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Abstract. This paper introduces empirical likelihood methods for interval estimation

and hypothesis testing on volatility measures in some high frequency data environments.

We propose a modified empirical likelihood statistic that is asymptotically pivotal under

infill asymptotics, where the number of high frequency observations in a fixed time inter-

val increases to infinity. The proposed statistic is extended to be robust to the presence

of jumps and microstructure noise. We also provide an empirical likelihood-based test

to detect the presence of jumps. Furthermore, we study higher-order properties of a

general family of nonparametric likelihood statistics and show that a particular statistic

admits a Bartlett correction: a higher-order refinement to achieve better coverage or size

properties. Simulation and a real data example illustrate the usefulness of our approach.

1. Introduction

Realized volatility and its related statistics have become standard tools to explore the

behavior of high frequency financial data and to evaluate theoretical financial models

including stochastic volatility models. This increase in popularity has been driven by

recent developments in probability and statistical theory and by the increasing availability

of high frequency financial data (see, Aït-Sahalia and Jacod, 2014, for a review).

By using infill asymptotics, where the number of high frequency observations in a fixed

time interval (say, a day) increases to infinity, Jacod and Protter (1998) and Barndorff-

Nielsen and Shephard (2002) established laws of large numbers and central limit theorems

for realized volatility, which were later extended to more general setups and statistics by
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Barndorff-Nielsen et al. (2006). Gonçalves and Meddahi (2009) studied second-order

properties of the realized volatility statistic and its bootstrap counterpart. Furthermore,

a variety of volatility estimation methods are developed to be robust to the presence

of jumps (e.g., Barndorff-Nielsen, Shephard and Winkel, 2006, and Andersen, Dobrev

and Schaumburg, 2012) and microstructure noise (e.g., Zhang, Mykland and Aït-Sahalia,

2005, Barndorff-Nielsen et al., 2008, and Jacod et al., 2009). There have also been several

testing methods for the presence of jumps (e.g., Barndorff-Nielsen and Shephard, 2006,

and Aït-Sahalia and Jacod, 2009a).

In this paper, we introduce empirical likelihood methods (see, Owen, 2001, for a review)

for interval estimation and hypothesis testing on volatility measures in different high fre-

quency data environments. In particular, based on estimating equations for the volatility

measures, such as the integrated volatility, a modified empirical likelihood statistic is pro-

posed and shown to be asymptotically pivotal under infill asymptotics. Our empirical

likelihood approach is extended to be robust to the presence of jumps and microstruc-

ture noise. The proposed statistics share desirable properties with conventional empirical

likelihood, such as being range preserving, being transformation respecting, and having

a data decided shape for the confidence region. We also provide an empirical likelihood-

based test to detect the presence of jumps. Our empirical likelihood approach provides

useful alternatives to the existing Wald-type inference methods and jump tests. This is

illustrated by simulation studies and a real data example.

Another distinguishing feature of (conventional) empirical likelihood is that it admits

a Bartlett correction: a higher-order refinement to achieve better coverage and size prop-

erties (DiCiccio, Hall and Romano, 1991). However, since empirical moments typically

exhibit rather different limiting behaviors under infill asymptotics, empirical likelihood is
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not Bartlett correctable even for the constant volatility setup. In order to further investi-

gate this issue, we consider a general class of nonparametric likelihood statistics based on

Cressie and Read’s (1984) power divergence family, which contains empirical likelihood,

exponential tilting, and Pearson’s χ2 as special cases. In this general class of nonpara-

metric likelihood statistics, we find that certain statistics are Bartlett correctable under

the constant and general non-constant volatility cases. In particular, we show that the

second-order refinement of the order O(n−2) can be achieved for the coverage error for

interval estimation or the size distortion of hypothesis testing. This Bartlett correctability

can be considered as an advantage of our nonparametric likelihood approach.

In the context of high frequency data analysis, Kong (2012) has already introduced the

empirical likelihood approach to conduct inference on the jump activity index by Aït-

Sahalia and Jacod (2009b). In contrast, this paper is concerned with inference on the

integrated volatility and testing for the presence of jumps, and investigates higher-order

properties of the nonparametric likelihood statistics.

In addition to Gonçalves and Meddahi (2009) mentioned above, several papers have

studied higher-order properties of realized volatility and related statistics in high fre-

quency data setups to overcome poor finite sample performance of the first-order asymp-

totic approximations. Gonçalves and Meddahi (2008) proposed Edgeworth corrections to

approximate the distribution of realized volatility. Validity of this Edgeworth expansion

was established by Hounyo and Veliyev (2016). Zhang, Mykland and Aït-Sahalia (2011)

studied higher-order properties of volatility related statistics under a small-noise asymp-

totic framework. Podolskij and Yoshida (2016) established the Edgeworth expansion for

functionals of diffusion processes and applied the expansion to power variation statis-

tics. Dovonon, Gonçalves and Meddahi (2013) considered bootstrap approximations for

multivariate volatility statistics and showed that the pairs bootstrap is not second-order

3



correct in general. Hounyo (2018) proposed a local Gaussian bootstrap method which

can be even third-order correct. Each of these papers is concerned with approximating

the distribution of realized volatility or its related statistics. In contrast, our focus is

on higher-order properties of the proposed nonparametric likelihood statistics and their

Bartlett correctability.

The rest of the paper is organized as follows. In Section 2, we introduce the basic

idea of empirical likelihood in the context of high frequency data analysis, and discuss its

general first-order asymptotic properties and some advantages compared to the existing

inference methods. Section 3 applies the general first-order asymptotic theory to the

baseline case (Section 3.1), and then extends it to jump robust inference (Section 3.2) and

noise robust inference (Section 3.3). An empirical likelihood-based test for the presence of

jumps is also proposed (Section 3.4). In Section 4, we introduce a class of nonparametric

likelihood statistics, study their second-order properties, and show that some statistics

are Bartlett correctable. Sections 5 and 6 present some simulation results and a real data

example, respectively. Section 7 concludes. All proofs of theorems, some details for the

implementation of the Bartlett correction, and additional simulation results are presented

in the web appendix.

2. Empirical likelihood

In this section, we introduce the basic idea of empirical likelihood in the context of high

frequency data analysis (Section 2.1), present its general first-order asymptotic properties

(Section 2.2), and discuss some advantages over existing inference methods (Section 2.3).

2.1. Basic idea. To fix the idea, we consider a scalar continuous time process

dXt = µtdt+ σtdWt, (2.1)
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for t ≥ 0, where µ is a drift process, σ is a volatility process, andW is a standard Brownian

motion. Suppose we observe high frequency returns ri = Xi/n−X(i−1)/n measured over the

period [(i−1)/n, i/n] for i = 1, . . . , n, and wish to conduct inference on a scalar functional

of σ, denoted by θ. A popular example is the integrated volatility θ =
∫ 1

0
σ2
udu over [0, 1]

(say, a day or month). For our asymptotic analysis, we consider infill asymptotics, where

we take the limit n→∞ for increasingly finely sampled returns over [0, 1].

The basic idea for the construction of an empirical likelihood proceeds as follows. First,

we take some estimating function g(ri, ϑ) for the object of interest θ, where the point es-

timator θ̂ solves
∑n

i=1 g(ri, θ̂) = 0. For example, the estimating function for realized

volatility θ̂ =
∑n

i=1 r
2
i is written as g(ri, ϑ) = nr2

i − ϑ. Second, we construct an empirical

likelihood at a hypothetical value ϑ based on the moment condition E[g(ri, ϑ)] = 0. In par-

ticular, we consider the multinomial distribution with atom wi at point ri for i = 1, . . . , n,

where its likelihood is
∏n

i=1wi and the moment condition is written as
∑n

i=1 wig(ri, ϑ) = 0.

The (normalized) empirical likelihood function at ϑ is defined as

EL(ϑ) = max
w1,...,wn

n∏
i=1

nwi, s.t.
n∑
i=1

wig(ri, ϑ) = 0, wi ≥ 0,
n∑
i=1

wi = 1. (2.2)

Although EL(ϑ) is a profile multinomial likelihood function, it can be used for general

unknown distributions of ri. We list some key aspects of our empirical likelihood approach.

First, although the maximization problem in (2.2) involves n variables (w1, . . . , wn) and

seems less practical, the Lagrange multiplier argument implies the convenient dual form:

EL(ϑ) =
n∏
i=1

1

1 + λg(ri, ϑ)
, (2.3)

where λ solves
∑n

i=1
g(ri,ϑ)

1+λg(ri,ϑ)
= 0. In practice, we employ this dual representation to

evaluate EL(ϑ) since this only requires finding the root for the scalar λ.
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Second, this paper deals with interval estimation and hypothesis testing for θ; we do not

consider point estimation of θ. Indeed, as far as the dimension of g equals that of θ, the

maximum empirical likelihood estimator, arg maxϑEL(ϑ), coincides with the conventional

estimator (i.e., the solution to
∑n

i=1 g(ri, θ̂) = 0). We use the estimating function g for

interval estimation and hypothesis testing, not point estimation. In particular, we are

interested in the limiting distribution of EL(θ) at the true value θ, which provides a

basis for testing the null H0 : θ = ϑ and obtaining a confidence interval of the form

{ϑ : EL(ϑ) ≤ critical value}.

Finally, our formulation of the empirical likelihood is general enough to cover various

objects of interest, in the form of θ, and their estimating functions g. Furthermore, the

construction of EL(ϑ) in (2.2) can naturally be extended to more general data generating

processes than (2.1). These extensions will be pursued in Section 3.

2.2. General asymptotic properties. To understand the general structure of our as-

ymptotic analysis for EL(θ), we first present a general result to characterize the first-order

asymptotic properties of EL(θ) under some high level conditions. Let ḡ = n−1
∑n

i=1 g(ri, θ)

and V̄ = n−1
∑n

i=1 g(ri, θ)
2, where both g and θ are scalar. The following theorem is an

adapted version of Hjort, McKeague and van Keilegom (2009, Theorem 2.1).

Theorem 1. Suppose (i)
√

n
Vg
ḡ

d→ N(0, 1) for some Vg > 0, (ii) V̄ p→ V for some

V > 0, (iii) the probability that the origin is contained in the interior of the convex hull

of {g(ri, θ)}ni=1 converges to zero, and (iv) max1≤i≤n |g(ri, θ)| = op(
√
n). Then for any

Â
p→ V/Vg,

TEL(θ) = Â{−2 logEL(θ)} d→ χ2
1. (2.4)

This theorem says that the (modified) empirical likelihood statistic TEL(θ) is asymptot-

ically pivotal and converges to the χ2
1 distribution under the high level conditions (i)-(iii).
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In the next section, we apply this general theorem to specific moment functions g and data

generating processes of {ri}. Based on this theorem, the 100(1−α)% empirical likelihood

confidence set for θ is given by CIαEL = {ϑ : TEL(ϑ) ≤ χ2
1,α}, where χ2

1,α is the (1− α)-th

quantile of the χ2
1 distribution. Furthermore, hypothesis tests on θ can be implemented

using the χ2
1 distribution.

A major difference in the asymptotic result of (2.4) from the conventional one for i.i.d.

observations is the presence of the adjustment term Â which facilitates the convergence

to the chi-squared distribution. If the sample {ri}ni=1 is i.i.d., then it holds that Vg = V

and (2.4) is satisfied with Â = 1. On the other hand, under infill asymptotics, Vg and

V typically do not coincide, and the adjustment term Â in (2.4) is required to recover

asymptotic pivotalness. The next section provides several examples of Â.

Conditions (i) and (ii) are key to obtain the chi-squared limiting distribution in (2.4),

and can be verified by applying certain central limit theorems and laws of large numbers,

respectively. Condition (iii) is required to guarantee the existence of the solution in (2.2).

Condition (iv) is a mild regularity condition to establish a quadratic approximation for

the object −2 logEL(θ).

The proof of this theorem can be found in p. 1105 of Hjort, McKeague and van Keilegom

(2009). The basic steps are: first establish the quadratic approximation −2 logEL(θ) =

V̄ −1(
√
nḡ)2+op(1), and then apply the continuous mapping theorem by Conditions (i)-(ii).

2.3. Advantages of empirical likelihood-based inference. In this section, we discuss

several advantages of empirical likelihood-based inference. In particular, we compare

the empirical likelihood confidence interval CIαEL defined in the last subsection with the

conventional Wald-type confidence interval CIαW = [θ̂ ± zα/2 · standard error], where zα/2
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is the (1 − α/2)-th quantile of the standard normal distribution. Our discussion here is

based on Hall and LaScala (1990).

First, CIαEL is not shaped in a predetermined way and may be asymmetric around the

point estimate θ̂. The symmetric shape constraint in CIαW imposes a degree of nonexistent

symmetry in the sampling distribution.

Second, CIαEL tends to be concentrated in a region where the density of θ̂ is high. In

other words, the shape of CIαEL automatically reflects the emphasis in the observed data.

Third, related to the above points, CIαEL naturally satisfies restrictions on the range

of θ. For example, if θ is the integrated volatility, CIαEL never contains negative values,

whereas the lower endpoint of CIαW may be negative. This point will be illustrated in our

simulation study.1

Fourth, CIαEL is transformation respecting (i.e., the confidence interval of f(θ) is given

by {f(θ) : θ ∈ CIαEL}. However, CIαW is not invariant to transformations of θ and may

yield different conclusions.

In addition to these points, there is an important potential advantage of empirical

likelihood: Bartlett correctability. The Bartlett correction, an analytical higher-order re-

finement, is an adjustment of the mean of the empirical likelihood statistic (to be closer to

the χ2
1 distribution) so that the adjusted confidence interval has better coverage accuracy.

Although Bartlett correctability of empirical likelihood is reported in various contexts

(see, Chapter 13 of Owen, 2001), it is an open question whether a similar phenomenon

emerges in high frequency data setups.

Our formal analysis of Bartlett correctability will be presented in Section 4. Here

we provide some background for our higher-order analysis based on Hall and LaScala

1To avoid the negative lower endpoint, several papers considered the Wald confidence interval based on
the logarithmic transformed object, log θ (e.g., Barndorff-Nielsen and Shephard, 2005, and Gonçalves and
Meddahi, 2009 and 2011). See Section 5.1 for some simulation results on this approach.
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(1990). Intuitively, a part of the approximation error in (2.4) is due to a discrepancy in

the mean of the statistic (i.e., E[TEL(θ)] 6= 1). This discrepancy can be eliminated by

the ratio TEL(θ)/E[TEL(θ)]. Thus the Bartlett correction for TEL(θ) takes the form of

TEL(θ)/(1 + n−1a), where E[TEL(θ)] = 1 + n−1a+O(n−2).

Let S be the asymptotic signed root of TEL(θ) satisfying TEL(θ) = S2 + Op(n
−3/2)

and S d→ N(0, 1). To induce higher-order refinement of the corrected confidence interval

{ϑ : TEL(ϑ)/(1 + n−1a) ≤ χ2
1,α}, a key condition is that the third and fourth order

cumulants of S are close enough to those of the standard normal distribution and of order

O(n−3) and O(n−4), respectively (see, pp. 116-119 of Hall and LaScala, 1990, for detail).

A major issue of applying this general result to our setup is that the third and fourth

order cumulants of the signed root term S may not vanish at the above rates under infill

asymptotics. Note that S depends on various empirical moments of ri which show rather

different limiting behaviors under infill asymptotics compared to the case of i.i.d. observa-

tions. Therefore, the empirical likelihood statistic TEL(θ) may not be Bartlett correctable.

We analyze this problem in Section 4 by considering a general class of nonparametric like-

lihood statistics, where some statistics in this class can be Bartlett correctable.

3. First-order asymptotic theory

In this section, we apply the general first-order asymptotic theory for the empirical

likelihood statistic in Theorem 1 to a benchmark setup (Section 3.1), and then extend the

result to jump robust inference (Section 3.2) and noise robust inference (Section 3.3). In

Section 3.4, we modify our approach to test for the presence of jumps.

3.1. Benchmark case. In this subsection, we consider the benchmark setup in (2.1) and

impose the following assumption based on Barndorff-Nielsen et al. (2006).
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Assumption X. The process X defined on a filtered probability space follows (2.1), where

µ is an adapted predictable locally bounded drift process, and σ is an almost surely positive

and adapted cadlag volatility process satisfying

σt = σ0 +

∫ t

0

a∗udu+

∫ t

0

σ∗u−dWu +

∫ t

0

v∗u−dVu,

where a∗, σ∗, and v∗ are adapted cadlag processes, a∗ is a predictable and locally bounded

process, and V is a Brownian motion independent of W in (2.1).

This assumption is general enough to allow for intraday seasonality and correlation

between σ and W (called the leverage effect).

We first consider inference on the integrated volatility θ =
∫ 1

0
σ2
udu. One popular

estimator of θ is the realized volatility statistic θ̂ =
∑n

i=1 r
2
i . Under Assumption X, θ̂

is consistent and asymptotically normal, V̂ −1/2
√
n(θ̂ − θ) d→ N(0, 1) as n → ∞, where

V̂ = 2n
3

∑n
i=1 r

4
i (Barndorff-Nielsen et al., 2006). Based on this result, it is customary to

construct a Wald-type confidence interval for θ.

Based on the estimating equation
∑n

i=1(nr2
i − θ̂) = 0 for the realized volatility θ̂, the

empirical likelihood function EL(ϑ) can be defined as in (2.2) with g(ri, ϑ) = nr2
i −ϑ. Let

Rq = nq/2−1
∑n

i=1 |ri|q. By applying Theorem 1 to this setup, the first-order asymptotic

distribution of the empirical likelihood statistic is obtained as follows.

Theorem 2. Under Assumption X, TEL(θ) with g(ri, θ) = nr2
i − θ satisfies (2.4) for

Â = 3
2

(
1− R2

2

R4

)
.

This theorem is shown by verifying Conditions (i)-(iv) in Theorem 1. The proof is

presented in the web appendix. Based on this theorem, the empirical likelihood confidence

interval is given by CIαEL = {ϑ : TEL(ϑ) ≤ χ2
1,α}. See Section 2.3 for advantages of CIαEL.
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We next consider the p-th power variation θp =
∫ 1

0
σpudu for p > 0. By Barndorff-Nielsen

et al. (2006), θp is consistently estimated by θ̂p = µ−1
p n−1+p/2

∑n
i=1 |ri|p, where µp = E|z|p

with z ∼ N(0, 1). Based on the estimating equation
∑n

i=1(µ−1
p np/2|ri|p − θ̂p) = 0 for θ̂p,

the empirical likelihood function for θp can be constructed as in (2.2) with g(ri, ϑp) =

µ−1
p np/2|ri|p − ϑp and the first-order asymptotic distribution of the empirical likelihood

statistic is obtained as follows.

Theorem 3. Under Assumption X, TEL(θp) with g(ri, θp) = µ−1
p np/2|ri|p − θp satisfies

(2.4) for Â =
µ2pR2p−µ2pRp
(µ2p−µ2p)R2p

.

Similar comments to Theorem 3.1 apply. As we explained in Section 2.1, the above

theorems provide new interval estimation and hypothesis testing methods for θ and θp,

not new point estimators. Indeed the maximizers of TEL(θ) and TEL(θp) coincide with the

conventional estimators, θ̂ and θ̂p, respectively. The issue of optimal testing (or interval

estimation) for θ or θp would be an interesting avenue for future research. In a recent

paper, Renault, Sarisoy and Werker (2017) studied efficient point estimation of θ, θp, and

related objects, and discussed efficient properties of the existing estimators, such as the

ones by Mykland and Zhang (2009) and Jacod and Rosenbaum (2013). We conjecture

that the empirical likelihood-based tests using the estimating equations of these efficient

estimators will enjoy some optimal local power properties. Formal analysis of this issue

requires developing the notion and theory of semiparametric efficient testing in the context

of high frequency data analysis (cf. Choi, Hall and Schick, 1996, for the case of i.i.d.

observations) and is, thus, beyond the scope of this paper.

3.2. Jump robust inference. In this subsection, we propose a jump robust version of

the empirical likelihood statistic for the integrated volatility θ. The empirical likelihood
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statistic in Theorem 2 is constructed from the estimating equation for the realized volatil-

ity θ̂ =
∑n

i=1 r
2
i . Our approach can be generalized to other estimating equations for the

integrated volatility θ. In particular, we consider the multipower variation (e.g., Barndorff-

Nielsen and Shephard, 2004, and Barndorff-Nielsen, Shephard and Winkel, 2006)

θ̂p =
n∑

i=m

|ri−m+1|p1 · · · |ri|pm , (3.1)

for a vector p = (p1, . . . , pm) of positive numbers satisfying p1 + · · · + pm = 2. Indeed,

the realized volatility is a special case of θ̂p (with m = 1 and p1 = 2). A remarkable

property of the multipower variation is: if p’s are reasonably small (see (3.3) below), then

the estimator θ̂p enjoys certain robustness against jumps in the observed process.

To be precise, consider the process

Yt = Xt + Jt, (3.2)

for t ≥ 0, where X is generated by the continuous time process in (2.1) satisfying As-

sumption X, and J is a jump process, which is assumed to be a Lévy process with no

continuous component and index α = inf
{
a ≥ 0 :

∫
[−1,1]

|x|aΠ(dx) <∞
}
∈ [0, 2] for the

Lévy measure Π. The Lévy process is a convenient general class of processes to accom-

modate both finite and infinite activity jumps. Barndorff-Nielsen, Shephard and Winkel

(2006, Theorem 1) showed that the limiting distribution of the multipower variation θ̂p

remains the same regardless of the presence of the jump process J so long as

α < 1,
α

2− α
≤ min{p1, . . . , pm} ≤ max{p1, . . . , pm} < 1. (3.3)

A popular choice of p for the jump robust estimator is the tripower variation (i.e., m = 3

and p1 = p2 = p3 = 2/3).
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Suppose we observe high frequency returns r̃i = Yi/n−Y(i−1)/n measured over the period

[(i − 1)/n, i/n] for i = 1, . . . , n. Let cp =
∏m

l=1 µpl , where µp = E|z|p with z ∼ N(0, 1).

Based on the estimating equation for θ̂p, we define the jump robust empirical likelihood

function for θ as in (2.2) with gi(ϑ) = n|r̃i−m+1|p1 · · · |r̃i|pm − cpϑ. Let R̃2 = θ̂p and

R̃4 = n
∑n

i=m |r̃i−m+1|2p1 · · · |r̃i|2pm . Define the constant

dp =
m∏
l=1

µ2pl − (2m− 1)
m∏
l=1

µ2
pl

+ 2
m−1∑
k=1

k∏
l=1

µpk

m∏
l=m−k+1

µpl

m−k∏
l=1

µpl+pl+k .

Then the first-order asymptotic properties of the jump robust empirical likelihood statistic

are obtained as follows.

Theorem 4. Suppose Y is generated by (3.2). Assume p1 + · · ·+pm = 2 and (3.3). Then

TEL(θ) with gi(θ) = n|r̃i−m+1|p1 · · · |r̃i|pm − cpθ satisfies (2.4) for Â = c2p
dp

(
1− R̃2

2

R̃4

)
. This

result does not change even if J = 0 (the case of no jump).

This theorem says that the empirical likelihood statistic TEL(θ) using the above g has

the limiting χ2
1 distribution which is invariant to the presence of jumps. The jump robust

confidence interval for θ is obtained in the same manner. We note that the empirical

likelihood function for the benchmark case (i.e., m = 1 and p1 = 2) does not satisfy the

condition in (3.3).

3.3. Noise robust inference. Our empirical likelihood approach can be adapted to be

robust to the presence of microstructure noise. In particular, we employ the pre-averaging

approach of Jacod et al. (2009), and construct an empirical likelihood based on block

averages of the original data. In this subsection, we consider the following setup.
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Assumption X’. Observations {Zi/n}ni=1 are generated from Zi/n = Xi/n + Ui/n, where

{Xi/n}ni=1 is drawn from the latent process X satisfying Assumption X, and {Ui/n}ni=1 is

an i.i.d. sequence with zero mean and finite eighth moments and is independent of X.

We are interested in the integrated volatility θ =
∫ 1

0
σ2
udu of the latent process X. It is

known that due to the presence of the noise term Ui/n, the conventional realized volatility

based on the observables {Zi/n}ni=1 is inconsistent for θ (e.g., Hansen and Lunde, 2006,

and Bandi and Russell, 2008).

In this setup, Jacod et al. (2009) developed a noise robust estimator for θ based

on the pre-averaging approach. A simplified version of their estimator is described as

follows. First, we transform the observed data {Zi/n}ni=1 into block averages Z̄i/n =

K−1
∑K−1

j=0 Z(i+j)/n for i = 0, 1, . . . , n − K + 1. Second, based on the block averages,

compute (half of) the return data r̄i = (Z̄(i+K)/n − Z̄i/n)/2 for i = 1, . . . , n − K + 1.

Finally, compute the noise robust estimator as

θ̄ =
6

K

nK∑
i=1

r̄2
i −

3

2K2
θ̂, (3.4)

where nK = n − 2K + 2 and θ̂ =
∑n

i=1(Zi/n − Z(i−1)/n)2 is the conventional realized

volatility estimator using the original data. Intuitively, compared to the original Zi/n, the

variance of the noise in the block average Z̄i/n is reduced by a factor of 1/K. Thus, the

volatility estimator θ̄ based on the block averages is expected to be less sensitive to the

presence of the noise term. The second term in (3.4) is a bias correction term. Jacod et

al. (2009) showed θ̄ is consistent for θ and asymptotically normal with the rate n−1/4.

Using the estimating equation for (3.4), we define the noise robust empirical likelihood

function for θ as in (2.2) with gi(ϑ) = 6nK
K
r̄2
i − 3

2K2 θ̂ − ϑ for i = 1, . . . , nK . Choose the
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block length as K = 1
2
cn1/2 + o(n1/4) for some c > 0. Then define R̄q = n

q/2−1
K

∑nK
i=1 |r̄i|q,

R∗4 =
4 · 124Φ22

3c

nK∑
i=1

r̄4
i +

4

c3n
(123Φ12 − 124Φ22)

nK−2K∑
i=1

r̄2
i

i+4K−1∑
j=i+2K

(Zj/n − Z(j−1)/n)2

+
1

c3n
(122Φ11 − 2 · 123Φ12 + 124Φ22)

n−2∑
i=2

(Zi/n − Z(i−1)/n)2(Z(i+2)/n − Z(i+1)/n)2,

with Φ11 = 1
6
, Φ12 = 1

96
, and Φ22 = 151

80640
. The object R∗4 appeared in Jacod et al. (2009,

eq. (3.7)) as an estimator of the asymptotic variance of θ̄. The first-order asymptotic

distribution of the noise robust empirical likelihood statistic is obtained as follows.

Theorem 5. Under Assumption X’, TEL(θ) with gi(θ) = 6nK
K
r̄2
i − 3

2K2 θ̂− θ satisfies (2.4)

for Â = 36n1/2

nKK2

R̄4−R̄2
2

R∗
4

.

As pointed out by Jacod et al. (2009), the pre-averaging estimator θ̄ can be interpreted

as a realized kernel estimator in Barndorff-Nielsen et al. (2008). Similarly, our empirical

likelihood statistic TEL(θ) using the block averages may be interpreted as the block em-

pirical likelihood statistic by Kitamura (1997) for weakly dependent data. However, the

block averages here are employed to reduce the effect of microstructure noise.

In this section, we impose Assumption X’ and consider the case of additive and i.i.d.

noise for simplicity. We conjecture that it is possible to extend our approach to more

general setups, such as weakly dependent noise (Aït-Sahalia, Mykland and Zhang, 2011),

non-additive noise (Jacod et al., 2009), and endogenous time (Li, Zhang and Zheng, 2013)

by modifying the estimating function to be robust to those setups.

3.4. Test for presence of jumps. So far, we have considered empirical likelihood infer-

ence on some functional θ of the volatility process σ. However, the empirical likelihood

approach can be used for other purposes. An important application is to test whether

different estimating functions for the same object converge to the same limit.
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For example, consider the setup in Section 3.2 and suppose we wish to test the presence

of jumps in the observed process (i.e., J in (3.2)). When there is no jump in the process

(i.e., J = 0), both the multipower variation θ̂p in (3.1) (with p1 + · · · + pm = 2) and

the realized volatility cp
∑n

i=1 r̃
2
i multiplied by the constant cp are consistent for cpθ.

Therefore, the object
∑n

i=m(|r̃i−m+1|p1 · · · |r̃i|pm−cpr̃2
i ) converges to zero and the empirical

likelihood statistic tends to be small. On the other hand, in the presence of jumps, this

object converges to a negative constant (Barndorff-Nielsen and Shephard, 2004) and the

empirical likelihood statistic tends to be large.

Let cp̃l = (µpl+2/µpl)
∏m

k=1 µpk be a known constant. The first-order asymptotic proper-

ties of the empirical likelihood statistic for the presence of jumps are obtained as follows.

Theorem 6. Suppose Y = X (i.e., no jump), where X satisfies Assumption X. Then

TEL with gi = |r̃i−m+1|p1 · · · |r̃i|pm − cpr̃2
i satisfies (2.4) for Â =

c2p+3c2p−2cpcp̃
dp−2

∑m
l=1 cp(cp̃l−cp)+2c2p

. On

the other hand, if Y is generated by (3.2), then the statistic TEL diverges.

Since
∑n

i=m gi converges to a negative constant under the alternative hypothesis, we

propose a one-sided version of the (signed root) empirical likelihood statistic SEL =

−sgn(
∑n

i=m gi)T
1/2
EL . Based on the above theorem, we reject the null of no jump if

SEL > z1−α where z1−α is the (1− α)-th quantile of the standard normal distribution.

Note that the adjustment term Â is a known constant in this case. Among several

existing methods for testing the presence of jumps (see, Dumitru and Urga, 2012, for a

review), our empirical likelihood test can be considered as a likelihood ratio counterpart of

the Wald-type tests by Barndorff-Nielsen and Shephard (2004) and Huang and Tauchen

(2005) (for the special case of p = (1, 1)) which essentially tests whether the ratio of the

bipower variation to the realized volatility (i.e., θ̂(1,1)/θ̂2) is different from one.
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Based on the discussion in Section 2.3, advantages of our empirical likelihood jump test

compared to the Wald-type tests are as follows. First, the empirical likelihood statistic

TEL does not require estimation of the scale for any p (again, Â in Theorem 6 is a known

constant). However, the Wald statistic based on θ̂p/θ̂2 requires estimation of the standard

error for each p, and, generally, scale estimation of higher moments is a difficult task.

Second, the Wald-type tests are not invariant to formulations of the test statistics. For

example, the Wald statistics θ̂(1,1)/θ̂2−1

s.e.(θ̂(1,1)/θ̂2)
and θ̂(1,1)−θ̂2

s.e.(θ̂(1,1)−θ̂2)
generally yield different outcomes

and the conclusion can be different. On the other hand, the empirical likelihood statistic

is free from such lack of invariance. Third, in the literature on empirical likelihood,

the above attractive features are typically coupled by better higher-order properties (in

particular, Bartlett correctability). Although it is beyond the scope of this paper, we

conjecture that the generalized likelihood version of TEL as in Section 4 would provide a

Bartlett correctable statistic.

4. General nonparametric likelihood and second-order asymptotics

In this section, we generalize the construction of nonparametric likelihood for the in-

tegrated volatility by using the power divergence family (Cressie and Read, 1984). This

family is general enough to accommodate not only the empirical likelihood considered so

far, but also other likelihood functions. Based on this general family of nonparametric

likelihood functions, we investigate second-order asymptotic properties of nonparametric

likelihood statistics. In particular, we show that adequate choices of tuning constants lead

to Bartlett correctable statistics.

4.1. General nonparametric likelihood. We first consider the benchmark setup in

Section 3.1. As a general family of nonparametric likelihood functions, we employ the
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power divergence family (Cressie and Read, 1984)

Lγ(w1 . . . , wn) =
2

γ(γ + 1)

n∑
i=1

{(nwi)γ+1 − 1},

for γ 6= −1, 0. For γ = −1 and 0, Lγ(w1 . . . , wn) = −2
∑n

i=1 log(nwi) and 2n
∑n

i=1wi log(nwi),

respectively. Based on Lγ(w1 . . . , wn) and using the estimating equation for the realized

volatility θ̂ =
∑n

i=1 r
2
i , we specify the likelihood function for the integrated volatility θ as

`γ,φ(θ) = Lγ(wφ,1 . . . , wφ,n), where the weights wφ,1, . . . , wφ,n solve

min
w1,...,wn

Lφ(w1 . . . , wn), subject to
n∑
i=1

wi = 1,
n∑
i=1

wi(nr
2
i − θ) = 0. (4.1)

The nonparametric likelihood function `γ,φ(θ) contains two tuning constants, γ and φ.

In the literature, it is commonly assumed γ = φ. For example, the empirical likelihood

function corresponds to γ = φ = −1, and Pearson’s χ2 corresponds to γ = φ = −2.

Baggerly (1998) showed that in the class of likelihood functions with γ = φ, only

empirical likelihood is Bartlett correctable for the mean of i.i.d. data. On the other

hand, Schennach (2005, 2007) considered the case of γ 6= φ and studied the exponentially

tilted empirical likelihood statistic with γ = −1 and φ = 0 from both a Bayesian and

a frequentist perspective. In our infill asymptotics setup, it is crucial to consider the

general class of `γ,φ(θ) indexed by γ and φ to achieve a Bartlett correction. Below, we

will show that even if the volatility process σ is constant, the empirical likelihood statistic

(i.e., `γ,φ(θ) with γ = φ = −1) is not Bartlett correctable under infill asymptotics, and

the constants γ and φ need to be chosen separately to achieve Bartlett correction. This

is because under infill asymptotics the empirical moments contained in an expansion of

`γ,φ(θ) follow rather different laws of large numbers compared to the i.i.d. case.
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By the Lagrange multiplier argument, the solution of (4.1) is (see, Baggerly, 1998)

wφ,i =
1

n
(1 + η + λ(nr2

i − θ))
1
φ , (4.2)

for φ 6= 0 and wφ,i = 1
n
η exp(λ(nr2

i − θ)) for φ = 0, where η and λ solve

1

n

n∑
i=1

(1 + η + λ(nr2
i − θ))

1
φ = 1,

1

n

n∑
i=1

(1 + η + λ(nr2
i − θ))

1
φ (nr2

i − θ) = 0, (4.3)

for φ 6= 0 and solve 1
n

∑n
i=1 η exp(λ(nr2

i−θ)) = 1 and 1
n

∑n
i=1 η exp(λ(nr2

i−θ))(nr2
i−θ) = 0

for φ = 0. In practice, we use (4.2) to compute the weights in (4.1).

The first-order asymptotic distribution of `γ,φ(θ) is obtained as follows.

Theorem 7. Suppose Assumption X holds true. For each γ, φ ∈ R, as n→∞,

Tγ,φ(θ) =
3

2

(
1− R2

2

R4

)
`γ,φ(θ)

d→ χ2
1.

Similar comments to Theorem 2 apply. Similar modifications as in Sections 3.2 and 3.3

can be applied to Tγ,φ(θ) to be robust to jumps and microstructure noise.

Note that the first-order asymptotic distribution of the statistic Tγ,φ(θ) is identical to

the one in Theorem 2 for the empirical likelihood. Moreover, the first-order asymptotic

distribution does not depend on the tuning constants γ and φ. The next subsection studies

second-order asymptotic properties of Tγ,φ(θ) to compare different choices of γ and φ.

4.2. Second-order asymptotics. The first-order asymptotic theory for Tγ,φ(θ) in The-

orem 7 is silent about the choice of the tuning constants γ and φ. In order to address

this issue, we investigate the second-order asymptotic properties of Tγ,φ(θ). Following the

conventional recipe described in Section 2.3 (see also, DiCiccio, Hall and Romano, 1991,
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and Baggerly, 1998, among others), we first derive the signed root Sγ,φ of the nonparamet-

ric likelihood statistic satisfying Tγ,φ(θ) = Sγ,φ + Op(n
−3/2), then evaluate the cumulants

of the signed root. In particular, based on the third and fourth cumulants of Sγ,φ (say,

κ
(3)
γ,φ and κ(4)

γ,φ), we seek values of γ and φ at which κ(3)
γ,φ and κ(4)

γ,φ vanish at sufficiently fast

rates to achieve a Bartlett correction. Details are provided in the web appendix (proofs

of Theorems 8 and 9). For the second-order analysis, we add the following assumption.

Assumption H. The process X follows (2.1) with µ = 0 and σ is independent of W and

bounded away from zero.

This assumption is restrictive since it rules out the drift term and leverage effect.

Gonçalves and Meddahi (2009, p. 289) imposed a similar but stronger assumption for their

higher-order analysis of bootstrap inference. Although the drift term µ is asymptotically

negligible of the first-order, it will appear in the higher-order terms and complicates our

second-order analysis. Ruling out the leverage effect (i.e., independence between σ and

W ) also simplifies our second-order analysis since it allows us to condition on the path

of σ to compute the cumulants of the signed root Sγ,φ. Relaxing Assumption H for the

second-order analysis is beyond the scope of this paper.

To simplify the exposition of our results, we first consider the simple case where the

volatility is constant (σt = σ over t ∈ [0, 1]). In this setting, the second-order properties

of the nonparametric likelihood statistic Tγ,φ(θ) are presented as follows.

Theorem 8. Suppose Assumptions X and H hold true and σt = σ over t ∈ [0, 1]. Then,

for γ = −1 and φ = −1 ±
√

5
3
, the nonparametric likelihood statistic Tγ,φ(θ) is Bartlett

correctable, i.e., conditionally on the path of σ,

Pr
{
Tγ,φ(θ) ≤ χ2

1,α(1 + 3n−1)
}

= 1− α +O(n−2).
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This theorem says that when we choose γ = −1 and φ = −1±
√

5
3
, the nonparametric

likelihood test based on Tγ,φ(θ) using the adjusted critical value χ2
1,α(1 + 3n−1) provides

a refinement to the order O(n−2) on the null rejection probability error. It should be

noted that the empirical likelihood statistic (i.e., Tγ,φ(θ) with γ = φ = −1) is not Bartlett

correctable because the fourth cumulant κ(4)
γ,φ of the signed root does not vanish at the

order of O(n−4) (see the proof of Theorem 8 in the web appendix). This is due to the

fact that the empirical moments contained in the signed root Sγ,φ show different limiting

behaviors under the infill asymptotics (compared to the i.i.d. case), and the dominant

term of the fourth cumulant κ(4)
γ,φ takes a different form. Note that the Bartlett factor

(1 + 3n−1) does not contain any unknown objects.

Finally, we drop the assumption of constant volatility and consider a more general

setup. Although the computations are quite cumbersome, it is possible to estimate tuning

constants γ̂ and φ̂ such that the nonparametric likelihood statistic Tγ̂,φ̂(θ) is Bartlett

correctable. The second-order properties of the nonparametric likelihood statistic in the

general case are presented in the following theorem.

Theorem 9. Suppose Assumptions X and H hold true. Then, for γ̂, φ̂, and a (defined in

Section A.7 of the web appendix), the nonparametric likelihood statistic Tγ̂,φ̂(θ) is Bartlett

correctable, i.e., conditionally on the path of σ,

Pr
{
Tγ̂,φ̂(θ) ≤ χ2

1,α(1 + an−1)
}

= 1− α +O(n−2).

This theorem says that even for the general non-constant volatility case, the nonpara-

metric likelihood statistic Tγ̂,φ̂(θ) with the estimated tuning constants γ̂ and φ̂ using the

adjusted critical value χ2
1,α(1 + an−1) provides a refinement to the order O(n−2) on the

null rejection probability error. In the general case, the Bartlett factor a can be estimated
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by the method of moments or wild bootstrap as in Gonçalves and Meddahi (2009). See

Section A.7 of the web appendix for details on the computation of γ̂ and φ̂, and estima-

tion of a. For the one-sided test, Gonçalves and Meddahi (2009) used the bootstrap to

obtain a second-order refinement result of the order o(n−1/2). In contrast, we consider

the two-sided test and show that our Bartlett correction of the nonparametric likelihood

statistic can yield a refinement to the order O(n−2).

Although it is beyond the scope of this paper, we conjecture that analogous higher-order

refinement results can be established for more general cases. As we explained in Section

2.3, the key step to establish the Bartlett correction for the nonparametric likelihood

statistic is to characterize the third and fourth order cumulants of its asymptotic signed

root. The calculations of these cumulants become more involved under general setups,

such as processes containing jumps and noise. Such calculations for cumulants become

even more complicated for the noise robust inference discussed in Section 3.3, where the

empirical likelihood statistic involves an additional tuning sequence K. This additional

complication is analogous to the one in Kitamura (1997), who established the Bartlett

correctability of the blocked empirical likelihood statistic for dependent data.

5. Simulation

This section conducts simulation studies to evaluate the finite sample properties of the

empirical likelihood methods presented above.

5.1. Simulation 1: Benchmark case. We adopt simulation designs considered in

Gonçalves and Meddahi (2009). In particular, we consider the stochastic volatility model

dXt = µtdt+ σt

(
ρ1dW1t + ρ2dW2t +

√
1− ρ2

1 − ρ2
2dW3t

)
,
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where W1t, W2t, and W3t are independent standard Brownian motions. In addition to the

constant volatility case, we consider two different models for the volatility process σt. The

first model for σt is the GARCH(1,1) diffusion: dσ2
t = 0.035(0.636−σ2

t )dt+ 0.144σ2
t dW1t.

The second model is the two-factor diffusion model: σt = f(−1.2+0.04σ2
1t+1.5σ2

2t), where

dσ2
1t = −0.00137σ2

1tdt+ dW1t, dσ2
2t = −1.386σ2

2tdt+ (1 + 0.25σ2
2t)dW2t, and

f(x) = exp(x)I{x ≤ x0}+ x
−1/2
0 exp(x0)

√
x0 − x2

0 + x2I{x > x0}, (5.1)

with x0 = log(1.5). In addition to the case of no drift and no leverage effect (i.e.,

(µt, ρ1, ρ2) = (0, 0, 0)), we allow for drift and leverage effects by setting (µt, ρ1, ρ2) =

(0.0314,−0.576, 0) for the GARCH(1,1) model, and (µt, ρ1, ρ2) = (0.030,−0.30,−0.30)

for the two-factor diffusion model.

For these cases, we compare seven methods to construct two-sided 95% confidence

intervals: (i) the Wald-type interval (Wlevel),2 (ii) the empirical likelihood (EL) in Theorem

2, (iii) the nonparametric likelihood (NL) with γ = −1 and φ = −1 +
√

5
3

in Theorem 7,

(iv) the Bartlett corrected nonparametric likelihood (BNL) with the Bartlett correction

factor 1 + 3/n in Theorem 8, (v) the logarithmic transform based Wald-type interval

(Wlog), (vi) the wild bootstrap based on the two-point distribution proposed in Gonçalves

and Meddahi (2009, Proposition 4.5) (BootGM), and (vii) the local gaussian bootstrap

proposed by Hounyo (2018) with block sizes M =1, 4, and 12. (BootH(M)).3

Tables 1 and 2 present the actual coverage rates of each confidence interval across

10,000 Monte Carlo replications for five different sample sizes: n =1152, 288, 48, 24, and

12, which correspond to 1.25-minute, 5-minute, half-hour, 1-hour, and 2-hour returns,

respectively. All methods tend to undercover, especially when the sample size n is small

2The 100(1−α)% asymptotic Wald -type confidence interval is
[
θ̂ ± zα/2

√
V̂ /n

]
, where V̂ = 2n

3

∑n
i=1 r

4
i .

3The bootstrap confidence intervals use 499 bootstrap replications for each Monte Carlo replication.
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(or sampling in a fixed time interval is not too frequent). However, we find that the

performance of Hounyo’s (2018) local gaussian bootstrap is excellent. The two-factor

model implies overall larger coverage distortions than the GARCH(1,1) model.

We first compare the proposed nonparametric likelihood methods (EL, NL, and BNL)

and the conventional Wald confidence interval (Wlevel) to illustrate the discussions in

Section 2.3. Indeed, EL, NL, and BNL outperform Wlevel for all cases. Among these

nonparametric likelihood methods, BNL outperforms even for stochastic volatility models

with drift and leverage effects despite the fact that the Bartlett correction in Theorem 8

does not theoretically provide an asymptotic refinement under non-constant volatility.

We now compare the nonparametric likelihood methods (EL, NL, and BNL) with the

bootstrap methods (BootGM and BootH) and the logarithmic transform based Wald-type

interval (Wlog). For the GARCH(1,1) model, BootH by Hounyo (2018) tends to be closer to

the nominal level than the other methods, and our nonparametric likelihood methods show

similar performance as BootGM by Gonçalves and Meddahi (2009) and Wlog. For the two-

factor model, BNL, in particular, is favorably comparable with BootGM, BootH, and Wlog.

In this case, we should note that the results of BootH may be sensitive to the choice of the

block size M . Overall, for the benchmark case, the proposed nonparametric likelihood

methods perform equally as well as Gonçalves and Meddahi’s (2009) wild bootstrap and

the logarithmic transform based Wald interval, but less satisfactory than Hounyo’s (2018)

local gaussian bootstrap. It is interesting to investigate whether Hounyo’s (2018) local

approach can be adapted to our empirical likelihood approach (e.g., construct an empirical

likelihood by exploiting the local Gaussian framework of Mykland and Zhang (2009)).

As discussed in Section 2.3, the nonparametric likelihood confidence intervals are range

preserving while the conventional Wald-type confidence interval (Wlevel) may contain neg-

ative values. To illustrate this point, we report the frequencies of negative left endpoints
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of the Wald-type confidence intervals in Table 3. This shows that the Wald-type intervals

tend to contain negative values particularly for small sample sizes.

5.2. Simulation 2: Test for jump. In this subsection we evaluate the finite sample

properties of the nonparametric likelihood test for the presence of jumps discussed in

Section 3.4. We adopt the simulation design in Dovonon et al. (2017), and consider the

two-factor diffusion model with diurnality effects:

d logSt = µtdt+ σu,tσt(ρ1dW1t + ρ2dW2t +
√

1− ρ2
1 − ρ2

2dW3t) + dJt,

σu,t = 0.88929198 + 0.75 exp(−10t) + 0.25 exp(−10(1− t)), σt = f(−1.2 + 0.04σ2
1t + 1.5σ2

2t),

where dσ2
1t = −0.00137σ2

1tdt + dW1t, dσ2
2t = −1.386σ2

2tdt + (1 + 0.25σ2
2t)dW2t, and f(·)

is defined in (5.1). The process σu,t models the diurnal U-shaped pattern in intraday

volatility. When σu,t = 1 for t ∈ [0, 1], the return process reduces to the simple case of

no diurnality effects. Jt is a finite activity jump process modeled as a compound Poisson

process with constant jump intensity λ and random jump size distributed as N(0, σ2
jump).

For the null hypothesis of no jump in the return process, we set σ2
jump = 0. For the

alternative hypothesis, we set λ = 0.058 and σ2
jump = 1.7241.

We compare four methods to test for jumps: (i) the Wald-type test (Wald),4 (ii) the

(one-sided) empirical likelihood test (EL) presented after Theorem 6 using the tripower

variation (m = 3 and p1 = p2 = p3 = 2/3), (iii) the adjusted Wald-type test by Huang

4The Wald statistic is defined as Tn =
√
n(RVn − BVn)/

√
V̂n, where RVn =

∑n
i=1 r

2
i , BVn =

1
µ2
1

∑n
i=2 |ri||ri−1|, and V̂n = (µ−41 +2µ−21 −5) n

µ3
4/3

∑n
i=3 |ri|4/3|ri−1|4/3|ri−2|4/3. The test then rejects the

null of no jump at a significance level of α when Tn > z1−α, where z1−α is the (1− α)-th quantile of the
standard normal distribution.
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and Tauchen (2005) (Waldadj),5 and (iv) the bootstrap test by Dovonon et al. (2017) with

L = 5 and M = 4 (Boot).6

We consider five different sample sizes: n =1152, 576, 288, 96, and 48, which correspond

to 1.25-minute, 2.5-minute, 5-minute, 15-minute, and half-hour returns. All results are

based on 5,000 Monte Carlo replications.

Table 4 reports the rejection frequencies of the jump tests under the null of no jump at

the 5% nominal significance level for both cases with and without diurnally effects. The

Wald-type tests (both Wald and Waldadj) tend to over-reject for both cases especially

when the sample size is small (i.e., sampling in a fixed time interval is less frequent). In

all cases, EL shows better performance in terms of the null rejection frequencies. The

rejection frequencies vary from 9.3% (n = 1152) to 26.9% (n = 48) for Wald, from 7.4%

(n = 1152) to 17.2% (n = 48) for Waldadj, from 6.2% (n = 1152) to 10.7% (n = 48) for

Boot, while they vary from 5.3% (n = 1152) to 8.0% (n = 48) for EL.

We also analyze the power properties of the proposed jump test under the alternative

hypothesis. We compare the calibrated powers of the four tests above (i.e., the rejection

frequencies of these tests where the critical values are given by the Monte Carlo 95%

percentiles of the corresponding test statistics under the data generation process satisfying

the null hypothesis). Table 5 shows that EL is slightly less powerful than the other

methods. Since EL has better null rejection properties than the others, these power

properties characterize a tradeoff between the size and power properties of the empirical

likelihood test and other tests.

5The adjusted Wald-type statistic is defined as
√
n(1−BVn/RVn)√

(µ−4
1 +2µ−2

1 −5)max{1,TQn/BV 2
n}

, where TQn =

n
µ3
4/3

∑n
i=3 |ri|4/3|ri−1|4/3|ri−2|4/3.

6The choice of L = 5 is based on the recommendation of Dovonon et al. (2017). The results are not
very sensitive to the choice of M when L = 5. In our simulations, the bootstrap test uses 499 bootstrap
replications for each Monte Carlo replication.
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5.3. Simulation 3: Noise robust inference. In Section B of the web appendix, we

present additional simulation results for the noise robust empirical likelihood statistic

discussed in Section 3.3.

6. Real data example

To mitigate microstructure noise, as suggested in Hansen and Lunde (2006) and Bandi

and Russel (2008), we consider 5-minute data consisting of intra-day quotes of Alcoa,

American Express, Baxter, Citigroup, Dow, Gilead, Goldman Sachs, Intel Corporation,

Met, Microsoft, Nike, Pfizer, Verizon and Yahoo from January 2, 2001 to November 15,

2005, which corresponds to 1236 trading days.

Table 6 reports the percentage of days identified with jumps for the period under

investigation.7 To this end, we consider four methods to test for jumps: (i) the Wald-type

test (Wald), (ii) (signed root) empirical likelihood (EL), (iii) (signed root) nonparametric

likelihood (NL) with γ = −1 and φ = −1 +
√

5
3
, and the bootstrap approach (Boot)

proposed in Dovonon, Goncalves, Hounyo, and Meddahi (2018). In line with the Monte

Carlo findings, we note that the Wald test tends to over detect jumps. Indeed, the

percentage of days identified with jumps is always larger than 19%. EL, NL and Boot

imply very similar empirical findings. Using nonparametric likelihood procedures, the

percentage of days identified with jumps is always smaller than 11%.

7. Conclusion

In this paper, we propose empirical likelihood-based methods for interval estimation

and hypothesis testing of volatility measures using high frequency data. Our empirical

likelihood approach is extended to be robust to the presence of jumps and microstructure

7Our preliminary sensitivity analysis suggests that the results are qualitatively very similar for different
sampling frequencies.
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noise, and an empirical likelihood test to detect the presence of jumps is developed. We

also investigate second-order properties of a general family of nonparametric likelihood

statistics, and propose a method for Bartlett correction.

One important direction of future research is to extend our empirical likelihood ap-

proach to develop a new point estimator under over-identified estimating equations, where

the number of estimating equations exceeds the number of parameters. Over-identified

estimating equations naturally emerge in the present context if we combine different esti-

mating equations for the same object of interest. In this case, the resulting maximum em-

pirical likelihood estimator can be different from the existing estimators, and is expected

to be more efficient. This extension is currently under investigation by the authors.

Appendix A. Tables

n Wlevel EL NL BNL Wlog BootGM BootH(1) BootH(4) BootH(12)
constant volatility

12 85.78 88.06 87.62 90.36 90.28 86.62 94.26 94.40 94.32
24 89.20 91.70 91.28 92.72 92.20 91.72 94.22 94.80 94.54
48 91.80 93.68 93.38 94.26 93.88 93.56 94.00 94.60 94.58
288 94.28 94.72 94.70 94.84 94.64 94.34 94.58 94.78 95.04
1152 94.90 94.90 94.90 94.90 95.54 95.18 94.18 95.30 94.96

GARCH(1,1) diffusion
12 86.06 88.64 88.28 90.64 89.76 87.16 93.52 94.22 94.34
24 90.38 92.44 91.90 93.46 92.66 92.12 93.46 94.80 94.52
48 92.46 93.88 93.70 94.52 92.96 93.96 93.84 94.20 94.38
288 94.04 94.70 94.62 94.80 94.66 93.92 93.92 94.22 94.04
1152 94.94 95.06 95.06 95.06 94.98 94.66 94.78 94.56 95.22

Two-factor diffusion
12 79.86 82.96 82.30 85.76 86.44 80.16 93.22 91.24 87.16
24 85.06 88.66 88.22 90.18 88.96 87.50 93.26 92.40 88.70
48 88.50 91.34 91.08 91.84 90.90 90.68 93.56 92.60 90.50
288 93.38 94.18 93.98 94.16 94.36 93.52 93.62 95.06 93.90
1152 94.50 94.56 94.48 94.48 95.00 93.90 93.92 94.76 94.92

Table 1. Coverage probabilities of nominal 95% confidence intervals for
integrated volatility (no leverage and no drift case)
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n Wlevel EL NL BNL Wlog BootGM BootH(1) BootH(4) BootH(12)
GARCH(1,1) diffusion

12 85.84 88.60 88.02 90.50 89.78 87.02 93.96 94.56 94.42
24 89.02 91.06 90.64 92.26 92.08 92.40 94.44 94.08 94.44
48 92.14 93.70 93.58 94.16 93.38 93.40 94.52 94.64 94.18
288 95.20 95.48 95.42 95.50 94.48 94.80 94.56 94.32 95.42
1152 95.14 95.00 94.94 94.98 94.86 94.46 94.60 94.00 94.14

Two-factor diffusion
12 79.76 84.34 83.86 86.70 86.84 79.60 94.36 91.28 87.72
24 84.68 88.34 88.10 89.44 88.90 87.16 94.46 91.88 89.46
48 88.04 91.08 90.80 91.68 91.04 90.32 92.96 92.74 91.56
288 93.18 94.10 94.02 94.12 94.10 93.86 93.78 93.24 93.04
1152 94.56 95.46 95.38 95.42 94.54 94.16 94.72 94.74 93.90

Table 2. Coverage probabilities of nominal 95% confidence intervals for
integrated volatility (with leverage and drift)

95% 99% 99.9% 95% 99% 99.9%
n GARCH(1,1) diffusion Two-factor diffusion
12 80.64 99.85 100 91.86 99.96 100
24 6.94 43.60 95.44 40.61 79.32 99.02
48 0.01 0.47 7.21 8.75 25.59 58.14
288 0 0 0 0 0.04 0.23
1152 0 0 0 0 0 0

Table 3. Frequencies (measured by percentages) of negative left endpoints
of 95%, 99%, and 99.9% Wald confidence intervals for integrated volatility
(with leverage and drift)

n Wald EL Waldadj Boot Wald EL Waldadj Boot
without diurnal effects with diurnal effects

48 22.4 8.0 14.6 8.5 26.9 7.3 17.2 10.7
96 15.1 5.7 9.9 7.3 18.8 5.4 13.3 8.9
288 11.2 4.9 8.3 6.2 12.0 4.9 9.6 7.4
576 10.4 5.7 8.3 6.4 11.7 5.7 9.7 7.1
1152 9.3 5.3 7.4 6.3 9.5 5.4 7.8 6.2

Table 4. Rejection frequencies of jump tests at 5% level
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n Wald EL Waldadj Boot Wald EL Waldadj Boot
without diurnal effects with diurnal effects

48 74.9 66.4 75.2 74.9 72.8 65.0 72.1 72.8
96 82.6 77.0 82.6 82.6 79.8 74.9 79.5 79.8
288 86.9 83.4 86.9 86.9 83.7 80.9 83.7 83.7
576 89.7 85.9 89.4 89.7 87.6 83.0 87.6 87.6
1152 89.7 85.9 89.4 89.7 87.6 84.5 87.6 87.6

Table 5. Calibrated power of jump tests

Wald EL NL Boot
Alcoa 20.54 5.65 6.47 5.44
American Express 19.62 6.76 7.52 6.32
Baxter 23.67 8.13 8.76 7.22
Citigroup 21.69 8.92 9.37 8.88
Dow 23.07 7.76 8.12 7.11
Gilead 21.02 6.16 7.02 6.01
Goldman Sachs 19.76 4.87 5.24 4.67
Intel Corporation 21.11 7.34 7.61 6.85
Met 22.65 9.42 10.26 9.13
Microsoft 22.02 8.14 9.02 8.04
Nike 21.97 7.54 8.02 7.08
Pfizer 21.65 9.59 10.15 8.93
Verizon 22.15 7.06 7.56 6.84
Yahoo 22.87 8.05 9.23 7.84

Table 6. Percentage of days identified with jumps for the period from
January 2, 2001 to November 15, 2005.
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