characteristics of the UHI. Estimated 

mean, minimum, and maximum UHI intensities are shown in Table 3 for daytime UHI and night-

time (evening) UHI. The daytime UHI intensity is generally weaker than the night-time one, like 

expected from theory (Oke, 1982). The results for Delhi confirm estimates by Mohan et al. 

(2012, 2013) and Yadav and Sharma (2018). Daytime and night-time UHI intensity and the 
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differences between them are quite small in Dhaka, which may be due to the frequent 

precipitation with associated cloudiness. It is well-known that UHI development is stronger on 

clear and calm days (Oke, 1982; Theeuwes et al., 2017). The largest UHI effect is obtained in 

some transect parts of Delhi, where UHI strengths up to 8K were observed. In Faisalabad UHI 

intensities up to nearly 6K were obtained.  

Table 3 

Figs. 5-7 show the seasonal mean of 𝑥𝑛
′  from all traverse measurements in Delhi, Dhaka, and 

Faisalabad, respectively, for all variables considered here. The data have been ordered from 

left to right according to increasing sky view factor, so that densely built neighbourhoods are 

found at the left of the graphs and more open ones to the right. The error bars show the 95% 

confidence interval of the seasonal averages per neighbourhood and indicate that most of the 

differences are statistically significant (see SI.III results for the ANOVA test and pairwise t-tests 

for the individual transects, confirming true differences between neighbourhood mean 

temperatures in the vast majority of cases). In Delhi, average seasonal anomalies of air 

temperature vary between -1.0 and +1.3K for daytime conditions. Average night-time 

anomalies vary between -1.4 and +1.8K. So, average intra-urban temperature differences were 

2.3K during the afternoon transects and 3.2K during the evening transect. In Dhaka, the intra-

urban differences were smaller, amounting to 1.4 and 1.5K for midday and evening conditions, 

respectively. Faisalabad also shows somewhat smaller daytime differences, 1.4K, but larger 

differences during the evening, 2.8K. These results are in line with the general behaviour of 

the UHI, which is usually larger during the night (Oke, 1982; also see Table 1). 

Especially during the night, the more densely built neighbourhoods (LCZ 1-3, 7), among which 

the informal neighbourhoods classified as LCZ 7, tend to be among the warmer ones. Greener 

and more open neighbourhoods tend to be cooler, like expected from the LCZ classification 

(Stewart and Oke, 2012), but the differences are not entirely consistent. In Dhaka some 

inconsistencies seem to occur, but here, the differences are small anyway, since cloudy 

weather conditions often preclude development of strong intra-urban differences. In 
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Faisalabad some of the more open neighbourhood (Middle-5 and High-6) appear to be 

comparatively warm. During the afternoon some of the densely built transects may be among 

the cooler ones, for example, “Low/Middle-2a” and “Low/Middle-2b” in Delhi, “High-2” in Dhaka 

and “Middle-3” in Faisalabad, although the differences in the latter city are generally very small 

during daytime. In Dhaka, the industrial area is among the hotter ones during daytime, possibly 

because of the anthropogenic heat production. 

 Figure 5 

 Figure 6 

 Figure 7 

The relationship between sky view and night-time temperature is further investigated in Fig 8. 

Low-income neighbourhoods are highlighted (bold symbols). The figure broadly confirms the 

expected relationship between night-time temperature anomalies and sky view factor. 

However, it also shows that the low-income neighbourhoods may or may not be warmer. Three 

out of the four low-income neighbourhoods belong to the warmer ones during the night, one is 

comparatively cool.  

 Figure 8 

Transects that are found to be cool during the night may become comparatively warm or 

around average during the day, for example, “Low-Middle 6” in Dhaka and “Green-6” in 

Faisalabad. These effects can be explained by shading effects at street level. Especially during 

dry periods, lack of shading in open areas may lead to stronger warming and vice versa 

(Giridharan and Emmanuel, 2018). 

We now turn to differences according to the thermal comfort indices. For the night-time runs, 

the general pattern of the differences between neighbourhoods along the transect was found 

to be approximately similar in terms of the thermal comfort indices and temperature. That is, 

the spatial differences according to the heat indices are highly correlated with the air 

temperature differences. However, during the day marked differences occurred between the 
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indices or variables that consider radiation, WBGT and UTCI, and the ones that do not, T and 

HI. The radiation-driven indices underline that open neighbourhoods may become 

comparatively warm under the influence of the solar radiation, whereas the densely built 

neighbourhoods (LCZ 1-3, 7) can in fact become cooler because of shading effects. However, 

again the patterns are not entirely consistent with this principle. Both in Delhi and in Dhaka 

some of the dense neighbourhoods are among the warmest in terms of UTCI, WBGT or both. 

Among the notable exceptions are the low-income neighbourhoods Low-2 in Delhi and Low-7 

in Dhaka. This is partly related to the higher air temperatures in those neighbourhoods, but 

exposure to radiation plays an important role. Like will be shown below the dense building style 

does not automatically provide protection against the sun. 

Differences in the radiation environment along the transect also explain that for WBGT and 

UTCI the range of x’ (see Equation (4)) is larger during daytime than during night-time for Delhi 

and Dhaka. However, for Faisalabad the daytime differences are smaller. Here, differences in 

WBGT and UTCI are mainly caused by temperature because the radiation conditions along 

the transect are relatively uniform. This city mainly consists of low-rise buildings (LCZ classes 

3 and 6, see Fig. 2 and Table 1). 

This is further illustrated in Fig. 9, which depicts the seasonal averages of the daytime spatial 

anomalies of UTCI versus incoming solar radiation in the neighbourhoods. The average 

radiation intensities span a much larger range in Delhi and Dhaka (343 and 384Wm-2, 

respectively) than in Faisalabad (167Wm-2). Thus, daytime UTCI anomaly ranges are also 

larger in Delhi and Dhaka (3.47 and 3.23K, respectively) than in Faisalabad (1.77K). Three 

anomalies for neighbourhoods classified as “Rural” (recognizable as open symbols in the 

graph) clearly stand out and may show that green areas can bring some relief of heat, even if 

radiation levels are high. In Delhi and Dhaka, the patterns of measured average radiation 

intensity in built neighbourhoods explains just over 90% of the UTCI anomalies. Similar 

relationships are found for WBGT (not shown here), with radiation intensity explaining about 
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 81% and 91% of the mean WBGT anomalies in Delhi and Dhaka, respectively. In Delhi and 

Dhaka, high radiation intensities have been measured in the low-income neighbourhoods, 

despite the high building density (bold symbols in the figure). The results in Faisalabad show 

that during daytime the low-income neighbourhoods may be among the cooler ones in terms 

of UTCI. Shading as well as relatively green surroundings like in Faisalabad may reduce heat 

in any neighbourhood. As such, the results underline the importance of opportunities to access 

shaded areas that provide relief from heat during hot periods as well as important influences 

of the surroundings of such neighbourhoods.  

 Figure 9 

Humidity may play a significant role too, which is best illustrated by means of HI. According to 

that index, the greener open areas may also be perceived as slightly warmer during daytime 

(Figs. 5-7). For example, “High 6” and “Middle 5” in Delhi are more open and greener 

neighbourhoods, which are cooler on average in terms of daytime T, but show a higher HI. 

Since this index only responds to air temperature and humidity the higher value of HI must be 

due to a higher average humidity. 

Intra-urban spatial differences and differences between low- and high-income neighbourhoods 

were further investigated for night-time conditions. Fig. 10 shows the maximum air temperature 

differences along the transects observed during the individual traverses and during the season. 

Hardly any seasonal trend was found in the maximum intra-urban temperature difference. This 

was also true for the heat indices (not shown here). A weak tendency was found for Delhi and 

for Faisalabad. Here maximum air temperature differences tended to decrease after the onset 

of the monsoon, whereas such tendencies were virtually absent in Dhaka. 

In Fig. 10, the mean temperature differences between the low- and high-income 

neighbourhoods are indicated with pluses if the low-income ones are warmer and with minuses 

if they are cooler. The low-income neighbourhood in Delhi is always warmer during the night 

and the differences nearly always represent the maximum intra-urban difference. However, in 

Dhaka and Faisalabad the low-income neighbourhoods are always (Dhaka) or usually 
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(Faisalabad) cooler, but the differences hardly ever represent the maximum intra-urban 

difference. This is consistent with the observation that both the low-income neighbourhood and 

the high-income neighbourhood may be systematically warmer or cooler than the average (see 

Figs. 5-7).  

Figure 10 

 

Discussion and conclusions 

In this paper we assess temporal and spatial patterns of exposure to heat in three major cities 

in South Asia: Delhi (India), Dhaka (Bangladesh) and Faisalabad (Pakistan). Our results show 

extremely high temperatures and heat index values over prolonged periods of time in these 

cities. Maximum daytime values of HI, WBGT and UTCI indicate potentially dangerously hot 

conditions on many days in the boreal summer season, ranging from nearly 50% of the days 

according to HI in Delhi, and up to 100% of the days according to WBGT in Dhaka in the period 

investigated here (Table 2). This supports the hypothesis that people in low-income countries 

may be living in so-called climatic hot spots (De Souza et al., 2015) with enhanced exposure 

to climate threats including heat. Yet, the observations presented in this paper nuance the idea 

that people living in informal neighbourhoods are consistently more exposed to heat than 

people in richer neighbourhoods. 

During night-time, compact neighbourhoods tend to remain warmer than more open 

neighbourhoods (Fig. 8), in accordance with UHI theory. Of the neighbourhoods included in 

the present study, a majority (8 out of 11) of the low- to low- and middle-income 

neighbourhoods belong to such compact classes, LCZ 1-3 and LCZ 7 (see Table 1 and Figs. 

5-7). However, some of the richer neighbourhoods also belong to compact classes, whereas 

some of the lower-income neighbourhoods are built in a less compact style. 

The results are consistent with the idea laid down in the LCZ concept that densely built 

neighbourhoods are expected to cool down more slowly than open, sparsely built 

neighbourhoods (Stewart and Oke, 2012). Yet, the interpretation is not straightforward. Actual 
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day-to-day patterns may depend on the weather (He, 2018), the season and the actual building 

height and width of streets. Whereas the lower sky view of the dense neighbourhoods hampers 

nocturnal radiative cooling, abundance of shading during daytime may lead to less storage of 

heat, depending on the aforementioned characteristics (Theeuwes et al., 2014) and other 

neighbourhood characteristics like the amount of green and the presence of water bodies 

(Gunawardena et al., 2017).  

An important consideration is the fact that people spend a significant fraction of their time 

indoors, especially during night-time. Enhanced exposure during night-time to indoor 

conditions is particularly relevant, because of possible health effects due to reduced quality of 

sleep (Obradovich et al., 2017). In the present context it is therefore interesting to explore the 

possible impact of differences in outdoor thermal conditions on indoor temperatures (Franck 

et al., 2013; Liao et al., 2015; Nguyen et al., 2014). In particular for naturally ventilated houses 

without air conditioning and with uninsulated tin roofs, tin walls, or both, present in the informal 

neighbourhoods in Delhi and Dhaka, a reasonably strong relationship between indoor and 

outdoor temperature may be expected. For such houses, neighbourhood differences in the 

outdoor temperature will result in indoor temperature differences as well. This could imply that 

indoor temperatures are higher in informal neighbourhoods in cases where their outdoor 

environment is warmer. This would be interesting to study further. 

During the night, average outdoor heat patterns revealed by the more complicated UTCI and 

WBGT are reasonably consistent with the ones from air temperature and HI, obviously 

because solar radiation and shading play no direct role during night-time. This indicates that 

night-time patterns of heat can be described by relatively simple indices. During daytime, 

however, solar radiation and wind patterns are crucial. Larger fractions of the densely built 

neighbourhoods may provide shading at street level, thereby locally improving human thermal 

comfort in comparison with more open neighbourhoods (Emmanuel et al., 2007). This 

important role of solar radiation is described best by means of indicators like UTCI and WBGT. 

Their spatial patterns are quite different from the ones of T and HI. The data also show that in 
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low-income neighbourhoods, protection against heat by shading is not guaranteed. Actual 

exposure to sun will depend on factors such as orientation of streets in combination with solar 

angle, placement of objects providing shade, amongst other things (Oke et al., 2017). 

Obviously shaded spots can also be found in more open neighbourhoods, independent of 

socio-economic status. In addition to such local shading effect, if dense neighbourhoods are 

embedded in, or surrounded by, green/blue open areas they may offer a bit of cooling rather 

than being just hot spots, such as, for example, in Dhaka for “Low 7” or in Faisalabad for “Low 

2”. 

Our analyses underline that it is important to consider heat indices that account for radiation 

when considering heat exposure of humans, especially during daytime when solar radiation is 

crucial. Seasonal trends differ among the various indicators (Fig. 4.). This is an important 

consideration when designing heat-health action plans. Whereas it has since long been known 

that for assessment of the thermal influence of the environment of heat all parameters relevant 

for the human energy balance should be accounted for (Höppe, 1999), such plans are often 

still based only on forecasts of temperature (WHO, 2008; Knowlton et al., 2014). In particular 

when calibrated on mortality statistics, the skill of simple indices to forecast dangerous days 

with an increased number of fatalities has been found to be quite reasonable (Hajat et al., 

2010b). However, such forecasts are typically based on extra-urban conditions.  It is important 

to recognize that urban growth will continue (WHO, 2014) and an increasing number of people 

will be exposed to heat in urban environments. Recent urban climate research has shown that 

detailed forecasts of heat in cities are within reach (Ronda et al., 2017) and even reliable 

forecasts of advanced thermal comfort indices like UTCI and WBGT within urban environments 

can be made (Leroyer et al., 2018). The results from the present study support the idea of 

developing heat action plans based on such forecasts, especially in urban environments.  It is 

recommended to further explore possibilities of using radiation-driven indices within urban 

environments as triggers for heat action plans. Results shown in Fig. 4 show that it is likely that 

this would also improve heat-event forecasts outside typical heatwave periods.  
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Our findings provide context to policy challenges of adapting to current climate extreme and 

future climate change. The observed intra-urban temperature differences, though relatively 

modest, suggest that climate smart city design can help alleviating the burden of a rise in 

temperature due to climate change. To put this into perspective: limiting global temperature 

rise to 1.5K, instead of 2K - a difference of just 0.5K -, could decrease extreme heat-related 

mortality by 15-22% per summer in European cities (Mitchel et al. 2018). Neighbourhoods, and 

not only the rich ones, should be designed such that they provide shading during the day, but 

also be intersected or embedded in open green spaces to provide cooling during the night. 

Cities in South Asia and other developing countries face numerous other pressing 

development challenges, from improving transport and improving air quality to improving 

housing. Yet, this development provides a window of opportunity; much of South Asia’s 

infrastructure of the future still needs to be built. There is a choice to build it climate smart.  

 

Acknowledgements 

This work was carried out by the Himalayan Adaptation, Water and Resilience (HI-AWARE) 

consortium under the Collaborative Adaptation Research Initiative in Africa and Asia (CARIAA) 

with financial support from the UK Government’s Department for International Development 

and the International Development Research Centre, Ottawa, Canada. We are indebted to Jan 

Elbers, our technical assistant and colleague before he decided to put his many talents in the 

service of Doctors without Borders. Jan designed the mobile devices, set-up the AWS, and did 

a first screening and processing of the measurements.  We would like to thank Richa Sharma 

of the National Institute of Urban Affairs in New Delhi for providing us with an initial LCZ map 

of Delhi based on the UrbClim project work, which helped us designing an improved LCZ 

classification for our neighbourhoods and Delhi as a whole. Mr. Sushanto Gupta of BCAS 

helped with creating the LCZ map of Dhaka. Muhammad Adrees, Kousik Ahmed, Sana Ehsan, 

Simson Halder, Fatima Noor, Prasoon Singh, Kaagita Venkatramana and Daniël Zweeckhorst 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

26 

helped with conducting the measurements. We thank the two anonymous reviewers for their 

valuable comments that helped to improve the manuscript. 

 

Disclaimer  

The views expressed in this work are those of the creators and do not necessarily represent 

those of the UK Government’s Department for International Development, the International 

Development Research Centre, Canada, or its Board of Governors. 

 

References 

Abbas F, Analysis of a historical (1981-2010) temperature record of the Punjab province of Pakistan. Earth 

Interactions 2013; 17-015, doi: 10.1175/2013EI000528.1. 

Armson D, Stringer P, Ennos AR. The effect of tree shade and grass on surface and globe temperatures in an urban 

area. Urban Forestry & Urban Greening 2012; 11: 245-255. 

Azhar GS, Mavalankar D, Nori-Sarma A, Rajiva A, Dutta P, Jaiswal A, et al. Heat-related mortality in India: Excess 

all-cause mortality associated with the 2010 Ahmedabad heat wave. PLoS ONE 2014; 9: e91831 

doi:10.1371/journal.pone.0091831. 

Bangladesh Bureau of Statistics, Bangladesh Population and Housing Census 2011, Urban Area Report, Statistics 

and Informatics Division, Ministry of Planning, Government of Bangladesh. Volume 3. Government of the 

people’s republic of Bangladesh, 2014, www.bbs.gov.bd. 

Bathiany S, Dakos V, Scheffer M, Lenton TM. Climate models predict increasing temperature variability in poor 

countries. Science Advances 2018; 4. 

Bechtel B, Alexander P, Böhner J, Ching J, Conrad O, Feddema J, et al. Mapping Local Climate Zones for a 

Worldwide Database of the Form and Function of Cities. ISPRS International Journal of Geo-Information 

2015; 4: 199. 

Blazejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B. Comparison of UTCI to selected thermal indices. 

International Journal of Biometeorology 2012; 56: 515-35. 

Brode P, Fiala D, Blazejczyk K, Holmer I, Jendritzky G, Kampmann B, et al. Deriving the operational procedure for 

the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology 2012; 56: 481-94. 

Budd GM. Wet-bulb globe temperature (WBGT) - its history and its limitations. Journal of Science and Medicine in 

Sport 2015; 11: 20-32. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

27 

Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, et al. Long-term climate change: 

projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, 

Boschung J, et al., editors. Climate Change 2013: The Physical Science Basis. Contribution of Working 

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge 

University Press Cambridge, United Kingdom and New York, NY, USA., 2013. 

de Freitas CR, Grigorieva EA. A comparison and appraisal of a comprehensive range of human thermal climate 

indices. International Journal of Biometeorology 2017; 61: 487-512. 

De Souza K, Kituyi E, Harvey B, Leone M, Murali KS, Ford JD. Vulnerability to climate change in three hot spots in 

Africa and Asia: key issues for policy-relevant adaptation and resilience-building research. Regional 

Environmental Change 2015; 15: 747-753. 

Emmanuel R, Rosenlund H, Johansson. Urban shading—a design option for the tropics? A study in Colombo, Sri 

Lanka. International Journal of Climatology 2007; 27: 1995-2004. 

Fiala D, Havenith G, Brode P, Kampmann B, Jendritzky G. UTCI-Fiala multi-node model of human heat transfer 

and temperature regulation. International Journal of Biometeorology 2012; 56: 429-41. 

Field, AP, Miles J, Field Z. Discovering statistics using R. http://dspace.fue.edu.eg/xmlui/handle/123456789/2902 

2012. 

Franck U, Krüger M, Schwarz N, Grossmann K, Röder S, Schlink U. Heat stress in urban areas: Indoor and outdoor 

temperatures in different urban structure types and subjectively reported well-being during a heat wave in 

the city of Leipzig. Meteorologische Zeitschrift 2013; 22: 167-177. 

Giridharan, R., Emmanuel, R. The impact of urban compactness, comfort strategies and energy consumption on 

tropical urban heat island intensity: A review. Sustainable Cities and Society, 2018, 40, 677-687. 

Gunawardena KR, Wells MJ, Kershaw T. Utilising green and bluespace to mitigate urban heat island intensity. 

Science of The Total Environment 2017; 584–585: 1040-1055. 

Hajat S, O'Connor M, Kosatsky T. Health effects of hot weather: from awareness of risk factors to effective health 

protection. The Lancet 2010a; 375: 856-863. 

Hajat S, Sheridan SC, Allen MJ, Pascal M, Laaidi K, Yagouti A, et al. Heat–Health Warning Systems: A Comparison 

of the Predictive Capacity of Different Approaches to Identifying Dangerously Hot Days. American Journal 

of Public Health 2010b; 100: 1137-1144. 

Havenith G, Fiala D, Blazejczyk K, Richards M, Brode P, Holmer I, et al. The UTCI-clothing model. International 

Journal of Biometeorology 2012; 56: 461-70. 

He B-J. Potentials of meteorological characteristics and synoptic conditions to mitigate urban heat island effects. 

Urban Climate 2018; 24: 26-33. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

28 

Heusinkveld BG, Steeneveld GJ, van Hove LWA, Jacobs CMJ, Holtslag AAM. Spatial variability of the Rotterdam 

urban heat island as influenced by urban land use. Journal of Geophysical Research-Atmospheres 2014; 

119: 677-692. 

Hondula DM, Balling RC, Andrade R, Scott Krayenhoff E, Middel A, Urban A, et al. Biometeorology for cities. 

International Journal of Biometeorology 2017; 61: 59-69. 

Höppe P. The physiological equivalent temperature–a universal index for the biometeorological assessment of the 

thermal environment. International Journal of Biometeorology 1999; 43: 71-75. 

India Census. Delhi Population 2011-2018 Census. 2015. https://www.census2011.co.in/census/state/delhi.html. 

Jendritzky G, de Dear R, Havenith G. UTCI-Why another thermal index? International Journal of Biometeorology 

2012; 56: 421-8. 

Klemm W, Heusinkveld BG, Lenzholzer S, van Hove B. Street greenery and its physical and psychological impact 

on thermal comfort. Landscape and Urban Planning 2015; 138: 87-98. 

Knowlton K, Kulkarni S, Azhar G, Mavalankar D, Jaiswal A, Connolly M, et al. Development and Implementation of 

South Asia’s First Heat-Health Action Plan in Ahmedabad (Gujarat, India). International Journal of 

Environmental Research and Public Health 2014; 11: 3473. 

Kotharkar R, Ramesh A, Bagade A. Urban Heat Island studies in South Asia: A critical review. Urban Climate 2018; 

24: 1011-1026. 

Leichenko R, Silva JA. Climate change and poverty: vulnerability, impacts, and alleviation strategies. Wiley 

Interdisciplinary Reviews: Climate Change 2014; 5: 539-556. 

Leroyer S, Bélair S, Spacek L, Gultepe I. Modelling of radiation-based thermal stress indicators for urban numerical 

weather prediction. Urban Climate 2018; 25: 64-81. 

Liao F-C, Cheng M-J, Hwang R-L. Influence of urban microclimate on air-conditioning energy needs and indoor 

thermal comfort in houses. Advances in Meteorology 2015; 2015. 

Liljegren JC, Carhart RA, Lawday P, Tschopp S, Sharp R. Modeling the Wet Bulb Globe Temperature Using 

Standard Meteorological Measurements. Journal of Occupational and Environmental Hygiene 2008; 5: 

645-655. 

Minallah M, Ghaffar A, Shirazi SA. Remote sensing and GIS applications for monitoring and assessment of the 

urban sprawl in Faisalabad-Pakistan. Pakistan Journal of Science 2015; 64: 203-208. 

Mohan M, Kikegawa Y, Gurjar BR, Bhati S, Kandya A, Ogawa K. Urban Heat Island Assessment for a Tropical 

Urban Airshed in India. Atmospheric and Climate Sciences 2012; Vol.02No.02: 12. 

Mohan M, Kikegawa Y, Gurjar BR, Bhati S, Kolli NR. Assessment of urban heat island effect for different land use-

land cover from micrometeorological measurements and remote sensing data for megacity Delhi. 

Theoretical and Applied Climatology 2013; 112: 647-658. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

29 

Mora C, Dousset B, Caldwell IR, Powell FE, Geronimo RC, Bielecki Coral R, et al. Global risk of deadly heat. Nature 

Climate Change 2017; 7: 501-506. 

Nguyen JL, Schwartz J, Dockery DW. The relationship between indoor and outdoor temperature, apparent 

temperature, relative humidity, and absolute humidity. Indoor Air 2014; 24: 103-112. 

Nikolopoulou M, Steemers K. Thermal comfort and psychological adaptation as a guide for designing urban spaces. 

Energy and Buildings 2003; 35: 95-101. 

Obradovich N, Migliorini R, Mednick SC, Fowler JH. Nighttime temperature and human sleep loss in a changing 

climate. Science Advances 2017; 3: e1601555. 

Oke TR. The Energetic Basis of the Urban Heat-Island. Q. J. Roy. Meteor. Soc. 1982; 108: 1-24. 

Oke TR, Mills G, Christen A, Voogt JA. Urban Climates. Urban Climates. Cambridge University Press, Cambridge, 

2017, 525 pp.. 

Ooi GL, Phua KH. Urbanization and Slum Formation. Journal of Urban Health 2007; 84: 27-34. 

Pakistan Bureau of Statistics, 2018: http://www.pbscensus.gov.pk/ accessed 18-4-2018. 

R Core Team, 2013. R: A language and environment for statistical computing. R foundation for Statistical 

Computing, Vienna, Austria URL. http://www.R-project.org/. 

Revi A, Satterthwaite DE, Aragón-Durand F, Corfee-Morlot J, Kiunsi RB, Pelling M, et al. Urban areas. In: Field CB, 

Barros VR, Dokken DJ, Mach KJ, M.D. Mastrandrea, Bilir TE, et al., editors. Climate Change 2014: 

Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working 

Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014, pp. 

535-612. 

Ronda RJ, Steeneveld GJ, Heusinkveld BG, Attema JJ, Holtslag AAM. Urban Finescale Forecasting Reveals 

Weather Conditions with Unprecedented Detail. Bulletin of the American Meteorological Society 2017; 98: 

2675-2688. 

Santamouris M. Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities 

and regions. Science of The Total Environment 2015; 512: 582-598. 

Sati AP, Mohan M. The impact of urbanization during half a century on surface meteorology based on WRF model 

simulations over National Capital Region, India. Theoretical and Applied Climatology 2017: 1-15. 

Shastri H, Barik B, Ghosh S, Venkataraman C, Sadavarte P. Flip flop of Day-night and Summer-Winter Surface 

Urban Heat Island Intensity in India. Scientific Reports 2017; 7: 8. 

Singh T, Siderius C, Van der Velde Y. When do Indians feel hot? Internet searches indicate seasonality suppresses 

adaptation to heat. Environmental Research Letters 2018; 13: 054009. 

Sherwood SC, Huber M. An adaptability limit to climate change due to heat stress. Proceedings of the National 

Academy of Sciences 2010; 107: 9552-9555. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

30 

Smith, S.R and M.A. Bourassa (1996). http://coaps.fsu.edu/woce/truewind/f-codes/truewind.f  accessed 15-

3-2019. 

Steadman RG. The assessment of sultriness. Part I: A temperature-humidity index based on human physiology 

and clothing science. Journal of Applied Meteorology 1979a; 18: 861-873. 

Steadman RG. The assessment of sultriness. Part II: effects of wind, extra radiation and barometric pressure on 

apparent temperature. Journal of Applied Meteorology 1979b; 18: 874-885. 

Stewart ID, Oke TR. Local Climate Zones for Urban Temperature Studies. Bulletin of the American Meteorological 

Society 2012; 93: 1879-1900. 

Sverdlik A. Ill-health and poverty: a literature review on health in informal settlements. Environment and 

Urbanization 2011; 23: 123-155. 

Theeuwes NE, Steeneveld G-J, Ronda RJ, Holtslag AAM. A diagnostic equation for the daily maximum urban heat 

island effect for cities in northwestern Europe. International Journal of Climatology 2017; 37: 443-454. 

Theeuwes NE, Steeneveld GJ, Ronda RJ, Heusinkveld BG, van Hove LWA, Holtslag AAM. Seasonal dependence 

of the urban heat island on the street canyon aspect ratio. Quarterly Journal of the Royal Meteorological 

Society 2014; 140: 2197-2210. 

Thorsson S, Lindberg F, Eliasson I, Holmer B. Different methods for estimating the mean radiant temperature in an 

outdoor urban setting. International Journal of Climatology 2007; 27: 1983-1993. 

Tzavali A, Paravantis JP, Mihalakakou G, Fotiadi A, Stigka E. Urban Heat Island Intensity: A Literature Review. 

Fresenius Environmental Bulletin 2015; 24: 4535-4554. 

Van Hove LWA, Jacobs CMJ, Heusinkveld BG, Elbers JA, van Driel BL, Holtslag AAM. Temporal and spatial 

variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Building and 

Environment 2015; 83: 91-103. 

Weatherbase, 2018a. Delhi, India. http://www.weatherbase.com/weather/weather.php3?s=28124 accessed 15-11-

2018. 

Weatherbase, 2018b. Dhaka, Bangladesh. http://www.weatherbase.com/weather/weather.php3?s=32914 

accessed 15-11-2018. 

Weatherbase, 2018c. Faisalabad, Pakistan. http://www.weatherbase.com/weather/weather.php3?s=592583 

accessed 15-11-2018. 

Yadav N, Sharma, C. Spatial variations of intra-city urban heat island in megacity Delhi. Sustainable Cities and 

Society 2018; 37: 298-306. 

  

ACCEPTED MANUSCRIPT

http://www.weatherbase.com/weather/weather.php3?s=592583


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

31 

Figure Captions: 

 

Figure 1. 

Exploded view diagram of the device for traverse measurements: a) fan for ventilation; b) data logger 

with flash drive and battery; c) GPS device; d) solar radiation sensor; e) solar panel in support of 

energy supply; f) 2D sonic anemometer; g) fast response thermocouple; h) temperature and humidity 

probe. 

 

Figure 2. 

Upper panel: Google Earth® maps showing the transects (white lines) and sections through selected 

neighbourhoods (in blue) for averaging the transect data for Delhi (left), Dhaka (middle) and 

Faisalabad (right). Middle panels: LCZ classification (Stewart and Oke, 2012) of the cities and the 

region. Lower panels: LCZ classification within the black squares shown in the middle panel with 

transects (white lines) and neighbourhood definition (black polygons). The blue triangles and squares 

in the upper panels indicate the locations of the AWS and WMO stations, respectively. The numbers 

correspond to the transects in Table 1. 

 

Figure 3. 

Weather conditions in Delhi (upper), Dhaka (middle) and Faisalabad (lower) in the summer of 2016. 

The left panels show maximum temperature (pluses), minimum temperature (dashes) and maximum 

dew point temperature (triangles). Also shown are the average temperatures of the transects during 

daytime (light yellow circles) and in the early evening (dark blue circles). The right panels show daily 

sums of precipitation (columns, left axis) and incoming solar radiation (stars, right axis). 
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Figure 4. 

Seasonal course of daily maximum air temperature, HI, WGBT and UTCI for Delhi (upper), Dhaka 

(middle) and Faisalabad (lower). 

 

Figure 5. 

Average anomaly of (from top to bottom) T, HI, WBGT and UTCI for the neighbourhoods studied in 

Delhi. Data are ordered from the left to the right according to increasing sky view factor of the main 

LCZ, using the middle values for the LCZ. See Table 1 for neighbourhood characteristics, LCZ and sky 

view values. Low-income neighbourhoods have been highlighted (bars with thick black border). Left: 

daytime; right: night-time. The error bars indicate the 95% confidence interval.  

 

Figure 6. 

As in Figure 5, but for Dhaka. 

 

Figure 7. 

As in Figure 5, but for Faisalabad. 

 

Figure 8. 

Observed average night-time air temperature anomaly versus sky view factor from LCZ classification 

(middle value per class, see Table 1), for Delhi (circles), Dhaka (diamonds) and Faisalabad (squares). 

Bold symbols denote low-income neighbourhoods. The regression line is described by y= 1.45 -2.43x 

(r2=0.38). 
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Figure 9. 

Average UTCI anomaly versus average incoming solar radiation for Delhi (circles), Dhaka (diamonds) 

and Faisalabad (squares). Bold data points indicate low-income neighbourhoods, open data points 

“Rural” areas. The regression line for Delhi (dots) is described by y=0.0091x - 3.7 (r2=0.90) and the 

one for Dhaka (dashes), excluding the rural observation, by y=0.0080x - 3.0 (r2=0.91). 

 

Figure 10. 

Observed maximum intra-urban night-time temperature differences along the transects in Delhi (upper, 

diamonds), Dhaka (middle, circles) and Faisalabad (lower, squares) and comparison with the 

temperature differences between low-income and high-income neighbourhoods (Low-2 – High-6 in 

Delhi; Low-7 – High-2 in Dhaka; Low-3 – High-6 and Low-D – High-6 in Faisalabad, respectively; see 

Table 1). Plus: low-income neighbourhood is warmer; minus: low-income neighbourhood is cooler. X: 

one negative and one positive difference of nearly equal absolute value. 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

34 

Table 1. Naming and classification of neighbourhoods sampled by the transect parts indicated in Fig. 2. Coding 

combines socio-economic classification with dominant LCZ classification (see Fig. 1). For Delhi, this leads to two cases 

in which the coding would be the same (Low/Middle-2). Hence, we added “a” and “b” to distinguish between these 

neighbourhoods. “Fraction” is the percentage of neighbourhood grid points (100x100m) in the dominant LCZ. For each 

LCZ the typical sky view range is given (Stewart and Oke, 2012).   

City Transect 

# 

Socio-economic Neighbourhood 

code 

 Dominant 

LCZ 

Fraction 

(%) 

Sky 

view 

Delhi 1 High.Income High-6 HI-6 6 88 0.6-0.9 

 2 Middle.Income Middle-5 MI-5 5 74 0.5-0.8 

 3 Low/Middle.Income Low/Middle-5 LMI-5 5 52 0.5-0.8 

 4 Green/Road Green/Road-4 GR-4 4,D 32 0.5-0.7 

 5 Low.Income Low-2 LO-2 2 47 0.3-0.6 

 6 Middle.Income Middle-1 MI-1 1 37 0.2-0.4 

 7 Low/Middle.Income Low/Middle-2a LMI-2 2 87 0.3-0.6 

 8 Green Green-D GR-D D 50 0.9-1.0 

 9 Middle.Income Middle-2 MI-2 2 88 0.3-0.6 

 10 Low/Middle.Income Low/Middle-2b LMI-

2b 

2 92 0.3-0.6 

Dhaka 1 Rural Rural-8 RU-8 8 45 0.7-1.0 

 2 Low/Middle.Income Low/Middle-7 LMI-7 7 50 0.2-0.5 

 3 High.Income High-4 HI-4 4 63 0.5-0.7 

 4 High.Income High-2 HI-2 2 84 0.3-0.6 

 5 Low/Middle.Income Low/Middle-6 LMI-6 6 63 0.6-0.9 

 6 Low.Income Low-7 LO-7 7 37 0.2-0.5 

 7 Middle.Income Middle-2 MI-2 2 42 0.3-0.6 

 8 Middle.Income Middle-5 MI-5 5 72 0.5-0.8 

 9 Middle.Income Middle-10 MI-10 10 92 0.6-0.9 

 10 Low/Middle.Income Low/Middle-2 LMI-2 2 52 0.3-0.6 

Faisalabad 1 Rural Rural-D RU-D D 32 0.9-1.0 

 2 Low.Income Low-D LO-D D 48 0.9-1.0 

 3 Industry Industry-10 IN-10 10 69 0.6-0.9 

 4 Middle.Income Middle-3 MI-3 3 60 0.2-0.6 

 5 High/Middle.Income High/Middle-6 HMI-

6 

6 60 0.6-0.9 

 6 Green Green-6 GR-6 6 33 0.6-0.9 
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 7 Low/Middle.Income Low/Middle-2 LMI-2 2 91 0.3-0.6 

 8 High.Income High-6 HI-6 6 44 0.6-0.9 

 9 Middle.Income Middle-5 MI-5 5 65 0.5-0.8 

 10 Low.Income Low-3 LO-3 3 88 0.2-0.6 

 11 Rural Rural-D RU-D D 46 0.9-1.0 
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Table 2. Heat stress classification based on daily maxima of thermal indices from 

observations with AWS. Threshold values are taken from Blazejczyk et al. (2012) for 

HI and WBGT, and from www.utci.org for UTCI. 

 

  

  From days with reliable maxima 

Index and threshold Classification/City Delhi Dhaka Faisalabad 

Total number - 190 115 186 

     

HI>54°C Sweltering (extreme danger) 0 0 2 

HI = 41 to 54°C Very hot (danger) 92 89 125 

     

WBGT>30°C Sweltering (extreme danger) 166 110 175 

WBGT = 28 to 30°C Very hot (danger) 18 5 8 

     

UTCI>46°C Extreme heat stress 11 7 18 

UTCI = 38 to 46°C Strong heat stress 139 87 146 
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Table 3. UHI intensities [K] during periods of transect measurements. Reference 

temperature used here was obtained from weather stations run by national 

meteorological services (“WMO stations”). “Mean UHI” refers to temperature 

differences averaged over the analysed parts of all transects (see Section 2.4). “Max 

UHI” refers to temperature differences between the WMO station and the warmest 

part of a transect. Average, max and min denote the seasonal averages, maxima, 

and minima, respectively. ‘n’ denotes the number of measurement days included. 

  

Quantity Delhi Dhaka Faisalabad 

 Day Night Day Night Day Night 

 (n=17) (n=13) (n=17) (n=18) (n=11) (n=13) 

Average mean UHI 1.0 3.4 0.6 0.7 0.0 1.4 

Max mean UHI 3.2 5.7 1.7 2.8 1.1 3.2 

Min mean UHI -1.3 1.5 -0.2 -0.3 -0.6 -0.3 

       

Average max UHI 2.5 4.9 1.6 1.5 0.8 3.0 

Max max UHI 5.0 8.0 3.2 3.5 2.2 5.9 

Min max UHI 0.1 2.8 0.3 0.1 -0.2 0.9 
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Highlights 

 exposure to heat is examined in Delhi, Dhaka, and Faisalabad 

 extremely hot conditions were found to persist for prolonged periods of time 

 spatial patterns of exposure are distinctly different between day and night 

 informal neighbourhoods are diverse, but tend to remain warmer during the night 

 heat action plans should be based on thermal indices 
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