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Abstract
In a well-known paper, Timothy Williamson (Analysis 67:173–180, 2007) claimed 
to prove with a coin-flipping example that infinitesimal-valued probabilities can-
not save the principle of Regularity, because on pain of inconsistency the event ‘all 
tosses land heads’ must be assigned probability 0, whether the probability function 
is hyperreal-valued or not. A premise of Williamson’s argument is that two infini-
tary events in that example must be assigned the same probability because they are 
isomorphic. It was argued by Howson (Eur J Philos Sci 7:97–100, 2017) that the 
claim of isomorphism fails, but a more radical objection to Williamson’s argument 
is that it had been, in effect, refuted long before it was published.

1  Introduction

Since its emergence in Abraham Robinson’s epoch-making work halfway through 
the twentieth century, nonstandard analysis has enriched many branches of math-
ematics and science: measure theory (including probability theory), analysis, phys-
ics and economics among them.1 It is also a remarkable tribute to the power and 
conceptual fertility of modern mathematical logic: Robinson used the Compactness 
Theorem of first-order logic to prove the existence a suitable enlargement of the 
universe of sets to a so-called superstructure based on the hyperreal numbers (i.e. 
the members of a suitable elementary extension of the real number field contain-
ing infinitesimal and reciprocally infinite numbers), while Łos’s Theorem proves the 
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Transfer Principle2 for extensions using an ultrapower on a non-principal ultrafilter 
on N. Concerns about the apparent lack of a single canonical extension have been 
allayed by Kanovei and Shelah’s proof that a suitable non-standard model of the 
hyperreals is explicitly definable in ZFC (2004), a result extended by Herzberg to 
the definability of a nonstandard superstructure enlargement (2008), while Herzberg 
et al. have also shown that for Kanovei and Shelah’s proof only Countable Choice 
for sets of real numbers need be assumed. Moreover, assuming the existence of an 
inaccessible cardinal (an assumption arguably underwriting the existence of a stand-
ard model of set theory) there is a superstructure enlargement of cardinality κ, where 
κ is the least inaccessible cardinal, which is κ-saturated, satisfies the Transfer Princi-
ple and is unique up to isomorphism (Keisler 2007, 197).3 This is all model theory, 
but Edward Nelson (1977) showed that adding a new unary predicate st (interpreted 
as ‘standard’) and three new axioms added to those of Zermelo–Fraenkel set theory 
plus the Axiom of Choice (usually abbreviated to ZFC) gives a conservative exten-
sion of the latter.

Besides its fruitfulness in applied mathematics research, nonstandard models 
have also been enlisted in the search for solutions to problems of a more philosophi-
cal nature. One of these concerns the doctrine of Regularity, the view that only nec-
essary truths and falsehoods merit the probabilities 1 and 0 respectively, at any rate 
where the probability in question is regarded as a measure of chance.4 Yet standard 
probability functions are forced to assign 0 to some contingent events: for example, 
to all but a countable number of cells of an uncountable partition, and, if the distri-
bution is uniform, to all the cells in a countably infinite partition. If probability func-
tions are allowed to take values in the nonstandard unit interval, however, Regularity 
seems achievable by the strategy of assigning such events infinitesimal probabilities. 
Indeed, in an early paper (1996), Bernstein and Wattenberg showed that there is a 
finitely additive probability measure that assigns equal infinitesimal values to the 
points of the standard unit interval and differs by an infinitesimal from Lebesgue 
measure on the Lebesgue-measurable sets,5 and more recently Wenmackers and 
Horsten (2013) have shown that it is possible to define a uniform infinitesimal prob-
ability distribution over the partition of N into singletons, which sums hyperfinitely 
to 1.

Nevertheless, Timothy Williamson has claimed to show that appealing to hyper-
real probabilities cannot save Regularity (2007), arguing that some events must be 
assigned probability 0 on pain of contradiction even if the probability function takes 
values in the nonstandard unit interval. In what follows I will present Williamson’s 
argument and show that it fails, and what is more that its failure is implicit not only 

3  A nonstandard extension is κ-saturated if every family of fewer than κ internal sets with the finite inter-
section property has a nonempty intersection.
4  Thus David Lewis: ‘Zero chance is no chance, and nothing with zero chance ever happens’ (1976, 
176). Probability functions with this property are also called strictly positive.
5  The actual infinitesimal is however rather arbitrary: it depends on the choice of a hyperfinite subset of 
the nonstandard unit interval which the authors call a ‘sample’.

2  For the meaning of this and other key terms of nonstandard analysis, like internal vs. external, Transfer 
Principle, hyperfinite etc., which will crop up in this paper see Albeverio et al. (2009, Chapter 1).
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in Bernstein and Wattenberg’s results but also in more recent work that still however 
long antedates Williamson’s paper.

2 � Williamson’s Argument

Williamson sets the stage thus:

A fair coin will be tossed infinitely many times at one second intervals. The 
tosses are independent. … Let H(1) be the event that the first toss comes up 
heads and H(2…) the event that every toss after the first comes up heads 
(2007, 4).

Then, according to Williamson,

H(1…) and H(2…) are isomorphic events. More precisely, we can map the 
constituent single-toss events of H(1…) one–one onto the constituent single-
toss events of H(2…) in a natural way that preserves the physical structure of 
the set-up just by mapping each toss to its successor. H(1…) and H(2…) are 
events of exactly the same qualitative type; they differ only in the inconsequen-
tial respect that H(2…) starts one second after H(1…). That H(2…) is pre-
ceded by another toss is irrelevant, given the independence of the tosses. Thus 
H(1…) and H(2…) should have the same probability. (2007, 5)

The argument now proceeds thus: by the probability calculus,  
P(H(1…)) = P(H(2…)|H(1))P(H(1)), where H(1) is the event ‘the first 
toss lands heads’. So by independence P(H(1…)) = P(H(2…))P(H(1)), i.e. 
P(H(1…)) = P(H(2…))/2. But P(H(1…)) = P(H(2…)) by the isomorphism assump-
tion, whence 2P(H(1…)) = P(H(1…)). Hence P(H(1 …)) = 0, contradicting 
Regularity.

One problem with this argument is that it had, in effect, already been refuted. To 
see why we need a little more detail. Formally we can represent the outcome-space 
of Williamson’s coin-tossing ‘experiment’ by the uncountable set X = {0,1}N (usu-
ally written 2 N), N = {1, 2, 3, …},6 of all infinite sequences of 1 s and 0 s (1 for 
a head, 0 for a tail), and the class F of events in that space is the σ-algebra gener-
ated by the cylinder sets (these are the subsets of X defined by fixing finitely many 
coordinates). The unit interval [0, 1], under the dyadic expansions of its members, 
Σn>0 an2−n where an = 0 or 1, is the set of all infinite sequences of zeros and ones 
(two such sequences, e.g. .0111 … and .1000 …, may determine the same real, in 
this case ½). Williamson assumes that the coin-flips are independent with constant 
probability of 1 (iid in probabilists’ jargon, standing for ‘independent, identically 
distributed’), where in his example that probability is ½. It is well known that this 
probability function, were it assumed to take standard values only, can be extended 
to a countably additive measure on the Borel subsets of [0, 1] and hence to Lebesgue 
measure on the Lebesgue-measurable sets of [0, 1]. Bernstein and Wattenberg’s 

6  Some authorities take N to be the set {0,1 2, …}.
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discussion therefore implies that all the singleton sequences in the coin-flipping 
experiment can be consistently assigned the same positive infinitesimal probability 
value, subject to exactly the same iid + probability ½ of heads assumption William-
son himself makes.

That the fair-coin sequences in X, like H(1 …), can consistently receive equal 
infinitesimal probabilities is also implicit in a simple example of the use of Loeb 
spaces in Loeb (1975). The example models in a hyperfinite probability space (Ω, 
A, μ) the tossing of a fair coin infinitely many times, where Ω = {0,1}η, the set of all 
internal sequences of 0 s and 1 s of length η for η some arbitrary hyperfinite num-
ber in *N\N, A is the set of all internal subsets of Ω, and μ is the counting measure 
which assigns internal probability |A|/|Ω| to each A in A, where the bars signify 
internal cardinality.7 Thus each singleton sequence in Ω has internal probability 
2−η. Where L(A), the Loeb algebra, is the completion of the external σ-algebra gen-
erated by A, there are events in L(A) corresponding to the standard events defined 
in {0,1}N, with the fair-coin product measure on the latter differing from the meas-
ure μ on their counterparts in L(A) by an infinitesimal (1975, 119). Standard events 
having standard probabilities can thus be recovered from such a nonstandard model 
by taking standard parts. In a paper published coincidentally in the same year as 
Williamson’s, Frederik Herzberg used the same type of hyperfinite space to model 
a coin tossed η times but with an arbitrary probability p in *[0,1] of landing tails, 
and showed using the Transfer Principle how an infinitesimal ‘Bernoulli’ probabil-
ity is assigned to each sequence *a in 2*N and then by restriction to its counterpart 
a in 2N.8

3 � Where Does It Go Wrong?

In the light of the foregoing discussion it would seem that something is wrong with 
Williamson’s argument. Apart from the claim that H(1 …) and H(2 …) are isomor-
phic events, only elementary probabilistic reasoning was involved, so any fault must 
presumably lie with that claim. Indeed, however plausible it might initially seem, a 
little reflection shows it to be false. As Howson (2017) pointed out, the extension of 
H(1 …) is a singleton sequence, and that of H(2 …) is two such sequences,9 and it 
therefore makes no sense to say that these are isomorphic events. It seems that Wil-
liamson simply overlooked his own description of H(2 …) as ‘all tosses after the 
first land heads’, and hence as a disjunctive event defined in the same sample space 
as H(1 …), and took it to be a (singleton) sequence in its own right containing only 
1 s. That certainly seems to be implicit in his claim that

8  Herzberg (2007), Appendix B.
9  Thus the extension of H(1 …) in the outcome space X represents the singleton real {1} under the 
dyadic expansions of the reals, while the extension of H(2 …) represents the pair {1, ½}.

7  * Is the embedding of the standard into the nonstandard universe.
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we can map the constituent single-toss events of H(1…) one–one onto the con-
stituent single-toss events of H(2…) in a natural way that preserves the physi-
cal structure of the set-up just by mapping each toss to its successor. (2007, 5)

Possibly sensing that the isomorphism claim might be unconvincing, Williamson 
presented a different version omitting it, at any rate explicitly:

To make the point vivid, suppose that another fair coin, qualitatively identical 
with the first, will also be tossed infinitely many times at one second intervals, 
starting at the same time as the second toss of the first coin, all tosses being inde-
pendent. Let H*(1…) be the event that every toss of the second coin comes up 
heads, and H*(2…) the event that every toss after the first of the second coin 
comes up heads. Then H(1…) and H*(1…) should be equiprobable, because the 
probability that a coin comes up heads on every toss does not depend on when 
one starts tossing, and there is no qualitative difference between the coins. But for 
the same reason H*(1…) and H(2…) should also be equiprobable. These two infi-
nite sequences of tosses proceed in parallel, synchronically, and there is no quali-
tative difference between the coins; in particular, that the first coin will be tossed 
once before the H(2…) sequence begins is irrelevant. By transitivity, H(1…) and 
H(2…) should be equiprobable: [hence] Prob(H(1…)) = Prob(H(2…)) (2007, 6).

But this is no improvement on Williamson’s first argument. H(2 …) is not simply a 
copy of H*(1 …): it is, to repeat, the disjunctive event “all the tosses land heads or 
the first is a tail followed by all heads”.10

My dismissal of Williamson’s argument as based, in effect, on an elementary 
mistake might be objected to on the ground that formal probability itself endorses 
his claim that H(2..) is just as much a sequence of events as H(1 …) itself, and is 
indeed isomorphic to it. Where Xi is a two-valued random variable defined on X, 
with Xi(x) = xi, i = 1, 2, …, H(2 …) is the sequence < X2 = 1, X3 = 1, …, Xn+1 = 1, 
… > , which is clearly a subsequence of < X1 = 1, X2 = 1, …, Xn = 1, … > , i.e. of 
H(1 …). Thus the mapping which sends ‘Xi+1 = 1’ to ‘Xi = 1’, does appear to be 
an isomorphic embedding of H(2 …) into H(1 …). So is Williamson right after all 
in his isomorphism claim? No. In the usual formalism of mathematical probabil-
ity < X1 = 1, X2 = 1, …, Xn = 1, … > is just a set,11 the countable intersection of all 

10  Benci et al. (2018) see Williamson’s error as conflating two models, which they call A and B, where 
A is one infinitely repeated coin-toss and B another starting at the second toss of A, and they claim that 
in equating P(H(1 …)) and P(H(2 …)) Williamson is illegitimately equating PA(H(1 …)) and PB(H(2 
…)) referred to model B, H(2 …) is ‘all tosses [in that model] land heads’(2018, 29)). But Williamson’s 
second version does in effect distinguish A and B, with his P(H*(1 …)) their PB(H(2 …)); his error 
arises simply from his belief that H*(1 …) and H(2 …) are qualitatively identical events.
11  ‘X1 = 1, X2 = 1, …, Xn = 1, …’ is actually an infinite conjunction ‘/\i∈ω Xi = 1’, not a sequence. Scott 
and Krauss (1966) argue that it is more natural to view probabilities as defined directly on the sentences 
of an infinitary language than on the sets in the orthodox Kolmogorov formalism, whose excess struc-
ture, according to them, is redundant. Accordingly they define a countably additive probability on the 
sentences of a language of type L(ω1,ω), which is to first-order logic what a σ-field is to a field, allowing 
countably infinite conjunctions and disjunctions (hence ω1) but only finite strings of quantifiers (hence 
ω). It has a proof-theory complete for countable sets of sentences but it is not compact.
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sets {x∈X: Xi(x) = 1} and hence the singleton sequence consisting of 1 s only, and 
H(2 …) is the union of two sets, the singleton just mentioned and the singleton 
whose first member is 0 and all the rest 1 s. In terms of the elementary outcomes of 
Williamson’s experiment, two of them will win a bet on H(2 …) and only one a bet 
on H(1 …) (that said, I am not implying that betting at infinitesimal odds on infinite 
sequences of trials is a practical policy).

4 � Intimations of Invariance

It might be claimed that there is nevertheless a valid intuition underwriting Wil-
liamson’s argument, namely that any subsequence, finite or infinite, wherever it 
occurs in the original sequence of coin tosses, should have exactly the same prob-
ability. The French mathematician Joseph Bertrand quipped that a roulette wheel 
has neither conscience nor memory (‘elle n’a ni conscience ni mémoire’ (1880, 
XXII)), but he could have said the same about a coin: your expectation of a bet 
on the event ‘0110001011’ occurring immediately after the nth toss is the same 
for all n. Moreover, the intuition seems vindicated by a fundamental theorem of 
elementary ergodic theory for Bernoulli processes (iid processes; the coin-tossing 
experiment is a one-sided Bernoulli process), going under the name of measure-
invariance. Under the left-shift mapping T of X into X where (Tx)i = xi+1, meas-
ure-invariance is the condition that P(T−1A) = P(A) for all A in F, and it is easy 
to see that T−!H(1 …) = H(2 …) and so P(H(2 …)) = P(H(1 …)). But those prob-
abilities are the same only because they are standard probabilities both equal to 
0, while as Williamson himself in effect showed, a hyperreal-valued probability 
function assigning positive infinitesimal values to the singleton sequences in 2N 
will necessarily assign different infinitesimal probabilities to H(1 …) and H(2 …), 
since P(H(2 …)) = 2P(H(1 …)).12

What this discussion does point to, however, is that the invariance theorems of 
applied probability and physics depend on the choice of standard-valued probabil-
ities. We have seen this to be true with the measure-invariance of Bernoulli pro-
cesses, and the translation and rotation-invariance properties of Lebesgue measure 
on the Borel sets of Rn seem similarly dependent.13 In Bernstein and Wattenberg’s 
example assigning nonzero infinitesimal probabilities to certain sets of Lebesgue 
measure zero causes translation-invariance to be violated, and correspondingly 
rotational invariance when the half-open unit interval [1, 0) is wrapped around 
the circumference of a circle though the violations are only infinitesimal.14 Seeing 

14  This example is taken from Barrett (2009, 77). With addition and multiplication mod 1, let S be the 
set {a, 2a, 3a, …}, where a is an irrational in [0, 1) (ensuring that all the members of S are distinct), and 

12  If instead of H(2 …) we consider H(n …) for arbitrary n we will of course find increasingly ‘large’ 
infinitesimal differences between their probabilities. But a ‘large’ infinitesimal, even a ‘very large’ infini-
tesimal, is still an infinitesimal.
13  Lebesgue measure uniquely among standard measures has these properties, and for that reason 
is taken as the model of situations where such invariance seems implicit in the physical structure and 
dynamics of the relevant systems, for example a person throwing a dart ‘at random’ at a dartboard, fric-
tionless spinners stopping ‘at random’, and so forth.
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infinitesimals as measuring real differences in fine-structure might therefore seem to 
conflict with the lesson contemporary physics appears to teach, that the symmetries 
expressed in the classic invariance results are a fundamental feature of nature. Bar-
rett (2010) blames the practice of using external models for the conflict:

In substantive applications of the theory of chance, there will typically be 
found constraints on a model arising from physical properties or symmetries 
in the physical situation. Because we cannot apply the Transfer Principle to an 
external nonstandard model, the task of showing that an external nonstandard 
model conforms to these constraints may become difficult or impossible. The 
lack of true translation invariance in Bernstein’s and Wattenberg’s model is an 
example of this. (2010, 73; for an internal model the Transfer Principle shows 
that Lebesgue measure is indeed translation-invariant).

But I fail to see this argument as warranting the rejection of external models (to 
be fair Barrett says that he himself does not regard it as conclusive (ibid.)). In fact 
the practice he condemns15 is the basis of a highly successful field of research in 
applied probability: external Loeb spaces have found manifold applications in statis-
tics, physics, classical and quantum (see for example the list in Albeverio 2009), and 
even economics, where hyperfinite populations have proved a very useful analyti-
cal tool (Anderson 1991; infinite hyperfinite sets, though formally finite, are actu-
ally uncountable). And what if the ‘true’ translation invariance of Lebesgue measure 
does fail in an external model? It does so only infinitesimally, which might seem in 
empirical terms a more-than-acceptable margin of error.16 That being so, the pos-
tulates on which the standard invariance results rest would arguably seem little the 
worse for being judged as what physicists call ‘effective’ theories.

It might of course be that some suitable internal model is ‘really’ fundamental. 
According to two advocates of Nelson’s Internal Set Theory (IST) in which the 
entire mathematical universe is nonstandard since it is a universe just of internal 
sets,17 IST is the mathematical theory actually better suited to describe reality:

15  It is also condemned by Bascelli et al. (2014), claiming that ‘once one decides to use hyperreal infini-
tesimals, one should also replace the original algebra“of propositions in which the agent has credences” 
with an internal algebra of the hyperreal setting.’ (2016, 11). But why ‘should’ one? The authors claim 
that the internal hyperfinite setting described in Sect. 3 ‘allows one to avoid … the problems raised by 
Williamson’s argument’ (ibid.), but it is not clear what the alleged problems are; the authors merely point 
out that in that setting H(1 …) and H(2 …) are shown to be non-isomorphic by the Transfer Principle. 
But if I am correct one doesn’t need to appeal to an internal probability space to refute the isomorphism 
claim.
16  A no higher standard of accuracy justifies the use of the real-number continuum itself. Gisin argues 
that the infinite amount of information contained in irrational numbers (a set of measure 1 in the reals) is 
not only redundant for the purposes of physical description but in effect renders them essentially random 
(2018).
17  In this theory the real line corresponds to the internal set *R in the orthodox approach, rather than the 
standard real line R (which is now not a set).

let Sa be S shifted by a. S differs from Sa by {a}, and so differs in probability by an infinitesimal. The 
Lebesgue measure of all three sets is the same, 0.

Footnote 14 (continued)
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Mathematics is intended to model reality as well as possible. The nonstandard 
universe gives a richer model of the reals than the standard universe, so it is 
natural to identify the real line with R from IST. From this point of view the 
standard objects are merely ‘shadows’ of the real objects: taking standard parts 
loses information. (Diener and Stroyan 2009, 260–261).

The loss is not all on one side though. Internal models do not contain the familiar 
number systems, the natural numbers, rationals and reals, as sets, nor are they closed 
under countable Boolean operations,18 which is why external Loeb spaces are so 
useful. On balance, there seem to be good reasons for adopting a liberal, ‘ecumeni-
cal’ approach in which both external and internal nonstandard models are acknowl-
edged to have important roles to play in extending scientific understanding.

5 � Conclusion

Barrett’s interesting discussion cited in the preceding section concludes that ‘we can 
have a [nonstandard] model which is regular, but which is non-translation invariant 
or external or both, or we can have an internal, translation invariant model which is 
not regular’ (2010, 74). In either case, internal or external, there are as we have seen 
nonstandard models of infinite flips of a fair coin satisfying the iid conditions, with 
Williamson’s own argument contesting that possibility refuted avant la lettre both 
by Bernstein and Wattenberg’s results and by Loeb’s.

In general, good arguments for Regularity seem thin on the ground, and Lewis’s 
‘Zero chance is no chance, and nothing with zero chance ever happens’ is simply 
bluster: few if any probabilists appear to balk at assigning probability 0 to the logi-
cal, if not practical, possibility of a fair coin by chance yielding an infinite sequence 
of heads, as the strong law of large numbers dictates (hence the jargon ‘almost eve-
rywhere’, ‘almost surely’ and ‘almost certainly’). For Lewis in effect to claim that 
such a practice is conducted in ignorance of a simple truth seems to be an example 
of philosopher’s hubris of a high order.
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