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Abstract

Cryptocurrency markets exhibit periods of large, recurrent arbitrage opportunities

across exchanges. These price deviations are much larger across than within countries,

and smaller between cryptocurrencies, highlighting the importance of capital controls

for the movement of arbitrage capital. Price deviations across countries co-move and

open up in times of large bitcoin appreciation. Countries with higher bitcoin premia

over the US bitcoin price see widening arbitrage deviations when bitcoin appreciates.

Finally, we decompose signed volume on each exchange into a common and an id-

iosyncratic component. The common component explains 80% of bitcoin returns. The

idiosyncratic components help explain arbitrage spreads between exchanges.
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1. Introduction

Cryptocurrencies have had a meteoric rise and a subsequent fall over the past few

years. They are digital currencies that are built on blockchain technology that allows

verification of payments and other transactions in the absence of a centralized custo-

dian. Bitcoin, the most famous and earliest cryptocurrency, was originally introduced

in a paper by Nakamoto (2008) and came into existence in 2009. Since then, the mar-

ket for cryptocurrencies has evolved dramatically. Today more than 50 million active

investors trade bitcoin and other cryptocurrencies on more than 100 exchanges world-

wide. While significant attention has been paid to the dramatic ups and downs in the

volume and price of cryptocurrencies, there has not been a systematic analysis of the

trading and efficiency of cryptocurrencies markets. In this paper we attempt to fill this

gap.

A number of features make the cryptocurrency market a unique laboratory for

studying arbitrage and price formation. There are many nonintegrated exchanges that

are independently owned and exist in parallel across countries. On an individual basis

the majority of these exchanges function like traditional equity markets where traders

submit buy and sell orders, and the exchange clears trades based on a centralized order

book. However, in contrast to traditional, regulated equity markets, the cryptocurrency

market lacks any provisions to ensure that investors receive the best price when ex-

ecuting trades.1 The absence of such mechanisms increases the role of arbitrageurs

who can trade across different markets, but any constraints to the flow of arbitrage

capital can result in markets potentially being segmented. Looking across markets

then helps us understand which frictions lead to market segmentation. It also allows

to analyze regional differences across investors in their demand for cryptocurrencies

and the correlation structure of price movements across regions.

In the following we show a number of new stylized facts about the price formation

across cryptocurrency markets. We first present our findings and then provide a pos-

sible explanation for these facts. For this analysis we use tick data for 34 exchanges

across 19 countries. First, we show that there are large and recurring deviations in bit-

coin prices across exchanges that open up across different exchanges and often persist

for several hours, and, in some instances, days and weeks.

Second, price deviations are much larger across countries (or regions) than within

the same country. The large deviations exist even between countries with the most

1For example, the US Securities and Exchange Commission (SEC)’s National Best Bid and Offer
(NBBO) regulation in the United States requires brokers to execute customer trades at the best
available prices across multiple exchanges.
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liquid exchanges, such as the US, Japan, Korea, and, to a lesser extent, Europe. We

calculate that the daily average price ratio between the US and Korea from December

2017 until the beginning of February 2018 was more than 15% and reached 40% for

several days. This has been noted in the popular press as the “Kimchi premium”.

Similarly, the average price difference between Japan and the US was around 10%,

and between US and Europe about 3%. To provide a sense of the magnitude of the

money left on the table, we calculate the daily profits that could have been achieved

in this market. The daily amount of potential arbitrage profits was often more than

$75 million, and in the period from December 2017 to February 2018 we estimate

a minimum of $2 billion of potential total arbitrage profit.2 In contrast, the price

deviations between exchanges in the same country typically do not exceed 1%, on

average.

Third, we find that deviations in bitcoin prices across countries are highly asym-

metric. In countries outside the US and Europe, bitcoin typically trades at a premium

relative to the US and almost never at a price below the US. In addition, there is

significant co-movement in price deviations across countries: arbitrage spreads open

up and close at the same time across countries.

Fourth, our analysis shows that price deviations occur during periods of a partic-

ularly quick appreciation of bitcoin prices. Since we show later that bitcoin prices

react strongly to order flows, these periods also coincide with the times when there is

a particularly strong increase in demand for bitcoin worldwide. To construct a mea-

sure of “buying pressure” in bitcoin markets, we take the difference between the actual

log price of bitcoin in the US and its trend component, which we estimate using the

Hodrick-Prescott filter. The bitcoin price in the US is a good proxy for the world

market price of bitcoin. We then regress the deviations of a country’s bitcoin price

relative to the US on our measure of “buying pressure”. This gives us a measure of the

sensitivity of a country’s bitcoin price to changes in the world market price of bitcoin.

We call this the bitcoin beta of a country. We show that the countries that, on average,

have a higher premium over the US bitcoin price are also those with a higher bitcoin

beta. So these countries respond more strongly in widening arbitrage deviations in

times when buying pressure goes up in the US.

Our results thus show that the marginal investor outside the US and Europe is

willing to pay more for bitcoin in response to positive news or sentiment. How can

one explain this differences in valuation? We conjecture that they might reflect tighter

2Our approach allows us to abstract from any assumptions about price impact of additional arbi-
trage trades or the speed of convergence. Since we rely on trades that were executed on the exchanges,
it also eliminates concerns about stale prices or illiquid exchanges. See Section 4.4 for details.
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capital controls or weaker financial institutions in the countries outside the US and Eu-

rope. The marginal investor in a country with poorly functioning financial institutions

or tighter capital controls might be willing to pay more for bitcoin since they would

benefit more from the adoption of cryptocurrencies. Therefore, any news about the

potential adoption of bitcoin technology (or any sentiment change) would increase the

price in these countries more.

Of course, the price differences could only persist if capital markets are segmented

or capital is slow to flow across borders. Controls on the flow of capital between regions

reduce the efficient use of arbitrage capital. Arbitrage profits are realized by buying

bitcoins in regions with low bitcoin prices, say the US, and selling in regions with high

bitcoin prices, say Korea. This trade requires capital in the US and generates profits

in fiat currency in Korea. If this profit cannot be repatriated seamlessly from Korea to

the US, arbitrage capital can become “stuck” within a country and thus become scarce.

It is important to note that capital controls are most relevant for the price of crypto

to fiat currencies. In contrast, transactions between two cryptocurrencies should not

be affected since they are explicitly designed to circumvent restriction to capital flows.

To test the importance of capital controls on fiat currencies, we analyze whether

the positive correlation in arbitrage spreads between the countries we show above is

explained by the level of openness of a country. If countries that are relatively closed

have a higher convenience yield for bitcoin, then we should see their arbitrage spreads

(relative to the world market price) move more closely together. Countries that are

more open should not be correlated since any price deviation will be immediately

arbitraged away. As measure of the pairwise tightness in capital controls between

two countries, we take the product of the capital control index of the two countries

constructed by Fernandez et al. (2015). This measure is zero if at least one of the

countries is totally open and approaches one if both countries have very high levels of

capital controls. In support of the idea that capital market segmentation is important

in explaining arbitrages in bitcoin prices, we find that there is a significantly positive

relation between the correlation of arbitrage spreads and capital controls. In other

words, two countries that are both relatively closed to capital flows have a higher

correlation in arbitrage spreads.

In further support of the idea that capital controls play an important role, we find

that arbitrage spreads are an order of magnitude smaller between cryptocurrencies

(say bitcoin to ethereum or to ripple) on the exact same exchanges where we see

big and persistent arbitrage spreads relative to fiat currencies. For example, during

the same period when the difference in the price of dollar to bitcoin between the US

and Korea was more than 20%, the difference in the price of ethereum to bitcoin
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was 3%, on average. Furthermore, the price of ethereum to fiat currencies shows

as large an arbitrage spread across exchanges as the bitcoin market. We show similar

patterns for the exchange rates between ripple and bitcoin or ethereum. Since the main

difference between fiat and cryptocurrencies is the inability to enforce capital controls,

our findings suggest that such controls contribute to the large arbitrage spreads we find

across regions.3

Our findings suggest that there are significant barriers to arbitrage between regions

and, to a lesser extent, even between exchanges in the same country. But the mag-

nitude of the arbitrage spreads we show above are still surprising. While regulations

in some countries make cross-border transfers in fiat currencies difficult for retail in-

vestors,4 industry reports suggest that large institutions should be able to avoid these

constraints; see, for example, a recent International Monetary Fund (IMF) working

paper by Baba and Kokenyne (2011).

We also conduct a number of robustness tests to show that mere transaction costs

cannot explain the size of arbitrage spreads across exchanges since their magnitudes are

small in comparison to the arbitrage spreads we show. Similarly, the governance risk of

cryptocurrency exchanges being hacked or misappropriating client funds is also unlikely

to explain these arbitrage spreads. Note that governance risk by itself does not predict

the direction of any arbitrage spreads. Instead, one would expect that governance risk

is correlated with lower trading volume and higher bid-ask spreads on an exchange since

market participants should be hesitant to use such an exchange. To explain the large

cross-border arbitrages we observe, the governance risk would have to disproportionally

affect exchanges in one region versus another. This does not seem to be supported by

the data. First, all regions we consider have liquid exchanges with similar volumes and

bid-ask spreads. Second, we find large heterogeneity in the liquidity of exchanges within

a region, but nevertheless arbitrage spreads are small between them. However, it is

possible that ex ante concerns about the safety of bitcoin exchanges might make some

arbitrageurs stay out of the market all together, which might ultimately explain why

3One additional factor to consider is that some companies manage exchanges in several countries.
For example, Coinbase has operations in Australia, Canada, Europe, Great Britain, and the US.
The order book of each of these exchanges are seperate, and customers from different countries can
usually only trade cryptocurrencies on their local exchange and in their local currency. However, the
exchanges that operate across regions might be able to arbitrage and potentially circumvent some
capital controls. While we do not find a consistent impact of having overlapping exchanges on the
arbitrage spreads of countries, it is possible that the existence of this channel adds noise to the
estimation of capital controls.

4For example, in Korea, local residents and companies moving more than $50,000 out of the country
in a single year must submit documents to authorities proving their reasons for the transfers, which
may not always be approved.
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arbitrage capital is limited. Of course, increasing professionalization, better governance

of the cryptocurrency market, and innovations over time might reduce these constraints

to arbitrage. For example, moving trading completely into crypto space by substituting

fiat currencies with their digital counterparts, such as tether or Circle’s digital version

of the US dollar, can diminish the role of capital controls.

Finally, we study the price impact in the bitcoin market to provide an estimate

of how much capital is required to close the arbitrage spreads we show above. We

focus on Kyle (1985)’s lambda that measures the price pressure of net order flow.

Previous research in other asset classes attributes the price pressure of net order flow

to price discovery, but in the cryptocurrency market it is less obvious whether there

are traders who are more informed than others and what the nature of the information

is. Nevertheless, we show that a strong positive relation also exists between net order

flows and prices in the cryptocurrency market. A common way to estimate the impact

of net order flow is to regress returns over a particular time period on the signed

volume of trades during the same period. The complication in the bitcoin market is

that the same asset is traded simultaneously on multiple exchanges. When forming

their demand, investors might not only look at prices on their own exchange but also

take into account prices on the other exchanges where bitcoin is traded. Therefore, we

decompose signed volume and returns on each exchange into a common component and

an idiosyncratic, exchange-specific component. We use factor analysis to extract the

common factors from data at five-minute, hourly, and daily frequencies. The common

component of signed volume explains about 50% of the variation in returns at the

five-minute and hour level and up 85% at daily level. The price pressure at the daily

level is mostly permanent: buying 10,000 bitcoins raises returns by about 4%.

To investigate the role of signed volume in explaining price deviations across ex-

changes, we show that exchange-specific residuals of signed volume are significant at

explaining variation in exchange-specific residuals of returns at the five-minute and

hour level. We also show that when the price on any exchange deviates above (below)

from the average price on other exchanges, subsequent returns on this exchange are

predicted to be lower (higher) than the returns on other exchanges. These results show

that arbitrage spreads open up in periods when there are differential price pressures

through idiosyncratic signed volume on one exchange relative to another. The price de-

viations are not arbitraged away immediately, but they do predict subsequent relative

returns on exchanges.

Our paper is related to several streams of the literature. Research on cryptocur-

rencies in finance and economics is still in its beginning. The majority of papers in

this literature focuses on the potential real effects of cryptocurrencies as a payment

5



and transaction mechanism. Ciaian, Rajcaniova, and Kancs (2016), Harvey (2016),

Bohme et al. (2015), and Raskin and Yermack (2017) provide a broad perspective on

the economics of cryptocurrencies and the blockchain technology they are built upon.

Athey et al. (2016) and Pagnotta and Buraschi (2018) propose models of the valuation

of digital currencies. Cong, He, and Li (2019), Easley, O’Hara, and Basu (2017), and

Huberman, Leshno and Moallemi (2017) study Bitcoin mining fees and the incentives

of miners in equilibrium. We view our paper as complementary to this literature. To

our knowledge, we are the first to provide a systematic empirical study of trading and

price formation in cryptocurrency markets using transaction-level data.

Our paper is also linked to the limits of arbitrage, which argues that prices can

deviate from law of one price even in the presence of arbitrageurs; see, e.g., DeLong

et al. (1990), Gromb and Vayanos (2002), and Gromb and Vayanos (2018). On the

empirical side, our paper is closest to the studies that analyze deviations from one price

in different markets. In particular, Rosenthal and Young (1990) and Froot and Dabora

(1999) study “Siamese twin” companies. They show that prices of two types of shares,

which are traded in different markets but have identical claims on the cash flows and

assets of the same company, can nevertheless substantially deviate from each other.

Similar to Rosenthal and Young (1990) and Froot and Dabora (1999), we show that

bitcoin and other cryptocurrencies can be traded at vastly different prices on different

exchanges. The deviation from the law of one price is even more striking in the case of

cryptocurrencies, since unlike shares that are traded within specific countries, bitcoins

can be transferred to any market. As a result, typical explanations such as tax-induced

investor heterogenity or index membership do not apply in this case. On a broader

level, our paper is also linked to the market segmentation literature; see, e.g., Bekaert

et al. (2011). Similar to this literature, our results suggest that capital controls and

the development of financial markets can be important at explaining the differences in

the marginal valuation of investors across countries.

Finally, our paper is also related to research that shows a strong positive relation

between asset prices and net order flow in “traditional” financial markets. For example,

Evans and Lyons (2002), Berger et al. (2008), and Fourel et al. (2015) look at foreign

exchange markets; Brandt and Kavajecz (2004) at US Treasury markets; Deuskar and

Johnson (2011) at the S&P 500 futures market; and Chordia, Roll, and Subrahmanyam

(2002), Goyenko, Holden, and Trzcinka (2009), and Hendershott and Menkveld (2014)

for NYSE stocks. These papers suggest that order flow imbalances typically explain

about 15%-30% of the day-to-day variation of stock returns or treasury yields and up

to 50% of foreign exchange returns. We show that a very strong positive relation exists

in cryptocurrency markets as well. But the R-squared that we show for cryptocurrency
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markets are significantly higher, up to 85%.

To estimate price impact, we follow most closely the econometric approach of Has-

brouck (1995) and Hasbrouck and Seppi (2001), who study common factors in stock

returns and order flows in a cross-section of US stocks. Similar to Hasbrouck (1995),

we rely on the idea that prices across different markets are cointegratated and thus

cannot diverge too far from each other. This allows us to decompose the price on each

exchange into the common component (what Hasbrouck calls the “implicit efficient

price”) and an exchange-specific deviation from the common component. One notable

difference of our approach from these earlier papers is that we are interested in esti-

mating the magnitude of the price impact of signed volume on the common component

and an exchange-specific component. For this purpose we combine factor analysis with

the price decomposition in Hasbrouck (1995) and impose appropriate constraints on

factor loadings and weights.

The rest of the paper is structured as follows. Sections 2 and 3 explain the data

and provide summary statistics of volume and returns. Section 4 presents the results

of the arbitrage index and arbitrage profits within and across regions. In Section 5 we

discuss the correlations structure of price deviations and in Section 6 we show arbitrage

spreads across other crypto-currencies. In Section 7 we discuss where arbitrage spreads

might arise and estimate the model of price pressure. Finally, Section 8 discusses the

implication of our findings for arbitrage dynamics in the cryptocurrency market, and

Section 9 concludes.

2. Data description

The main data for this project are tick-level trading data obtained from Kaiko,

a private firm that has been collecting trading information about cryptocurrencies

since 2014. The Kaiko data cover the 17 largest and most liquid exchanges: Binance,

Bitfinex, bitFlyer, Bithumb, Bitstamp, Bitbox, Bittrex, BTCC, BTC-e, Coinbase,

Gemini, Huobi, Kraken, OkCoin, Poloniex, Quoine, and Zaif. Besides Bitcoin, which is

the first and most famous cryptocurrency, Kaiko also provides trading information on

other coins such as ethereum, ripple, and tether. We restrict our attention to the three

most liquid and largest cryptocurrency markets: bitcoin (BTC), ethereum (ETH), and

ripple (XRP). We focus our analysis on the period from to January 1, 2017, to Febru-

ary 28, 2018. This choice is motivated by the market liquidity. Prior to these dates,

the liquidity in crypto markets was significantly lower than in later periods.

Kaiko obtains the data by querying APIs provided by the exchanges. The variables

contained in the data are the time stamp of the transaction at the second and mil-
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lisecond levels, the price at which the trade happened, the amount of the trade, and

an indicator whether the trade was buy or sell initiated. To get information about the

bid-ask spread, we also use Kaiko’s order book data, which are obtained by querying

the Application Programming Interface (API) of the exchanges and taking snapshots

of their order books at the minute frequency.

In addition we use data from Bitcoincharts.com, a public website that also provides

tick-level data by querying the API of exchanges at a second level. The data from

Bitcoincharts.com compliment the universe of exchanges and geographic regions cov-

ered by Kaiko. Unlike data from Kaiko, data from Bitcoincharts.com have only the

trade price and the amount of trade but not the direction of trade and are restricted

to bitcoin transactions. Therefore, when exchange data are available from both Kaiko

and Bitcoincharts.com, we use data from the former.5 Finally, the data from Bitso,

Koinim, and Mercado are obtained by contacting the exchanges directly.

In total, we have data from 34 exchanges across 19 countries. In the majority of

cases, the country of exchange operation defines the main fiat currency used as a base

currency. For example, the main trading platform of bitFlyer, a Japanese exchange,

offers trading of BTC to Japanese yen. However, a number of larger exchanges, Bit-

stamp, Bitx (Luno), Coinbase, Kraken, and Quoine, have operations across different

countries and regions. The order book of each of these exchanges is separate, and

customers from different countries can usually only trade cryptocurrencies on their

local exchange and in their local currency. For example, Coinbase has operations in

Australia, Canada, Europe, Great Britain, and the US. Coinbase allows US citizens

and residents to open up a bitcoin trading account in the US and trade bitcoin against

USD. But an investor in Australia would only be able to open an account and trade

bitcoin against Australian dollars. The same rule applies to investors of Luno. Quoine

also allows trading only in one base currency, which is, by default, the home currency

of the investor’s country of residence selected at registration. The base currency can be

changed every six months. Exceptions are Bitstamp and Kraken, which allow trading

against multiple currencies independent of the location of the customer. While this

discussion suggests that in the majority of exchanges customers cannot easily arbi-

trage across fiat currencies, the exchanges that operate across regions might be able to

arbitrage across regions and potentially circumvent some capital controls. Our analy-

sis below suggests that overlapping exchanges do not have a consistent impact on the

correlation of arbitrage spreads across countries. But it is possible that the existence

5The list of exchanges available both in Kaiko and Bitcoincharts.com include Coinbase, Bitstamp,
bitFlyer, Bitfinex, Kraken, OkCoin, and Zaif. We compare the data across the two sources and find
that the differences are small and infrequent.
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of this channel adds noise to the estimation of capital controls.6

Bitstamp and Kraken are two exchanges that allow trading against USD, British

pounds, or euros independent of the customer’s location, as stated on their websites.

However, when we called the exchanges to ask how it works, they confirmed that

citizens of one country can only open accounts in their local currency. In addition,

for all the exchanges that operate in multiple locations, their order books of bitcoin

against each of the fiat currencies are completely separate.

The data on the exchanges used in the paper and markets they operate in are

presented in Table 1. The choice of particular exchanges for each country is dictated

by liquidity. For example, Coinbase has the largest trading volume in USD. The trading

volumes in euro and GBP are also quite liquid, but the volume in Australian dollar is

very small and prices are often stale. Therefore, we do not include data for the price

of bitcoin to AUD on Coinbase in our analysis.

For the main analysis of the paper, where we establish the size of price deviations

across markets and estimate price impact of trades, we focus only on the most liquid

exchanges covered by Kaiko.7 In the second part, which looks more deeply into the

role of capital market segmentation for the dynamics of arbitrage spreads, we use the

extended data set across all 34 exchanges.

We classify the exchanges in Kaiko by region as follows:

a. China: OkCoin, Huobi, and BTCC (base currency: Chinese yuan)

b. Japan: bitFlyer, Zaif, and Quoine (base currency: Japanese yen)

c. Korean: Bithumb (base currency: Korean won)

There are four major exchanges available in the US and Europe: Coinbase, Kraken,

Bitstamp, and Gemini. The three largest of them, Coinbase, Bitstamp, and Kraken,

allow trading of BTC both in US dollars and euros. But access to US citizens typically

is in US dollars, while European citizens would open an account in euros. We therefore

classify the euro trades on Bitstamp, Coinbase, and Kraken as belonging to Europe

and the US dollar trades on Coinbase, Kraken, Bitstamp, and Gemini as belonging to

the US.

e. US: Coinbase, Kraken, Bitstamp,and Gemini (base currency: US dollar)

f. Europe: Kraken, Coinbase, and Bitstamp (base currency: euro)

6See Table A1 in the appendix for a detailed list of exchanges that operate in several regions.
7We exclude BTC-e from this analysis because of the attempted closure of BTC-e by the US Justice

Department during our sample period. We also exclude Bitbox because it has lower liquidity than
the other Japanese exchanges: bitFlyer, Zaif, and Quoine.
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The remaining three exchanges, Poloniex, Binance, and Bittrex, only allow trading

between different cryptocurrencies and not fiat currencies. The main base currency

used on these exchanges is tether. We also include Bitfinex in this set since it started

using tether as its base currency in March 2017. Tether (USDT) is a cryptocurrency

that was created in 2014; each token is supposed to be backed by one US dollar. The

aim was to create a cryptocurrency that facilitates the digital transfer of fiat currencies

with the stability of the US dollar. Tether has been highly traded since being used as

a base currency for the above exchanges, with a value very close to the dollar.8

Daily exchange rate data are obtained from Bloomberg for the exchange rate pairs

between Japanese yen and USD, Korean won and USD, and euro and USD. We also

obtain hourly exchange rates for Euro: USD; these are reported as the first minute of

a given hour.9

We found a number of data coding errors while cleaning up the data. These ad-

justments will be helpful for any researcher using the data in the future. First, we

found that the time stamp on Korean exchanges, Bithumb, is reported in local Korean

time and not in Coordinated Universal Time (UTC). The rest of the exchanges follow

the UTC time convention. Second, we found that Bithumb and Quoine also seem to

have an error in the convention of signing volume: sell-originated volume seems to be

reported as buy-originated volume and vice versa. We confirm that this is the case

by looking at the price impact (lambda). For all exchanges, except for Bithumb and

Quoine, lambda is positive, while for Bithumb and Quoine the estimated lambda is

negative, irrespective of the time period of estimation. When we flip the sign, the

lambda, of course, becomes positive and looks similar to the coefficients estimated for

the other bitcoin exchanges (see Section 7).

We also extensively clean the data for outliers and stale prices on days where an

exchange was closed or experienced major system problems. The code can be obtained

from the authors.

8However, since December 2017 there have been concerns about the transparency of Tether Limited,
the company that is backing the 1:1 dollar claim of tether. The US Commodity Futures Trading
Commission sent subpoenas to Tether Limited on December 6, 2017.

9We thank Adrien Verdelhan for sharing these data with us.
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3. Summary statistics

3.1. Volume

We first show the total volume of bitcoin trading to their base currencies across the

15 exchanges in Kaiko. The choice of the base currency depends on the geographical

focus of an exchange and can be found in Section 2. For example, for a Japanese

exchange we would use the trading volume of bitcoin to Japanese yen. Several of these

exchanges also allow trading of bitcoin to other cryptocurrencies such as ethereum. We

do not include this volume here since the liquidity of these exchange rate pairs is often

very limited. We analyze the trading in bitcoin to other coins in more detail below.

Fig. 1, Panel A shows the average daily trading volume, averaged over the week, across

all exchanges from January 2017 to the end of February 2018. We see that the daily

trading volume was about 200,000 bitcoins across all exchanges at the beginning of

2017, which increases to almost 400,000 bitcoins in December and January 2018. We

also see that a significant amount of volume is in tether, Japan, Korea, and the US.

[Fig. 1 About Here]

In Panel B of Fig. 1 we see, however, that the volume was an order of magnitude

higher during 2016 and was driven by Chinese exchanges. Trading on bitcoin exchanges

in the rest of the world combined constituted only a small amount in comparison. The

high volume on Chinese exchanges in 2016 was reportedly because these exchanges

had no trading fees and allowed margin trading with very high leverage. However,

starting from January 2017, the People’s Bank of China began exerting significant

pressure on local exchanges to curb speculation and price volatility. In response, the

exchanges implemented fixed trading fees of 0.2% per trade during that period and

started migrating operations overseas or using peer-to-peer platforms.

The US and Japanese exchanges each have about 20% by the end of February

2018, European and Korean have around 10%. The graph also shows that the four

fastest growing bitcoin exchanges are the tether-based exchanges: Bitfinex, Binance,

Poloniex, and Bittrex. Many industry observers believe that some of the volume from

China moved to trading on these exchanges.10

10A number of exchanges have been suspected of artificially inflating their volume or engaging in
wash trading, especially Chinese exchanges. For this reason, we do not include these exchanges in our
analysis. In addition, as we will show below, there is a strong common component in price impact
and highly correlated price movements across exchanges even at a high frequency. This reduces the
concern that the prices reported on the exchanges in our data are driven by noise.
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In Table 2 we provide summary statistics on trading volume, number of trades,

average trade size, and bid-ask spreads for each of the 15 exchanges in our data. We

break out the statistics for the two subperiods, January 1 to July 31, 2017, and then

August 1, 2017, to February 28, 2018, to reflect the significant changes in the bitcoin

market. In the first half of the year, average daily trading volume of BTC in US

dollars ranges from $2.5 million to about $20 million. But starting from August 2017

to the end of February 2018, the average daily trading volume increases significantly.

On the largest exchanges, such as Bitfinex, Binance, or Coinbase, the average daily

trading volume is around $445 million, $224 million, and $180 million, respectively. In

comparison the smaller exchanges typically have a daily volume of around $45 million.

This is more than a tenfold increase in trading volume for most exchanges. The only

exceptions are the three Chinese exchanges, Okcoin, BTCC, and especially Huobi,

which saw a dramatic drop in trading volume after January 2017.

The data for Binance and Bithumb are only available for the second half of 2017.

While the daily trading volume increased significantly over this time period, it is still

small relative to major forex markets. For example, the average daily volume of USD

to euro is $575 billion. But the magnitude is comparable to trading in a large firm like

Netflix, which has an average daily volume of about $3 billion.

A similar picture emerges when we look at the number of trades across exchanges,

which also increases significantly. On most exchanges the number of trades almost

triples between the first half of 2017 and the period from August 2017 to February

2018. Some of the biggest increases are on US and Japanese exchanges. Coinbase, the

largest US exchange, went from 28,000 trades to about 84,000 trades a day. Similarly,

bitFlyer, the largest Japanese exchange, increases from 32,000 trades per day to about

84,000. In comparison some of the smaller exchanges, such as Korbit or Gemini, on

average have only 16,000 or 23,000 daily trades, respectively. Finally, the bid-ask

spread on most of the exchanges is remarkably tight. The bid-ask spread, on average,

is about ten basis points, and on the most liquid exchanges it is about two to three

basis points.

3.2. Prices and returns

We now show the price dynamics of Bitcoin. Our data confirm the steep increase

in the bitcoin price from January 2017 to January 2018, which has drawn a lot of

attention in the popular press. The price rose from less than $1,000 to almost $20,000

at the end of 2017, with an especially rapid acceleration in the price of bitcoin after

November 2017. The price fell back to just below $10,000 by the end of February 2018.

12



Thus, from January 1, 2016, to February 28, 2018, the return on bitcoin is about 900%.

Table 3 shows the higher moments of bitcoin returns at the daily, hourly, and

five-minute level from January 1, 2017, to February 28, 2018. These statistics are

calculated by averaging the corresponding moments across all available exchanges. For

each frequency we report the annualized standard deviation, skewness, and kurtosis of

returns, as well as the autocorrelation and cross-correlation across exchanges.

Column (1) of Table 3 reports the standard deviation. We see that the volatility of

returns is very high. Even at the daily frequency, the annualized standard deviation

is 107%. In comparison, the annualized standard deviation of Nasdaq, from 1985 to

2017, is 18%. However, the kurtosis at the daily frequency is 3.86, which is not too far

from that of the normal distribution. The daily returns are positively skewed, which

is perhaps not very surprising given the steep increase in the price of bitcoin over the

considered time period. Columns (4) through (6) show the autocorrelation in returns

for one, two, and three lags. We can see that even at the five-minute frequency the

autocorrelations are small, which shows that there is little predictability in the market.

Finally, in column (7) we report the average cross-correlation of returns. We average

across all the pairwise correlations but take out the diagonal (i.e., the autocorrelation

of an exchange with itself). We see that at the five-minute level the correlation between

exchanges is quite low, only 57%, while at higher frequencies the correlation increases:

it is 83% at the hourly level and 95% for daily returns. These results are similar to

what is observed in other well-established markets; see, for example, Budish, Cramton,

and Shim (2015). However, if in equity markets the break of correlations happens at

millisecond frequencies, then here it is already present at the minute levels.

The lower correlations at higher frequencies point to the existence of price deviations

between exchanges. In the following section we investigate the existence of arbitrage

opportunities in more detail.

4. Arbitrage

4.1. Arbitrage index

The low cross-correlation in returns across exchanges, which we computed in the

previous section, already suggests that the crypto market is far from being efficient.

To show the amount of price dispersion between exchanges at a given point in time,

we form an arbitrage index that compares the maximum difference in prices between

exchanges. We start by calculating this arbitrage index at the minute level. For this

purpose, for a given minute we first compute the volume-weighted average price in that
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minute at each exchange,11 and then we take the maximum price across all exchanges

and divide it by the minimum price. Finally, we average the arbitrage index at the

daily level to reduce the impact of intra-day volatility.

If the markets were completely integrated and arbitrage free, then the arbitrage

index should be very close to one at all times. We first report the arbitrage index

across all but the Chinese major exchanges. We exclude Chinese exchanges since the

significant government interventions and trading restrictions on these exchanges could

potentially make their prices less liquid and integrated with those on other exchanges.

Fig. 2 shows that during the period from January 1, 2017, to February 28, 2018, there

is significant variability during the year. Remarkably there are several months during

the year where the index stays at about 1.5, for example, May and June 2017, as well

as December 2017 to mid-February 2018.

[Fig. 2 About Here]

4.2. Arbitrage index within geographical regions

To understand where the price deviations occur, we decompose the arbitrage index

into price differences within regions versus across regions. We start by looking sepa-

rately at the arbitrage index within each of the major regions, where bitcoin trading

is prevalent and we have more than one exchange (i.e., Europe, Korea, Japan, and the

US). For each region, we have at least three exchanges; the only exception is Korea,

where we only have two exchanges, Bithumb and Korbit.

In Fig. 3, Panel A we report the arbitrage index for the four major exchanges

operated in the US (Bitstamp, Coinbase, Gemini, and Kraken) from January 2017 to

February 2018.12 The calculations follow the exact same approach as above. We see

that for most of the year the arbitrage index is very low; the average price dispersion

is below 2%. But there are a few weeks in March, June, and December where the

arbitrage index is around 1.04. While the arbitrage spreads within the region are small

compared to the total arbitrage index reported above, they are still large in comparison

to more traditional financial markets.

We then repeat the same analysis for the arbitrage index among European ex-

changes for the period from January 2017 to February 2018. Again, we see in Fig. 3

11To compute the volume-weighted average price in a given period, we multiply each transaction
price in the period by the respective transaction amount, sum them, and divide by the total volume
of all transactions in this period.

12For Bitstamp, Coinbase, and Kraken, we use the BTC to USD exchange rate, as discussed above,
since it is more likely to be traded by the US investors.
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Panel B that the price discrepancies within Europe are much smaller than the overall

arbitrage index. The index within Europe, on average, is 1.02. And there are only

a few dates, in May 2017 and then December 2017 to January 2018, when the price

dispersion is around 6%. And again, a similar picture emerges in Japan; see Fig. 3,

Panel C, where the within-region arbitrage index is, on average, less than 1.02 over the

same time period. There are two short periods in January and December 2017, where

the arbitrage index goes to 1.05. The December increase is parallel to the patterns

we observed in the other regions. And finally, in Fig. 3, Panel D we look at Korea.

Unfortunately, we only have data for Bithumb starting September of 2017. Therefore,

we can only calculate an arbitrage index from that date on. We see that for most of

September to December the arbitrage index within Korea was less than 1.03, which is

similar to the other regions. But from the end of December to the end of January of

2018, the arbitrage index jumped to 1.05, which is still significantly lower than the full

index.

[Fig. 3 About Here]

Overall, the results show that the arbitrage opportunities are much smaller within

regions than across regions. Thus, not surprisingly, our results suggest that cryptocur-

rency exchanges within a given country or region seem to be much better integrated

than across regions.

4.3. Price ratio between geographical regions

To confirm that a significant part of the arbitrage spread is driven by price devi-

ations across geographic regions, in Fig. 4 we plot the price ratio at the minute level

between the US and each of the other major regions in 2017. Remarkably, we see that

for large parts of 2017 to February 2018, prices on Korean exchanges were more than

20% above the US, making Korean exchange prices the highest among all exchanges.

There were two distinct periods in June and December to January when the price ratio

went as high as 1.6 for a sustained time period. The fact that Korean exchanges have

a premium over most of 2017 has even been termed the Kimchi premium. But we

also see that Japan had significant price dispersions from the US during the same time

periods there was dispersion in Korea. However, the price ratio between Japan and

the US had a maximum of 1.2. In contrast, the price differences between the US and

Europe are small compared to other regions, which is perhaps not surprising given that

the same set of exchanges operate in the US and Europe. The results suggest that a

big fraction of the large arbitrage spreads we show for the overall market are driven
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by price differences across regions. These differences, in many instances, are persistent

over long time periods.

[Fig. 4 About Here]

4.4. Arbitrage profits

So far, we have only looked at the maximum and average price dispersion between

regions or exchanges. But this analysis does not take into account the volume traded

at different prices. To capture the full magnitude of arbitrage opportunities between

regions, we now calculate how much profit could have been made with cross-exchange

arbitrage. We only look at the period between November 2017 and February 2018 since

these were the months that saw the maximum trading liquidity as well as spikes in the

arbitrage index.

We calculate the arbitrage profits at the second level and aggregate it at the daily

level. To make sure that our results are not driven by price volatility, we only look

at seconds where the price difference between the exchanges is larger than 2%.13 For

each second, we find the aggregate amount of low-priced volume that could have been

sold in a high-price region. For that purpose, we calculate the sell-initiated volume

in the region that has the lowest price in a given second. By using the sell-initiated

volume, we know that we would have been able to buy at this price. Then we calculate

the buy-originated volume in the region with the highest price. Again, the same logic

holds that this ensures we could have sold in that region. We then compare the two

numbers and take the minimum of them. This gives us the volume that could have

been traded at a given second between the two regions. We then compute the profit by

multiplying this volume by the difference in prices at which it could have been bought

and sold. As long as the price difference between the exchanges exceeds 10 %, we allow

a more aggressive strategy where all buy-initiated trades in the high price region are

executed subject to the constraint that the cumulative outstanding balance between

buy and sell trades is less than 25 bitcoins. When the constraint binds or when the

price difference becomes lower than 10 %, we only execute sell-initiated trades in the

low-price region.

In Fig. 5, Panel A we graph arbitrage profits between the US and Korea. All profits

are reported in USD to facilitate comparison between regions. In the beginning of

November arbitrage profits on an average day are around $100,000. However, starting

13In case when there are several trades per second, we construct the volume-weighted price per
second.
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on November 28, the daily profits jump to more than $2 million a day, and in the

middle of December it is up to $20 million for many days. This level of profits persist

from the middle December until the end of January, when the average profit per day is

around $20 million, but there is significant heterogeneity, with several days where the

daily arbitrage profit reaches $40 million a day. The timeline of these profits of course

closely follows the arbitrage index that we plotted before. In line with those findings

we also see that the arbitrage profits drop off significantly at the end of January 2018.

The total profits over the examined four months is $930 million. For the exchanges

that are not in the Kaiko data, we do not have signed volume. In the case of Korea

this means we only have unsigned volume data for Korbit. Assuming that the buy-

and sell-initiated volume dynamics are similar on Bithumb and Korbit, one can get a

more realistic number of total arbitrage profits in Korea by scaling the profits by the

total volume on Korean exchanges. For that purpose, we compute the ratio of total

volume on Korbit and Bithumb to the volume on Bithump and multiply the profits by

this ratio. When using this adjustment, the arbitrage profits between Korea and the

US over the four-month period become $1.275 billion.

[Fig. 5 About Here]

We repeat the same exercise for the arbitrage profits between Japan versus the US

in Fig. 5, Panel B. As before we, see that the level of the arbitrage profits jumps up

at the beginning of December 2017 to almost $20 million a day. It then falls back

and again increases to above $25 million for several days at the end of December. In

January the average daily profits are about $7 million, with several days higher than

$30 million. Consistent with the arbitrage index, the arbitrage profits become small

at the end January. The total profits over the examined four months is $322 million.

Again, we can adjust the profits by the volume of the exchanges for which we do not

have signed volume as above. For Japan, these exchanges are Coincheck and Fisco.

Once we include the volume on these exchanges, the total profit over the four months

increases to $675 million.

Finally, in Fig. 5, Panel C, we also show the arbitrage profits between Europe and

the US. As expected, the profits are much smaller between these two regions since the

prices seem more integrated. We show that the maximum daily arbitrage profits are

around $2 million to $3 million, but for the modal day in December and January they

are around $500,000. The total profits over the examined four months is $25 million.

17



5. Correlation structure of price deviations across

regions

We now analyze the correlation structure of price deviations across different regions.

Just by eye-balling the price ratios between Korea and the US and Japan and the US

in Fig. 4 above, there appears to be a strong inter-temporal correlation when arbitrage

spreads open up and close. To study the correlation structure more formally, we use

the extended sample of exchanges that cover 19 regions. For each region, we form the

ratio of the volume-weighted average price across the exchanges in a given region to

the volume-weighted average bitcoin price in the US at the minute level. We use the

US price as a proxy for the world market price; we get the same results when we use

the average-weighted price across all large exchanges.

We report a correlation matrix of the price ratios between countries in Table A2

in the appendix. To visualize the correlation structure of arbitrage spreads, we plot

a heat map in Fig. 6 where lighter colors signify higher correlations. We can see

that the correlation between arbitrage spreads, on average, is very high; more than

half of the countries show a correlation greater than 50%. And in some regions, the

correlation is well above 75%; see, for example, Indonesia, Australia, Singapore, Japan,

or South Korea. This result is surprising since we would not have expected that these

deviations necessarily move in lockstep. While limits to arbitrage can explain the

existence of price deviations, these theories do not make any prediction about them

being positively correlated. We will discuss the implications of our findings in more

detail in Section 8.

[Fig. 6 About Here]

5.1. Co-movement of price deviations and buying pressure

To better understand what might be driving the correlations between price ratios,

we form a measure of buying pressure in the US. The idea is to identify time periods of a

particularly quick appreciation of bitcoin prices. Since we show later that bitcoin prices

react strongly to order flows, these periods also coincide with the times when there is a

particularly strong increase in demand for bitcoin worldwide. To estimate this buying

pressure, we use the standard Hodrick-Prescott filter to form a series of the smoothed

log bitcoin price at the weekly level in the US. We then calculate the deviations of the

actual log bitcoin price from the smoothed log price. Fig. 7, Panel A plots the time

series of the smoothed log bitcoin priced using the Hodrick-Prescott filter, and Panel
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B plots the residuals between the actual and the smoothed log price, our measure of

buying pressure. We see that the residual deviations are particularly large in January,

May, and October 2017 and then in December and beginning of January 2018. This is

in line with the general perception of when bitcoin market was heating up.

[Fig. 7 About Here]

We then regress the deviations of a country’s bitcoin price relative to the US on our

measure of buying pressure. For each country, this provides us with a measure of the

sensitivity of this country’s arbitrage spread to the buying pressure factor; we call this

the arbitrage beta. The results are reported in Table 5. On average, we find a strong

positive beta: arbitrage spreads outside the US open up when there is an increase in

buying pressure in the US. Thus the buying pressure factor explains the strong positive

correlation between arbitrage spreads we report in Table A2.

In a final step, we show that the countries that, on average, have a higher premium

over the US bitcoin price are also those with a higher arbitrage beta. For this purpose,

we run a cross-sectional regression of the average bitcoin price premium in each country

relative to the bitcoin price in the US (calculated from January 2017 to February 2018)

on this country’s arbitrage beta. Fig. 8 shows a strongly positive and significant slope.

So countries that, on average, have a higher bitcoin premium relative to the US also

respond more strongly by widening arbitrage deviations in times when buying pressure

goes up in the US.

[Fig. 8 About Here]

Our results thus show that the marginal investor outside the US and Europe is

willing to pay more for bitcoin in response to positive news or sentiments. How can

one explain this difference in valuation? We conjuncture that they might reflect weaker

financial institutions or tighter capital controls in the countries outside the US and Eu-

rope. The marginal investor in a country with poorly functioning financial institutions

or tighter capital controls might be willing to pay more for bitcoin since they would

benefit more from the adoption of cryptocurrencies. Therefore, any news about the

potential adoption of Bitcoin (or any sentiment change) would increase the price in

these countries more.

Of course, the price differences could only persist if capital markets are segmented

or capital is slow to flow across borders. Controls on the flow of fiat currency between

regions reduce the efficient use of arbitrage capital. Arbitrage profits are realized by

buying bitcoins in regions with low bitcoin prices, say the US, and selling in regions

with high bitcoin prices, say Korea. This trade requires capital in the US and generates
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profits in Korea. If capital cannot be repatriated seamlessly from Korea to the US,

arbitrage capital can become stuck within a country and thus become scarce.

5.2. Co-movement of price deviations and capital controls

To test the importance of capital controls on fiat currencies, we analyze whether the

positive correlation in arbitrage spreads between countries we show above is explained

by the level of openness of a country. If countries that are relatively closed have a higher

convenience yield for bitcoin, then we should see their arbitrage spreads (relative to the

world market price) move more closely together. Countries that are more open should

not be correlated since any price deviation will immediately be arbitraged away. To

measure the level of openness of a country, we use a capital control index developed

by Fernandez et al. (2015).14 As a measure of the pairwise tightness in capital controls

between two countries, we take the product of the capital control index of the two

countries. This measure is zero if at least one of the countries is totally open and

approaches one if both countries have very high levels of capital controls. It is important

to note that this measure depends on the match between two countries. For example,

the pairwise capital control measure between Turkey and South Africa is quite high

since both countries have significant capital controls. However, at the same time, the

pairwise capital control between Turkey and the United Kingdom is low since at least

one of the countries (UK) has an open capital market.

In Fig. 9, we regress the correlation in arbitrage spreads between two countries

on our measure of pairwise capital controls. The slope of this regression is 0.29 and

statistically significant at the 1% level. In support of the idea that capital market

segmentation is important in explaining arbitrage spreads in bitcoin prices, we find that

there is a significantly positive relation between the correlation of arbitrage spreads and

capital controls. In other words, two countries that are both relatively closed to capital

flows have a higher correlation in arbitrage spreads. However, if at least one of the

countries has a more open capital market, which means arbitrage capital can flow more

freely, the correlation goes down significantly.

[Fig. 9 About Here]

14We use the aggregate index “ka” of the intensity of controls. See Fernandez et al. (2015) for more
details.
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6. Arbitrage in other cryptocurrency markets

To further investigate if controls on fiat currencies play an important role in ex-

plaining arbitrage spreads, in this section we analyze the price of ethereum and ripple

relative to fiat currencies and then relative to bitcoin. If capital controls on fiat curren-

cies play an important role, we would expect to find large arbitrage spreads between

ethereum to fiat currencies but much smaller arbitrage deviations between two crypto-

currencies.

Fig. 10 plots the arbitrage index for ethereum and ripple. We can see that, similar

to the bitcoin arbitrage index, there is significant variability during the year. Periods

of relatively low levels of the arbitrage index alternate with prolonged spikes. Similar

to bitcoin, at the height of its peak December and January, the ethereum arbitrage

index stays at about 1.5. The ripple index displays similar behavior, but the series

only starts from August 2017 due to the data availability.

[Fig. 10 About Here]

As in the case of bitcoin, a significant part of the arbitrage spread in ethereum and

ripple prices is driven by price deviations across geographic regions. We do not report

this analysis in the paper since they are very similar to the reported arbitrage indices

for bitcoin, but they can be obtained from the authors on request. Furthermore, by

comparing the three arbitrage indices, one can notice the high degree of correlation

between them. All three arbitrage indices usually spike at about the same time and

take similar levels.

6.1. Arbitrage between cryptocurrencies

To analyze if the same arbitrage spreads exist between cryptocurrencies, we focus

on ethereum as the second-most traded cryptocurrency after bitcoin.15 We only look

at the months of November 2017 to February 2018 since these are the time periods

when the BTC price has the strongest price dispersion relative to fiat currencies. It is

also the time period when trading in ethereum and other coins become more liquid.

If constraints in the movement of capital contributes to the arbitrage profits between

BTC and the local fiat currencies, then these price deviations should be much smaller

across cryptocurrencies, which, by design, do not obey the same restrictions.

15We run the same analysis for ripple and obtain qualitatively similar results, which are available
upon request from the authors.
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In Fig. 11 we plot the ratios of the value weighted price of bitcoin to ethereum at the

minute level across different regions. This is very similar to the calculations in Section

4.3. However, here we make two modifications to the process. First, we calculate

the volume-weighted price at the five-second level since trading in ethereum has less

volume than bitcoin. Second, since not all exchanges directly provide a platform to

trade bitcoin to ethereum, but often trade bitcoin and ethereum only to the local fiat

currency, we calculate the local exchange rate of bitcoin to ethereum as the cross-rate.

For example, to calculate the exchange rate of ethereum to bitcoin on Bithumb, we

take the ratio of the exchange rate of ethereum to Korean won to the exchange rate of

bitcoin to Korean won.

[Fig. 11 About Here]

Fig. 11, Panel A shows the ratio of the two exchange rates of bitcoin to ethereum

between the US and Japanese exchanges from November 1, 2017, to February 28, 2018.

As mentioned before, if there were no frictions in the currency markets, then this ratio

should be constant and equal to one all the time. We see that the price ratio indeed

lies in a narrow band between 0.98 and 1.02.

We repeat the same calculations in Fig. 11, Panel B for the price of bitcoin to

ethereum, but for the US and Korea. Again, we see that the deviations from the

ratio of one are relatively small, and even in December and January it hovers around

1.03 to 0.97. In comparison, these were the months when the Kimchi premium (price

of bitcoin in fiat currency in Korea versus US) was highest, almost 50% for several

days. This again confirms that the arbitrage opportunities are much less pronounced

and persistent between different cryptocurrency markets than between cryptocurrency

and fiat currency markets. We finally repeat the same exercise in Fig. 11, Panel C

for the US and Europe and find that the differences in the price of BTC to ethereum

across all three months are small—less than 1% for the average day—and there are

only several days in mid-December where the ratio is around 1.03. However, this lack

of price dispersion should not be too surprising since we have previously shown that,

even in the bitcoin to fiat currency market, the difference between US and European

exchanges is smaller than in other regions.

7. Order flow and prices

To provide an estimate of how much capital is required to close the arbitrage spreads

we show above, we develop and estimate a model of order flows and prices. The exist-

ing literature shows the importance of net order flows for price formation in traditional
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financial markets.16 While previous research attributes the price pressure of net order

flow to price discovery, it is less clear what the fundamentals are in the case of cryp-

tocurrency markets and whether there are any traders who have more information than

others. Nevertheless, in this section we show that a strong positive relation between

net order flow and prices also exists in cryptocurrency markets.

A common way to estimate the impact of net order flow is to regress price differences

or returns over a particular time period on the signed volume of trades during the

same period. The complication in the bitcoin market is that the same asset is traded

simultaneously on multiple exchanges and, as we showed earlier, often at different

prices. Therefore, when forming their demand, investors might not only look at prices

on their own exchange but also take into account prices on the other exchanges where

bitcoin is traded. As a result, a regression of returns on signed volume in each market

separately may give a biased picture of the true impact of net order flow.

To accommodate the case of multiple exchanges, we decompose signed volume on

each exchange into a common component and an idiosyncratic, exchange-specific com-

ponent:

sit = s̄i + βsi s
∗
t + ŝit, (1)

E[s∗t ] = 0, E[ŝit] = 0, E[s∗t ŝit] = 0.

Here sit is signed volume on exchange i, s∗t is the common component for all exchanges,

hatsit is an exchange-specific component, and s̄i is the exchange-specific mean. Simi-

larly, we decompose the log return on each exchange, rit = ln(pit/pit−1), into a common

component and an idiosyncratic, exchange-specific component:

rit = r̄i + βri r
∗
t + r̂it, (2)

E[r∗t ] = 0, E[rit] = 0, E[r∗t r̂it] = 0.

The models (1) and (2) can be estimated either separately by factor analysis by as-

suming additionally that

E[ŝitŝjt] = 0, E[r̂itr̂jt] = 0, for i 6= j,

or jointly by the canonical correlation analysis; see Jolliffe (2002) for a textbook treat-

16See, for example, Evans and Lyons (2002), Berger et al. (2008), and Fourel et al. (2015) for the
study of foreign exchange markets; Brandt and Kavajecz (2004) for US Treasury markets; Deuskar
and Johnson (2011) for the S&P 500 futures market; and Chordia, Roll, and Subrahmanyam (2002),
Goyenko, Holden, and Trzcinka (2009), and Hendershott and Menkveld (2014) for NYSE stocks.
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ment. The canonical correlation analysis estimates models (1) and (2) by maximizing

the correlation between s∗t and r∗t . The factor analysis and the canonical correlation

analysis are linear models. They both estimate the common factors as a linear combi-

nation of input data; that is,

s∗t =
∑
i

wsi (sit − s̄i) , (3)

r∗t =
∑
i

wri (rit − r̄i) , (4)

where wsi and wri are called the factor weights. Both models (1) and (2) imply that∑
i

wsiβ
s
i = 1,

∑
i

wri β
r
i = 1.

We fix the scale of the common factor in signed volume by requiring that the sum of

factor loadings, βsi , is equal to one. To fix the scale of the common factor in returns, we

require that the sum of factor weights, wri , is equal to one. Under this normalization

the common factor in returns becomes a portfolio. Suppose one buys βsi bitcoins on

each exchange i. Since both the sum of βsi and wsiβ
s
i is equal to one, the total amount

of bitcoins bought is equal to one, and the common component in signed volume is

increased by one. Hence, in the regression

r∗t = λs∗t + εt, (5)

the coefficient λ measures the price pressure of the aggregate order flow.

While the price of bitcoin across exchanges can be different for some period of time,

as we show in the analysis above, one should expect the price of bitcoin across any two

exchanges to be cointegrated. More generally, any linear combinations of prices where

the sum of weights is equal to one should be cointegrated as well. Thus, the restriction

that the sum of factor weights, wri , is equal to one allows us to decompose the price on

each exchange into a common component and an exchange-specific deviation from the

common component:

pit = p∗t + p̂it, p∗t =
∑
i

wri pit. (6)

Unlike the common component of the price, p∗t , each p̂it must be a bounded process.

Since we use the log-prices, p̂it measures the percentage deviation from the weighted

average price across exchanges. If any of p̂it were an unbounded process, it would imply

arbitrarily large arbitrage opportunities.
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7.1. Decomposition of returns and order flow

We estimate the models (1) and (2) using data from 14 exchanges at the five-

minute, hourly, and daily frequency. We exclude Binance and Chinese exchanges from

this analysis because the Binance data are only available starting from November 2017,

and the Chinese exchanges stopped trading in September 2017.

The results of this estimation are reported in Tables 6 and 7. The first panel of Table

6 reports the factor loadings, weights, and R-squared of the factor analysis of signed

volume using data at the five-minute frequency. Not surprisingly, the factor loadings

are highest for the exchanges with the largest volume. Bitfinex has the highest loading

of 0.35 followed by Coinbase USD, Bitstamp USD, and bitFlyer. With the exception of

Quoine, the common component explains from 30% to 60% of the variation in exchange-

specific signed volume. In the next two panels of Table 6, we repeat the same analysis

but at an hourly and daily frequency. The results show that at longer frequencies,

the common component of signed volume explains an even higher fraction of variation;

R-squares go up to 70%. The coefficients on the factor loadings stay relatively stable,

and the volume on the exchanges, which are less liquid and less integrated with the

rest of the markets, also load less heavily on the common component of signed volume

at the longer frequencies.

In Table 7 we repeat a similar analysis for the common component of returns.

As discussed above, the one difference is that we now normalize the weights across

the exchanges to sum up to one. We start with the five-minute frequency of the

return data. For returns the common component is even more important than for

signed volume. Even at the five-minute frequency, the common component in returns

explains about 80% of exchange returns on exchanges where the US dollar and tether

are a base currency. The only exception is Kraken, where the R-squared is only 40%.

The R-squared is also low for Japanese and Korean exchanges. As shown in the next

two panels of Table 7, the same pattern persists at longer frequencies. But at longer

frequencies the common component becomes progressively more important. We find

that the common component in returns explains around 90% in variation at the hourly

frequency and 96% at the daily frequency. This is intuitive since we have shown above

that the average correlation in returns at the hourly and daily level are extremely high,

upside of 95%.

We also estimate models (1) and (2) using the canonical correlation analysis. In

all cases, the extracted factors are very similar to those estimated using the factor

analysis. At the five-minute and hourly frequency, the correlation between factors is

above 98%. At the daily frequency the common factors in returns correlate at 98%
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with each other, and correlation between the common factors in signed volume is 90%.

Therefore, in what follows, we only report results based on the factors extracted using

the factor analysis.

7.2. Common components of returns and order flow

In Table 8 we show that common component in signed volume explains a very

large fraction of the common component in returns. The first three columns report

the estimates at the five-minute frequency; the next six columns show results at the

hourly and then daily frequencies. In column (1) we regress the common component in

returns on the contemporaneous common component in signed volume. The coefficient

on the independent variable is 8.8× 10−6 with a t-statistic of 80 and an R-squared of

54%, which shows that there is a very strong relation between the common component

in returns and signed volume. For any 10,000 bitcoin increase in buy volume across

exchanges, we see a 9% increase in the price on average. Assuming that the price of

bitcoin is $10,000, this translates into the price impact of nine basis points for a $1

million trade. The price impact is considerably larger than that observed in foreign

exchange markets, where according to Berger et al. (2008), the price impact is 5.4 basis

points and 7 basis points in euro-dollar and dollar-yen markets for a $100 million trade.

But the price impact in the bitcoin market is considerably smaller than that in the

US stock market. Goyenko, Holden, and Trzcinka (2009), following the methodology

developed in Hasbrouck (2009), show that the average price impact across randomly

chosen 400 NYSE stocks is 16 basis points for a $10,000 trade.

In columns (2) and (3) we look at the persistence of the price impact. In column

(2) we add one lag of the common component in signed volume, and in column (3) we

add five lags. We see that the coefficients at all five lags are negative and significant,

which suggests that part of the price pressure in the common component is temporary.

A bit less than half of the impact on returns reverses within the next five periods. The

negative sign is also consistent with the negative sign of the first-order correlation of

five-minute returns. Note that the reversal at the five-minute frequency persists for

longer than just five lags. In unreported regressions we repeat the estimation with

12 lags, and still find significant reversal for all the lags (i.e., negative and significant

coefficients on all lag coefficients). However, to conserve the space, we only report five

lags in all cases.

In the next three columns we report the results of the price impact regressions at

the hourly level. The price impact of the contemporaneous common factor in signed

volume is still positive and highly significant but slightly smaller than that for the five-
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minute frequency. Buying 10,000 bitcoins over an hour predicts a 6% increase in the

price on average. Similar to the five-minute frequency, the coefficients on lagged signed

volume are negative, suggesting that even at the hourly frequency some of the price

impact is temporary. Finally, at the daily frequency we see a smaller price impact on

average (the coefficient on the contemporaneous common component in signed volume

is only 3.6) and also much reduced mean reversion in lags two through five. Buying

10,000 bitcoins over a day predicts a 3.6% increase in the price on average. The past

signed volume is only significant at the first lag, bringing the total price impact to

about 3% for every 10,000 bitcoins.

We also repeat our analysis of the price impact separately for the first and second

half of our sample. We find that the estimated coefficient on the price impact is

qualitatively the same in both subsamples. This result confirms that our estimate is

stable over our sample period and not driven by any short term trends.

Overall, we show that the common component of signed volume explains a large

fraction of the common component of returns at all frequencies, and subsequent mean

reversion is much smaller at the daily level than at higher frequencies.

7.3. Idiosyncratic price pressure

To find the exchange-specific price pressure we follow Hasbrouck (1991) and esti-

mate the Vector Autoregression (VAR) model of the idiosyncratic part of signed volume

and the exchange-specific deviation from the common component:

ŝit =
τ∑
s=1

bi,sŝit−s + γip̂it−1 + uit, (7)

p̂it =
τ∑
s=1

ai,sp̂it−s + λiŝit + vit, (8)

where

E[vit] = E[uit] = 0, E[vitvis] = E[uituis] = 0, for s 6= t, E[vituis] = 0.

We estimate these equations as a system of Ordinary Least Squares (OLS) equations

and obtain the results for Eq. (7) in Table 9 and for Eq. (8) in Table 10. The idiosyn-

cratic component of the price on each exchange is obtained as the residual value after

taking out the common component from each price. The exchange-specific deviations

from the common component are then estimated as a function of contemporaneous

signed volume as well as past deviations from the common price; we use three lags here.
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We do not include lagged values of idiosyncratic signed volume since our estimates of

Eq. (7) show that the lagged values have low correlation with the contemporaneous

value of residual of signed volume. To conserve space, we report the results based on

the five-minute frequency.

Each column of Table 10 reports the result of Eq. (8) for each exchange as labeled

on the top of the column. By looking at the coefficients on the lagged values of p̂it, it is

apparent that p̂it are highly persistent mean-reverting processes. All coefficients on the

past three lags are positive. The sum of the three lags, while below one, is close to one

for all exchanges. When the price on any exchange deviates above (below) from the

average price on other exchanges, the subsequent returns on this exchange are predicted

to be lower (higher) than the returns on other exchanges. But the convergence to the

common component is slow. The coefficient on the past lags of p̂it are particularly high

for Japanese and Korean exchanges, such as Bitflyer or Bithumb. This confirms our

prior results that arbitrage spreads persist for longer on these exchanges.

Compared to the price pressure we estimate for the common component, the id-

iosyncratic (exchange-specific) price pressure is significantly higher on almost all ex-

changes. The price pressure is particularly high on smaller and less liquid exchanges,

for example, Zaif or Coinbase EUR. Bitfinex and Bitstamp are the two exchanges where

the estimated coefficient on the idiosyncratic price impact are lower than the one on

the common component. These are two of the largest and most liquid exchanges. Note

that one should be careful with the interpretation of the exchange-specific price pres-

sure. When prices on one exchange are either very high or low, traders might adjust

which exchanges they trade and how they trade. Hence, the idiosyncratic part of signed

volume might change endogenously, and this can lead to non-linearity in the relation

between price and signed volume, which is not picked up in our model. Nevertheless,

our results show that the exchange-specific part of signed volume plays an important

role at explaining the deviation of prices on an exchange from the common component.

8. Discussion of arbitrages and constraints

8.1. Implementation of arbitrage strategies

Our goal in this section is to outline the mechanics of the different arbitrage strate-

gies that exist in the bitcoin market and the potential risks and costs that can impede

the effectiveness of arbitrage. Consider the situation that the price in Korea is above

the price in the US as we show above. In the world without frictions, this situation

would constitute a riskless arbitrage. One could buy bitcoins in the US, sell them
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for Korean won in Korea, exchange won for dollars, and then transfer dollars back to

the US. In practice, this textbook arbitrage is not possible since the nature of bitcoin

transactions implies that it takes about an hour for the transaction to be registered on

the bitcoin blockchain. Moreover, exchanges typically take from a few hours to several

days to transfer fiat currency. In that time period the arbitrage opportunity might

disappear. As a result, to lock in the arbitrage, an arbitrageur has to simultaneously

buy bitcoin on the exchange where the price is low and sell it on the exchange where

the price is high.

Ideally, the arbitrageur would like to short sell bitcoin on the market where the price

is high, say Korea, and buy bitcoin in the US. Then she would transfer bitcoin from

the US to Korea and so realize the risk-free profit. This trading strategy, however,

is not always feasible because only a few exchanges allow short sales. Some of the

larger exchanges such as Kraken, Bitmex, and GDAX offer short support, especially to

their larger clients. A few exchanges such as Bitfinex even allow taking leveraged short

positions. However, exchanges in Korea and Japan, which for extended time periods

were trading often more than 10%-25% above other exchanges, do not allow for short

selling.

In the absence of short sales on a particular exchange, the arbitrageur can resort

to two alternative arbitrage strategies. First, she could establish a negative position

in bitcoin by trading on margin, which is similar to short sales but does not allow

for physical settlement. In this case, the arbitrageur can profit from the trade only if

prices on the two exchanges converge in the future. Thus, the arbitrageur is subject

to the convergence risk, which has been extensively studied in the limits of arbitrage

literature; see, for example, Shleifer and Vishny (1997) or Gromb and Vayanos (2002).

While, in theory, prices across exchanges may not converge for a long time, Fig. 4

shows that, in practice, arbitrage opportunities in any given market open for less than

two days, on average, and even in the extreme never existed for more than a month.

The second arbitrage strategy is to hold a positive balance of bitcoins on both

exchanges and simultaneously buy and sell bitcoins across the two exchanges whenever

the price on one exchange deviates from that on the other. Naturally, the bitcoin

balance of the arbitrageur will go down on the exchange where the price of bitcoin is

high (since this is where she would sell bitcoin) and increase on the exchange where

the price is low. To replenish it, the arbitrageur needs to transfer bitcoins from the

exchange with high bitcoin balance to the one with low balance and vice versa for

capital. In an ideal world, she would like to instantaneously shift trading gains from

exchanges where she sold bitcoin to the ones where bitcoin is cheap and then repeat the

arbitrage transaction. Arbitrage becomes more efficient the quicker the arbitrageur can
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recycle capital from one account to another, but in some exchanges this transfer can

take up to several days. We discuss below some of the constraints to capital movements

that reduce the speed of transferring capital across exchanges. While this strategy does

not expose the arbitrageur to convergence risk, a drawback of this strategy is that the

arbitrageur becomes exposed to bitcoin price fluctuations. To mitigate this risk she

can establish short positions either on some of the exchanges described above or by

borrowing bitcoin from people who hold large amounts of bitcoins without an interest

to sell, the so-called hodlers.17 Of course, these hodlers themselves would be in a

great position to do the arbitrage in cryptocurrency markets. Starting from the end of

December 2017, the arbitrageur can also use Chicago Board Options Exchange (CBOE)

and Chicago Mercantile Exchange (CME) bitcoin futures contracts to hedge the price

risk. The futures contracts track bitcoin price, on major US dollar exchanges and have

an average daily open interest of about 10,000 bitcoins.18

8.2. Constraints to arbitrage

In practice, the arbitrageur has to incur a number of transaction costs, but their

magnitudes are too small to prevent arbitrageurs from implementing the above trad-

ing strategies. To transfer bitcoins, the transaction has to be recorded on the Bitcoin

blockchain; this is the work of the so-called miners that provide certification of trans-

actions and add blocks to the blockchain if they win the hashing competition. The

fees peaked around $40 in the end of December 2017 at the height of the bitcoin price

but since February have come down to below $10. Since these are fixed cost, they

are minuscule relative to the size of the potential arbitrage. In addition, exchanges

have trading fees, which increase the cost of trading. In the appendix we show the

magnitude of the fees for the exchanges used in this paper. These fees range from

0.25% of the amount traded to 0.1%. Most exchanges do not charge fees on a trade

by trade basis but assign them based on the trading volume in a given month or week.

Furthermore, most exchanges charge zero fees for trades that add to the liquidity of

the order book. The exchange fees are comparable to the bid-ask spreads, which are,

on average, between 1 and 10 basis points. Finally, many exchanges charge withdrawal

17The term hodler is a peculiarity of the bitcoin market since one investor in bitcoin wrote in a post
on the bitcoin talk forum in 2013 while prices were dropping “I AM HODLING”. This has become a
meme for “Hold On for Dear Life”.

18The CBOE contract settlement price is determined by results of the auction on the
Gemini exchange. The CME contract settlement price is based on the CME CF bit-
coin Reference Rate (BRR), which aggregates the price from major US dollar exchanges (see
http://www.cmegroup.com/trading/equity-index/us-index/bitcoin.html for more details.)
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fees; these range from 10 to 50 basis points per withdrawal for most of the exchanges.

But all large exchanges state that for large traders they provide preferential customized

fees that are far below the cost for retail investors. In sum, these fees are small for

large transactions. Overall, we believe that for large players the round-up trading costs

should be within 50 to 75 basis points. These transaction costs are very low compared

to the arbitrage spreads we show, and therefore cannot explain the arbitrage spreads

we find in the paper.

Another factor that might limit the willingness of traders to engage in arbitrage

is the governance risk of cryptocurrency exchanges. The governance risk of exchanges

arises since, in practice, to trade on an exchange, the arbitrageur has to transfer her

bitcoins to the exchange and therefore give up control of her coins to the exchange.

Judging from many widely publicized hacks of exchanges, these can lead to significant

losses to investors who trade there.19 However, it seems unlikely that this explains

the arbitrage spreads we found. Concerns about the governance risk of an exchange

should affect its volume and possibly bid-ask spreads. But we show that many of the

exchanges with the largest arbitrage spreads, for example Bithumb and Korbit, have

very significant volumes and small bid-ask spreads. Moreover, we show that arbitrage

spreads are much larger across, rather than within, regions. For exchange risk to

explain this pattern, one would have to assume that it is correlated within a region.

But this is not supported by our data since there is significant heterogeneity in the

liquidity of exchanges within a region, but nevertheless arbitrage spreads are small

between them. While governance risk does not seem to explain the direction and size

of the arbitrage spreads across exchanges, it might well explain why many institutions

might not want to participate in this market altogether.

Finally, an important potential constraint to arbitrage are cross-border capital con-

trols. As we described before, unless the arbitrageur is willing to bet on price conver-

gence between Korean and the US exchanges, she would need to sell bitcoin in Korea

and repatriate profits from Korea to the US. The regulation in some countries make

cross-border transactions difficult for retail investors. As referenced before, in Korea,

local residents and companies moving more than $50,000 out of the country in a sin-

gle year must submit documents to authorities proving their reasons for the transfers,

which may not always be approved. Industry reports, as well as descriptions from

trading blocks, suggest that these constraints are binding for retail investors. However,

it is more difficult to quantify how binding these constraints are for large financial

19For example, in the notorious hack of Mt Gox in 2014 650,000 bitcoins were stolen from customers
and the company.
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institutions that trade in multiple international financial markets.20 There are a few

reports that suggest large institutions are able to avoid these constraints. In a recent

IMF working paper, Baba and Kokenyne (2011) find that the effectiveness of capital

controls in South Korea seems limited since capital flows in and out of the country and

the effectiveness of monetary policy does not seem to be significantly changed after

the introduction of capital controls in the early 2000s. Similarly, industry reports sug-

gest that there are networks of forex dealers that help institutions to transfer capital

in and out of the country. Thus, capital controls should not impose insurmountable

constraints to arbitrage across regions, especially for large traders, but they add to the

cost of arbitrage. This interpretation is supported by our finding that arbitrage spreads

are an order of magnitude smaller in two-way cryptocurrency trades (say bitcoin to

ethereum) on the exact same exchanges where we see big (and persistent) arbitrage

spreads relative to fiat currencies. But even in case of the fiat currency, the arbitrage

spread does not stay open for more than a month and eventually closes.

In summary, our analysis suggests that the history of bitcoin exchanges over the

past two years was marked by recurring episodes of arbitrage opportunities opening up

and closing again and a few periods of extremely large arbitrage spreads that persisted

for several weeks. Most of the time, arbitrageurs are able to equalize prices across

markets.21 But at times the arbitrage capital seems to get overwhelmed by the noise

traders who are driving up the price in certain markets or lose heart when negative

information about bitcoin comes out. We also show above that arbitrage spreads

within regions are correlated with periods when arbitrage spreads across countries are

also particularly large. This pattern is again consistent with the idea that arbitrage

capital is limited in the short run, so when arbitrage capital is allocated to areas where

the arbitrage profits are particularly high, opportunities open up in other places.

9. Conclusion

This paper studies arbitrage and price formation in the cryptocurrency market. We

show that there are large and recurring deviations in cryptocurrency prices across ex-

changes that open up across different exchanges and often persist for several days and

weeks, pointing to significant market segmentation. The arbitrage spreads are much

20A related constraint is that many retail investors face restrictions on which exchanges they can
trade. For example, foreign nationals are typically prevented from opening up accounts and trading
on local exchanges. But similar to capital controls, large financial institutions should be able to bypass
these restrictions and operate across regions.

21Industry reports suggest that hedge funds and high frequency traders have been active across
different cryptocurrency markets for several years.
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larger for exchanges across different countries than within the same country. In con-

trast, exchange rates between different cryptocurrencies show much smaller deviations

on all exchanges. These results suggest that capital controls, together with the lack of

regulatory oversight on crypto exchanges, are the main factors contributing to market

segmentation.

Because of the capital controls arbitrageurs find it difficult to scale up their trading

strategies with the intensity of noise-trader activity in a timely fashion. While regula-

tions in some countries make cross-border transfers in fiat currencies difficult for retail

investors, large institutions are typically able to avoid these constraints. However, the

lack of of regulatory oversight may create impediments for large public institution to

enter the cryptocurrency space and slow down the supply of arbitrage capital.

This market segmentation allows us to measure differences in pricing behavior across

markets. We show that there is significant co-movement of arbitrage spreads across

countries. The spreads in the rest of the world are almost always positive relative

to the US and Europe and go up more during times of large bitcoin appreciation.

The correlation in arbitrage spreads between countries is stronger for countries that

have stricter capital controls than more open economies. This pattern suggests that

the marginal investors who price cryptocurrencies in countries with less developed

capital markets value cryptocurrencies more highly, possibly because they have a higher

convenience yield for bitcoin.

To examine how these price deviations between exchanges emerge, we analyze the

relation between net order flows and prices in the cryptocurrency market. We decom-

pose signed volume and returns on each exchange into a common component and an

idiosyncratic, exchange-specific component. The common component of signed volume

explains about 50% of the variation in returns at the five-minute and hourly level, and

up to 85% at the daily level. The exchange-specific residuals of signed volume explain

variation in exchange-specific residuals of returns at the five-minute and hourly level.

We also show that when the price on any exchange deviates above (below) from the

average price on other exchanges, subsequent returns on this exchange are predicted

to be lower (higher) than the returns on other exchanges.
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Appendix
Table A1.
Summary of exchanges.

This table summarizes some basic information of main exchanges in the paper. Margin trading includes both long and short positions. Trading fee
can decrease with the size of trade, and the maker fee can be lower than taker fees.

Exchange Headquarter
Supported fiat 

currencies
Tradng rules

Allow 

margin trading?

Date allow margin 

trading
Trading fee rate

Time needed to 

withdraw/deposit 

fiat currencies

Binance HK USDT No 0.02%-0.10%

Bitfinex HK EUR, USD-USDT

If traders meet requirements of verification

process, they can access all fiat currencies.

(Note: Bitfinex currently does not serve US

nationals.) Can transact in any fiat currency as

a verified user but will need to clarify with the

bank what currencies they will receive.

Yes 06/2013 0.00%-0.20% 1-10 business days

bitFlyer Japan JPY Yes 11/2015 0.01%-0.15% 1-5 business days

Bithumb Korea KRW No 0.08%-0.15% 1-3 business days

Bitstamp UK EUR, USD
Trading in EUR and USD is possible using the

same account.
No 0.10%-0.25% 1-5 business days

Bittrex USA USDT No 0.25%

BtcBox Japan JPY Yes 03/2014 0.05% 1-2 business days

BTCC China CNY Yes 03/2014 0.20% 1-2 business days

BTC-e Russia EUR, RUR, USD 
Trading in all supported fiat currencies is

possible.
Yes 12/2015 0.20% 2-10 business days

Coinbase USA EUR, GBP, USD 

Only support trading in the local fiat currency.

Digital currency buys and sells are only

available to residents of the US, Australia,

Canada, and Europe. 

No 1.49% 1-5 business days

Gemini USA USD No 0.00%-0.25% 4-5 business days

Huobi China CNY Yes 03/2014 0.20% 1-2 business days

Kraken USA
CAD, EUR, GBP, 

JPY, USD

All trading pairs are accessible everywhere.

People can trade on any currency pair

regardless of the country of residence.

Yes 05/2015 0.00%-0.26% 1-5 business days

OKCoin China CNY Yes 03/2014 0.20% 1-2 business days

Poloniex USA USDT Yes 05/2015 0.00%-0.25%

Quoine Japan
AUD, EUR, IDR, 

JPY, SGD, USD

Only allow trading in base currency, which is

the person's country of residence selected at

registration. But people can change the base

currency every 6 months.

Yes 09/2014 0.00%-0.25% 1-3 business days

Zaif Japan JPY Yes 09/2017 -0.05%-0.01% 1 business day
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Table A2.
Correlation of arbitrage indexes across countries.

This table reports the correlation structure between all arbitrage indexes calculated at the minute level. The time period over which they are calculated
is January 2017 to February 28, 2018. Fig. 6 in the paper is based on this correlation matrix.

KRW JPY IDR SGD VND AUD PKR ZAR TRY MXN BRL ILS PLN GBP RUB EUR CAD

KRW 100

JPY 78 100

IDR 81 62 100

SGD 76 81 71 100

VND 81 71 79 79 100

AUD 78 71 73 80 75 100

PKR 57 35 74 57 65 54 100

ZAR 52 44 63 54 45 56 57 100

TRY 43 36 61 46 47 45 62 72 100

MXN 65 67 52 51 47 49 39 49 42 100

BRL 26 31 37 30 20 27 39 57 39 45 100

ILS 36 24 49 45 42 43 67 41 40 33 37 100

PLN 31 26 36 40 34 31 49 29 40 46 32 71 100

GBP 19 3 35 18 21 23 45 27 24 -2 10 29 4 100

RUB 29 13 32 35 52 33 54 2 15 6 -4 57 60 26 100

EUR 7 6 10 19 13 17 18 2 0 5 2 45 53 23 56 100

CAD -17 -19 -2 -5 -8 -4 12 6 1 -8 20 38 35 15 40 58 100
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Fig. 1. Total trading volume. This figure shows the average daily volume of bitcoin to fiat currency
trading per week (reported in 1,000 BTC), from January 2017 until February 28, 2018 (Panel A) and
from January 2016 to December 2016 (Panel B). The volume is reported across all 15 exchanges in
the Kaiko data. We exclude any volume that is coin-to-coin trading. The fraction of volume that is
generated on exchanges in different regions is indicated with different colors. The regions are China,
Europe, Hong Kong, Japan, Korea, US, and Tether. In Panel A we report all regions apart from
China. In Panel B we report all regions including China. The trading volume in China is indicated
in red, while the volume in the rest of the world is in blue and was less than 5%.
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Fig. 2. Arbitrage index. The arbitrage index is calculated based on the volume-weighted price per
minute for each exchange and averaged at the daily level. For a given minute the maximum volume-
weighted price across all exchanges is divided by the minimum volume-weighted price in that minute.
The set of exchanges include Binance, Bitfinex, bitFlyer, Bithumb, Bitstamp, Bittrex, Coinbase,
Gemini, Kraken, Korbit, Poloniex, Quoine, and Zaif from January 2017 until February 28 2018.
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Fig. 3. Arbitrage index within regions. This figure calculates the arbitrage index for bitcoin to fiat
currency on all the exchanges within a region from January 2017 until February 28, 2018. The arbitrage
index is calculated based on the volume-weighted price of bitcoin per minute for each exchange and
averaged at the daily level. For a given minute the maximum price across all exchanges is divided
by the minimum price in that minute. Outliers are removed by replacing any price movement of
more than 10% between two adjacent transactions. Panel A uses data from US exchanges: Bitstamp,
Coinbase, Gemini, and Kraken: USD. Panel B uses data from European exchanges: Bitstamp, Kraken,
and Coinbase: EUR. Panel C uses data from Japanese exchanges: bitFlyer, Quonie, and Zaif. Panel
D uses data for Korean exchanges: Bithumb and Korbit.
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Fig. 4. Price ratio across regions. This figure plots the average price ratio between the price of bitcoin
to USD across pairs of regions, from January 2017 until February 28, 2018. The ratio is calculated
based on the volume-weighted price per minute across all the exchanges in a region and averaged at
the daily level. Panel A plots the price ratio for the US versus Korea. Panel B repeats the same
calculation for the exchanges in Japan versus the US. Finally, Panel C reports these calculations for
the US versus Europe.
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Fig. 5. Daily profits. This figure plots the arbitrage profits between two regions calculated at
the second level and then aggregated to the daily level. We include only price differences between
exchanges if the price difference is larger than 2%. For each second, the aggregate amount of low
priced volume that could have been sold in a high price region is subtracted from the sell-initiated
volume in the region that has the highest price in a given second. Panel A shows the profit between
the US and Korea, Panel B between the US and Japan, and, finally, Panel C between the US and
Europe.
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Fig. 6. Correlation matrix of arbitrage indexes across countries. For each of the countries in the data
set we calculate the value weighted price of bitcoin across the exchanges in the given countries and
form the arbitrage spread with respect to world market price at the second level. The table shows the
correlation between the arbitrage index in the country on the left hand column to the country on the
top of the matrix. The correlations are measured for the time period from January 2017 until the end
of April 2018. The correlations are coded by a color scheme, where the lighter the color, the higher is
the correlation. A legend is provided on the right side of the correlation matrix.
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Fig. 7. Buying pressure. Panel A of this figure plots the series of the smoothed log bitcoin price in
the US at the weekly level using the Hodrick-Prescott from the beginning of 2017 until April 2018.
Panel B shows the deviations of the actual log bitcoin price from the smoothed log price.
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Fig. 8. Bitcoin premium. This figure shows the results from a cross-sectional regression of the volume-
weighted average bitcoin price in a given country relative to the bitcoin price in the US (we call this the
bitcoin premium since it is typically above the US bitcoin price) regressed on this country’s arbitrage
beta. The variables are calculated from January 2017 to April 2018. We report the slope and the
scatterplot for the countries in our data set. The estimated slope coefficient is is 0.3 with a t-statistic
of 4.6 and an adjusted R2 of 0.56.
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Fig. 9. Correlation in arbitrage spreads and capital control. The results in this figure are based
on a data set of pairwise correlations in arbitrage spreads between two countries and a measure or
pairwise capital controls, which is the product of the capital control index of the two countries. The
capital control measure is based on the measure of capital market openness from the NBER database
by Fernandez et al. (2015). The closer both countries are the closer the measure to one. The slope of
this regression is 0.29 with a t-statistic of 3 and a R2 of 0.07.
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Fig. 10. Ethereum and ripple arbitrage index. This figure calculates the arbitrage index for ethereum
and ripple to fiat currency on all the exchanges from January 2017 until February 28, 2018. Panel
A shows the index for ethereum, Panel B for ripple. Each arbitrage index is calculated based on the
volume-weighted minute price of the corresponding currency and is then averaged at the daily level.
For a given minute the maximum price across all exchanges is divided by the minimum price in that
minute.
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Fig. 11. Ethereum-bitcoin exchange rate across regions. This figure plots the average price ratio
between the price of ethereum to bitcoin across pairs of regions from November 2017 until February
28th, 2018. The ratio is calculated based on the volume-weighted price per minute across all the
exchanges in a region and averaged at the daily level. Panel A plots the daily price ratio for the US
versus Japan. Panel B shows the results for the US versus Korea, and finally Panel C reports the
results for US versus Europe.
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Tables

Table 1.
Cryptocurrency exchanges.

This table reports the countries and names of exchanges that are included in the analysis and for
which we have tick-level data. In the last column we report the source of the data. Data are provided
either by Kaiko, a private data vendor, bitcoincharts.com, a public access website, or, in a few cases,
we obtained data from the exchanges directly.

Currency Country/Region Exchange Data source

AUD Australia Bitmarkets Bitcoincharts.com

BRL Brazil Mercado Exchange

Foxbit Bitcoincharts.com

CAD Canada Kraken Kaiko

CNY China BTCC Kaiko

OkCoin Kaiko

Huobi Kaiko

EUR Euro Bitstamp Kaiko

Coinbase Kaiko

Kraken Kaiko

GBP Great Britain Coinbase Kaiko

IDR Indonesia Btcoid Bitcoincharts.com

ISL Iceland bit2cl Bitcoincharts.com

JPY Japan Bitbox Kaiko

bitFlyer Kaiko

Coincheck Bitcoincharts.com

Fisco Bitcoincharts.com

Quoine Kaiko

Zaif Kaiko

KRW Korea Bithumb Kaiko

Korbit Bitcoincharts.com

MXN Mexico Bitso Exchange

PKR Pakistan Urbit Bitcoincharts.com

PLN Poland Bitbay Bitcoincharts.com

Bitmarket Bitcoincharts.com

RUB Russia BTC-e Kaiko

SGD Singapore Quoine Kaiko

ZAR South Africa Bitx (Luno) Bitcoincharts.com

TRY Turkey Koinim Exchange

USD USA Bitstamp Kaiko

BTC-e Kaiko

Coinbase Kaiko

Gemini Kaiko

Kraken Kaiko

VND Vietnam Vbtc Bitcoincharts.com

Tether Bitfinex Kaiko

Binance Kaiko

Bittrex Kaiko

Poloniex Kaiko
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Table 2.
Trading volume.

This table reports average daily trading volume, number of trades and number of trades for each
exchange from tick data. We also add a last column in each panel where we report the average bid-ask
spread based on data from the order book for each exchange. The first for columns cover the time
period from January 2017 until July 31, 2017 and the second from August 2017 until February 28,
2018. Exchanges are organized by the five regions/currencies: US, Japan, Korea, Europe and Tether.

  Jan 2017—Jul 2017   Aug 2017—Feb 2018 

Exchange 

Average 
daily 

volume 

($ millions) 

Average 

daily 

number of 
trades 

(thousands) 

Average 
size of 

trades  

($) 

Average 

bid-ask 

spread 
(basis 

points) 

 

Average 
daily 

volume 

($ millions) 

Average 

daily 

number of 
trades 

(thousands) 

Average 
size of 

trades  

($) 

Average 

bid-ask 

spread 
(basis 

points) 

US          

Coinbase: USD 19.51 27.86 619.45 3.04  180.47 83.90 1,862.88 0.94 

 (15.56) (13.17) (272.11)   (172.03) (56.32) (654.92)  

Bitstamp: USD 19.92 11.69 1,496.07 12.34  132.11 41.49 3,022.68 12.81 

 (17.45) (7.18) (485.48)   (104.15) (28.24) (594.30)  

Gemini 13.57 6.90 1,698.51 4.28  77.66 23.41 3,078.75 2.55 

 (15.77) (5.88) (778.51)   (68.20) (14.54) (988.45)  

Kraken: USD 8.59 9.20 862.10 21.54  45.44 24.45 1,792.53 9.37 

 (7.69) (7.09) (209.92)   (33.12) (14.08) (616.32)  

Japan          

bitFlyer 23.49 31.91 783.35 6.50  173.98 88.42 1,922.94 6.20 

 (11.71) (16.53) (267.74)   (128.90) (59.72) (503.69)  

Zaif 6.73 78.42 98.41 3.42  77.30 163.27 472.76 3.78 

 (7.62) (86.69) (31.98)   (50.58) (53.31) (305.25)  

Quoine 22.18 14.06 1,495.37   18.58  104.52 41.01 2,552.31 11.03 

 (19.57) (8.26) (563.06)   (113.65) (36.15) (1583.85)  

Korea          

Bithumb - - - -  142.82 50.66 2,621.91 7.10 

 - - -   (81.69) (16.76) (814.16)  

Korbit 10.73 6.00 1,567.06 -  49.06 15.85 2,761.54 - 

 (9.76) (4.24) (485.97)   (45.37) (9.30) (815.11)  

Europe          

Kraken: Euro 19.14 20.71 856.02 8.88  78.20 38.71 1,788.59 9.23 

 (13.28) (10.18) (272.21)   (58.11) (23.79) (611.87)  

Coinbase: Euro 2.05 8.65 213.64 10.48  33.99 42.95 675.67 3.06 

 (1.80) (5.11) (84.41)   (37.92) (39.83) (220.16)  

Bitstamp: Euro 2.73 3.09 776.46 34.69  32.66 19.91 1,493.87 26.57 

 (2.72) (2.34) (290.93)   (31.98) (17.04) (490.92)  

Tether          

Bitfinex 25.76 18.14 1,369.84 3.96  445.36 117.88 3,460.44 2.39 

 (16.70) (8.62) (375.17)   (330.12) (70.81) (871.99)  

Poloniex - 25.48 - 15.34  68.33 61.70 1,134.81 10.40 

 - (17.08) -   (55.30) (43.29) (442.97)  

Binance - - - -  224.41 156.21 1,580.26 - 

 - - -   (186.30) (146.21) (590.98)  

Bitrrex - 2.26 - 116.46  60.42 39.19 1,383.77 13.78 

 - (4.67) -   (47.34) (23.97) (368.23)  
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Table 3.
Summary statistics.

This table describes the higher moments of bitcoin returns at the daily, hourly, and five-minute
level from January 2017 until February 28, 2018. For each frequency we report the annualized stan-
dard deviation, skewness and kurtosis of returns, as well as the autocorrelation at one, two and three
lags and cross-correlation across exchanges. These statistics are calculated across all the exchanges in
our data but without the Chinese exchanges due to data availability.

Return

frequency

Std. dev Skewness Kurtosis ρ1 ρ2 ρ3 Cross

corr

5-Minute 1.45 0 84.00 0.06 0 0 0.63

Hour 1.20 -0.11 15.82 0 -0.04 0 0.83

Daily 1.04 0.3 3.64 -0.02 0.01 0 0.95

Table 4.
Correlation of arbitrage indices.

This table reports the correlation structure between the regional arbitrage indexes in the US,
Korea, Japan and Europe with the overall arbitrage index. These are the indexes calculated in Fig.
4 and 5. All arbitrage indexes are calculated at the minute. The time period over which they are
calculated is January 2017 until February 28, 2018.

US Korea Japan Europe All

US 100 15.3 15.3 59.6 37.5

Korea 100 29.8 31.7 54.4

Japan 100 18.0 42.3

Europe 100 49.8

All 100
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Table 5.
Arbitrage betas.

This table reports the country-level arbitrage betas estimated over the time period from the beginning of 2017 until April 2018. Each column reports
the beta for a given country. The arbitrage betas are estimated by regressing the country-level deviations of a country’s bitcoin price relative to the US on
a measure of buying pressure. The measure of buying pressure is obtained as the difference between the log bitcoin price in the US minus the smoothed
log bitcoin price at the weekly level using the Hodrick-Prescott.

KRW JPY IDR SGD VND AUD PKR ZAR TRY MXN BRL ILS PLN GBP RUB CAD EUR

Premium 0.066 0.015 0.025 0.008 0.024 0.028 0.058 0.081 0.024 0.027 0.067 0.023 0.005 0.008 -0.009 -0.003 -0.001

Beta 0.22 0.061 0.135 0.049 0.071 0.08 0.067 0.147 0.068 0.078 0.049 0.034 -0.002 0.006 -0.05 -0.036 -0.009
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Table 6.
Factor analysis of signed volume.

This table reports the results of a factor analysis applied to signed volume data on 14 exchanges as described by model (1) in Section 7. Each
panel reports the factor loadings, weights, and R-squared for the first common factor across our 14 main exchanges at the five-minute, hourly, and daily
frequency, respectively.
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5-min frequency

Loadings 0.354 0.124 0.102 0.046 0.034 0.050 0.020 0.016 0.088 0.041 0.026 0.031 0.034 0.033

Weights 0.442 1.173 1.195 0.702 1.548 1.148 4.718 1.900 0.951 0.278 1.962 1.284 1.712 1.931

R2 0.596 0.576 0.526 0.211 0.307 0.326 0.453 0.202 0.420 0.084 0.298 0.251 0.331 0.353

Hourly frequency

Loadings 0.325 0.132 0.102 0.049 0.045 0.062 0.022 0.017 0.079 0.026 0.030 0.035 0.039 0.036

Weights 0.420 0.809 1.210 0.825 2.537 1.580 3.978 1.681 0.679 0.102 1.471 0.862 1.802 1.733

R2 0.672 0.608 0.647 0.352 0.623 0.586 0.558 0.276 0.424 0.034 0.376 0.288 0.497 0.465

Daily frequency

Loadings 0.312 0.125 0.106 0.052 0.052 0.071 0.015 0.019 0.073 0.016 0.032 0.042 0.042 0.042

Weights 0.375 0.326 1.268 1.488 3.256 1.698 1.791 1.669 0.370 0.052 1.709 0.519 2.205 1.992

R2 0.669 0.393 0.704 0.559 0.758 0.677 0.294 0.330 0.297 0.013 0.471 0.256 0.608 0.580
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Table 7.
Factor analysis of returns.

This table reports the result of factor analysis applied to log-return data from 14 exchanges as described by model (2) in Section 7 . Each panel reports
the factor loadings, weights, and R-squared for the first common factor across our 14 main exchanges at the five-minute, hourly, and daily frequency,
respectively.
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5-min frequency

Loadings 1.121 1.023 1.033 1.036 0.697 0.697 0.929 0.972 0.840 0.926 0.828 0.819 1.077 1.062

Weights 0.162 0.112 0.121 0.164 0.032 0.030 0.048 0.050 0.051 0.024 0.021 0.032 0.099 0.054

R2 0.885 0.818 0.832 0.876 0.442 0.425 0.615 0.639 0.608 0.436 0.378 0.486 0.804 0.676

Hourly frequency

Loadings 1.033 0.986 1.003 1.005 0.964 0.963 0.966 0.990 0.892 0.949 0.905 0.853 1.040 1.077

Weights 0.137 0.117 0.142 0.153 0.062 0.041 0.031 0.077 0.022 0.023 0.017 0.015 0.098 0.064

R2 0.962 0.953 0.962 0.966 0.908 0.865 0.825 0.928 0.754 0.773 0.708 0.664 0.946 0.919

Daily frequency

Loadings 1.032 0.984 0.998 1.001 0.965 0.982 0.951 0.977 1.097 1.115 1.123 0.986 1.018 1.021

Weights 0.082 0.056 0.308 0.155 0.068 0.047 0.022 0.098 0.008 0.009 0.008 0.004 0.074 0.061

R2 0.988 0.982 0.998 0.994 0.985 0.978 0.951 0.990 0.888 0.903 0.887 0.796 0.987 0.984
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Table 8.
Price impact.

This table reports the results from time-series regressions of the common component of returns
on the contemporaneous and lagged common component in signed volume extracted using data from
our 14 main exchanges:

r∗t = λs∗t +

T∑
τ=1

λτs
∗
τ−1 + εt.

The first three columns report the estimates at the 5-minute frequency; the next six columns show
results at the hourly and then daily frequencies. T-statistics are computed using the MacKinnon and
White’s (1985) heteroskedasticity robust standard errors and are given in parentheses.

5-min frequency

λ× 104(%)

Hourly frequency

λ× 104(%)

Daily frequency

λ× 104(%)

s∗t 8.8 9.9 10.1 6.0 6.6 6.6 3.6 3.9 4.0

(80.06) (86.19) (88.05) (35.12) (39.7) (40.41) (16.92) (19.93) (18.96)

s∗t−1 -3.1 -2.6 -2.1 -2.0 -1.1 -1.1

(-36.54) (-32.24) (-16.53) (-15.67) (-4.05) (-3.62)

s∗t−2 -0.8 -0.4 -0.0

(-11.68) (-3.71) (-0.2)

s∗t−3 -0.5 -0.1 -0.1

(-7.56) (-1.22) (-0.76)

s∗t−4 -0.4 -0.3 -0.3

(-6.88) ( -3.00) (-1.71)

s∗t−5 -0.3 -0.1 0.3

(-5.24) (-1.33) (1.57)

R2 0.54 0.60 0.61 0.6 0.66 0.67 0.69 0.75 0.76

N 46666 46666 46666 4085 4085 4085 179 179 179
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Table 9.
Idiosyncratic signed volume.

This table reports the results from time-series regressions of the idiosyncratic component of the signed volume on each of the exchange list on the top
of the column, regressed on the deviation of the price from the common price component and past three lags of the idiosyncratic component of the signed
volume of the same exchange. The idiosyncratic components, ŝit and p̂it, are obtained as the residual values of signed volume and prices after taking out
the common component from each.

ŝit = γip̂it−1 + b1iŝit−1 + b2iŝit−2 + b3iŝit−3 + εit.

T-statistics are computed using the MacKinnon and White’s (1985) heteroskedasticity robust standard errors and are given in parentheses.
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5-min frequency

γi × 10−2 -1.12 0.86 -1.29 -0.45 -1.61 -0.42 0.04 -0.22 -0.49 0.27 -0.15 0.05 0.14 -0.23

(-2.4) (4.12) (-4.9) (-2.66) (-15.41) (-4.54) (1.27) (-5.16) (-7.78) (2.92) (-7.23) (7.12) (3.18) (-5.35)

b1i 0.09 0.17 0.08 0.06 0.07 0.09 0.13 0.15 0.15 0.22 0.23 0.21 0.13 0.15

(5.57) (17.72) (6.1) (6.18) (6.58) (8.39) (11.6) (11.73) (17.55) (16.83) (21.31) (32.29) (9.9) (13.42)

b2i 0.06 0.08 0.07 0.02 0.03 0.05 0.05 0.04 0.05 0.08 0.07 0.09 0.06 0.04

(6.52) (9.24) (6.15) (2.85) (2.74) (4.64) (5.35) (3.91) (6.76) (7.52) (8) (14.23) (4.67) (4.71)

b3i 0.05 0.08 0.04 0.02 0.02 0.03 0.08 0.04 0.06 0.09 0.07 0.08 0.03 0.06

(5.19) (9.82) (5.13) (3.04) (2.32) (3.7) (8.8) (5.34) (7.9) (8.18) (7.87) (12.34) (2.52) (7.01)

R2 0.02 0.05 0.01 0 0.01 0.01 0.03 0.03 0.04 0.09 0.08 0.08 0.02 0.03
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Table 10.
Idiosyncratic returns.

This table reports the results from time-series regressions of the deviation of the price from the common price component on each of the exchange list
on the top of the column, regressed on past three lags of the deviation of the price from the common price component and the idiosyncratic component of
the signed volume of the same exchange. The idiosyncratic components, ŝit and p̂it, are obtained as the residual values of signed volume and prices after
taking out the common component from each.

p̂it = λiŝit + a1ip̂it−1 + a2ip̂it−2 + a3ip̂it−3 + εit.

T-statistics are computed using the MacKinnon and White’s (1985) heteroskedasticity robust standard errors and are given in parentheses.
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5-min frequency

λi × 104(%) 2.86 17.35 5.76 8.37 40.95 41.66 172.03 15.8 17.13 4.35 59.61 32.1 20.1 22.66

(16.49) (22.83) (9.18) (14.35) (21.14) (27.66) (25.64) (7.43) (22.26) (6.58) (13.34) (25.13) (12.28) (14.00)

a1i 0.6 0.63 0.55 0.59 0.56 0.63 0.73 0.5 0.83 0.79 0.84 0.83 0.61 0.6

(48.44) (16.28) (56.57) (34.58) (43.48) (40.07) (29.02) (25.25) (40.69) (26.36) (14.73) (50.95) (54.99) (61.34)

a2i 0.23 0.18 0.23 0.24 0.2 0.19 0.16 0.26 0.12 0.15 0.01 0.12 0.21 0.21

(17.07) (5.58) (21.47) (13.5) (14.75) (11.51) (4.18) (18.78) (4.8) (5.55) (0.08) (6.45) (19.32) (21.32)

a3i 0.16 0.18 0.2 0.16 0.21 0.16 0.1 0.23 0.04 0.05 0.15 0.05 0.17 0.18

(12.84) (5.51) (21.89) (11.18) (19.68) (9.62) (4.1) (13.54) (1.79) (2.59) (3.3) (3.64) (16.56) (18.78)

R2 0.98 0.97 0.94 0.96 0.89 0.95 0.98 0.95 0.99 0.98 0.98 0.99 0.99 0.98
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